CLOSURE OPERATIONS FOR SCHUNCK CLASSES

Dedicated to the memory of Hanna Neumann

TREVOR HAWKES

(Received 14 June 1972)

Communicated by M. F. Newman

In his Canberra lectures on finite soluble groups, [3], Gaschütz observed that a Schunck class (sometimes called a saturated homomorph) is $\{Q, E_{\phi}, D_{0}\}$ -closed but not necessarily R_{0} -closed(*). In Problem 7.8 of the notes he then asks whether every $\{Q, E_{\phi}, D_{0}\}$ -closed class is a Schunck class. We show below with an example that this is not the case, and then we construct a closure operation \bar{R}_{0} satisfying $D_{0} < \bar{R}_{0} < R_{0}$ such that \mathfrak{X} is a Schunck class if and only if $\mathfrak{X} = \{Q, E_{\phi}, \bar{R}_{0}\}\mathfrak{X}$. In what follows the class of finite soluble groups is universal. Let \mathfrak{P} denote the class of primitive groups. We recall that a Schunck class \mathfrak{X} is one which satisfies:

- (a) $\mathfrak{X} = Q\mathfrak{X}$, and
- (b) \mathfrak{X} contains all groups G such that $Q(G) \cap \mathfrak{P} \subseteq \mathfrak{X}$.

EXAMPLE. Let $\mathfrak Y$ denote the class comprising groups of order 1, groups of order 2 and non-Abelian groups of order 6. Set $\mathfrak X=E_\phi D_0\mathfrak Y$. Since $E_\phi D_0$ is a closure operation (see [4]), $\mathfrak X$ is $\{E_\phi,D_0\}$ -closed. It is not difficult to see that $D_0\mathfrak Y$ is Q-closed, and since $E_\phi Q$ is a closure operation (again see [4]), it follows that $Q\mathfrak X=QE_\phi D_0\mathfrak Y\subseteq E_\phi QD_0\mathfrak Y=E_\phi D_0\mathfrak Y=\mathfrak X$, and hence that $\mathfrak X$ is Q closed. Let G denote the extension of an elementary Abelian group of order 9 by an inverting involution. Then clearly $G\notin \mathfrak X$ and every primitive epimorphic image of G does belong to $\mathfrak X$, even to $\mathfrak Y$. Therefore $\mathfrak X=\{Q,E_\phi,D_0\}\mathfrak X$ but $\mathfrak X$ is not a Schunck class.

In order to formulate the closure operation \bar{R}_0 we need the concept of a crown, due to Gaschütz [2]. Let H/K be a complemented chief factor of a group G and M one of the maximal subgroups of G complementing it. Writing $C = C_G(H/K)$ it is well known that $Core(M) = M \cap C$ and that $C/C \cap M$ is a chief factor

^{*} The closure operation of taking finite direct products is denoted by D_0 ; the other closure operations mentioned are defined in [1]. A more detailed analysis of their properties appears in [4].

[†] I am pleased to acknowledge a similar example constructed by John Cossey of which I was unaware when I submitted this note.

G-isomorphic with H/K. Let R be the intersection of all normal subgroups T of G such that $C/T \cong_G H/K$. C/R is called the *crown* of H/K. A crown of G is a normal factor C/R associated in this way with some complemented chief factor. The following lemma shows that a normal subgroup of G either covers a crown C/R or is properly contained in C.

LEMMA. Let C/R be a crown of G and $N \triangleleft G$. Then the following statements are equivalent:

- (1) The image of C/R under the natural homomorphism $G \rightarrow G/N$ is a crown of G/N;
 - (2) N does not cover the factor C/R;
 - (3) RN < C.

PROOF. Since a crown is by definition a non-trivial normal factor it is clear that (1) implies (2). Assume (2) holds, and set $L = C \cap NR$ [$= (C \cap N)R$]. Then L is a normal subgroup of G properly contained in C. Now $[N, C] \leq C \cap L \leq L$, and since C is the centralizer in G of any non-trivial normal factor of G between C and R, we have $N \leq C_G(C/L) = C$. Therefore $NR = NR \cap C = L < C$, and (3) is true. Finally assume condition (3) is satisfied. If C/K is a chief factor of G with $K \geq R$, then C/K is complemented and C/R is the crown associated with it. By (3) we may choose such a K containing RN. Let (C/N)/(T/N) be a chief factor of G/N isomorphic with (C/N)/(K/N); then $C/T \cong_G C/K$, so $R \leq T$. Since C/RN is a semi-simple (in fact, homogeneous) G-module, RN is the intersection of such T. Hence (C/N)/(RN/N) is the crown of G/N associated with (C/N)/(K/N).

DEFINITION. If \mathfrak{X} is a class of groups, define $\bar{R}_0\mathfrak{X}$ as follows:

 $G \in \overline{R}_0 \mathfrak{X}$ if and only if G has a set $\{N_i\}_{i=1}^t$ of normal subgroups N_i satisfying

- (a) $G/N_i \in \mathfrak{X}$ for $i = 1, \dots, t$,
- $(\beta) \bigcap_{i=1}^t N_i = 1$, and
- (γ) for each crown C/R of G, there exists $i \in \{1, \dots, t\}$ such that N_i does not cover C/R.

Evidently $\mathfrak{X} \subseteq \overline{R}_0 \mathfrak{X}$ and, if $X \subseteq \mathfrak{Y}$, then $\overline{R}_0 \mathfrak{X} \subseteq \overline{R}_0 \mathfrak{Y}$. To prove that \overline{R}_0 is a closure operation, it remains to show it is idempotent. Let $G \in \overline{R}_0^2 \mathfrak{X} = \overline{R}_0(\overline{R}_0 \mathfrak{X})$. Then G has normal subgroups $\{N_i\}_{i=1}^t$ with $G/N_i \in \overline{R}_0 \mathfrak{X}$ satisfying conditions (β) and (γ) above. Thus each G/N_i has normal subgroups $\{N_{ij}/N_i\}_{j=1}^{t_i}$ such that

- (a) $G/N_{ij} \in \mathfrak{X}$ for $j = 1, \dots, t_i$,
- (b) $\bigcap_{i=1}^{t} N_{ij} = N_i$, and
- (c) each crown of G/N_i is nor covered by at least one N_{ij}/N_i .

The full set $\{N_{ij} | j=1,\dots,t_i,\ i=1,\dots,t\}$ of normal subgroups of G clearly satisfies conditions (α) and (β) of the Definition. Let C/R be a crown of G. There exists an $i \in \{1,\dots,t\}$ such that N_i does not cover C/R. By the Lemma $(C/N_i)/(RN_i/N_i)$ is a crown of G/N_i and by condition (c) above there exists a

 $j \in \{1, \dots, t_i\}$ such that N_{ij} does not cover it. Again by the Lemma we have $RN_{ij} < C$ and therefore the set $\{N_{ij}\}$ also satisfies (γ) . Thus $G \in \bar{R}_0 \mathfrak{X}$. It follows that $\bar{R}_0^2 = \bar{R}_0$ and that \bar{R}_0 is a closure operation.

It is obvious that $\bar{R}_0 \leq R_0$. To see that $D_0 \leq \bar{R}_0$, let $G = G_1 \times \cdots \times G_t$ with $1 \neq G_i \in \mathfrak{X}$ for $i = 1, \cdots, t$. Set $N_i = \prod_{j \neq i} G_j$. Then the normal subgroups $\{N_i\}_{i=1}^t$ clearly satisfy conditions (α) and (β). It follows easily from the properties of a direct product that each chief factor is centralized by at least one N_i and that a factor of the form N_i/R is never a crown. Hence (γ) is also satisfied and we have $G \in \bar{R}_0 \mathfrak{X}$. It remains to prove the following

THEOREM. The condition $\mathfrak{X} = \{Q, E_{\phi}, \overline{R}_0\}\mathfrak{X}$ is both necessary and sufficient for \mathfrak{X} to be a Schunck class.

PROOF. Let \mathfrak{X} be a Schunck class and let $G \in \overline{R}_0 \mathfrak{X}$. G has a family $\{N_i\}_{i=1}^r$ of normal subgroups satisfying conditions (α) , (β) and (γ) . Let G/K be a primitive epimorphic image of G. Let C/K denote the monolith of G/K and C/R the crown of G associated with C/K. It follows from the hypothesis and the Lemma that there is an $i \in \{1, \dots, t\}$ such that $N_i R < C$. Let C/T be a chief factor of G with $T \geq N_i R$. Then $G/K \cong G/T \in Q(G/N_i K) \leq Q \mathfrak{X} = \mathfrak{X}$. Thus $Q(G) \cap \mathfrak{P} \subseteq \mathfrak{X}$, and so $G \in \mathfrak{X}$. This shows that $\mathfrak{X} = \overline{R}_0 \mathfrak{X}$. Since Schunk classes are Q-closed and E_{ϕ} -closed, the necessity of the condition is established.

We prove the sufficiency arguing by contradiction. Suppose there exists a $\{Q, E_{\phi}, \bar{R}_0\}$ -closed class \mathfrak{X} which is not a Schunck class. Let G be a group of minimal order subject to satisfying $Q(G) \cap \mathfrak{P} \subseteq \mathfrak{X}$ and $G \notin \mathfrak{X}$. If $1 \neq N \lhd G$, then $Q(G/N) \cap \mathfrak{P} \subseteq \mathfrak{X}$, and by minimality $G/N \in \mathfrak{X}$. Hence by the E_{ϕ} -closure of \mathfrak{X} we have $\Phi(G) = 1$. Let S denote the set of all minimal normal subgroups of G. If |S| = 1, $G \in \mathfrak{P}$ and so $G \in \mathfrak{X}$, a contradiction. If |S| > 1, $\bigcap \{N \mid N \in S\} = 1$. If C/R is a crown of G, either R > 1, or R = 1 and $C \notin S$. In either case, there is an $N \in S$ such that RN < C. Thus the set S of all minimal normal subgroups of G satisfies conditions (α) , (β) and (γ) of the Definition. Hence $G \in \overline{R}_0 \mathfrak{X} = \mathfrak{X}$. This final contradiction completes the proof.

References

- R. W. Carter, B. Fischer and T. O. Hawkes, 'Extreme classes of finite soluble groups', J. Algebra 9 (1968), 285-313.
- [2] W. Gaschütz, 'Praefrattinigruppen', Arch. Math. 13 (1962), 418-426.
- [3] W. Gaschütz, Selected topics in the theory of soluble groups, (Lectures given at the Ninth Summer Research Institute of the Australian Mathematical Society in Canberra, 1969. Notes by J. Looker).
- [4] D. M. MacLean, An investigation of closure operations of finite groups, M. Sc. dissertation, University of Warwick.

University of Warwick Coventry CV4 7AL, England.