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Abstract The discrete particle method (DPM) is used to

model granular flows down an inclined chute with vary-

ing basal roughness, thickness and inclination. We observe

three major regimes: arresting flows, steady uniform flows

and accelerating flows. For flows over a smooth base, other

(quasi-steady) regimes are observed: for small inclinations

the flow can be highly energetic and strongly layered in

depth; whereas, for large inclinations it can be non-uniform

and oscillating. For steady uniform flows, depth profiles of

density, velocity and stress are obtained using an improved

coarse-graining method, which provides accurate statistics

even at the base of the flow. A shallow-layer model for gran-

ular flows is completed with macro-scale closure relations

obtained from micro-scale DPM simulations of steady flows.

We obtain functional relations for effective basal friction,

velocity shape factor, mean density, and the normal stress

anisotropy as functions of layer thickness, flow velocity and

basal roughness.
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1 General introduction

1.1 Background

Granular avalanche flows are common in both the natural

environments and industry. They occur across many orders

of magnitude. Examples range from rock slides, containing

upwards of 1,000 m3 of material; to the flow of sinter, pel-

lets and coke into a blast furnace for iron-ore melting; down

to the flow of sand in an hour-glass. The dynamics of these

flows are influenced by many factors such as: polydisper-

sity; variations in density; non-uniform shape; complex basal

topography; surface contact properties; coexistence of sta-

tic, steady and accelerating material; and, flow obstacles and

constrictions.

Discrete particle methods (DPMs) are an extremely pow-

erful way to investigate the effects of these and other factors.

With the rapid recent improvement in computational power

the full simulation of the flow in a small hour glass of millions

of particles is now feasible. However, complete DPM simu-

lations of large-scale geophysical mass flow will, probably,

never be possible.

One of the main goals of the present research is to simulate

large scale and complex industrial flows using granular shal-

low-layer equations. In this paper we will take the first step

of using the DPM [9,34,42,43,46] to simulate small gran-

ular flows of mono-dispersed spherical particles in steady

flow situations. We will use a refined and novel analysis to

investigate three particular aspects of shallow chute flows:

(i) how to obtain meaningful macro-scale fields from the

DPM simulation, (ii) how to assess the flow dependence on

the basal roughness, and (iii) how to validate the assumptions

made in depth-averaged theory.

The DPM simulations presented here will enable the

construction of the mapping between the micro-scale and
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macro-scale variables and functions, thus enabling construc-

tion of a closed set of continuum equations. These map-

pings (closure relations) can then be used in continuum

shallow-layer models and compared with full DPM simula-

tions (DPMs). For certain situations, precomputed closures

should work; but, in very complicated situations pre-estab-

lished relations may fail. Heterogeneous, multi-scale model-

ling (HMM) is then an alternative [50], in which the local con-

stitutive relations are directly used in the continuum model. In

HMM, continuum and micro-scale models are dynamically

coupled with a two-way communication between the differ-

ent models in selective regions in both space and time, thus

reducing computational expense and allowing simulation of

complex granular flows.

1.2 Shallow-layer models

Shallow-layer granular continuum models are often used to

simulate geophysical mass flows, including snow avalanches

[8], dense pyroclastic flows, debris flows [11], block and

ash flows [12] and lahars [51]. Such shallow-layer models

involve approximations reducing the properties of a huge

number of individual particles to a handful of averaged quan-

tities. Originally these models were derived from the gen-

eral continuum incompressible mass and momentum equa-

tions, using the long-wave approximation [7,19,20,22,45]

for shallow variations in the flow height and basal topog-

raphy. Despite the massive reduction in degrees of freedom

made, shallow-layer models tend to be surprisingly accurate,

and are thus an effective tool in modelling geophysical flows.

Moreover, they are now used as a geological risk assessment

and hazard planning tool [12]. In addition to these geological

applications, shallow granular equations have been applied to

analyse small-scale laboratory chute flows containing obsta-

cles [19], wedges [14,21] and contractions [49], showing

good quantitative agreement between theory and experiment.

In fluid dynamics, the Navier–Stokes equations are estab-

lished with full constitutive equations. Nonetheless, the shal-

low-layer equations or Saint–Venant equations are often used

in large scale situations where it is impractical to solve the full

Navier–Stokes equations. Our present aim is to directly inves-

tigate the validity of the assumptions of granular shallow-

layer models first from discrete particle simulations, before

obtaining fully 3D ‘kinetic theory’-style constitutive rela-

tions and simplifying these via the depth-integration process.

A discussion of the full 3-D properties of our particle simula-

tions will be undertaken later. Here, we restrict our attention

to the closures required for 2-D shallow-layer granular flow

equations.

A key difference between shallow-layer fluid models and

granular ones is the appearance of a basal friction coeffi-

cient, µ, being the ratio of the shear to normal traction at the

base. In early granular models, a dry Coulomb-like friction

law was used [45]. It implies µ to be constant, given by the

tangent of the friction angle between the material and the

base, δ, i.e., µ = tan δ. As a consequence constant uniform

flow is only possible in such a model at the angle δ, inde-

pendent of height. There is a considerable amount of exper-

imental evidence, e.g., [10], that suggests that such a simple

Coulomb law does not hold on rough beds or for moderate

inclination angles. Furthermore, detailed experimental inves-

tigations using glass beads [40] lead to an improved empiri-

cal ‘Pouliquen’ friction law characterised by two angles: the

angle at which the material comes to rest, δ1, below which

friction dominates over gravity and the angle, δ2, above which

gravity dominates over friction and the material accelerates.

Between these two angles steady flow is possible, and in the

limit δ1 → δ2 = δ the original Coulomb style model is

recovered.

Since its formulation a lot of work has been performed

on extending and understanding this Pouliquen law. The

original law was obtained by retarding flowing material and

measuring the angle at which the material stopped as a func-

tion of height hstop (θ), or equivalently, by inverting this

relation, θstop (h). For most materials, granular included, a

greater angle is required to initiate stationary than to retard

flowing material. Pouliquen and Forterre [38], by measuring

the angle required to start motion, measured θstart (h), i.e.,

the friction law for initially stationary material. As expected

θstart was greater than θstop and this information was used to

extend the friction law to all values of the height and velocity

within the steady regime. Borzsonyi and Ecke performed a

series of additional experiments: firstly, in [5] they looked at

higher angles were the mean flow rates are close to the termi-

nal velocity of a single particle, and found regions were the

Pouliquen law is not valid and the Froude number becomes

inversely proportional to the height, as opposed to the linear

relationship observed for steady flow. Borzsonyi and Ecke,

and Pouliquen and Forterre [6,13] have all worked on extend-

ing the original law to be valid for more complicated non-

spherical materials like sand and metallic materials. Also, the

effect of basal surface roughness has been systemically stud-

ied in [18] by varying the size of both the free flow and fixed

basal particles. For convenience, we define λ to be the size

ratio of the fixed and the free particles. They observed a peak

in roughness at a certain diameter ratio, λc, which depends

on the compactness of the basal layer. Measured values of λc

in [18] ranged between 1 and 3 for a monolayer of fixed par-

ticles. For fixed particles with smaller size and λ < λc, the

range of angles where steady flow was observed decreased,

and eventually the steady flow regime completely vanished,

i.e., δ2 − δ1 → 0 as λ → 0 (yielding Coulomb type behav-

iour). For smaller flow particle diameters, i.e., with λ > λc,

there was also a reduction in friction, but weaker than in the

small λ case. For much larger λ, the friction saturated to a

constant value, which they contributed to free particles that
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filled the holes in the basal surface and effectively created

a stable basal surface of free particles. In a later publication

[15], they extended this investigation to flows containing two

particle sizes.

Louge and Keast [30] modified the kinetic theory pre-

sented in [26] by modelling enduring contacts via a frictional

rate-independent stress component in order to obtain steady

flow on flat frictional inclines. This work was later extended

to bumpy inclines [32]. Jenkins [27] took a different approach

and theoretically formulated a phenomenological modifica-

tion of granular kinetic theory to account for enduring particle

contacts. His idea is that enduring contacts between grains,

forced by the shearing, reduce the collision rate of dissipa-

tion. Therefore a modification to the dissipation is introduced,

which does not affect the stress. It leads to a law very similar

to the one experimentally obtained by Pouliquen. Jenkins fur-

ther extended the theory in [28] to very dissipative frictional

particles, with a coefficient of restitution less than 0.7. Later,

a detailed comparison with new experiments was performed,

showing agreement for flows on low inclinations [25].

Silbert et al. [42] used DPMs to simulated chute flow of

cohesionless particles. They found that a steady-state flow

regime exists over a wide range of inclination angles, heights

and interaction parameters, in confirmation of the experi-

ments of Pouliquen [40]. They found for steady-state flows

that the volume fraction is constant throughout the flow, in

agreement with the assumptions of shallow-layer theory [45].

They also observed that the shear stress is proportional to

the square of the shear and the flow velocity scales with

the height to the power 3/2. This result coincides with Bag-

nold’s analysis of dilute binary collisions flows [4]. They also

observed small systematic deviations from isotropic stress,

which shows a deviation from fluid-like behaviour. However,

normal stresses do not approach a Coulomb-yield criterion

structure at the angle of repose except near the surface, hint-

ing that the failure of flow starts near the surface. They fur-

ther investigated the effect of different basal types in [43] and

found that for an ordered chute base the steady state regime

splits into three distinct flow regimes: at smaller angles, the

flowing system self-organises into a state of low-dissipation

flow consisting of in-plane ordering in the bulk; at higher

angles, a high-dissipation regime similar to that for a rough

base but with considerable slip at the bottom is observed;

and, between these two sub-regions they observe a transi-

tional flow regime characterised by large oscillations in the

bulk averaged kinetic energy due to the spontaneous order-

ing and disordering of the system as a function of time.

In [48], a strongly sheared, dilute and agitated basal layer

could be observed supporting a compact bulk layer over a

relatively smooth base. They essentially concluded for tran-

sitional flows that a steady and thus unstable state could only

be reached at one inclination. Finally, [46] investigated the

initiation and cessation of granular chute flow more care-

fully and computed both θstop and θstart . For inclinations

θ ≫ θstop they observed a Bagnold rheology, for θ >∼ θstop a

linear profile, and for θ ≈ θstop intermittent flow.

1.3 Overview of this study

Our present research is novel on the following three counts:

Firstly, we compute more meaningful macro-scale fields

from the DPM simulations than before by carefully choos-

ing the coarse graining function. In order to homogenise the

DPM data, the micro-scale fields need to be coarse-grained

to obtain macroscopic fields. Coarse-grained micro-scale

fields of density, momentum and stress have been derived

directly from the mass and momentum balance equations,

e.g., by Goldhirsch [17]. The quality of the statistics involved

depends on the coarse graining width w, which defines

the amount of spatial smoothing. For small coarse-grain-

ing width w, micro-scale variations remain visible, while

for large w these smooth out in the macro-scale gradients.

Since one of the objectives is to obtain the value of µ at the

base, we use a novel adaptation of Goldhirsch’ statistics near

boundaries. This new approach [52] is consistent with the

continuum equations everywhere, enabling the construction

of continuum fields even within one coarse-graining width

of the boundary.

Secondly, we follow the approach of [18] and vary the

basal particle diameter to achieve different basal conditions.

For particles with smaller basal than flowing diameter, λ < 1,

the flow becomes more energetic and oscillatory behaviour

is observed. This phenomena has previously been reported

in [43], but was achieved by changing the basal particles to a

more regular, grid-like configuration. By investigating flow

over fixed particles of different size than the free, flowing par-

ticles, we are able to quantify the roughness and numerically

investigate the transition from rough to smooth surfaces. For

smoother surfaces, we show that the parameter space can be

split into to two types of steady flow, and we obtain a general

friction law.

Finally, we test the assumptions made in depth-averaged

theory and determine the required closure laws. For shallow

granular flows, the flow can be described by depth-averaged

mass and momentum-balance equations e.g. [19]. Solving

the depth-averaged equations requires a constitutive relation

for the basal friction, a way to account for mean density

variations, the shape of the velocity profile and the pressure

anisotropy. We extract such data from DPMs obtained for

steady uniform flows, and establish a novel, extended set of

closure equations. Also, the depth-averaged equations are

obtained under the assumptions that (a) the density is con-

stant in space and time and does not vary through the flow;

(b) the ratio between mean squared velocity and the squared

mean velocity is known; (c) the downward normal stress is

lithostatic, i.e., balances the gravitational forces acting on
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the flow; and, (d) the ratio between the normal stresses is

known. Gray et al. [19] assumed the latter ratio to be one;

whereas, Savage and Hutter [45] use a Mohr–Coulomb clo-

sure law. The depth profiles of these quantities are discussed

by Silbert et al. in [42,43,46] for steady flow. We used the

originally results of Silbert et at. to validate our DPM sim-

ulations. Then, using our improved statistical procedure, we

will construct the granular shallow-layer closure relations for

a much wider range of flow regimes than had been consid-

ered before; concurrently, establishing the range in which the

shallow-layer approximation is valid.

1.4 Outline

We introduce the force model used in the DPM in Sect. 2,

and the statistical method used to obtain macroscopic den-

sity, velocity and stress profiles in Sect. 3. In Sect. 4, we

discuss the continuum shallow-layer equations for model-

ling granular flow including some macro-scale closures. The

set up of the simulations is discussed in Sect. 5, and the

steady-state regime is mapped for flows over a rough basal

surface in Sect. 6. Depth profiles of the flow are introduced

in Sect. 7, which are then used to characterise the steady flow

over smoother surfaces in Sect. 8. Finally, the closure rela-

tions for the shallow-layer model are established in Sect. 9,

before we conclude in Sect. 10.

2 Contact law description

A DPM is used to perform the simulation of a collection

of N identical granular particles. Boundaries are created by

special fixed particles, which generally will have different

properties than the flow particles. Particles interact by the

standard spring-dashpot interaction model [9,34], in which

it is assumed that particles are spherical and soft, and that

pairs have at most a single contact point.

Each particle i has a diameter di , density ρi , position ri ,

velocity vi and angular velocity ωi . For pairs of two particles

{i, j}, we define the relative distance vector ri j = ri − r j ,

their separation ri j = |ri j |, the unit normal n̂i j = ri j/ri j

and the relative velocity vi j = vi − v j . Two particles are in

contact if their overlap,

δn
i j = max(0, (di + d j )/2 − ri j ), (1)

is positive. A single contact point c at the centre of the over-

lap is assumed, which is a valid assumption as long as the

overlap is small. For our simulations the overlap between two

particles is always below 1 % of the particle radius, hence

justifying treating the contact as occurring at a single point.

The force acting on particle i is a combination of the body

forces and the pairwise interaction of two particles. The force

fi j represents the force on particle i from the interaction with

particle j and can be decomposed into a normal and a tan-

gential component,

fi j = f n
i j + f t

i j . (2)

We assume particles experience elastic as well as dissipa-

tive forces in both normal and tangential directions. Hence

the normal force is modelled as a spring-dashpot with a linear

elastic and a linear dissipative contribution,

f n
i j = knδ n

i j n̂i j − γ nvn
i j , (3)

with spring constant kn , damping coefficient γ n and the nor-

mal relative velocity component,

vn
i j = (vi j · n̂i j )n̂i j . (4)

For a central collision, no tangential forces are present, and

the collision time tc between two particles can be calculated

as

tc = π/

√

kn

mi j

−
(

γ n

2mi j

)2

, (5)

with the reduced mass mi j = mi m j/(mi + m j ). The normal

restitution coefficient rc (ratio of relative normal speed after

and before collision) is calculated as

rc = exp(−tcγ
n/(2mi j )). (6)

We also assume a linear elastic and a linear dissipative

force in the tangential direction,

f t
i j = −k tδδδt

i j − γ t vt
i j , (7)

with spring constant k t , damping coefficient γ t , elastic tan-

gential displacement δδδt
i j (which is explained later), and total

relative velocity of the particle surfaces at the contact,

vt
i j = vi j − vn

i j + bi j × ωi − b j i × ω j , (8)

with bi j = −
(

(di − δn
i j )/2

)

n̂i j the branch vector from point

i to the contact point; for equal size particles bi j = −ri j/2.

The elastic tangential force is used to model the effects

of particle surface roughness. Near the contact point, small

bumps on a real particle would stick to each other, due to the

normal force pressing them together, and elongate in the tan-

gential direction resulting in an elastic force proportional to

the elastic tangential displacement. The tangential displace-

ment is defined to be zero at the initial time of contact, and

its rate of change is given by

dδδδt
i j

dt
= vt

i j −
(δδδt

i j · vi j )n̂i j

ri j

, (9)

where the first term is the relative tangential velocity at the

contact point, and the second term ensures that δδδt
i j remains

normal to n̂i j . The second term is always orthogonal to the

spring direction and, hence, does not affect the rate of change
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of the spring length: it simply rotates it, thus keeping it

tangential.

When the tangential to normal force ratio becomes larger

than the particle contact friction coefficient, µc, for a real

particle the bumps would slip against each other. Their elon-

gation is then shortened until the bumps can stick to each

other again. This is modelled by a static yield criterion, trun-

cating the magnitude of δδδt
i j as necessary to satisfy |f t

i j | ≤
µc|f ,n

i j |. Thus, the contact surfaces are treated as stuck while

|f t
i j | < µc|f n

i j | and as slipping otherwise, when the yield cri-

terion is satisfied.

The total force on particle i is a combination of contact

forces fi j with other particles and external forces such as

gravity g. The resulting force fi and torque qi acting on par-

ticle i are

fi = g +
N

∑

j=1, j �=i

fi j , and qi =
N

∑

j=1, j �=i

bi j × fi j . (10)

Finally, using these expressions we arrive at Newton’s equa-

tions of motion for the translational and rotational degrees of

freedom,

mi

d2ri

dt2
= fi , and Ii

d

dt
ωi = qi , (11)

with mi the mass and Ii the inertia of particle i . We integrate

(11) forward using Velocity-Verlet [2], formally second order

in time, with an adequate time step of �t = tc/50. The col-

lision time tc is given by (5), while (9) is integrated using

first-order forward Euler.

Hereafter, we distinguish between identical free flowing

and identical fixed basal particles. Base particles are mod-

elled as having an infinite mass and are unaffected by body

forces: they do not move. This leaves two distinct types of

collision: flow-flow, and flow-base. Model parameters for

each of these collision types are set independently.

3 Statistics

3.1 Coarse-graining

The main aims of this paper are to use discrete particle sim-

ulations to both confirm the assumptions of and provide

the required closure rules for the depth-averaged shallow-

water equations. Hence, continuum fields have to be extracted

from the discrete particle data. There are many papers in the

literature on how to go from the discrete to the continuum:

binning micro-scale fields into small volumes [23,31,33,35,

44], averaging along planes [47], or coarse graining spatially

and temporally [3,17,41]. Here, we use the coarse-graining

approach described by [52] as this is still valid within one

course-graining width of the boundary.

The coarse-graining method has the following advanta-

ges over other methods: (i) the fields produced automatically

satisfy the equations of continuum mechanics, even near the

flow base; (ii) it is neither assumed that the particles are rigid

nor spherical; and, (iii) the results are even valid for single

particles as no averaging over groups of particles is required.

The only assumptions are that each particle pair has a single

point of contact (i.e., the particle shapes are convex), the con-

tact area can be replaced by a contact point (i.e., the particles

are not too soft), and that collisions are not instantaneous.

3.2 Mass and momentum balance

3.2.1 Notation and basic ideas

Vectorial and tensorial components are denoted by Greek

letters in order to distinguish them from the Latin parti-

cle indices i, j . Bold vector notation will be used when

convenient.

Assume a system given by N f flowing particles and Nb

fixed basal particles with N = N f + Nb. Since we are inter-

ested in the flow, we will calculate macroscopic fields pertain-

ing to the flowing particles only. From statistical mechanics,

the microscopic mass density of the flow, ρmic, at a point r

at time t is defined by

ρmic(r, t) =
N f
∑

i=1

miδ (r − ri (t)) , (12)

where δ(r) is the Dirac delta function and mi is the mass

of particle i . The following definition of the macroscopic

density of the flow is used

ρ(r, t) =
N f
∑

i=1

miW (r − ri (t)) , (13)

thus replacing the Dirac delta function in (12) by an integra-

ble ‘coarse-graining’ function W whose integral over space

is unity. We will take the coarse-graining function to be a

Gaussian

W (r − ri (t)) = 1

(
√

2πw)3
exp

(

−|r − ri (t)|2
2w2

)

(14)

with width or variance w. Other choices of the coarse-grain-

ing function are possible, but the Gaussian has the advan-

tage that it produces smooth fields and the required integrals

can be analysed exactly. According to Goldhirsch [17], the

coarse-graining field depends only weakly on the choice of

function, and the width w is the key parameter.

It is clear that as w → 0 the macroscopic density defined

in (14) reduces to the one in (13). The coarse-graining func-

tion can also be seen as a convolution integral between the

micro and macro definitions, i.e.,
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ρ(r, t) =
∫

W (r − r ′)ρmic(r ′, t) dr ′. (15)

3.2.2 Mass balance

Next we will consider how to obtain the other fields of inter-

est: the momentum density vector and the stress tensor. As

stated in Sect. 3.1 the macroscopic variables will be defined

in a way compatible with the continuum conservation laws.

The coarse grained momentum density vector p(r, t) is

defined by

pα(r, t) =
N f
∑

i=1

miviαW (r − ri ), (16)

where the viα’s are the velocity components of particle i . The

macroscopic velocity field V (r, t) is then defined as the ratio

of momentum and density fields,

Vα(r, t) = pα(r, t)/ρ(r, t). (17)

It is straightforward to confirm that Eqs. (13) and (16) satis-

fies exactly the continuity equation

∂ρ

∂t
+ ∂pα

∂rα

= 0, (18)

with the Einstein summation convention for Greek letters.

3.2.3 Momentum balance

Finally, we will consider the momentum conservation equa-

tion with the aim of establishing the macroscopic stress field.

In general, the desired momentum balance equations are writ-

ten as,

∂pα

∂t
= − ∂

∂rβ

[

ρVαVβ

]

+ ∂σαβ

∂rβ

+ ρgα, (19)

where σαβ is the stress tensor, and gα is the gravitational

acceleration vector.

Expressions (16) and (17) for the momentum p and the

velocity V have already been defined. The next step is to

compute their temporal and spatial derivatives, respectively,

and reach closure. Taking the time derivative of (16) gives

∂pα

∂t
= ∂

∂t

N f
∑

i=1

miviα(t)W (r − ri (t))

=
N f
∑

i=1

mi v̇iαW (r − ri ) +
N f
∑

i=1

miviα

∂

∂t
W (r − ri ).

(20)

Using (11), the first term in (20) can be expressed as

Aα ≡
N f
∑

i=1

mi v̇iαW (r − ri ) =
N f
∑

i=1

fiαW (r − ri ). (21)

In the simulations presented later the force on each par-

ticle contains three contributions: particle-particle interac-

tions, particle-base interactions, and the gravitational body

force. Hence,

fiα =
N f
∑

j=1, j �=i

fi jα +
Nb
∑

k=1

f b
ikα + mi gα, (22)

where fi j is the interaction force between particle i and j ,

and f b
ik the interaction between particle i and base particle k,

or base wall if the base is flat. Therefore, we rework (21) as

Aα =
N f
∑

i=1

N f
∑

j=1, j �=i

fi jαWi +
N f
∑

i=1

Nb
∑

k=1

f b
ikαWi +

∑

i=1

miWi gα,

(23)

where Wi = W (r − ri ). The last term in (23) can be sim-

plified to ρgα by using (13). From Newton’s third law, the

contact forces are equal and opposite, such that fi j = − f j i .

Hence,

N f
∑

i=1

N f
∑

j=1, j �=i

fi jαWi =
N f
∑

i=1

N f
∑

j=1,i �= j

f j iαW j

= −
N f
∑

i=1

N f
∑

j=1,i �= j

fi jαW j , (24)

where in the first step we interchanged the dummy summa-

tion indices. It follows from (24) that (23) can be written

as

Aα = 1

2

N f
∑

i=1

N f
∑

j=1, j �=i

fi jα

(

Wi − W j

)

+
N f
∑

i=1

Nb
∑

k=1

f b
ikαWi +ρgα

=
N f
∑

i=1

N f
∑

j=i+1

fi jα

(

Wi − W j

)

+
N f
∑

i=1

Nb
∑

k=1

f b
ikαWi + ρgα.

(25)

Next, we will write Aα as the divergence of a tensor in

order to obtain a formula for the stress tensor. The following

identity holds for any smooth function W

W j − Wi =
1

∫

0

∂

∂s
W (r − ri + sri j ) ds

= ri jβ

∂

∂rβ

1
∫

0

W (r − ri + sri j ) ds, (26)

where ri j = ri − r j ; we used the chain rule and differentia-

tion to the full argument of W (·) per component.

The next step extends the coarse-graining method to

account for boundary forces. To obtain a similar expression

for the interaction with base particles, we write
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− Wi =
∞

∫

0

∂

∂s
W (r − ri + srik) ds

= rikβ

∂

∂rβ

∞
∫

0

W (r − ri + srik) ds, (27)

which holds because Wi decays towards infinity. Substituting

identities (26), (27) and (13) into (25) leads to

Aα = − ∂

∂rβ

N f
∑

i=1

N f
∑

j=i+1

fi jαri jβ

1
∫

0

W (r − ri + sri j ) ds

− ∂

∂rβ

N f
∑

i=1

Nb
∑

k=1

f b
ikαrikβ

∞
∫

0

W (r − ri + srik) ds

+ρgα. (28)

From [17], it follows that the second term in (20) can be

expressed as follows

N f
∑

i

miviα

∂

∂t
W (r − ri )

= − ∂

∂rβ

⎡

⎣ρVαVβ +
N f
∑

i

miv
′
iαv′

iβWi

⎤

⎦ , (29)

where v
′
i is the fluctuating velocity of particle i , with com-

ponents given by

v′
iα(t, r) = viα(t) − Vα(r, t). (30)

Substituting (28) and (29) into momentum balance (19)

yields

∂σαβ

∂rβ

= ∂

∂rβ

⎡

⎣−
N f
∑

i=1

N f
∑

j=i+1

fi jαri jβ

1
∫

0

W (r − ri + sri j ) ds

−
N f
∑

i=1

Nb
∑

k=1

f b
ikαrikβ

∞
∫

0

W (r − ri + sri j ) ds

−
N f
∑

i

miv
′
iαv′

iβWi

⎤

⎦ . (31)

Therefore the stress is given by

σαβ = −
N f
∑

i=1

N f
∑

j=i+1

fi jαri jβ

1
∫

0

W (r − ri + sri j ) ds

−
N f
∑

i=1

Nb
∑

k=1

f b
ikαrikβ

∞
∫

0

W (r − ri + srik) ds

−
N f
∑

i

miv
′
iαv′

iβWi . (32)

ρ

σ

∂xσ
-2

0

2

x

ρ

σ

∂xσ

-2 -1 0 1 2
-2

0

2

x

-2 -1 0 1 2

Fig. 1 Stress and density profiles are shown for two 1-D two-particle

systems, each with two particles of unit mass at positions x = ±1, and

repelling each other (so with d > 2 for our granular case). In the top

figure, both particles are flowing, while in the bottom figure the left

particle is fixed and the right one flowing

In our simulations the tangential forces contribute less than

6 % to the total stress in the system, such that the stress is

almost symmetric.

Equation (32) differs from the results of [17] by an addi-

tional term that accounts for the stress created by the presence

of the base, as detailed in [52]. The contribution to the stress

from the interaction of two flow particles i, j is spatially

distributed along the contact line from ri to r j , while the

contribution from the interaction of particles i with a fixed

particle k is distributed along the line from ri to rk , extending

further beyond rk . We explain the situation as follows, see

Fig. 1. Stress and density profiles are calculated using (15)

and (32) for two 1-D two-particle systems, each with two par-

ticles of unit mass at positions x = ±1, repelling each other

with a force | f | = 1 and with w = 0.2. In the top figure,

both particles belong to the flowing species, so the density is

distributed around the particles’ centre of mass and the stress

along the contact line. In the bottom figure, the left particle

is a fixed base particle and the right particle is a free flowing

one, so density is distributed around the flowing particle’s

centre of mass and the stress along the line extending from

the flowing particle to negative infinity.

The strength of this method is that the spatial coarse grain-

ing fields by construction satisfy the mass and momentum

balance equations exactly at any given time, irrespective of

the choice of the coarse graining function. Further details

about the accuracy of the stress definition (32) are discussed

in [52]. The expression for the energy is also not treated in

this publication, we refer the interested reader to [3].

4 Mathematical background

In this section, we briefly outline the existing knowledge on

continuum shallow-layer theories for granular flow.
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4.1 Shallow-layer model

Shallow-layer granular models have been shown to be an

effective tool in modelling many geophysical mass flows.

Early granular models were formulated by adding gravita-

tional acceleration and Coulomb basal friction to shallow-

layer fluid models [16,29]. Similar dry granular models have

been derived using the long-wave approximation [7,20,22,

24,45] for shallow variations in the flow height and slope

topography and included a Mohr–Coulomb rheology via the

use of an earth pressure coefficient. The key to these theories

is to depth-integrate general 3-D equations in the shallow

direction, resulting in a system of 2-D equations which still

retains some information about variations in thickness.

Let Oxyz be a coordinate system with the x-axis down-

slope and the z-axis normal to a channel with mean slope

θ . For simplicity, we further consider boundaries, flows, and

external forcing to be (statistically) uniform in y. The contin-

uum macro-scale fields are thus indepulmendent of y, while

the DPM simulations remain 3-D and will be periodic in

y. The free-surface and base location are z = s(x, t) and

z = b(x), respectively. The thickness of the flow is thus

h(x, t) = s(x, t) − b(x), and the bulk density and velocity

components are ρ and u = (u, v = 0, w)t , respectively, as

functions of x, y, z and t .

The 3-D flow viewed as continuum is described by the

mass and momentum balance Eqs. (18) and (19). At the top

and bottom surface, kinetic boundary conditions are satisfied:

D(z − s)/Dt = 0 and D(z − b)/Dt = 0 at their respective

surfaces, and with material time derivative

D(·)/Dt = ∂(·)/∂t + u∂(·)/∂x + w∂(·)/∂z

(since we assumed v = 0). Furthermore, the top surface is

traction-free, while the traction at the basal surface is essen-

tially Coulomb-like. We decompose the traction t = tt + tn n̂

in tangential and normal components, with normal compo-

nent of the traction tn = −n̂ · (σ n̂), where n̂ is the outward

normal at the fixed base and σ is the stress tensor. The Cou-

lomb ansatz implies that tt = −µ|tn|u/|u| with friction fac-

tor µ > 0. Note that µ generally can be a function of the local

thickness and the flow velocity. Its determination is essential

to find a closed system of shallow-layer equations.

We consider flows that are shallow, such that a typical

aspect ratio ǫ between flow thickness and length, normal and

alongslope velocity, or normal and downslope variations in

basal topography, is small, of order O(ǫ). Furthermore, the

typical friction factor µ is small enough to satisfy µ = O(ǫγ )

with γ ∈ (0, 1). We follow the derivation of the depth-aver-

aged swallow layer equations for granular flow presented in

[7] without assuming that the flow is incompressible. Instead

we start the asymptotic analysis from the dimensionless form

of the mass and momentum conservation Eqs. (18) and (19),

assuming only that the density is independent of depth at

leading order. Density, velocity, and stress are depth aver-

aged as follows

(̄) = 1

h

s
∫

b

() dz. (33)

In the end, we retain the normal stress ratio K = σ̄xx/σ̄zz ,

the velocity shape factor α = u2/ū2, and the friction

µ as unknowns. The goal is to investigate whether these

unknowns can be expressed as either constants or func-

tions of the remaining shallow flow variables, to leading

order in O(ǫ). The latter variables are the flow thickness

h = h(x, t) and the depth-averaged velocity ū = ū(x, t).

At leading order, the momentum equation normal to the

base yields that the downward normal stress is lithostat-

ic, σzz(z) = ρ̄g cos θ(s − z) + O(ǫ). Depth-averaging the

remaining equations, while retaining only terms of order

O(ǫ1+γ ), yields the dimensional depth-averaged shallow-

layer equations, cf. [7,19,49],

∂(ρ̄h)

∂t⋆
+ ∂

∂x⋆
(ρ̄hu) = 0, (34a)

∂

∂t⋆
(hρ̄ū) + ∂

∂x⋆

(

hρ̄αu2 + K

2
gh2ρ̄ cos θ

)

= ghρ̄S,

(34b)

with

S = sin θ − µ
ū

|ū| cos θ − ∂b

∂x⋆
cos θ. (34c)

To demarcate the dimensional time and spatial scales, we

have used starred coordinates. These scales differ from the

ones used before in the particle dynamics and the dimen-

sionless ones used later in the DPM simulations. The shal-

low-layer Eqs. (34) consist of the continuity Eq. (34a) and

the downslope momentum Eq. (34b). The system arises also

via a straightforward control volume analysis of a column of

granular material viewed as continuum from base to the free

surface, using Reynolds-stress averaging and a leading order

closure with depth averages.

While the mean density ρ̄ can be modelled as a system

variable by considering the energy balance equation, we will

assume that it can be expressed as a function of height and

velocity ρ̄(h, ū). Thus, the closure to Eqs. (34) is determined

when we can find the functions ρ̄(h, ū), K (h, ū), α(h, ū),

and µ(h, ū). In Sect. 9.2, we will analyse if and when DPM

simulations can determine these functions.

4.2 Granular friction laws for a rough basal surface

The friction coefficient, µ, was originally [45] taken to be a

simple Coulomb type µ = tan δ, where δ is a fixed friction

angle. Note that in steady state for a flat base with b = 0, the

shallow-layer momentum Eq. (34b) then yields µ = tan θ .
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Pure Coulomb friction implies that there is only one incli-

nation, θ = δ, at which steady flow of constant height and

flow velocity exists. That turns out to be unrealistic. Three

parameterisations for µ have been proposed in the literature.

Firstly, Forterre and Pouliquen [13] found steady flow in

laboratory investigations for a range of inclinations concern-

ing flow over rough basal surfaces. They measured the thick-

ness hstop of stationary material, left behind when a flowing

layer was brought to rest, with the following fit

hstop(θ)

Ad
= tan(δ2) − tan(θ)

tan(θ) − tan(δ1)
, δ1 < θ < δ2, (35)

where δ1 is the minimum angle required for flow, δ2 the

maximum angle at which steady uniform flow is possible,

d the particle diameter, and A a characteristic dimensionless

length scale over which the friction varies. Note that hstop

diverges for θ = δ1 and is zero for θ = δ2. For h > hstop,

steady flow exists in which the Froude number, the aspect

ratio between flow speed and surface gravity-wave speed

(F = ū/
√

g cos θh), is a linear function of the height,

F = β
h

hstop(θ)
− γ, for δ1 < θ < δ2, (36)

where β and γ are constants independent of chute inclination

and particle size. Provided one assumes the steady state µ =
tan θ to hold (approximately) in the dynamic case as well,

it can be combined with (35) and (36) to find an improved

empirical friction law

µ = µ⋆(h, F) = tan(δ1) + tan(δ2) − tan(δ1)

βh/(Ad(F + γ )) + 1
. (37)

This is a closure for µ in terms of the flow variables, and has

been shown to have practical value. Note, that in the limit

δ1 → δ2 = δ the Coulomb model is recovered.

Secondly, in an earlier version [40], another, exponential

fitting was proposed for hstop, as follows

h′
stop(θ)

A′d
= ln

tan(θ) − tan(δ′
1)

tan(δ′
2) − tan(δ′

1)
, for δ′

1 < θ < δ′
2 (38)

with the same limiting behaviour, and primes used to denote

the difference in the fit. It yields the friction factor

µ = µ′(h, F) = tan δ′
1 +

(

tan δ′
2 − tan δ′

1

)

e

{

−β′h
A′d(F+γ ′)

}

. (39)

Equation (35) did, however, prove to be a better fit to exper-

iments and is computationally cheaper to evaluate.

Finally, [27] included a modified dissipation in the kinetic

theory equations and was able to produce a law very similar

to the original experimentally obtained model (36), i.e.

F = βJ

h

hstop(θ)

tan2(θ)

tan2(δ1)
− γJ , (40)

for which we can use any appropriate fit for hstop. It leads

subsequently to a more complicated evaluation of the fric-

tion law for µ. We omit further details and compare our DPM

simulations against these rules, using fits for the rough basal

surface. Additionally, we use the DPM to investigate how to

extend these laws to smoother surfaces.

5 Simulation description

In this section, DPM is used to simulate monodispersed gran-

ular flows.

Parameters have been nondimensionalised such that the

flow particle diameter d = 1, mass m = 1 and the mag-

nitude of gravity g = 1. The normal spring and damping

constants are kn = 2 × 105 mg/d and γ n = 50
√

g/d; thus

the contact duration is tc = 0.005
√

d/g and the coefficient

of restitution is ǫ = 0.88. The tangential spring and damping

constants are k t = (2/7)kn and γ t = γ n , such that the fre-

quency of normal and tangential contact oscillation and the

normal and tangential dissipation are equal. The microscopic

friction coefficient was taken to be µc = 1/2.

The interaction parameters are chosen as in Silbert et al.

[42] to simulate glass particles of 0.1 mm size; this corre-

sponds to a dimensional time scale of
√

d/g = 3.1 ms and

dimensional velocity scale
√

dg = 0.031 ms−1. The above

parameters are identical to the simulations of Silbert et al.

except that dissipation in tangential direction, γ t , was added

to dampen the rotational degrees of freedom in arresting flow.

Adding of such tangential damping removes all vibrational

energy for flows otherwise arrested. Silbert et al. also inves-

tigated the sensitivity of the results to the particle interac-

tion parameters tc, ǫ, the ratio kn/k t , and µc; they found

that while the density of the bulk material is not sensitive to

these interaction parameters, the flow velocity increased with

decreasing friction µc. Nonetheless, the qualitative behav-

iour of the velocity profiles did not change.

The chute is periodic and of size 20 × 10 in the x- and

y-directions and has a layer of fixed particles as a base. The

bottom particles are monodispersed with (nondimensional)

diameter λd. Various basal roughnesses are investigated by

taking λ = 0 to 4 in turn, with λ = 0 as flat base. This bot-

tom particle layer is obtained by performing a simulation on a

horizontal, smooth-bottom chute. It is filled with a randomly

distributed set of particles of diameter λd and we simulate

until a static layer about 12 particles thick is produced. Then

a slice of particles with centres between z ∈ [9.3, 11]λd

are fixed and translated 11 diameters downwards to form

the base. The layer is thick enough to ensure that no flow-

ing particles can fall through the rough base during the full

simulations. Their positions are then fixed.

Initially, N f particles are inserted into the chute. To insert

a particle, a random location (x, y, z) ∈ [0, 20] × [0, 10]
× [0, H ] is chosen, where H = N f /200 initially. If the par-

ticle at this position overlaps other particles, the insertion is
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z
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x

Fig. 2 DPM simulation for N f /200 = 17.5, inclination θ = 24◦

and the diameter ratio of free and fixed particles, λ = 1, at time t =
2,000; gravity direction g as indicated. The domain is periodic in x- and

y-directions. In the z-direction, fixed particles (black) form a rough base

while the surface is unconstrained. Colours indicate speed: increasing

from blue via green to orange. (Colour figure online)

rejected, and the insertion domain is enlarged by increasing

H to H + 0.01 to ensure that there is enough space for all

particles. This process creates an initial packing fraction of

about ρ/ρp = 0.3. Once the simulations starts the particles

initially compact to an approximated height N f /200, giving

the particles in the chute enough kinetic energy to initialise

flow. Dimensionless time is integrated between t ∈ [0, 2000]
to allow the system to reach a steady state. A screen shot of

the system in steady state is given in Fig. 2.

To ensure that the size of the periodic box does not influ-

ence the result, we compared density and velocity profiles

of the flow at an angle θ = 24◦ and N f /200 = 17.5 for

domain sizes Lx = 10, 20, 40, L y = 10 and Lx = 10, 20,

40, L y = Lx/2, and saw no significant changes.

6 Arrested, steady, and accelerating flow

From the experiments of Pouliquen [40], granular flow over

a rough base is known to exist for a range of heights and

inclinations. DPMs by [42] also showed that steady flows

arose for a range of flow heights and (depth-averaged) veloc-

ities or Froude numbers. Their simulations did, however, pro-

vide relatively few data points near the boundary of arrested

and steady flow to allow a more adequate fit of the stopping

height. The original data of Silbert et al. is indicated by the

red crosses in Fig. 4. In this section, we therefore perform
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Fig. 3 The ratio of kinetic to mean elastic energy plotted against time

for N f /200 = 20 basal roughness λ = 1, and varying chute angles θ .

Flow stops for inclinations θ ≤ 20.5◦, remains steady for 21◦ ≤ θ ≤
29◦ and accelerates for θ ≥ 30◦ (dashed lines)

numerous DPMs at heights and angles near the demarcation

line between the steady flow regime and the regime with static

piles. To study the full range of steady flow regimes, simu-

lations were performed for inclinations θ varying between

20◦ and 60◦ and N f /200 = 10, 20, 30, and 40. In Sect. 8,

we will repeat (some of) these simulations for varying base

roughness.

We define the flow as steady if the ratio of kinetic energy

normalised by the mean elastic potential energy becomes

time independent. This is shown in Fig. 3, where we plot

such an energy ratio for a rough base, constant height, and

varying chute angle. The elastic potential energy is averaged

over t ∈ [1000, 2000] to minimise fluctuations after start-up,

but any interval larger than 100 appears sufficient. For chute

angles at most 20.5◦ the kinetic energy vanishes after a short

time, thus the flow arrests; for chute angles between 21◦ and

29◦, a constant value is reached, indicating steady flow; and,

for inclinations above 29◦ the energy keeps increasing: thus

flow steadily accelerates. If the energy ratio remained con-

stant within t ∈ [1800, 2000], the flow was deemed steady,

otherwise the flow was deemed to be either accelerating or

stopping.

Unlike fluids, the free surface of granular flows, and thus

the flow height, are not well defined. In [42], the height of the

flow was estimated by N f /200, which is equivalent to assum-

ing a constant packing fraction of ρ/ρp = π/6. However,

the exact height h = s −b of the flow varies from the approx-

imated height due to compaction of the flow and N f /200 is

typically an overestimate. In [49], the surface of the flow was

defined by the time-average of the maximum vertical position

of all flow particles. One could also define the free surface of
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the flow as the height where the density vanishes. The latter

two methods, however, have the disadvantage that saltating

particles can lead to slightly overestimated flow heights.

Instead, we will define the height via the downward nor-

mal stress. For steady uniform flows the downward normal

stress is lithostatic, i.e., balances the gravitational weight,

such that

σzz(z) =
∞

∫

z

ρ(z′)g cos θ dz′. (41)

This is a direct consequence of the momentum balance equa-

tions. Thus, σzz(z) has to decrease monotonically; the base

and free surface are the heights at which σzz(z) reaches

its maximum and minimum value, respectively. However,

in order to avoid effects of coarse graining or single parti-

cles near the boundary, we cut off the stress σzz(z) on either

boundary by defining threshold heights

z1 = min{z : σzz < (1 − κ) max
z∈R

σzz} and (42a)

z2 = max{z : σzz > κ max
z∈R

σzz}, (42b)

withκ = 2 %. We subsequently linearly extrapolate the stress

profile in the interval (z1, z2) to define the base b and surface

height s as the height at which the linear extrapolation reaches

the maximum and minimum values of σzz , respectively,

b = z1 − κ

1 − 2κ
(z2 − z1), s = z2 + κ

1 − 2κ
(z2 − z1).

(42c)

The variable most sensitive to these height choices is ρ̄. How-

ever, it shows well-defined functional behaviour for our defi-

nition of height, shown later. This is not the case if we define

height by the density or the method in [49]. The threshold

κ = 2 % was chosen because the results in Fig. 13 were

relatively insensitive to the choice of κ at or above 2 %.

To determine the demarcation line hs(θ; λ) between

arrested and steady flow with good accuracy, we performed

a set of simulations with initial conditions determined by

the following algorithm. Starting from an initial ‘filling

height’ N f /200 = 40 and inclination θ = 24◦, the angle was

increased in steps of 1◦ until eventually a flowing state was

reached. Then the angle was decreased by 1/2◦. When the

flow arrested, the number of particles was increased by 400,

otherwise the angle was further decreased by 1/2◦, and so

forth, till N f /200 = 60. Flow was defined to be arrested

when the energy ratio Ekin/〈Eela〉 fell below 10−5 within

500 time units, otherwise the flow was classified as flowing.

To validate this approach a few arrested flows were contin-

ued after t = 500, and a further decrease of kinetic energy

was observed. This procedure yields intervals of the inclina-

tion angle for each height and, vice versa, height intervals

for each angle, between which the demarcation line lies. The
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Fig. 4 Overview of DPM results for λ = 1, with markers denoting

the flow state at t = 2,000: arrested •, steady ◦, and accelerating

∗ flows. Grey dash-dotted lines mark thickness h for fixed N f /200 =
10, 20, 30, and 40. The demarcation line is fitted to hstop(θ) in Eq. (35)

(solid line) and h′
stop(θ) in (38) (dotted line). Error bars mark intervals

establishing the demarcation line. Red crosses denote the demarcation

between arrested and accelerating flow found in [42]

values presented in [42] deviate at most 0.5◦ from our obser-

vations, perhaps due to the preparation of the chute bottom, or

the slightly different dissipation used. A demarcating curve

between steady and arrested flow was fitted to Eqs. (35) and

(38) by minimising the horizontal, respectively vertical, dis-

tance of the fit to these intervals, see Fig. 4. Fitting hstop(θ)

yields better results than h′
stop(θ) for all roughnesses and

only the fit (35) will be used hereafter. Similar fits will be

made in Sect. 8 for varying basal roughness.

7 Statistics for uniform steady flow

To obtain detailed information about steady flows, we use

the statistics defined in Sect. 3. Since the flows of interest are

steady and uniform in x and y, density, velocity and stress

will be averaged over x , y and t . The resulting depth profiles

will depend strongly on the coarse-graining width w, which

needs to be carefully selected. Representative depth profiles

for particular heights, inclinations and basal roughnesses will

also be analysed.

Depth profiles for steady uniform flow are averaged using

a coarse graining width w over x ∈ (0, 20], y ∈ (0, 10] and

t ∈ [2000, 2000 + T ]. The profile of a variable χ is thus

defined as

〈χ〉T
w(z) = 1

200T

2000+T
∫

2000

10
∫

0

20
∫

0

χw(t, x, y, z) dx dy dt,

(43)
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Fig. 5 Depth-averaged norm of the momentum rate of change, r =
∫ s

b
|∂t (ρu)| dz, with ∂t (ρu) determined by (44) for varying time aver-

aging interval T . Steady flow at height N f /200 = 20 and inclination

θ = 24◦ was used. Temporal fluctuations tend to zero as the length of

the time averaging interval is increased. Dotted line is for illustration
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Fig. 6 Particle volume fraction ρ/ρp for N f /200 = 40, θ = 24◦,

and λ = 1 for varying coarse graining widths w. While the density

is approximately constant in the bulk, microscopic layering effects are

visible for w < 0.5

with χw in turn the macroscopic field(s) of density, momen-

tum and stress, as defined in (13), (16) and (32). We average

in time with time snapshots taken every tc/2 units.

To determine an appropriate time averaging interval T , we

calculate the rate of change in momentum from the density,

velocity and stress fields by

∂(ρu)

∂t
= ∇ · σ − ρg − u · ∇(ρu). (44)

For steady flow, the temporal variations in mass and momen-

tum should approach zero when averaged over a long enough

time interval T . This is shown in Fig. 5, where we plot the

depth-averaged norm of the momentum rate of change for

varying time averaging interval. For T ≥ 100, the tempo-

ral fluctuations decrease to less than 2 % of the largest term,

ρ̄g, in the momentum equation. In the remainder, we choose

T = 100 as the averaging interval.

The effect of varying coarse-graining width w is shown in

Fig. 6, which shows the z-profile of particle volume frac-

tion ρ/ρp, where ρp is the particle density. For small w

we observe strong oscillations of about 0.9 particle diam-

eters width, particularly at the base. The microscopic oscil-

lations are increasingly smoothed out and finally vanish as

we approach w = 0.5. For larger w, such as w ≥ 1, the mac-

roscopic gradients at the base and surface are smoothed out,

an unwanted effect of the coarse-graining. The same behav-

iour is observed in the stress and velocity fields. Smooth-

ing over the microscopic structure makes it impossible to

observe microscopic layering in the density, which we still

wish to identify in our averaged fields. Hence, we choose

w = 0.25 as the coarse-graining width, such that layering

effects remain visible along with the rather sharp macro-

scopic gradients.

The microscopic oscillations at the base indicate a strong

layering effect of particles near the boundary, despite the

rough bottom surface. The macroscopic density throughout

the flow is almost constant in the bulk and decreases slightly

towards the base. An approximately constant density profile

is a feature of all steady flows and is a key assumption of

depth-averaging.

Non-neglible stress components are plotted in Fig. 7. We

have observed (not shown) that the stress components are

nearly symmetric (the asymmetric part contributes less than

0.1 % to the deviatoric stress). Shear stresses σyx and σyz

are negligible since the flow velocity in y-direction van-

ishes. For steady flow, the downward normal stress σzz(z)

is lithostatic and satisfies Eq. (41) with a maximum error

of 0.4 %. Since the density is nearly constant, we obtain

a linear stress profile, another assumption of depth-aver-

aged theory. Applying the momentum balance (19) to steady

uniform flow further yields that the shear stress satisfies

σxz =
∫ ∞

z
ρ(z′)g sin θ dz′. Thus, the macro-scale friction

µ satisfies µ = σxz/σzz = −gx/gz = tan θ . This rela-

tion is locally satisfied for all steady flow cases to an accu-

racy of |θ − tan−1(µ)| < 0.6◦. The remaining normal stress

components, σxx and σyy , are not constrained by this mass

balance. We thus see in Fig. 7 significant anisotropy in the

amplitude of the normal stresses, in particular in σyy . The

confining stress is largest in the flow direction, except for

very small inclinations. It is always weakest in the lateral

or y-direction with fluctuations at the base that are in phase

with the fluctuations of the density. Generally, the anisotropy

increases with higher inclinations and smoother bases; this

will be analysed further in future work.

8 Transition from rough to smooth base

Next, we study the effect of smoother bases on the range of

steady flows by decreasing the diameter λd of the base par-
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Fig. 7 Normal and shear stresses for N f /200 = 30, θ = 28◦, and

roughness λ = 1. Shear σxz and downward normal stress σzz are bal-

anced by gravitational forces. The normal stresses show anisotropic

behaviour

ticles, with the limiting case of a flat bottom wall for λ = 0.

Such an extensive numerical study of the effects of chang-

ing bottom roughness appears to be novel. To that effect,

the DPM simulations from Sect. 6 were extended such that

results for basal roughnesses λ = 0, 1/2, 2/3, 5/6, 1, 1.5,

2 and 4 can be compared. For λ = 1/6 and λ = 1/3 only

simulations to calculate hstop were undertaken.

A family of demarcation curves hstop(θ; λ) between

steady and arrested flow is shown in Fig. 8. The curve fits

are based on

hstop(θ; λ) = Aλd
tan(δ2,λ) − tan(θ)

tan(θ) − tan(δ1,λ)
, δ1,λ < θ < δ2,λ,

(45)

in which the dependencies on λ are explicitly denoted. The

fitting parameters δ1,λ, δ2,λ, Aλ appearing in (45) are given

in Table 1. As in Sect. 6, a fit based on the original Eq. (35)

(or (45)) rather than Pouliquen’s early fit (38) yields the best

results.

For a flat or nearly flat bottom, such that λ ≤ 1/6, steady

flow initiates and resides at or very tightly around one incli-

nation for all heights, see Table 1. This is in agreement

with the angle found in the laboratory experiments of [18].

For 1/3 < λ ≤ 4, we observe Pouliquen-style behaviour;

this is shown in Fig. 8. The angle δ1,λ of flow initiation

is nearly constant with respect to λ. In contrast, the range

of angles at which both steady and arrested flow is possi-

ble, δ2,λ − δ1,λ, is maximal for 1 ≤ λ ≤ 1.5 and decreases

for smoother chutes with λ < 1, as shown in Table 1. This

has been reported for laboratory experiments in [18], who

also observed a slight decrease of the interval δ2,λ − δ1,λ

for λ > λc ≈ 2. However, their λc was measured for basal
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Fig. 8 Demarcation line hstop(θ; λ) for varying basal roughness.

Markers denote the midpoint of the intervals around which the curve

was fitted. Steady flow is observed at smaller inclinations for smoother

bases. While the smaller angle δ1,λ varies only slightly, the larger angle

δ2,λ decreases rapidly with the smoothness. For λ = 0, the demarcation

line is vertical at θ = 12.5◦ (not shown)

particles fixed at the same height and depended on the com-

pactness of the base. We observe a slight decrease of δ2,λ

for λ ≥ 1.5; however, the fitting curves in Fig. 8 do mildly

overlap for λ ≥ 1.

We recall that δ1,λ and δ2,λ are fitting parameters for the

hstop-curve (45) which does not necessarily imply, though it

is expected, that the flow accelerates for angles greater than

δ2,λ. Surprisingly, while steady flow is observed exclusively

for θ ∈ (δ1,1, δ2,1) when λ = 1, the range of angles associ-

ated with steady flow for smoother chutes (i.e., when λ < 1)

extends to greater inclinations with θ > δ2,λ. For these lat-

ter cases, δacc,λ > δ2,λ is defined as the smallest angle at

which accelerating flow is observed; the DPM simulations

show that

δacc,λ = 29◦ ± 1◦ for λ ≥ 1/2. (46)

We summarise the density profiles seen without explic-

itly showing the results. For decreasing basal roughness λ,

we observe that the microscopic oscillations and the dip in

density at the base increase, while the bulk density remains

constant. For λ ≥ 1.5 there is a low density in the basal

region, since some of the free particles are small enough to

sink a little into the base, forming a mixed layer of fixed and

free particles.

Velocity profiles for N f /200 = 30 and θ = 24◦ (θ = 22◦

and 26◦ for λ = 1/2) are shown for varying basal roughness

in Fig. 11. For λ = 1, we observe the Bagnold profile [4]

for thick collisional flows, differing only at the surface. For

very thin flows (N f /200 = 10) or inclinations near the

arresting flow regime, the profile differs strongly from the
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Fig. 9 Top overview of DPM simulations for λ = 1/2, with markers

denoting the flow state at t = 2,000: arrested •, layered ×, oscillating

⋄, steady ◦, and accelerating ∗ flows. Demarcation line hstop(θ; 1/2)

is fitted according to (45). Bottom left panel profile of particle vol-

ume fraction of layered flow at N f /200 = 20, θ = 22◦. Bottom right

panel ratio of kinetic over mean elastic energy for oscillating flow at

N f /200 = 20, θ = 25◦

Bagnold profile and becomes linear. For smoother bases,

the flow velocity increases, and the profile becomes more

concave. Weak to stronger slip velocities are observed for

λ < 2/3. For λ = 0, thicker flows have constant velocity

throughout the depth, almost corresponding to plug flow.

For λ ≤ 2/3, the flow is steady-layered and oscillating at

low angles θ < δ3,λ, where

δ3,λ=

⎧

⎪

⎨

⎪

⎩

25.5◦ ± 0.5◦ if λ = 1/2,

24.5◦ ± 0.5◦ if λ = 2/3 and N f /200 = 10,

θstop(h; λ) if λ = 2/3, N f /200 ≥ 20 or λ≥5/6.

(47)

At higher angles, δ3,1/2 < θ < δacc,1/2, a disordered

regime similar to that for a rough base is observed. This

is illustrated in Fig. 9 for λ = 1/2, where one observes

the two different steady state regimes. At smaller angles,

δ1,1/2 < θ < δ3,1/2, the flowing system self-organises into a

state of layered flow consisting of ordering in the x − y-plane

for the bulk (bottom left panel of Fig. 9), except for a small

intermediate region, θ ≈ δ3,1/2, where a transitional flow

regime can be found. It is characterised by large oscillations

in the ratio of bulk averaged kinetic to elastic energy due

to a spontaneous ordering and disordering, or stop-and-go

flow, of the system as a function of time (lower right panel).

The same flow regimes have been observed in [43], where

the smoother bottoms were achieved by arranging the base

particles in a grid-like fashion. In contrast, we always use a

fully disorded base and vary the roughness by changing the

basal particle size λd.

We also observe steady flows for λ = 0 as the contact

friction is nonzero, see Fig. 10. While most of these flows

are layered flows, a narrow regime of disordered steady flows

is observed between the steady layered flows and the accel-

erating cases. Unlike the steady disordered flows observed

for rough bases λ ≥ 1/2, these steady disordered flows ini-

tially accelerate, then retard towards a steady state. As these

flows are not steady at t = 2,000, they are simulated until t =
6,000 to ensure that a steady state is reached. The density and

velocity profiles (see Figs. 10 and 11) of these flows are very

similar to the supported regime that has been observed for

flows over nearly smooth bases in [48] and hence is expected

to be unstable if the chute angle, θ , is perturbed.
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Fig. 10 Top overview of DPM simulations for λ = 0, with markers

denoting arrested •, layered ×, steady disordered ◦, and accelerating

∗ flows at t = 2,000 (t = 6,000 for steady disordered flows). Bottom

panel profile of particle volume fraction (left) and ratio of kinetic over

mean elastic energy (right) for N f /200 = 30, θ = 24◦

123



Closure relations for shallow granular flows 545

Table 1 Table of fitting

parameters δ1,λ, δ2,λ, Aλ for the

curve hstop(θ; λ) and βλ, γλ for

the flow rule (48), including the

variance of the flow rule,

err(F − Fdata) (F is the Froude

number fit and Fdata is the

measured one), for all steady

(λ ≥ 1/2) flows (λ = 0)

λ δ1,λ δ2,λ Aλ βλ γλ err

0 11.750 11.750 − 1.446 3.394 0.285

1/6 14.750 14.750 −
1/3 16.344 20.591 23.000

1/2 17.898 20.697 16.970 0.241 0.889 0.394

2/3 17.767 26.107 5.692 0.210 0.239 0.142

5/6 18.223 28.479 4.411 0.194 −0.002 0.144

1 17.561 32.257 3.836 0.191 −0.045 0.144

1.5 17.539 32.926 3.685 0.188 −0.036 0.147

2 17.448 29.483 5.455 0.185 −0.033 0.153

4 17.346 28.605 6.630 0.180 −0.016 0.161

9 Closure relations for the depth-averaged model

The goal of this section is to close the shallow-layer equa-

tions (34) by a determination of the basal friction µ, the mean

density ρ̄, the stress ratio K , and the velocity profile α, using

our DPMs. Additionally, we will determine the flow regimes

for which such time-independent closure relations in terms

of the flow variables cannot be obtained.

9.1 Friction µ in the shallow-layer model

For the rough base several friction laws have been proposed,

as detailed in Sect. 4.2. In the following, we will compare

these friction laws for the base roughness of one particle

diameter, λ = 1, as well as for other ratios λ.

To obtain a function for the basal friction µ, we used the

approach of Pouliquen, who found that for a rough base the

Froude number is a linear function of h/hstop(θ). A first

approach was to fit the Froude number to a linear function of

h/hstop(θ; λ) across the range of non-accelerating DPMs.

While this does work for λ ≥ 5/6, a (linear or other) fit

does not work well for λ ≤ 2/3 because for the smoother

bases steady flows occur for inclinations θ > δ2,λ, for which

hstop(θ; λ) is not defined. This is illustrated for λ = 1/2 in

Fig. 9. Instead, the Froude number is fitted with hstop(θ; λ =
1) such that

F = βλ

h

hstop(θ, λ = 1)
− γλ, for δ3,λ < θ < δacc,λ.

(48)

The results of such fits to the Pouliquen law are shown

in Fig. 12 (right), with corresponding fitting parameters

provided in Table 1. Shown is the Froude number F =
ū/

√
g cos θh against the ratio of flow and stopping heights

h/hstop(θ; λ = 1), for the disordered steady flow regime,

concerning angles δ3,λ < θ < δacc,λ. Even for the incli-

nations where a linear fit against h/hstop(θ; λ) is possi-

ble, the data are seen to fit better using the stopping height

hstop(θ; λ = 1), the one for basal surface λ = 1, rather than

with the actual stopping height hstop(θ; λ �= 1). This is a key

observation.

It further shows that the Froude number F increases as

the roughness λ decreases, due to the lower resistance at the

base. The weaker Froude number dependence for λ ≥ 1.5

seen in the right panel of Fig. 12 is in line with the zero slip

observed at the base in Fig. 11. The full set of fitting param-

eters and the standard error for the fit to (48) are found in

Table 1, where the standard error is defined as

err
(

{xi }N
i=1

)

=
(

N
∑

i=1

x2
i /(N − 1)

)1/2

. (49)

We remark that a fit to Eqs. (36) is marginally better than

Jenkins’ adaption (40), but the differences are too small to

discriminate accurately.

The situation for layered and oscillating flows is more

complicated. We illustrate that for the case λ = 1/2. Two

fits are shown in Fig. 12 (centre), one for the layered case

(dotted line concerning the crosses), and one for the steady

case (solid line concerning the circles). The oscillating flows

seem to defy a sensible fit because the flow swings irregularly

between the layered and disordered states. That oscillating

behaviour was also shown in Fig. 9 (bottom right panel).

For steady flow, the shallow-layer Eqs. (34) yield µ =
tan(θ). In summary, for the steady flow regimes observed in

our DPM simulations, the friction coefficient of the depth-

averaged Eqs. (34) is parameterised to be

µ(h, F; λ) = tan(δ1,1) + tan(δ2,1) − tan(δ1,1)

βλh/(A1d(F + γλ)) + 1
,

(50)

for δ3,λ < θ < δacc,λ, where the parameters δ1,1, δ2,1, A1 are

independent of the base; and, βλ and γλ are depending explic-

itly on λ. All values are found in Table 1, with δacc,λ and δ3,λ

given in (46) and (47). Despite its determination for steady

flows, such a closure for µ is assumed and often observed
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Fig. 11 Flow velocity profile of thick flow for N f /200 = 30, θ = 24◦,

λ = 0 and λ ≥ 2/3 and θ = 22◦, 26◦, for λ = 1/2. For a rough base

with λ ≥ 5/6, we see a Bagnold velocity profile (dashed line), except

near the surface. For smooth bases with λ ≤ 2/3, the profile becomes

more convex. For λ = 1/2, θ < 24◦, the flow velocity shows layering

while still observing the Bagnold profile. For λ = 0, a considerable slip

velocity is observed. For λ ≥ 1.5, the basal shear is small due to flow

particles trapped between basal particles so that the definition of the

base b(x) is rather fuzzy

to be a reasonable ‘leading order’ approach for unsteady

shallow-layer flows. Furthermore, for smoother bases, clo-

sure laws for layered and oscillating flows have eluded us. It

seems that the homogenisation and steadiness assumptions

of depth-averaged shallow-layer flow break down in these

cases.

9.2 Functions ρ̄, K , α of shallow-layer model

DPM simulations of steady uniform flows are considered for

disordered steady flow with δλ
3 < θ ≤ δλ

acc, to determine

closures for ρ̄, K and α as functions of continuum fields

ū and h. The layered and oscillating flow regimes are thus

momentarily excluded.

All steady disordered flows show a constant density profile

in the bulk of the flow, cf. Fig. 6, while the density decreases

near the base and the surface. The lower density region at the

base spans about two particle diameters for λ > 0, while the

surface region spans always less than 4d. Thus, a mean bulk

density can roughly be defined as

ρ̄c = 1

h − 6d

s−4d
∫

b+2d

ρ(z) dz. (51)

In Fig. 13, the bulk volume fraction and the mean volume

fraction are shown for roughness λ = 1 and varying height

and inclination. The bulk volume fraction decreases with

inclination θ , but is independent of flow height and rough-

ness, whereas the mean volume fraction depends also on flow

height and roughness. We fit the mean bulk density of all

steady disordered flows with λ > 0 to an arbitrary function

ρ̄
f i t

c /ρp = c0 − exp((θ − c2)/c1), (52a)

with fitting parameters

c0 = 0.610, c1 = 7.02◦, and c2 = 46.2◦. (52b)

Standard deviations of the mean bulk volume fraction and

mean volume fraction for all cases with λ > 0 are

err(ρ̄
f i t

c − ρ̄c) = 0.002, and err(ρ̄
f i t

c − ρ) = 0.018.

(52c)

Secondly, the normal stress ratios K = σ̄xx/σ̄zz and K ′ =
σ̄yy/σ̄zz are determined. They describe the anisotropy of the

stress tensor and are expected to be unity under isotropic and

Newtonian conditions. The range of K for steady disordered

flow is generally small, ranging from 0.98 to 1.07. The range

of K ′ is also small, but significantly far from unity, ranging

from 0.80 to 0.90.

The deviation of K and K ′ from unity increases with incli-

nation, with K increasing and K ′ decreasing with inclination.

This implies that the flow is contracting in one direction and

expanding in the other. For steady disordered flows, K and

K ′ fit to functions linear in θ ,

K f i t = 1 + (θ − d1)/d0 (53)

with d0 = 132◦ and d1 = 21.30◦ and

K ′ f i t = 1 + (θ − d ′
1)/d ′

0 (54)

with d ′
0 = −118◦ and d ′

1 = 6.27◦. The model results give a

small standard error of err(K − K f i t ) = 0.014 and err(K ′

− K ′ f i t ) = 0.014. Given that the dependence on inclination

is small, we can take K ≈ 1, while K ′ does not appear in the

2D shallow-layer granular equations.

Finally, we develop a fit for the shape factor α(λ) =
ū2/u2.

The fit is based on a phenomenological model of the

observed velocity profiles, as shown in Fig. 11. For rough

bases λ ≥ 5/6, a Bagnold velocity profile,

u B(z) = 5

3
ū

(

1 −
(

(h − z)/h
)3/2

)

, (55a)

is observed in the bulk of the flow; a linear profile in the

surface layer, which is about 5d thick; and, a convex profile

with no slip in the base layer, whose thickness bλ increases

as the height approaches the stopping height. No kinks occur

at the intersection of the layers. Thus, we model the velocity

by

123



Closure relations for shallow granular flows 547

F

0 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

h/hstop (θ , λ = 1)

F

0
0

2

4

6

8

10

h/hstop (θ , λ = 1)

F

λ = 0

λ = 1/2

λ = 2/3

λ = 1

λ = 2

λ = 4

10
0

2

4

6

8

10

12

h/hstop (θ , λ = 1)

5 10 5 10 15 20 0 5 15 20

Fig. 12 Froude number F = u/
√

gh over height for λ = 1 (left),

λ = 1/2 (centre), scaled by the stopping height hstop(θ; λ = 1) , and

for selected basal roughnesses (right). Data with symbols ‘×’ denote

steady layered, ‘◦’ steady, and ‘⋄’ oscillating flows. The data is fit using

hstop(θ, λ = 1) (solid lines)
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Fig. 13 Mean volume fraction ρ̄/ρp for roughness λ = 1, and varying

number of particles N f and inclinations θ . The mean volume fraction

in the bulk, ρ̄/ρp , denoted by ∗, collapses onto a function of the inclina-

tion (solid line), while it shows a small dependence on the flow height,

due to the density decrease near base and surface

∂u

∂z
(z; bλ)

=

⎧

⎪

⎨

⎪

⎩

∂u B

∂z
(z = bλ)(1 − 2

3
bλ−z
bλ−b

), z < bλ,
∂u B

∂z
(z), bλ ≤ z < max(s − 5, bλ),

∂u B

∂z
(z = max(s − 5, bλ)), otherwise,

u(0; bλ) = 0 for λ ≥ 5/6. (55b)

The strain ∂zu in Fig. 15 is fitted well with (55b). The param-

eter bλ decreases with increasing distance from the stopping

height, and a simple fit reads

bλ = dλhstop(θ, 1)/h, (55c)

where hstop(θ, 1) was chosen since hstop(θ, λ) does not pro-

vide values for all inclinations for which steady flow is

observed. Subsequently, the fit to the shape factor α(λ) =

ū2/u2 can be computed numerically and compared to the

measured values in Fig. 14. The coefficients bλ are given in

Table 2.

For λ ≤ 2/3, the dependence of the shape factor on height

and inclination diminishes and can be approximated with a

constant value α(λ). The Bagnold profile disappears and the

flow becomes more convex and plug-like, as shown in Fig. 11.

Each velocity profile will be analysed separately next.

For λ = 0, the slip is so large that we can assume plug

flow to hold. There is almost no slip for λ = 2/3 and a slip

of approximately u(0)/ maxz u(z) = 1/6 for λ = 1/2. We

neglect the variations at the surface and the bulk and assume

a linear shear rate vanishing at the surface for λ = 1/2,

λ = 2/3. Thus, we fit the velocity profiles as

u(z)

ū
=

⎧

⎪

⎨

⎪

⎩

z/h(2 − z/h), λ = 2/3,

0.16 + 0.84(z/h(2 − z/h)), λ = 1/2,

1, λ = 0,

(56)

The corresponding coefficients α(λ) are found in Table 2 and

provide a good fit to the data (Fig. 15).

The Bagnold velocity profile in the bulk region can be

deduced, without assuming collisional flow, from a local

rheology model [36] where it is assumed that the friction µ

is a function of the inertial number,

I (z) = (∂zux )/
(√

σzz/ρp/d
)

. (57)

Since the friction is determined by the inclination, µ =
tan(θ), we thus expect a constant value of I in the bulk. Depth

profiles of I are plotted in Fig. 16 for varying roughnesses λ.

The inertial number remains constant in the bulk, but shows

large variations in the basal and surface layers. At the sur-

face, the pressure vanishes while the strain rate remains finite

(see Fig. 11), causing the inertial number to approach infin-

ity. At the base we observe different behaviour for rough

and for smooth basal surfaces. For high geometric rough-

ness, λ > 2/3, the inertial number increases towards the
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hstop (θ ;λ = 1) / h
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Fig. 14 Left figure fitting parameter bλ as a function of hstop(θ; 1)/h

for λ = 1 and varying height h and inclination θ . The solid line shows

the linear fit used to obtain α from Eqs. (55). Right shape factor α

for λ = 1 and varying height h and inclination θ . Markers denote the

simulation data, while dotted lines denote fits using (55) with corre-

sponding coefficients from Table 2. Fitted values and simulation data

are connected by a solid line

Table 2 Fitting for the shape factor α = α(λ) for λ ≤ 2/3 and α =
ū2/u2, u = u(z; bλ) for λ ≥ 5/6, and the standard error. Closure

relations are fitted to all data sets of steady unordered flow, δλ
3 < θ ≤

δλ
acc

λ α(λ) err

0 1.00 0.0027

1/2 1.14 0.022

2/3 1.20 0.014

λ bλ err

5/6 5.37 0.0371

1 9.42 0.0395

3/2 9.69 0.0239

2 12.0 0.0473

4 14.5 0.0543

base, reflecting the decrease in strain rate previously shown

in Fig. 15. For smoother bases λ ≤ 2/3, the basal region is

thicker and the inertial number increases towards the base.

For λ = 0, the inertial number reaches such high values that

the flow needs to be classed as collisional, which is con-

firmed by the density profile for the steady disordered cases,

as shown in Fig. 10.

Assuming that the µ(I )-rheology holds, the velocity

should fit a Bagnold profile and therefore we expect a con-

stant shape factor α = 5/4. As both density and friction

depend only on the inertial number, a further prediction is that

the density is a function of the friction, ρ̄ = ρ̄(µ = tan θ), in

agreement with the density fit in Eq. (52). In [36], is was fur-

ther assumed that K = 1. The friction can also be expressed

in terms of the inertial number: due to the Bagnold velocity

(z − b)/ h

h
/ū

∂ z
u

λ = 0

λ = 1/2

λ = 2/3

λ = 1

fit λ = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 15 Depth profile of normalised strain, (h/ū) ∂zu corresponding

to velocity profiles shown in Fig. 11. For rough bases, the strain is

modelled by a Bagnold profile, except near the base and surface. For

smoother bases, λ ≤ 2/3, the layered flow near the base increases in

thickness. For λ = 0, a large slip velocity and a shear band in the basal

layer is observed

profile, the inertial number of the flow can be modeled in

terms of the flow variables as

Ī = 5

2

ūd

h
√

gh cos θ
= 5

2

Fd

h
, (58)

where we use the notation Ī to distinguish from the defini-

tion of the local inertial number (57). From (58) it immedi-

ately follows that the Froude number is proportional to the

height, without an offset as assumed in (48). We note that the

µ( Ī )-rheology does not predict a height dependent stopping

angle, θstop(h), as is observed in the simulations: since µ =
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I

λ = 0

λ = 1/2

λ = 2/3

λ = 1

λ = 2

λ = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ

Fig. 16 Inertial number I (z) for N f /200 = 30 at inclination θ = 25◦

for varying roughness λ

Table 3 Table of fitting parameters aλ and θmax,λ, as well as the pre-

viously measured angle of repose, θ1,λ.

λ aλ θ1,λ θmax,λ err1 err2

0 0.0008 11.8 89.8 0.013 0.0025

1/2 2.11 17.9 36.8 0.0054 0.0026

2/3 3.45 17.8 35.9 0.0016 0.0031

5/6 5.25 18.2 34.4 0.0022 0.0026

1 7.2 17.6 33.3 0.0034 0.0025

1.5 7.17 17.5 33.4 0.0034 0.0025

2 7.25 17.4 33.5 0.0033 0.0025

4 6.22 18 34.3 0.0031 0.0027

For λ = 0, the fitting returns an almost linear fit to the data. The

last two columns show the variance of the friction fitted by Eq. (59),

err1 = (N − 1)−1
∑N

i=1(µ( Ī ) − tan(θ))2, and fitted by Eq. (50), err2

= (N − 1)−1
∑N

i=1(µ(h, F) − tan(θ))2

µ( Ī ), there is also and inverse function Ī = Ī (µ = tan θ),

therefore Ī is independent of the height of the flow. Instead

there is a single minimal angle, θ1,λ, for which steady flows

exist. In order to obtain a fit, we assume that steady flow is

not possible above an angle θmax,λ and fit µ( Ī ) as

µ( Ī ) = tan(δ1,λ) + tan(δmax,λ) − tan(δ1,λ)

(aλ Ī )−1 + 1
(59)

with fitting parameters δmax,λ and aλ given in Table 3. This

fit is similar to the fit obtained in (50), except that µ( Ī ) is now

fitted directly. For λ ≥ 5/6, µ shows a well-defined depen-

dence of Ī ; however, this functional dependance vanishes

for smoother bases λ ≤ 2/3, as the flow velocity become

less Bagnold-like, see Fig. 11, and the offset from a linear

relationship between F and h increases, see Fig. 12.

These deviations from the µ(I )-rheology for a rough base

have also been observed in [36]; consequently, a non-local

rheology has been proposed by Pouliquen and Forterre in

[39], where rearrangements at one position are triggered by

stress fluctuations elsewhere in the flow. This non-local rhe-

ology predicts for rough bases that the bulk flow is Bag-

nold, while the strain rate remains finite at the surface, and

decreases towards the base. This is in qualitative agreement

with what we observe in our DPM simulations, see Figs. 11

and 15. However, this non-local rheology could not predict

other observed details, such as the inverse proportionality of

the Froude number on the stopping height, see (48).

In summary, the functions ρ̄, α and K depend on the incli-

nation θ and the height h. The inclination θ in turn can be

written as a function of the friction coefficient µ such that

θ = tan−1(µ(h, ū)). This allows us to describe the param-

eters of the shallow-layer model in terms of the height h,

roughness λ, and friction µ(h, ū) and thus provides a clo-

sure proper for the system. The different behaviour for the

varying λ’s remains an open issue, since we only provided

empirical fits above.

10 Conclusion

10.1 Summary

In this article, an extensive series of DPM simulations were

used to determine closure relations for the often used shal-

low-layer model of granular flows on inclined chutes. Assum-

ing uniformity in the lateral y-direction, the model is a

depth-averaged continuum model with the macro-scale vari-

ables thickness h = h(x, t) and mean velocity ū = ū(x, t).

The flow consisted of monodispersed particles of diameter

d and the base of monodispersed particles of diameter λd.

Particle flows with variations in height h and inclination θ

were numerically investigated for varying basal roughness λ,

revealing a range of parameters for which steady and uniform

flow was observed.

We observed the following phenomenology: at small incli-

nations the flow quickly arrested, while at large inclina-

tions the flow continued to accelerate. Between these two

regimes there was a range of inclinations in which steady

flows occurred (cf. Fig. 4). The curve hstop(θ; λ), a function

of height versus inclination, forms the demarcation between

arrested and steady flow, as a function of basal roughness

(Figs. 4 and 8). For smaller basal roughness, steady states

arose at smaller inclinations and heights, and the range of

angles shrinks for which steady flow is possible. Other types

of steady flow were observed at small inclinations for small

base particles, showing a strong layering in depth, or oscil-

latory flows (cf. Fig. 9). For a flat frictional base, the steady

disordered flows show a strong shear at the base.

Depth profiles for density, velocity and stress were

constructed using coarse-grained macroscopic fields. The

coarse-graining width was carefully chosen to preserve some
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microscopic structure as well as macroscopic gradients (cf.

Fig. 6). The assumptions of depth-averaged theory were con-

firmed in the simulations for a certain range of steady, uni-

form flows: the density was almost constant with depth, and

the downward normal stress as well as shear stress were litho-

static. We have only derived closure relations from statisti-

cally steady DPM simulations; however, it is often assumed

that such closure laws, obtained from either DPM simula-

tions or experiments, can be used to close the time-dependent

granular shallow-layer equations.

Consequently, four closure relations could be determined:

basal friction µ, stress ratio K , mean density ρ̄, and the shape

of the velocity profile α.

Firstly, basal friction µ = tan θ was shown to be a func-

tion of height and flow velocity, see Eq. (50). Pouliquen’s

approach was found to be valid for λ = 1, with the Froude

number as a linear function of h/hstop(θ; λ = 1). This fitting

approach was extended to smoother bases with λ �= 1, where

the Froude number was fitted to h/hstop(θ; λ = 1) instead

of using the respective h/hstop(θ; λ) for the actual λ or basal

roughness. The stopping curve associated with the diameter

λd = 1 of the flowing particles seems more relevant than

the stopping height with the actual λ. One possible explana-

tion is that there is a boundary layer of intermittently slow

flow particles that originated in the bulk, and that shields the

smoother base from the bulk flow.

Secondly, closure relations for the mean density ρ̄, stress

anisotropy K and shape factor α were established as fol-

lows. The mean density was fitted as a decreasing func-

tion of inclination, see Eq. (52); the stress anisotropy was

found to be increasing with inclination, but the variations

were small enough to assume K ≈ 1; the shape factor

was obtained by fitting the velocity profiles at the base with

a convex function, a Bagnold profile in the bulk, and lin-

ear profile at the base, with the base height proportional to

hstop(θ; λ = 1).

The determined closures are valid for the range of incli-

nations δ3,λ < θ < δacc,λ, where steady disordered flows

are observed. For rough bases with λ ≥ 5/6, all steady

flows where disordered, and therefore δ3,λ = θstop(h; λ),

with θstop(h; λ) the inverse of the hstop(θ; λ)-curve between

arrested and dynamic flow. For smaller roughness with

λ ≤ 2/3, layered and oscillating flows arose for inclinations

θstop(h; λ) < θ < δ3,λ, for which we are (as yet) unable to

capture closure relations.

10.2 Open questions

What does the granular shallow-layer model enable us to

do, and what can we not do with it? In the range of steady

flows, this continuum model can be used to predict steady

and time-dependent flows. Strictly speaking, this is only

allowed for steady flow in the established inclination range

δ3,λ < θ < δacc,λ, but it can be expected to remain valid for

the slowly-varying dynamic cases as well. It is often the case,

however, that even rapidly-changing flows can be captured

by models that are strictly only valid for the slowly-vary-

ing cases. Consequently, a systematic study of the validity of

the granular shallow-layer model is required. By respectively

extending the “hydraulic” analysis for fluidised granular mat-

ter and water in Vreman et al. [49] and Akers and Bokhove

[1], granular flows within constrictions become an analyt-

ically-treatable target. Such flows in constrictions reach a

steady state and appear (partially) accessible by direct DPM

simulations.

What do these results enable us to do? Whether the steady

DPM-based closures are valid across granular “hydraulic”

jumps in such steady and constricted flows is of interest.

Whether the steady DPM-based closures hold for (slow) tran-

sient routes towards such steady states is of interest, too.

What closures should be used outside the formal range of

applicability for the smoother bases, so for the layered and

oscillating flows for θstop(h; λ) < θ < δ3,λ and the acceler-

ating flows for θ > δacc,λ, appears a tantalising, and as yet,

open question.

What are we not able do? Although, we did observe lay-

ered and oscillating flows in our DPM simulations, it is doubt-

ful whether the homogenisation assumption that led to the

shallow-layer model is sufficient. Nonetheless, the lithostatic

balance relation is shown to hold for the DPM simulations, as

expected from standard asymptotic analysis using the aspect

ratio of normal to planar velocity and length scales.

10.3 Outlook

Alternatively, a multi-scale modelling approach might be

adopted such as the heterogeneuous, multiscale methodology

[50], among others, in which closure relations for discreti-

sations (e.g., [37]) depth-averaged shallow-layer models are

coupled to DPM simulations in selected regions in space and

time. Thus computational costs would be diminished while

accurate closure relations are gathered ‘on the fly’ in time

and space.

For future work, we advocate the extension of our DPM

simulations by investigating the 3-D closure relations. We

surmise that reduced lithostatic models for shallow granu-

lar flows could be more consistently derived from 3-D con-

tinuum models with stress closures determined from DPM

simulations in combination with laboratory measurements.

These new models would be reduced and therefore compu-

tationally still manageable for large-scale debris flows; for

example, when the degrees of freedom in the vertical remain

limited, but are extended beyond only one degree of freedom.

Such reduced modelling is akin to hydrostatic modelling in

water-wave and coastal hydrodynamics.
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