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CLOTHOID SPLINE TRANSITION SPIRALS

D. S. MEEK AND D. J. WALTON

Abstract. Highway and railway designers use clothoid splines (planar G1
curves consisting of straight line segments, circular arcs, and clothoid segments)
as center lines in route location. This paper considers the problem of finding a
clothoid spline transition spiral which joins two given points and matches given
curvatures and unit tangents at the two points. Conditions are given for the ex-
istence and uniqueness of the clothoid spline transition spirals, and algorithms
for finding them are outlined.

1. Introduction

The Fresnel integrals [1, p. 300],

C(t) = / cos-u2du   and   S(t) - / sin-u2du,
Jo        2 Jo        2

are nonnegative functions of t, t > 0. The integrals of the Fresnel integrals,

(la) Q(t)= [ C(u)du = tC(t)--sm^rt2
Jo n       2

and

(lb) Si(t) = [ S(u) du = tS(t) + - cos ?/2 - - ,
To n       2        n

are nonnegative, strictly monotone increasing functions of t, t > 0. A recent
paper [7] gives convenient rational approximations to the Fresnel integrals. With
the above formulae, those approximations also give convenient approximations
to the integrals of the Fresnel integrals.

The clothoid is a spiral which can be defined in terms of Fresnel integrals as

where the scaling factor 7rß is positive and the parameter t is nonnegative.
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118 D. S. MEEK AND D. J. WALTON

= <2

Figure 1. Part of a clothoid

The clothoid (2) is in the first quadrant, starts at the origin with t — 0, and
approaches the limiting point (fß, fß) as t approaches infinity (see Figure
1). Some useful formulae for the clothoid follow: the angle that the tangent
forms with the .Y-axis is f t2 , the curvature is ¿ , an element of arc length is
ds = nBdt, and the center of the circle of curvature is

nB_ c,(t)
Si(t) + ji

A planar G2 curve (a curve which is twice continuously differentiable with
respect to arc length [4, p. 151]) consisting of clothoid segments, circular arcs,
and straight line segments is called a clothoid spline, as circles and straight lines
can be considered limiting forms of clothoids. Clothoid splines are used in the
route design of the center lines of highways and railways [2]. Route designers
think of the clothoid segments in clothoid splines as transitional curves between
straight lines and circular arcs, and between circular arcs of different radii.
Clothoid splines have been studied recently in [10, 11, 12]. A clothoid spline is
expressed parametrically, and has the attractive feature that the arc length and
curvature are continuous piecewise linear functions of the parameter.

Algorithms for finding clothoid segments to join given circles and straight
lines, and produce a G2 curve, have been described in [9, 13]. The result is a
clothoid spline, but it is not possible to specify the points on the given circles or
straight lines where the clothoid segment starts or ends. Algorithms for joining
a point on a circle or straight line and another point with a clothoid segment
so that the circle or straight line and clothoid segment form a planar G2 curve
have been described in [8]. However, in that paper, it is not possible to specify
the curvature and the unit tangent at the second point beforehand. In this
paper, a clothoid spline transition spiral is found to join two given points, and
match curvatures and unit tangents at the two points. This is a type of Hermite
interpolation, and will henceforth be called a Hermite matching.
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CLOTHOID SPLINE TRANSITION SPIRALS 119

2. Terminology
Much of the terminology required in the paper is established in this section.

A tangent to a curve is considered to be a vector which points in the direction
of increasing arc length. The curvature is positive (negative) if the center of
curvature is on the left (right) when moving in a direction of increasing arc
length. A spiral is a curve whose curvature is monotone increasing or monotone
decreasing and does not change sign.

The interpolation problem to be solved is to find a clothoid spline spiral which
joins P to Q, and which has given unit tangents tp, íq , and given curvatures
Kp, Kq, at P and Q (Hermite matching). It may be assumed, without loss
of generality, that the curvature of the clothoid spline spiral is nonnegative and
nondecreasing. For an interpolation problem with Kp - Kq, the clothoid spline
spiral would have constant curvature and would be a circular arc or straight line.
It is easy to determine if it is possible to match the given data with a circular
arc or straight line. Henceforth, assume that 0 < KP < Kq .

A standard form of the above interpolation problem is obtained by placing P
at the origin, and aligning tp along the positive .Y-axis (see Figure 2). Assume
that the tangent to the clothoid spline spiral rotates through an angle less than
it when traversing the curve from P to Q. This is not a severe restriction, and
it is made to facilitate proofs of the lemmas below. Let the angle the tangent
íq forms with the X-axis be \W, 0 < W7 < 2.

For some choices of Q, W, KP , and Kq , there is no spiral of nonnegative,
nondecreasing curvature joining the origin P to Q with a Hermite matching.
For example, it is impossible to find such a spiral if Q is below the X-axis.

Definition. Let the region Y = T(P, W, Kp, Kq) be the set of points Q such
that there exists a spiral of nonnegative, nondecreasing curvature which connects
P to Q with a Hermite matching.

With the point R defined as
J_ /    sin fir
KQ  1,1-COS f^

the following theorem describes the region Y for Kp = 0 and for Kp > 0.

Theorem I. If Kp - 0, the region Y is the interior of the wedge bounded by
the ray from R making an angle of \W with the X-axis and the ray from R

curvature ÂV.

'.•

curvature Kp

Figure 2. The interpolation problem in standard form
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region T

Figure 3. The region Y when KP = 0

Figure 4. The region Y when KP > 0

parallel to the X-axis (see Figure 3). If Kp > 0, the region Y is the segment
of the circle (3) which is to the right of the ray from R making an angle of \W
with the X-axis (see Figure 4).

Proof. The region Y can be found using theorems in Guggenheimer [6]. Vogt's
theorem [6, p. 49] states that the angle íq makes with PQ is greater than the
angle PQ makes with the X-axis. This means that Q must be to the right of
the straight line through the origin which makes an angle f W with the X-axis.

Kneser's theorem [6, p. 48] states that any circle of curvature of a spiral
contains every smaller circle of curvature in its interior. For Kp = 0 and a
spiral of nonnegative curvature, this can be interpreted to mean that the circle
of curvature at Q must be entirely above the X-axis. Thus, the F-component
of Q must be greater than ( 1 - cos\W)/Kq . For KP > 0, the condition that
the circle of curvature at P must entirely enclose the circle of curvature at Q
can be replaced by the condition that the distance between centers of those two
circles of curvature is less than the positive difference of their radii. This leads
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CLOTHOID SPLINE TRANSITION SPIRALS 121

to the fact that Q must be in the following circle:

(     -¿-sinZW     \ i i
(3) center:      ,    Q ,        „¥ir    ,        radius : ——-=-.U-¿cosf^/ Kp    *°

Guggenheimer [6, p. 52] shows that the conditions in Vogt's and Kneser's
theorems are also sufficient conditions on Q that a spiral can be found to join
P to Q, given W, KP , KQ .   D

The main mathematical result of this paper is that for any Q in Y, there is
a unique clothoid spline spiral (of type A or type B, cf. §§4 and 5, respectively)
joining P to Q with a Hermite matching. This result will be proven in §6.

3. Partition of the region Y

The region Y is partitioned into two subregions YA and YB by the two
curves D(r) and E(t) (see (6a), (6b), (7), and (8)) because the type of clothoid
spline spiral which will be used depends on where Q is in Y. If Q is at S,
the meeting point of T>(t) and E(f), a single clothoid segment can be used to
give a Hermite matching. If Q is on D(t), a clothoid spline spiral comprising
a clothoid segment and a circular arc of angle \t can be used to give a Hermite
matching. If Q is on E(r), a clothoid spline spiral comprising a line of length
t or a circular arc of angle § t, and a clothoid segment can be used to give a
Hermite matching. In §4, it is shown that a clothoid spline spiral comprising a
line or circular arc, a clothoid segment, and another circular arc, and matching
W, Kp, and TCq can reach any point in TA uniquely. In §5, it is shown that a
clothoid spline spiral comprising a clothoid segment, a circular arc, and another
clothoid segment, and matching W, Kp, and Kq can reach any point in Tr
uniquely.

Define the matrix of rotation by § co,

,.. _.   .     /cósico   -sinfto(4) R(co) =1.2 2v '                                   v   '     y sin f a>     cos jco

and the variable ß for formulae in this section,

(5) B =

The curve D(r) for 0 < t < W is

/   W-t

J_ f-sin^rV + sm^(W-t)\
Kq V cos^W-cos^(W-t) ) '

and the point S = D(0). When KP = 0, D(t) can be written more compactly
as

Note that in both cases D(W) = R. When KP = 0 and / > 0, the curve E(i)
is

(7) «o-s+Q,
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122 D. S. MEEK AND D. J. WALTON

region TB

E(í)

D(0 region TA

R'
Figure 5. The partition of Y when Tip = 0

T

Figure 6. The partition of Y when 7vP > 0

and, when 7vP > 0 and 0 < t < W, the curve E(í) is

(8) em=***(<-*i*)(^f>:^;f>+ sin |?
1 -cosfi

Note that in both cases E(0) = S.
The region Y is divided into two disjoint subregions, YA and Tr , by the

curve D(i) which runs from R to S, and by E(/), which is a straight line
from S parallel to the X-axis when Kp = 0, and which is a convex curve from
S to T = E(W) when KP > 0 (see Figures 5 and 6).

If it is possible to join P to Q with a spiral, then Q is in Y. Since the
boundaries of Y are straight lines and circular arcs, it is easy to test a given
point to see if it is in Y. However, the goal is to join P to Q with a clothoid
spline spiral. The type of clothoid spline spiral to be used depends on whether
Q is in TA, Tr or on the boundary between those two regions.

Algorithm 1. How to determine whether Q is in YA, Tr or on the boundary
between those two regions.
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CLOTHOID SPLINE TRANSITION SPIRALS 123

Lemmas 1 and 2 show that D(/) and E(t) are curves whose curvature is
positive, and whose tangents rotate through an angle of less than n . These are
the conditions required by the algorithm WhichSide [8] which can determine
whether a given point is on, on the convex side of, or on the concave side of
a parametric curve. When Q is in Y but is not on either of the curves D(i)
and E(/), it must be determined whether Q is in TA or in TB . If Q is on the
convex side of D(/), and below E(i) when 7vP = 0, or if Q is on the convex
side of T>(t) and on the convex side of E(t) when Kp > 0, then Q is in Y\ ,
otherwise Q is in rB .   D
Lemma 1. The curve D(t), (5) and (6a), from R to S, is a curve of positive
curvature and the tangent rotates through an angle of less than n.
Proof. The curvature of D(t) running from S to R is

det(D'(f), D"(t))
|D(i)|3

where the sign of the numerator determines the sign of the curvature.   The
function D(t), written with integrals, is

, [KQB (cos%(u2-K2B2)\       _ J_ /-sin§H/ + sinf(It'-/)
JKrB   {smj(u2-K2B2))aU    Kq { cos ^W - cos ^(W - t)

The substitution U = u2 - KpB2 transforms the integral term in the above into

__?_(
sin?c/2/0

icosw:)du.
0 y/U + K2B2
>ect to t, '

(9) D'{t)= 4(7¿2 _ K2) i       B(u + K2B2)V2 y sin f,

Differentiating with respect to t, we get
•w-t

!..    du

and
TV'm-     n     (un${W-t)\

()~ 4KQB2 (ûnftW-t))
TtB       fw-' u(u + 4K2B2) /cosftA   ,

V - t)2 Jo       (u + K2B2)V2 [ sin \u ) ÜU'8(H/r7j2 JQ
The numerator of the curvature, det(D'(/), D"(/)), consists of two terms. The
first term is a negative multiple of

•w-tIJo
sin — (W - t - u)au,

¡o       (u + K2B2)V2       2
where the integral is positive since W - t < W < 2, and the second term is a
positive multiple of

fw--'  fw-' u v(v + 4K2B2)   .   7T .  .    .
Jo       Jo       (u + K2B2)V2(v + K2B2)S^in2{V-U)dudV-

The identity
pb    fb fb    rv

(10) /    /   f(u,v)dudv = /    /  {f(u, v) + f(v , u)}dudv ,
Ja   Ja Ja   Ja
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124 D. S. MEEK AND D. J. WALTON

applied to the above double integral, transforms it into a negative multiple of
rW-trW-t     ¡-V

Jo       Jo   ("■
uv(v - u) .   n, , ,    ,sin— (v - u)dudv.

Jo       Jo   (u + K2B2)y2(v + K2B2)V2       2'
This double integral is positive since   W - t <  W <  2.    Both terms in
det(D'(i), D"(/)) are negative; so the curvature of D(i) from S to R is nega-
tive. Thus, the curvature of D(i) from R to S is positive.

The value of D'(0) from (9) is a positive multiple of

fw u /cosfwN   .
Jo    (u + K2B2)y2\sin^u)au-

This vector points into the third or fourth quadrant. Differentiating (6a) directly
and setting t = W, which means ß = 0, the value of D'(W) is a positive
multiple of (~q1) . The tangent to the curve D(t) when traversing the curve
from R to S points in the opposite direction to the above vectors and thus
rotates through an angle of less than n .   D
Lemma 2. When KP > 0, the curve E(t), (5), (8), from S to T is a curve of
positive curvature and the tangent rotates through an angle of less than n .
Proof. The proof is very similar to the proof of Lemma 1 and will be omit-
ted.   D

4.  ClOTHOID SPLINE SPIRAL OF TYPE A

In this section, a clothoid spline spiral which can reach any point in TA will
be described. The proof that the clothoid spline spiral is unique for any point
in rA, and a short description of an algorithm for finding the clothoid spline
spiral, will be given.

With Tvp = 0, a clothoid spline spiral of type A consists of a straight line fol-
lowed by a clothoid segment which is followed by a circular arc (see Figure 7).
Let the length of the straight line be x , let the scaling factor of the clothoid seg-
ment be %B, and let the angle of the circular arc be \L. To match curvatures,
the parameter in the clothoid segment must run from t = 0 to / = KqB . The
total angle through which the tangent rotates when traversing the curve from P
to Q, \W , must equal the sum of the angles through which the tangent rotates
over the clothoid segment and over the circular arc. Equating angles gives

W = KQB2 + L,

from which ß is found to be ß = \]W — L/Kq . The circular arc is part of the
circle of curvature of the clothoid at t — KqB . A formula for Q is the center
of that circle of curvature plus a radius vector which is perpendicular to íq ,

,0,
where formula (6b) can be used for D(/).
Lemma 3. If Kp = 0 and Q is in TA, a unique clothoid spline spiral of type A
which can join P to Q with a Hermite matching exists.
Proof. Let Q = (S1 ) ; then the conditions that Q is in TA are

Ôi >^C,(VW^L) + ^sirl^W,        0<L<W,
A.Q Aq Z
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^L
t,

AV

straight line
of length x

t = 0
clothoid segment

Q

circular arc

t = KQB

Figure 7. Clothoid spline spiral of type A, Kp = 0

and
i1g(l-cosîtr)<e2<ji

From the given data, the center of the circular arc is

-^ (l -cos^w) < 02 < ^- (l-cos^w) + jt-Srty/W).

Q + /-sinfH/
Kr cosf W

According to [9], a unique clothoid segment joining a line to a circle exists if
the distance from the line to the circle is greater than the radius of the circle.
The distance from the center of the circle to the X-axis is Q2 + ¿- cos f W, and
this is greater than the radius of the circle, j- , by the left part of the above
condition on Q2 that Q is in TA . The center of the circle of curvature of the
clothoid at / = TvQß is the same as the center of the circular arc. Comparing
the 7-coordinates, one obtains

;i2)
i i—S,(VW—L) + ^=Q2 + ^cos^W.

Aq Aq Aq Z

sin — W.

The restricted values for Q2 and the fact that S¡(t) is a strictly monotone in-
creasing function mean that there is a unique solution of that equation satisfying
0 < L < W. Comparing the X-coordinates, one gets

(13) x + -g-QiVW^L) = Öi - ~
Kq Aq

The restriction on ßi means that x will be positive. Thus, for any Q in TA,
there is a unique solution to Q = Q(L, x), equation (11), with 0 < L < W
and x > 0.   D

Algorithm 2. How to find a clothoid spline spiral of type A with KP = 0.

The clothoid spline spiral of type A with A'p = 0 can be found by solving
the nonlinear equation (12) for L by a numerical method, and then solving the
linear equation (13) for x.   G

With TCp > 0, a clothoid spline spiral of type A consists of a circular
arc followed by a clothoid segment which is followed by another circular arc
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clothoid segment

t = KpB

Figure 8. Clothoid spline spiral of type A, KP > 0

(see Figure 8). Let the angle of the first circular arc be f Lp, let the scaling
factor of the clothoid segment be nB , and let the angle of the second circular
arc be f Lq . To match curvatures, the parameter in the clothoid segment must
run from t = KPB to t = KqB . The total angle through which the tangent
rotates when traversing the curve from P to Q, f W, must equal the sum of
the angles through which the tangent rotates over the clothoid segment and over
the circular arcs. Equating angles gives

from which ß is found to be

:i4) B =
f W - Lp - LQ

K2q-K2     ■

A formula for Q is the sum of vectors which join the starting point to the
ending point in the first circular arc, the starting point to the ending point in
the clothoid, and the starting point to the ending point in the second circular
arc:

Q(¿p,£q) sin | Lp
- cos\ Lp

(15) 2d2-+ %BR(Lp - K^B (C(KqB)
\ S(KqB)

C(KpB)
S(KpB)

+
1 sinfH/-sinf(W/-LQ)

-cos§W/ + cosf(H/-LQ)

where R is defined in (4).
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The following lemma is used in proving that there is a unique clothoid spline
spiral of type A joining P to Q with a Hermite matching when Q is in TA .

Lemma 4. The Jacobian of Q(LP, Lq),  (14),  (15), is nonzero for 0 < Lp,
0 < LQ, and LP + LQ< W < 2.
Proof. We write (15) in terms of integrals,

KQB /rnsíí/2'Q(Lp, LQ) = 7rß7?(Lp - K2B2) ̂ ^   (^ J^ J du
lKtB     \ Mil 2 i

J_ /    sinfLp    \     J_ /  sin § B7 - sin §( IF-Lq)
Kp\\ -cos|LPyl     Kq V-cosf W + cos\(W -Lq)

Bringing the rotation matrix into the integral and making the substitution U
u2 + Lp - KpB2, we can write the integral in the above as

2JL sin? ¿7^U + K2B2-Lp VsinT

Differentiating Q(LP, Lq) with respect to Lp and with respect to Lq yields

QlALp' Lq) - 4(K2Q - K2)B JLf        (u + K2B2-Lp)V2 [sin^2u)du

and

r\   tr     t   ^ ~n f u-Lp /cosfw\   ,
Q^(Lp ' Lq) - 4(K2Q - K2)B JLr        u + K2B2-Lp)V2 { sin \u ) du'

The Jacobian of Q(LP, Lq) , det(Qz.p, Q¿0), is a positive multiple of

-w-Lq   ,w-Lq       u-W + L0 v-Lp .   it
I _!i_t- ein —

(u + K2B2 - LP)3/2 (v + K2B2 - LP)3/2       2

[W-Lq      rW

Jlp Jlp
sin — (i> - u)dudv.

The identity (10) transforms the above double integral into
rW-Lç   çv (V - U)(W - Lp - Lq) _    .71. ...

~L        L (u + KIB2 - LpW(v + 7.^Q2 _ Lp)3/2 ™ 2{V - U) dudV '

which is negative for 0 < LP, 0 < Lq , and LP + Lq < W < 2 .   0

Lemma 5. If Kp > 0 and Q is in TA, a unique clothoid spline spiral of type A
which can join P to Q with a Hermite matching exists.
Proof. A unique clothoid spline spiral of type A which joins P to Q with
a Hermite matching exists if there is a unique solution to the equation Q =
Q(LP, Lq) in ( 15). A result by Goursat [5, p. 321 ] shows that a planar mapping
function which maps the boundary of a domain to the boundary of the image
in a one-to-one manner, and has a nonzero Jacobian over the domain is a one-
to-one mapping between the domain and the image. Lemma 4 in conjunction
with this result implies that, for any Q in TA, there is a unique solution to
Q = Q(LP, LQ) in (15) with LP > 0, LQ > 0, LP + LQ < W.   □

Algorithm 3. How to find a clothoid spline spiral of type A with Kp > 0.
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The following method for finding the LP and Lq is given in [9]. The square
of the distance between the centers of the circular arcs is

1      •    n a/KQSm2W +     02- Kp       Kr
COSH2-

The square of the distance between the centers of circles of curvature at t = KPB
and t = KqB of a clothoid of scaling factor nB is

'tzCi(KqB)     nCi(KpB)\2     (tiS,(KqB) + 1
Kr Kp Kr

TtSi(KpB) + 1
Kp

These two distances must be equal, and this gives one equation in one un-
known, ß. In [9] it is shown that this equation has a unique solution when
the distance between the centers of the circles is less than  l/Kp - 1/A"q and
B < \/2/(Kq - Kp) ■ The first condition is satisfied because Q is in Y, while
the second follows from ( 14) and the restriction that Lp and Lq are positive
with W < 2. Once ß is found by a numerical method, Lp + Lq can be
calculated directly from (14). Looking at the vector joining the centers of the
circular arcs, and knowing that the clothoid and the vector joining the centers
of its circles of curvature is rotated by | (Lp - KpB2), it is possible to find Lp .
Now Lq can be calculated since the sum LP + Lq is known.   D

5. Clothoid spline spiral of type B

In this section, a clothoid spline spiral which can reach any point in Tr will
be described. The proof that the clothoid spline spiral is unique for any point
in Tb , and a short description of an algorithm for finding the clothoid spline
spiral, will be given.

A clothoid spline spiral of type B is a clothoid segment followed by a circular
arc which is followed by a continuation of the same clothoid (see Figure 9).
Let the scaling factor of both clothoid segments be kB, let the curvature of
the circular arc be K, and let the angle of the circular arc be \L. To match

clothoid segment

t=KB

circular arc

t=KB

t=KpB    tp

Figure 9. Clothoid spline spiral of type B
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CLOTHOID SPLINE TRANSITION SPIRALS 129

curvatures, the parameter in the first clothoid segment must run from t = KPB
to t = KB , while the parameter of the second clothoid segment must run from
t = KB to / = KqB. The angle through which the tangent rotates from P to
Q, \W, must equal the sum of the angles through which it rotates over the
two clothoid segments and in the circular arc. Equating angles gives

W = (K2 - Kl)B2 + L + (KQ- K2)B2 ,
from which ß is found to be

(16) B =

A formula for Q is the sum of the vectors which join the point on the clothoid
at / = KpB to the center of the circular arc, and the center of the circular arc
to the point on the clothoid at t = KqB:

QCr. L)- JK-H*) {| (sffiiï , ) -«■ ($gg)}

where R is defined in (4).
The following lemma is used in proving that there is a unique clothoid spline

spiral of type B joining P to Q with a Hermite matching when Q is in Tr .

Lemma 6. The Jacobian of Q(K, L), (16), (17), is nonzero for KP < K < Kq
and 0 < L < W < 2.
Proof. Using the identities ( 1 ) to eliminate the integrals of Fresnel integrals,
and writing (17) in terms of integrals, one obtains

Q(K,L) = nBR(-K2B2) f     (™\\\ du
Jkpb \sinjw /

+ ^ßß(^-A-0ß2) rfifCOS|"22) du
y      Jkb    Vsinf" /

J_ / sinf(A'2-A'^)ß2
K \-cosi(K2-Kl)B2
j_ / sinf(l^-(A'Q-A'2)ß2)

+ K \-cos%(W-(Kq-K2)B2)

Bringing the rotation matrices into the integrals and making the substitution
U — u2 - KpB2 in the first integral and U = KqB2 - u2 in the second, we can
write the integrals as
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Differentiating Q(K, L) of (17) with respect to K and with respect to L yields

,.Q, ~   ,„    M 2     .    Ä      /COSf((A'2-A'2)ß2 + f)\
(18) Q^'L) = -^Sm4L(sin|((^2-4)ß2 + |)J
and

—n i-(k2-kp)b2 u /cos-iA
Ql{K'L)= 4(KQ-K2)BJo (u + K2B2)y2[sin¡u)du

n r(K2Q-K2)B2 u [cosi(W-u)\   ,
+ 4(K2Q - K2)B Jo (K2QB2 - u)V2 V sin f (W - u) ) au'

Now, the Jacobian of Q(K, L), det(QK, QL), is a negative multiple of

I(K2-K¿)B¿ , j
sin?-((K2-K2)B2 + ±-u) du(u + K2B2)V2       2 Vv v> 2

r(K2Q-K2)B2 ( j x+l     (V-^sinK(^-^)fl;+1-)'"■
The argument of sine in the first integral varies from \((K2 - Kp)B2 + j) to
^ . The first quantity is less than

l^-K^ + k) = l(w-L + i)<n.
Thus, the sine is always positive in the first integral. The argument of sine in
the second integral varies from ^((Kl-K2)B2 + j) to ^ . The first quantity is
less than n, so the sine is always positive in the second integral. The Jacobian
is nonzero when Kp < K < Kq and 0 < L < W < 2.   D

Lemma 7. If Q is in YB, a unique clothoid spline spiral of type B which can
join P to Q with a Hermite matching exists.
Proof. Lemma 6 in conjunction with the result of Goursat [5, p. 321] implies
that, for any Q in TB , there is a unique solution to Q = Q(K, L) in ( 17) with
Kp < K < Kq and 0 < L < W. This is just what is needed to show that there
is a unique clothoid spline spiral of type B which joins P to Q with a Hermite
matching.   D

An effective algorithm for finding the clothoid spline spiral which passes
through a given Q in TB is obtained by considering curves Q(Â^, L), ( 16) and
(17), of constant L (see Figure 10). Lemma 8 shows that those curves have
positive curvature K varying from Ä> to à'q . Note that, as K approaches
A'q , the curve Q(K, L) of constant L approaches D(L).

Lemma 8. Curves Q(K, L), (16) and (17), of constant L for K varying from
Kp to Kq have positive curvature and a tangent which rotates through an angle
of less than n.
Proof. The derivative of QiA', L) with respect to K, Qk(K , L), is given in
(18), while the second derivative with respect to K is

o    iv   rï     "2o  tv   r^27rß2   •   n r(  sin f ((A2 - A"2)ß2 + f )Qkk(K , L) = TQK(K,L) + -irsm-L{_ J^ _ ^)ß2 +2,,
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Figure 10. Curves Q(Ä", L) of constant L in TB

The sign of curvature is the same as the sign of det(Qjt, Qkk) , and

det(Q^,Q^) = ^3-sin2fL,

which is positive; so the curvature of Q(K, L), L constant, is positive.
The tangent at K = KP forms an angle of it + f L with the X-axis, while

the tangent at K = Kq forms an angle of n + \W - |L with the X-axis. The
difference is \(W - L) which is less than n because W < 2.   D

Algorithm 4. How to find a clothoid spline spiral of type B.

The algorithm WhichSide [8] can be used to determine whether a given Q
is on a curve of given L, on the convex side or on the concave side. If Q
is on the concave side, a smaller L is needed, while, if Q is on the convex
side, a larger L is needed. Since L is restricted to (0, W), a simple bisection
algorithm [3] can be used to find the L for which Q(K, L) passes through Q.
The algorithm WhichSide returns both K and L when Q is on the curve.   □

If Kp = 0, the case illustrated in Figure 10, the curves of constant L come
from infinity as K increases from zero. The algorithm WhichSide cannot be
applied directly because the curve segments are infinite in length. A practical
way around this difficulty is to choose a positive lower limit for K. Such a
restriction on K will put a lower bound on the length of the first clothoid
segment. Thus, if Q is in some parts of YB , the algorithm will not be able to
find the required clothoid spline spiral because the first clothoid segment in that
clothoid spline spiral is too short.

6. Conclusion

Lemmas 3, 5, and 7, and an examination of special cases can be combined
to give the main mathematical result of the paper.

Theorem 2. If Q is in Y as defined by the given W, KP, and Kq , then there
exists a unique clothoid spline transition spiral which passes through P and
Q, whose tangent at Q makes an angle of \W with the X-axis, and whose
curvature is KP at P and Kq at Q.
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Proof. If Q is in TA and Kp = 0, the proof is given in Lemma 3; if Q is in
TA and Kp > 0, the proof is given in Lemma 5; and if Q is in TB , the proof
is given in Lemma 7.

When Q is on either of the curves D(t) or E(/), the analysis is simple and
the results are quoted below. If Q is on D(/), Q = D(t\), the clothoid spline
spiral which joins P to Q is a clothoid segment followed by a circular arc of
angle \ t\ . The tangent to the clothoid rotates f (Äg-Ä^ß2 over the clothoid
segment, and the tangent to the clothoid spline spiral rotates \W over the
whole spiral; thus, the scaling factor of the clothoid is

j W-hnB = ÍK^rr¥
If Q is on E(?), Q = E(t2), and Kp = 0, the clothoid spline spiral is a

straight line of length t2 followed by a clothoid segment. The tangent to the
clothoid rotates through an angle of § Ä'gß2 = f W ; thus, the scaling factor of
the clothoid segment is

„        siW
nB = 11-—.Kq

If Q is on E(t), Q = E(/3), and KP > 0, the clothoid spline spiral is a
circular arc of angle f t3 followed by a clothoid segment. The scaling factor of
the clothoid can be calculated as above and is

/ W-h

Algorithm 5. How to find the unique clothoid spline spiral to join P to Q with
a Hermite matching.

The first step, deciding if Q is in Y, is easy as the boundaries of Y are
straight lines and circular arcs. Algorithm 1 shows how to decide whether Q
is in TA, Tb or on the boundary dividing those two regions. If Q is in TA,
Algorithms 2 and 3 show how to find the clothoid spline spiral which joins P
to Q. If Q is in TB , Algorithm 4 shows how to find the clothoid spline spiral
which joins P to Q. If Q is on the boundary, the clothoid spline spiral can
be found as outlined in the proof of Theorem 2.   D
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