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ABSTRACT

There is an increased awareness of the importance of flood management aimed at preventing

human and material losses. A wide variety of numerical modelling tools have been developed in

order to make decision-making more efficient, and to better target management actions.

Hydroinformatics assumes the holistic integrated approach to managing the information propagating

through models, and analysis of uncertainty propagation through models is an important part of such

studies. Many popular approaches to uncertainty analysis typically involve various strategies of

Monte Carlo sampling of uncertain variables and/or parameters and running a model a large number

of times, so that in the case of complex river systems this procedure becomes very time-consuming.

In this study the popular modelling systems HEC-HMS, HEC-RAS and Sobek1D2D were applied to

modelling the hydraulics of the Timis–Bega basin in Romania. We considered the problem of studying

how the flood inundation is influenced by uncertainties in water levels of the reservoirs in the

catchment, and uncertainties in the digital elevation model (DEM) used in the 2D hydraulic model. For

this we used cloud computing (Amazon Elastic Compute Cloud platform) and cluster computing on

the basis of a number of office desktop computers, and were able to show their efficiency, leading to

a considerable reduction of the required computer time for uncertainty analysis of complex models.

The conducted experiments allowed us to associate probabilities to various areas prone to flooding.

This study allows us to draw a conclusion that cloud and cluster computing offer an effective and

efficient technology that makes uncertainty-aware modelling a practical possibility even when using

complex models.
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INTRODUCTION

Water is one of the most vital elements for human life, but it

can also become a devastating force. Although the classical

approach towards flood mitigation is to apply structural

measures, engineers all over the world realised that such

measures introduce new factors to be considered such as

probable failure, new geographical interactions or perform-

ance. Moreover, new flood problems are appearing faster

than structural measures can be implemented. Therefore,

the concept of flood prevention is being replaced by the con-

cept of flood management, which gives non-structural

measures much higher weight (Schanze ; Soldano

et al. ). Flood maps can be seen as the technical base

for non-structural measures (Riccardi ). Both the Euro-

pean Union (EU) and United States Flood Emergency

Management Agency (US FEMA) assessed the importance

of developing flood maps (Federal Emergency Management

Agency ; Aldescu ). Such maps can only be devel-

oped by modelling flood events using hydraulic and

hydrologic models.

There are different approaches towards flood modelling,

from simple geographic information system (GIS) tech-

niques combined with Manning’s equation (Herold &
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Mouton ), to advanced numerical models in 1D (Fer-

reira ; Knebl et al. ; Smemoe et al. ), quasi-

2D (Garcia et al. ; Lindenschmidt et al. ; Soumen-

dra et al. ), integrated 1D2D, 2D (Cobby et al. ;

Tarrant et al. ; Neal et al. ) or 3D (Kang & Choi

; Wilson et al. ). Each approach has its own advan-

tages and disadvantages. For instance, while 1D models may

not represent the flood pattern well, potentially more accu-

rate 2D and 3D models require more data and

computational resources, which will demand a longer run-

ning time of such a model. Hence there is a need to

overcome the running time barrier that restricts the use of

2D and 3D models and one way to decrease this time is to

improve the way computation is done by making use of

supercomputers (which is still rarely done in engineering

practice), or by distributing computations across computers

arranged in clusters, or employing grid and cloud

computing.

Apart from the necessity to speed up the models,

additional demand on computing power comes from the

need to perform uncertainty analysis of models and model

chains. Such an analysis is an important part of any model-

ling study, and there are hydroinformatics tools to support it.

Usually, input and parametric uncertainties are considered;

certain descriptors of uncertainty are assumed (often by

prior probability density functions, or fuzzy descriptors),

and then ‘propagated’ through a model leading to uncertain

outputs. Such analysis is a must if probabilistic flood maps

are to be built. Uncertainty is typically treated as an aleatoric

one (i.e. associated with randomness) and uses probabilistic

descriptors. Uncertainty analysis usually involves using var-

ious versions of a Monte Carlo approach when parameters

or inputs are sampled from the assumed distributions, and

a model is run a large number of times. In the case of com-

plex river systems, this procedure becomes time-consuming

(Macdonald & Strachan ). Therefore, performing uncer-

tainty analysis of a 2D flood model prompts for

computational power, so cloud computing and cluster com-

puting might be helpful tools in this respect. The present

study shows the potential of using cloud and cluster comput-

ing when analysing uncertainty of complex hydraulic

systems by running multiple simulations in parallel.

Cluster computing was successfully applied in different

fields such as biological sciences (Boukerche et al. ),

task scheduling (Lin et al. ), computer-aided engineer-

ing (Maccyzk & Janusz ), optimisation of drainage

systems and water supply (Damas et al. ). Nevertheless,

setting up a computer cluster may involve high initial cost;

hence new alternatives such as grid computing and cloud

computing have arisen. Nowadays these are commercial ser-

vices deployed on the internet used only when needed,

always updated and available at a low price, implementing

thus the principle of Software as a Service, SaaS (see, for

example, http://aws.amazon.com, https://saas.dhigroup.

com).

Both grid computing and cloud computing are distribu-

ted computing services based on the possibilities offered by

the internet. These are somewhat different paradigms and

there is some confusion about the definition and differences

between them. The literature identifies 11 technical differ-

ences, out of which the most important are type of

application, virtualisation and access or control (Weinhardt

et al. ). While cloud computing offers interactivity that

makes its use easier, grid computing is usually oriented at

experts and needs batches of jobs to be prepared in advance,

which makes its usage more difficult compared to cloud

computing.

Scientific applications of such services refer to biomedi-

cal applications, service-level-agreement-aware resources or

high energy physics (Dejun et al. ; Rosenthal et al. ;

Sevior et al. ). Application of cloud computing in water-

related studies is just beginning with the first publications

starting to appear. At UNESCO-IHE we experimented

with the Amazon Elastic Compute Cloud platform for

uncertainty analysis of a hydrological model (Moya et al.

) and multi-objective evolutionary optimisation of com-

plex hydrodynamic wastewater models where we achieved

seven times speedup when using 12 instances of virtual

machines on the cloud (Xu et al. ). In the groundwater

domain the GoGrid cloud computing internet service was

tested to do parameter estimation of a model, showing that

running a single processor required between 26 and 41 h

while four machines on the cloud performed the same

task in 9 h (Hunt et al. ).

The aim of the present paper is to demonstrate the appli-

cability of distributed computing, in particular cloud and

cluster, as a tool supporting uncertainty analysis for hydrolo-

gic and hydraulic studies, as well as the benefits of saving
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computational time while using these tools. This paper is

based on the models reported in Moya et al. (), which

were developed further and used not only in cloud comput-

ing but also in cluster computing. The cloud and cluster

computing component of the study is presented in detail,

along with the comparison of the two technologies and

their use in assessing the uncertainty of the land topography

(digital elevation model (DEM)) in hydraulic modelling.

CASE STUDY

Cloud and cluster computing technology was applied to the

Timis–Bega catchment in Romania (Figure 1). The province

of Banat, where the catchment is located, is one of the most

flood-vulnerable regions of Romania. The rivers Timis and

Bega are of transboundary nature, flowing towards the

Danube and the Tisa rivers, respectively, in the neighbour-

ing country of Serbia. This catchment has a complex and

varied topography starting from the Carpathian Mountains

upstream, to a vast floodplain downstream.

The Timis river has a basin area of 5,573 km2 and

240 km in length. It begins at the Semenic Mountains as a

mountainous river with a slope of 20 m/km, and decreases

to 20 cm/km at the most downstream section in the Roma-

nian territory, at station Graniceri (Aldescu ). The

Bega river springs in the Poiana Ruscai Mountains and

flows a total length of 256 km. Both rivers are connected

by a double connection, consisting of two canals, one of

which during normal conditions diverts water into the

Bega river in order to maximise the flow through the city

of Timisoara, and the second one, which during times of

high waters diverts water into the Timis river to prevent

flooding of the city of Timisoara (Teodorescu ).

In April 2005 the region suffered an extreme flood event,

due to low pressure systems from the Adriatic region and the

Black Sea combined with an intense convective activity and

snowmelt. Such an event flooded hundreds of square kilo-

metres in this area (Popescu et al. ). This type of event

showed the need to analyse different engineering measures

to prevent human and material losses from future flood

events.

Although there is a flood forecasting and warning

system in operation which is based on empirical models,

the 2005 event proved that more accurate models are

required. This prompted the development of an integrated

hydrological–hydraulic model of the Timis–Bega catchment

to evaluate different flood scenarios considering flood

extent, water depth and velocities. An integrated hydrologi-

cal–hydraulic model had been developed in 2009 (Popescu

et al. ) in the framework of a Dutch–Romanian project.

In that project four mitigation measures, along with their

Figure 1 | Timis–Bega catchment location and HEC-HMS model.
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flooding extent, have been tested. The results were promis-

ing; however, it was concluded that to perform a

hydrological and hydraulic simulation over this catchment

of 8,085 km2 using a 2D flood model was a complex and

time-consuming task.

Historically, the study presented herein originated from

the need to extend the applicability of the hydrological–

hydraulic model of the Timis–Bega catchment to generate

probabilistic flood maps, and the need to analyse the poss-

ible uncertainties of the model. It was immediately

concluded that the required Monte Carlo simulations

would need serious computer resources; therefore the

exploring of the possibilities of using cloud and cluster com-

puting became the main challenge for this study.

EVALUATING UNCERTAINTY OF THE INTEGRATED

MODELS

Integrated model of the Timis–Bega basin

As from 2009, the Romanian Water Board of Banat area

uses, for simulation of flood routing, an integrated model

consisting of three models: one for the rainfall–runoff com-

ponent, for the most upstream part of the catchment; a

second one for the middle part of the catchment consisting

of a 1D river flow model; and a third one for the most down-

stream part of the catchment, a coupled river–floodplain

1D2D hydrodynamic model.

The Hydrologic Modeling System (HEC-HMS) soft-

ware, developed by the US Army Corps of Engineers

(USACE), was used to convert rainfall to runoff and to

route the hydrographs from all the sub-catchments of the

basin using a kinematic wave approach. The HEC-HMS

component of the integrated model simulates precipitation,

runoff, routing processes and man-made structures. It com-

putes runoff by taking into account the relation between a

number of components, such as runoff volume, direct

runoff, base flow and channel flow. After that, the 1D hydro-

dynamics of the rivers Timis and Bega was simulated in the

River Analysis System (HEC-RAS) software, also developed

by USACE. HEC-RAS solves the 1D Saint-Venant equations

and allows for computing the water levels at all time steps

and all cross sections. The most refined part of the model

contains an integrated 1D2D model in the downstream

part of the catchment, for which the Sobek software devel-

oped by Deltares is used. The gauging stations at two

locations, Remetea and Brod, are the starting points for a

combined 1D2D simulation for the rivers Timis and Bega

and the floodplain. Figure 2 schematises the geographic cov-

erage of these models. This integrated model was extended

by adding two existing reservoirs, Surduc and Poiana Maru-

lui, into HEC-HMS, and the processes of inter-model data

transfer and model execution in the model chain was auto-

mated by writing special scripts.

The hydrologic model was calibrated for the 2003 flood

event by comparing the calculated flood extent with the

Moderate Resolution Imaging Spectroradiometer (MODIS)

image corresponding to this event. The model was tested

on the 2005 flood event.

The flow of information through the model chain is

shown in Figure 3. The HEC-HMS resulting hydrographs

at specific locations were used as inputs (i.e. boundary

conditions) for the HEC-RAS component of the integrated

model. In turn, the resulting hydrographs of the HEC-RAS

model served as the boundary conditions for the Sobek model.

The automation of data transfer and model execution was

done by additional routines written in Delphi, VB.NET

andWindows command line batch scripts. After the finalisa-

tion of the execution of one integrated model run for a

particular scenario, the results were converted to text files

and automatically uploaded to the Google Docs platform,

by using the Java application ‘google-docs-upload-1.3.1.jar’

Figure 2 | Geographical coverage by hydrologic/hydraulic models.
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(http://docs.google.com/p/google-docs-upload/). This action

facilitates the access by any program, including those on

the cloud, to the results of each run in order to perform

their uncertainty analysis. Uncertainty analysis focused on

using various boundary conditions and samples of DEM.

Sources of uncertainty and methods for their analysis

Due to the complexity of hydrological and hydraulic models,

analytical methods of studying their uncertainty are rarely

used, and Monte Carlo analysis is the traditionally employed

method. For example, if uncertainty of input data is con-

sidered, a sufficient number of samples of values for input

variables are generated, a model is run for all of them, and

the probabilistic properties of the model output are analysed.

Such an approach typically requires hundreds or thousands

of model runs and hence is computationally demanding. A

widely popular version of Monte Carlo approach is the Gen-

eralised Likelihood Uncertainty Estimation (GLUE) (Beven

& Freer ). With an objective of reducing computational

load, several algorithms were designed recently, allowing for

a reduced number of Monte Carlo simulations required for

uncertainty analysis, such as Shuffled Complex Evolution

Adaptive Metropolis (SCEM-UA) (Vrugt et al. ; Cutore

et al. ), Differential Evolution Adaptive Metropolis

(DREAM) (Vrugt et al. ), Adaptive Cluster Covering

(ACCO). Shrestha et al. () presented a framework to

encapsulate the results of Monte Carlo simulations in a fast

machine learning-based model like a neural network. How-

ever, the main purpose of the present study is to analyse

the applicability of distributed computing and cloud

computing as tools, which can easily provide the compu-

tational power required for such analysis. In this study it

was decided to concentrate on showing the value of paralle-

lisation and its practical implementation, so we deliberately

used a standard Monte Carlo simulation experiments, leav-

ing the exploration of other schemes and their relative

performance to further studies.

For any flood model there are many possible sources of

uncertainty related to input, output, initial conditions,

model parameters and model structure, the most important

being the influence of uncertainties related to discharge

measurements, cross sections and DEM. In the present

study, two sources of uncertainty were considered: (1)

uncertainty brought by the insufficient knowledge of the

initial water levels (storage) in the reservoirs Surduc and

Poiana Marului, and (2) uncertainties brought about by inac-

curacies in DEM. In this study we are not discussing if it is

proper to describe the mentioned manifestations of episte-

mic uncertainty (lack of knowledge) by the probabilistic

measures rather than using fuzzy logic; we just follow the

route of many other researchers who used probabilistic vari-

ables for this purpose. The two identified sources of

uncertainty are detailed below.

Initial water levels

The two reservoirs in the catchment, included in the analy-

sis, have initial water levels which influence flow in the

downstream part of the catchment. The Poiana Marului

reservoir has a volume of 96,200,000 m3 and a dam height

of 125 m. Its main purpose is energy production. The

Figure 3 | Flow of information through models.
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other reservoir considered is Surduc (a volume of

50,000,000 m3 and a height of 36 m) mainly used for water

supply. The initial water levels of the reservoirs were con-

sidered to be one of the sources of uncertainty. A simple

Monte Carlo experiment with a limited number of runs

was set up to analyse propagation of these uncertainties to

the model output – flow at the Bega station downstream.

Digital elevation model (DEM)

Earth surface data is vital for flood modelling, but unfortu-

nately such data is not always available and survey studies

are both costly and also time-consuming. Several studies

have been undertaken in order to have more realistic

models of the DEM uncertainty on topographic parameters

(Wechsler & Kroll ; Wechsler ). Nowadays, in the

absence of accurate locally measured data, the Shuttle

Radar Topography Mission (SRTM) data is often used; it

provides global DEM covering all the planet between lati-

tudes 60W N and 56W S (Carabajal & Harding ), with a

resolution of 30 or 90 m. There have been several studies

about the SRTM quality (Gorokhovich & Voustianiouk

; Sharma et al. ) and applicability towards morpho-

metry, hydrology or remotely sensed water stages (Ludwig

& Schneider ; Schumann et al. ; de Oliveira et al.

). These studies focused on macroscopic scale and com-

pared results using SRTM DEM with results using other

DEMs in particular cases. Although recently some research

was carried out in order to extract from SRTMmore detailed

data such as cross sections (Pramanik et al. ), yet they do

not consider the SRTM influence on the floodplain hydro-

dynamics. Hengl et al. () state that Monte Carlo

simulation can be used as an approach to analyse the

error of stream networks extracted from DEM. Software

tools for assessing uncertainties in environmental data are

being developed; an example of such software is the Data

Uncertainty Engine (DUE) that handles different types of

data such as spatial vectors, spatial raster data or time

series (Brown & Heuvelink ). We can state, however,

that by the time of conducting the research presented

herein we could not find references to studies explicitly ana-

lysing the uncertainty of integrated flood extent modelling

due to uncertainties in DEMs obtained from SRTM data.

For theDEM-related uncertainty analysis,weused simple

probabilistic descriptors of DEM uncertainty and employed

standard Monte Carlo simulation to analyse the propagation

of uncertainty through the model, in this case, a Sobek 1D2D

model. Each cell was changed according to a uniform

distribution within a range of 2 m, which is a reasonable

value for the SRTM in that area (Rodriguez et al. ). The

following sampling schemewas used: changes in the cell alti-

tude were applied systematically, starting with the cells from

the centre row. First, all the cells were changed and a new

DEMgenerated. Then, all cells except thefirst rowwere chan-

ged, then all except the second row and the procedure was

repeated (125 times) until the central row was reached.

After that the procedure was repeated backwards, obtaining

another 125 DEMs. To increase the total number of samples,

theprocedurewas repeatedobtaining a total of 500 samples of

different DEMs (Figure 4).

One problem of the Monte Carlo analysis is that it is not

possible to know a priori the needed number of simulations

ensuring statistical reliability of the results. In the present

study, we used the mean probability interval (MPI); it is

defined by the 5 and 95% quantiles of the estimate of pdf

of flood depth at some critical point.

Figure 4 | Sampling DEM cells.
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Cloud computing and cluster computing

Nowadays there are several cloud computing providers such

as Amazon (http://aws.amazon.com), Rackspace (http://

www.rackspace.com/), Verizon (http://www.verizonbusiness.

com/), Joyent (http://www.joyent.com/) and GoGrid

(http://www.gogrid.com/). In the present study the

Amazon Elastic Compute Cloud (Amazon EC2) platform,

launched in 2006, was used. The Amazon EC2 has the

lowest price, as of 2010, and is the most popular and fast

growing service of this kind. It provides a collection of com-

puting services via stand-alone computers (virtual machines)

of different capacity called instances. These instances are

accessed via remote desktop. The fee for using these

instances is around $0.15 per hour for one machine. Other

companies develop tools to simplify the use of this service;

examples are ElasticFox and S3Fox – extensions for the Fire-

fox browser to enable cloud computing via Amazom EC2.

Amazon EC2 makes it possible to launch and manage

server instances in the Amazon data centre using the avail-

able tools and application programming interfaces (APIs)

from Amazon (Amazon Web Services (AWS), 2009). AWS

provides seven types of virtual machines (called instances)

that can run under different operating systems. Among

these, the so-called small instance was selected. Although

this is the cheapest instance, its 1.7 GHz and 160 GB sto-

rage make it powerful enough for many modelling

applications. Zheng () made an extensive research into

the performance of the different instances, and by compar-

ing speedup, performance and prices he found that the

choice of the optimal instance can be posed as a multi-objec-

tive problem. For instance, if a small instance takes 1 h for

some simulations it will charge 1 h of small instance, and

if a medium instance takes 0.4 h for the same computation,

due to the pricing policy it will charge 1 h of medium

instance, which is more expensive than the small one. This

can lead to an idea that a small instance is always better,

and in this particular case it is. However, if we need two

simulations, it will cost 2 h of small instance, while the

medium instance will still cost just 1 h, since 0.8 h will be

charged as 1 h, so the choice of an instance type to use

could be different. Note that launching an instance with

more than one core but using just one would mean wasting

money.

An alternative to cloud computing is to use a cluster of

PCs. A computer cluster can be defined as a group of com-

puters linked through a local area network (LAN), so that

they can work together and ensure higher performance.

Such clusters may be built on the PCs solely dedicated to

this purpose, or based on the standard office PCs, forming

thus an ‘office cluster’.

In order to demonstrate and test the possibilities of

cloud and cluster computing for the considered case study

two approaches have been tested. First, cloud computing

was tested using the cloud service from Amazon Web Ser-

vices. Due to licence limitations, we could not deploy

Sobek software on remote PCs, so in this part of the study

only a part of the integrated Timis–Bega model employing

the free software (HEC-HMS and HEC-RAS) was used.

Second, cluster computing was tested for the part of the

Timis–Bega model, which uses the licensed Sobek software

for which we had the LAN licence. A small office cluster of

five computers was used which we considered to be enough

for the proof of concept.

To create a virtual computational platform on the basis

of AmazonWeb Services, one has to go through a number of

steps (Figure 5). First, an account has to be created to get

access to the services provided by AWS. While accessing

the EC2 service there is a list of the available instances.

Within the available instances, one has to be chosen as

the base one. The process of choosing an instance can be

accomplished either with the normal AWS user interface,

or with ElasticFox, an extension for the Firefox browser.

The access to the selected instance is done via the Windows

Remote Desktop. Since both HEC-HMS and HEC-RAS are

licence-free software there was no problem with the installa-

tion and further launching of multiple instances. Then, all

the needed software was downloaded and installed in the

same way as it would have been done on any other compu-

ter. Besides, the entire folder with the respective data was

uploaded into that instance. For the task of copying data

the Firefox S3Fox application proved to be very useful,

since it simplified the process to a simple drag-and-drop

operation. A bundle service was used to save the instance

with the software and data installed, so that next time

repeating some steps is avoided.

Once the instance was created and saved, the task of

performing multiple scenarios in parallel was relatively
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easy. The standard Monte Carlo approach relies upon inde-

pendent generation of all samples, so no special job

manager is needed and using the available tools was

enough. However, in more complex sampling strategies

groups of samples are generated conditionally, only after

previous samples are evaluated, and then the use of a job

manager is, of course, vital, and in this case developing

additional software tools may be needed (see also experi-

ences of Hunt et al. ()).

Use of cloud computing may be limited when licensed

software is to be used, so in our case it was not possible to

use licensed Sobek software on the cloud and a local cluster

was employed. The availability of several computers to form

a cluster typically is not a problem, but one needs the

Figure 5 | (a) Cloud computing process. (b) Cluster computing process.
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software tools to operate such a cluster. Thus, different tools

such as remote control, remote management, virtual net-

work and telnet were tested, and it was found that the one

with the best performance was the software for remote con-

trol PsExec available at http://technet.microsoft.com/en-us/

sysinternals/default.aspx. Unlike the other tools where soft-

ware packages need to be installed on each computer,

PsExec is a very light tool that allows for executing pro-

cesses on other computers on the local area network, and

needs to be installed once on the master computer. While

a PC is used as part of a cluster, the other users can log in,

log off and use the computer without any problem (experien-

cing, of course, the lower performance since the processor is

shared between several applications).

RESULTS AND DISCUSSION

As mentioned before, two types of uncertainties were inves-

tigated: the water levels in the reservoirs in the catchment

and the DEM of the catchment.

Initial water level in the reservoirs

The initial water level in the Surduc reservoir has a small

influence on the water level downstream of the catchment

where the reservoir is located. Figure 6 presents the hydro-

graphs at the Surduc reservoir, at station BG-J1, 10 km

downstream of the Surduc reservoir and at station BG-J2,

30 km downstream of the BG-J1 station. Due to the scale

of the plots it is difficult to distinguish all the data. In

Figure 6, although there seem to be only two lines, actually

there are 100 lines, each one representing the hydrograph

for a given initial water level condition. It shows that in

the reservoir the outflow becomes available as downstream

flow once the reservoir is full. As we look at the downstream

hydrographs this is less evident because of the contribution

from tributaries through the lateral inflows.

DEM

The Sobek model of the Timis–Bega catchment is the most

complex and time-consuming part of the integrated model.

After testing the possibility to use cloud computing and

automation of data handling for different running scenarios,

we focused on the applicability of distributed computing to

the time-consuming flood inundation 1D2D Sobek model.

The resulting file of each time step and each parameter is

about 1 MB and the total number of time steps of compu-

tation for the 2005 event is 2,952, covering 10 d. Saving all

the results from all the simulations would have taken a lot

Figure 6 | (a) Hydrographs at the outlet from the Surduc reservoir. (b) Hydrographs at

station BG-J1, 10 km downstream of the Surduc reservoir. (c) Hydrographs at

station BG-J2, 30 km downstream of station BG-J1.

63 V. M. Quiroga et al. | Cloud and cluster computing in uncertainty analysis of integrated flood models Journal of Hydroinformatics | 15.1 | 2013

Downloaded from http://iwaponline.com/jh/article-pdf/15/1/55/386919/55.pdf
by guest
on 16 August 2022

http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://technet.microsoft.com/en-us/sysinternals/default.aspx


of computer memory resources (taking into account that

after each simulation 17.7 GB of data is generated). This

was the reason to use just the results of a certain time step

critical for a considered event (typically, corresponding to

maximum flood depth). Also the flood map was saved

after each simulation allowing us to develop flood prob-

ability maps representing the percentage of times that each

cell get flooded with respect to the total number of

simulations.

The Sobek model was run on a cluster of computers set-

up on the corporate LAN. The number of computers avail-

able in the cluster was smaller than the number of

scenarios to be run. According to the list of scenarios a

queue of tasks was created to be run on the cluster. As

soon as one scenario (task) was finished on one computer,

the next scenario from the queue was taken to be performed

as a task in the cluster. Based on the results from the scen-

arios, probability flood maps presenting the cells to be

flooded were developed, using the ratio of the number of

times a cell is flooded to the total number of simulation

scenarios. The cell probability to be flooded (CPF) is formu-

lated as

PCi ¼

X
Ci=N (1)

where PCi¼ probability of a cell i to be flooded; Ci¼ 1 if cell

i is flooded, 0 otherwise; and N¼ total number of simulation

scenarios.

Different CPF maps were developed taking into account

different numbers of simulations (Figure 8(b) presents the

map generated after 500 simulations). Such maps were com-

pared with the MODIS image registered for the event. There

is a high correlation between the MODIS image and the

10% CPF area (i.e. the area for which the probability to be

inundated is estimated at 10%). Both on the MODIS

image and in the Sobek model, the water from the river

Timis reaches the Bega river, and the flow paths at the

border between Romania and Serbia are the same (Figure 7).

The 90 and 50% CPF areas are also in an area covered by

the MODIS image, but with less overlapping between the

MODIS image and the CPF maps. By following the path

of the CPF maps, it is easy to find the pattern of the event.

It begins by flooding the area corresponding to 90% CPF, Figure 8 | (a) CPF map for 50 simulations. (b) CPF map for 500 simulations.

Figure 7 | MODIS flood extent and simulated flood extent.
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then the 50% CPF area and finally the 10% CPF area. Thus,

the area of the MODIS image not covered by the 10% CPF

area can be defined as cells with a probability to be flooded

lower than 10%. The logical question which arises is: how

many simulations/scenarios of DEM uncertainty maps are

needed in order to have a correct representation of the

CPF maps. In order to answer the question, three kinds of

maps were compared: mean flood extent maps, CPF maps

and standard deviation of water depths.

Analysing the CPF maps (Figure 8), most of the compu-

tational cells are flooded in 90% CPF of the simulations, the

50% CPF is located in an area surrounding the 90% CPF,

and the outer region is flooded 10% of the time. Although

there are cells that are flooded with a given probability

and not flooded for a different probability, the overall

flood pattern is the same. The cells with lower probability

are the furthest ones and the differences increase as the

depth increases; all this fits what is expected from flood

probability maps in general.

For the analysis and representation purposes, flood

water depths were divided into three ranges: below 1 m,

between 1 and 2 m, and deeper than 2 m (Figure 9). In all

cases they have a similar pattern and can be related to the

pattern of flood propagation. The cells with flood water

depth deeper than 2 m are the closest to the Bega river

and could be considered not only as the most dangerous

ones, but also as the first ones to get flooded. The cells

with a flood lower than 1 m are located in the outer

region of the flooded area. Although the total flood and

flood water depth deeper than 1 m are quite similar, there

is a notable difference for the flood water depths above

2 m that could be considered as the most critical area. In

both cases the affected area is a continuous region, for simi-

lar flood water depths, with no isolated cells of different

depths. Only in the external regions could some (physically

impossible) isolated cells be noticed, but these cells belong

to the group of lower probability, i.e. corresponding to a

lower degree of hazard, so the influence of such (less

reliable) data on decisions concerning hazards of high prob-

ability is negligible. The maps for high depths are most

useful when evaluating flood hazards since deeper floods

are more dangerous than the shallow ones.

Although the results are very similar at the macro-scale,

while comparing flood water depths cell by cell, differences

can be noted. The analysis of these differences was done

using the standard deviation error. Standard deviation of

flooded cells from each CPF map was analysed for different

number of simulations (Table 1).

Analysing the standard deviation it can be noticed that

for a small number of simulations not only the standard

deviation is higher, but also it has high variablity across

the domain. For instance, Figures 10(a) and (b) shows that

for ten simulations there are few neighbouring cells with

similar deviation, while for 500 simulations the regions of

given deviation are grouped in continuous areas. Grouping

the depths into ranges (lower than 1 m, between 1 and

2 m, and deeper than 2 m) also shows the importance and

improvement in results when increasing the number of

simulations. For instance, in Table 1 it is easy to note that

Figure 9 | (a) Mean flood depth for 50 simulations. (b) Mean flood depth for 500

simulations.
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for five simulations and floods lower than 1 m the standard

deviation is 0.3 m, so it is almost 30% of deviation, while for

500 simulations and the same depth range the standard devi-

ation decreases to 0.018. Moreover, it was found that the

standard deviations of depth get lower as the number of

simulations increases. Also the standard deviation becomes

more uniformly distributed as the number of simulations

increases.

Effectiveness of cloud and cluster computing

Uncertainty analysis involving the HEC-HMS and HEC-

RAS models of the Timis–Bega were tested on the cloud

computing services. The simulation comprised of running

the HEC-HMS part of the model in sequence with the

HEC-RAS model. In the HEC-HMS model, several scen-

arios on the use of the reservoirs were tested. Due to the

large area of the catchment the influence in the downstream

station used as boundary conditions for the hydraulic model

appeared not to be large.

The chosen sampling strategy required about 100 runs of

the HEC-HMS model, followed by 100 runs of the HEC-

RAS model. One single simulation of HEC-HMS took

about 13 s and running 99 simulations on a single computer

took a little more than 22 min (Figure 11). On the other

hand, running 99 simulations on many computers in parallel

reduces the total time. For instance, with five computers 99

simulations can be finished in little more than 4 min. This

time economy determines the benefits on running multiple

computers in parallel. For a small number of simulations

the total time is quite similar, while for many simulations

the time saved is considerable. In the present case, the

time saved for 10 or five simulations is almost the same,

but for 99 simulations there is a bigger gain. However,

Figure 10 | (a) Standard deviation of depth for 10 simulations. (b) Standard deviation of

depth for 50 simulations. (c) Standard deviation of depth for 500 simulations.

Table 1 | Mean flood depth standard deviation

No. of simulations σ¼ 0–1 m σ¼ 1–2 m σ¼deeper than 2 m

1 – – –

5 0.2930 0.1360 0.1560

10 0.0663 0.1803 0.2467

25 0.1015 0.0599 0.1597

50 0.0942 0.0101 0.1056

100 0.2286 0.3760 0.6036

200 0.2714 0.1602 0.4316

400 0.0180 0.0446 0.0626
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these times do not consider the launching time of the virtual

machine on the cloud, which depends on several factors

such as the instance type or the data loaded, and in the

worst cases it may take up to 30 min (but typically it is

much less). Thus, in the case of running a simple model

with quite a low number of simulations, the benefits may

be minimal. However, in the case of a more complex

model like HEC-RAS where one single simulation takes

around 10 min, the benefits of saving time in running

many simulations are evident, even considering a relatively

high initialisation time (Figure 12). For the long-running

models the issue of the observed relatively slow initialisation

of virtual machines on the Amazon EC2 platform becomes

negligible, so that total running time will be approaching

the theoretical limit of T/N, where T is the time needed

for all Monte Carlo simulations and N is the number of

the activated virtual machines.

The most complex and time-consuming model is the

Sobek part of the model. It takes around 1.5 h for each scen-

ario simulation. The benefit of running several scenarios on

parallel computers is considerable. If 100 simulations are

done with one computer only, it will take around 150 h,

while with five computers the time reduces to only 30 h.

As for the HEC-RAS model, the logarithmic trend relation

between the number of computers versus the time of simu-

lation is shown in Figure 13. Thus, as all the cases show

the same trend, it can be concluded that there is a limit in

increasing the number of computers running in parallel,

beyond which time saving becomes negligible.

Number of simulations used for uncertainty analysis

As mentioned before, the number of simulations in Monte

Carlo experiments is typically determined by analysing

some statistical properties (mean, standard deviation and/

or the distribution quantiles), which are expected to stabilise

as the number of runs increases. In the present study, we

used the MPI; it is defined by the 5 and 95% quantiles of

the estimate of the pdf of flood depth at a location with

maximum flooding depth. The stopping condition was set

as follows: Monte Carlo runs would be terminated when

the changes in MPI would be negligible (Shrestha et al.

). From Figure 14 it can be seen that the 500 simulations

used were enough to ensure convergence of MPI; however,

more accurate estimation of the number of simulations

Figure 11 | Time saved in HEC-HMS model using distributed computing. Figure 12 | Time saved in HEC-RAS model using distributed computing.

Figure 13 | Time saved in Sobek model using distributed computing.
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needed to ensure statistical reliability of results is still to be

done.

CONCLUSIONS

The present study should be seen as a proof of concept,

which, however, demonstrates the benefits of using cluster

and cloud technology when dealing with uncertainty analy-

sis of complex hydraulic and hydrologic models. For more

than four or five computers the economy in computing

time approaches a linear trend. Although cloud computing

has a strong potential for the application of distributed com-

puting to complex hydraulic systems, at low cost, it still has

the barrier of licensing when using commercial software. It

is important to note that by the time of the experiment

(2010–2011) cloud computing was a new development and

was not seen by most hydraulic modellers as a technology

to try. One of the practical issues of cloud computing is

that licenced software would need a virtual licence and vir-

tual dongle. Recently, however, some of the biggest

engineering software companies (e.g. ESRI and AutoDesk)

addressed cloud computing as the new trend, and began to

offer specific cloud computing services. DHI presented a

possibility to run their MIKE software as a service based

on a daily fee (https://saas.dhigroup.com). So we expect

that in the near future running licensed software on a

cloud will not be a problem.

The presented work shows that uncertainties in DEM

have a considerable influence on the flood extent. We

used a simplified sampling technique of changing the cells’

elevations independently, so further research is suggested

on developing more elaborate sampling techniques based

on the real statistical properties of DEM, with a correlated

variation of different cells’ elevations correlated.

Uncertainty analysis is important for evaluating floods to

analyse the magnitude of the event and for better estimation

of the affected area. In the present case we demonstrated

that the deterministic simulation resulted in the flooded

area of around 14,000 ha, whereas the uncertainty analysis

allowed us to show that also considering the cells flooded in

10% of time increases the area up to 18,000 ha.

It is difficult to label one method of distributed comput-

ing (cloud or cluster) as the best choice for all cases. If the

user already has enough computational power (a dedicated

cluster or a supercomputer) with the required software,

often there is no need for cloud computing. But if the user

does not have enough computing power or does not have

all the required software, then using the cloud should be

seriously considered. Cloud computing may be the preferred

option if one has to run a full-fledged Monte Carlo uncer-

tainty analysis experiment that needs thousands of

simulations employing computationally intensive models.

Figure 14 | Mean prediction interval.
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Besides, cloud computing provides additional benefits by vir-

tualisation of the work, e.g. instant access to the data and

computer power required regardless of the time or place.

The proposed procedure of model integration and dis-

tributed computing is a low cost alternative that can be

easily applied to cases were fast evaluation of different scen-

arios is needed. In the present case different DEMs were

evaluated, but the methodology of model integration and

cluster computing can also be applied to evaluate different

types of uncertainties, flood measures, and for multiple

runs in climate change scenario-based studies.
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