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Abstract

We use the Wide Field Camera 3 on the Hubble Space Telescope to spectrophotometrically monitor the young
L7.5 companion HD203030B. Our time series reveal photometric variability at 1.27 and 1.39 μm on timescales
compatible with rotation. We find a rotation period of -

+
7.5 0.5

0.6 hr: comparable to those observed in other brown
dwarfs and planetary-mass companions younger than 300Myr. We measure variability amplitudes of
1.1%±0.3% (1.27 μm) and 1.7%±0.4% (1.39 μm), and a phase lag of 56°±28° between the two light
curves. We attribute the difference in photometric amplitudes and phases to a patchy cloud layer that is sinking
below the level where water vapor becomes opaque. HD 203030B and the few other known variable young late-L
dwarfs are unlike warmer (earlier-type and/or older) L dwarfs, for which variability is much less wavelength-
dependent across the 1.1–1.7 μm region. We further suggest that a sinking of the top-most cloud deck below the
level where water or carbon monoxide gas become opaque may also explain the often enhanced variability
amplitudes of even earlier-type low-gravity L dwarfs. Because these condensate and gas opacity levels are already
well-differentiated in T dwarfs, we do not expect the same variability amplitude enhancement in young versus old
T dwarfs.

Unified Astronomy Thesaurus concepts: Brown dwarfs (185); Light curves (918); Exoplanet atmospheres (487)

1. Introduction

Ultra-cool (>M7; Reid et al. 2002) dwarfs contain
condensate particles in their atmospheres (Tsuji et al. 1996;
Allard et al. 2001; Burrows et al. 2001) that form a vertically
layered structure as a function of condensation temperature
(Ackerman & Marley 2001; Lodders & Fegley 2006).
Inhomogeneities in these layers are responsible for spectro-
photometric variability, now commonly observed with long-
duration high-precision photometry (Artigau et al. 2009;
Buenzli et al. 2014; Radigan et al. 2014; Metchev et al.
2015).

Clouds are also expected in the atmospheres of giant
exoplanets, as these share similar temperatures and chemical
compositions as ultra-cool dwarfs (Burrows et al. 2001; Faherty
et al. 2016). Contrary to most exoplanets, the light of an ultra-
cool dwarf can be directly observed by means of photometry
and spectroscopy. Thus, ultra-cool dwarfs are excellent
laboratories to investigate the physical and chemical processes
that take place in their atmospheres, and to develop tools for the
atmospheric characterization of exoplanets.

The faint HD 203030B (JMKO=18.77±0.08 mag) is a
young L7.5 companion to the G8V solar analog HD203030

discovered by Metchev & Hillenbrand (2006). HD203030B
is separated by 11 9 (468 au; Gaia DR2 trigonometric
parallax is 25.45± 0.06 mas; Gaia Collaboration et al. 2016)
from its primary, and so is easily accessible for spectroscopic
characterization. Miles-Páez et al. (2017) estimated that the
system has an age of 30–150Myr—younger than the
130–400Myr inferred in the discovery paper—based on
low-gravity features in the near-infrared spectrum of the
companion, activity indicators of the primary, and the
positions of both components on color–magnitude diagrams.
The revised age gives HD203030B a mass of 8–15MJup (1σ)

and an effective temperature of 1040±50 K based on
evolutionary models (Saumon & Marley 2008; Baraffe et al.
2015).
In this work we present near-infrared photometric and

spectroscopic monitoring of HD203030B with the Hubble

Space Telescope (HST; Section 2). We analyze the detected
variability in the context of cloud condensation across the L-to-
T spectral type transition. We draw a parallel to emerging
evidence for enhanced photometric variability in young L
dwarfs (Metchev et al. 2015; Vos et al. 2018), and propose a
common picture to explain this phenomenon (Section 3).
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2. Observations and Data Reduction

We collected photometric and spectroscopic data of
HD203030B as part of the Cloud Atlas program (P.I. D.
Apai, GO 14241) with the HST Wide Field Camera 3 (WFC3)
in its near-infrared channel (MacKenty et al. 2010) and in
subarray mode (256×256 pixels).

2.1. Near-infrared Photometry

We obtained near-infrared imaging sequences in the F127M
(λcentral=1.270μm, FWHM=0.070μm) and F139M (λcentral=
1.395μm, FWHM=0.070μm) filters over six consecutive orbits
on 2017 October 30. We used the SPARS10 sampling mode with
individual exposure times of 66.4 s (F127M) and 88.4 s (F139M).
At each orbit, data were collected by alternating the F127M and
F139M filters every four and five images, respectively. In total we
obtained 78 (F127M) and 84 (F139M) images. The orientation
of the spacecraft in orbits 1, 3, and 5 differed by 25° from that in
orbits 2, 4, and 6, following the same procedure as Zhou et al.
(2016). This strategy allowed us to subtract the bright halo of the
primary star. Images in these two orientations are shown in panels
(A) and (B) of Figure 1.

We measured the flux of HD 203030B from the .flt files
generated by the WFC3 pipeline CALWFC3. These images are
already corrected for nonlinearity using an up-the-ramp fit to
the flux in nondestructive readouts, and have then been
corrected for dark current and flat field effects. We removed
bad pixels (flagged with values at 4, 32, 256, or 512) by 1D
interpolation over the nearest neighbors in the same row, as
done in previous works by our team (Apai et al. 2013, 2017;
Buenzli et al. 2014; Yang et al. 2015; Lew et al. 2016;
Manjavacas et al. 2018, 2019; Zhou et al. 2018, 2019). No bad
pixels were found inside the photometric aperture of
HD203030B nor the comparison stars. We determined the
center of the primary star HD203030 by fitting lines to its
diffraction spikes. We then aligned all images without rotating
and median-combined them to obtain a high signal-to-noise
image of the HD203030 point-spread function (PSF) and halo.
We excluded the upper half of the fluxes at each pixel location
in the median combination to mitigate the effect of the
diffraction spikes between the observations at the two roll
angles. We finally subtracted that from all individual science
images. The median-combined image and an example of a
PSF-subtracted image are shown in panels (C) and (D) of
Figure 1.

WFC3 is known to suffer from charge trapping within the
detector pixels, which leads to a “ramp” shape in time-series
WFC3 photometry (Berta et al. 2012). This systematic can be
corrected by modeling the instrument response (Zhou et al.
2017), with an analytic function fit to a nonvariable star in the
image (Apai et al. 2013; Lew et al. 2016), or via differential
photometry. We opted for the latter method as we had several
reference stars in our field of view; we detail the approach
below. As a verification, we independently corrected the ramp
effect in our photometry with the deterministic instrument
response model of Zhou et al. (2017), and found fully
consistent results.

We measured the fluxes of HD 203030B and six other
comparison stars (Figure 1, bottom right) by using aperture
photometry and the task PHOT within the Image Reduction and
Analysis Facility software (IRAF). For each object, we tried a
set of circular apertures with radii in the range of 1–6 pixels and

sky annuli with an inner radius of 6 pixels and a width of 3
pixels. To retrieve the light curve of HD203030B, we divided
its flux by the total flux of the reference stars, and normalized
by the average value of the entire light curve. Photometric
uncertainties were obtained from a weighted combination of
the individual uncertainties of each star, as derived from the
WFC3 detector parameters and photon statistics. The median
uncertainties for HD203030B at F127M and F139M were
1.0% and 1.5%, respectively. We compared different combina-
tions of apertures and reference stars, and found that the
smallest photometric scatter in both filters was obtained with an
aperture of 2 pixels and using reference stars R1, R2, and R3.
The F127M and F139M light curves of HD203030B and of
reference star R2 are shown in Figure 2.

2.2. Near-infrared Spectroscopy

We obtained R≈130 1.07–1.70μm spectra of HD203030B
with the G141 grism over two consecutive HST orbits on 2015
September 12. These data were too contaminated by scattered light
from the HD203030 primary to be useful for spectrophotometric
variability analysis. We nevertheless present them here in case an
improved high-contrast spectropscopic reduction is possible in the
future.
At each orbit, we collected 2–4 images using the filter

F132N to establish an accurate position of HD203030B on the
detector, and then obtained 11 spectra with individual exposure
times of 201.4 s. A raw image of a single slitless spectrum is
shown in the top panel of Figure 3. The signal from
HD203030B is heavily contaminated by the saturated halo
of the primary, despite the 12″ angular separation. We
attempted to correct this contamination using the provided .flt
files. First, we corrected bad pixels as done in Section 2.1.
Second, we fit for the center of the HD203030A trace, which
we then used to define two regions positioned symmetrically
around the trace, labeled as A and B in the top panel of
Figure 3. We mirrored region B around the trace and subtracted
it from region A. We weighted the mirrored region B by
different factors in the range 0.7–1.3 and applied vertical and
horizontal offsets to try to improve the subtraction. From this
family of differenced images, we chose the one with the
smallest standard deviation in the residuals above and below
the trace of HD203030B. We note that in all trial cases the
standard deviation of the residuals in the contaminated area
(1.32 μm) was about 10 times larger than that in a
noncontaminated region. A background-subtracted image of
the HD203030B spectrum centered on the object’s trace is
shown in the middle panel of Figure 3.
To perform the spectral extraction and wavelength calibra-

tion from each of the 22 background-subtracted images, we
first expanded the images from the subarray mode to full-frame
mode by using a custom Python routine (Apai et al. 2013), and
then we used the AXE pipeline (Kümmel et al. 2009) that works
only with full-frame images. The trace of the HD203030B
spectrum in each image is faint, so we extracted it by using a 4
pix-wide aperture without any sky subtraction, as we have
already subtracted the local background. Larger extraction
apertures introduced too much noise from surrounding regions.
The typical signal-to-noise ratio (S/N) of an individual
spectrum of HD203030B was ∼9 at 1.27 μm, which prevented
us from investigating the presence of flux changes over the two
HST orbits. Thus, we only combined the 22 individual spectra,
and show this final spectrum and its associated standard
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deviation in the bottom panel of Figure 3 (black). We also
show a flux-calibrated spectrum of HD203030B (dotted line)
with a similar resolution as that taken with WFC3, but obtained
with IRTF/SpeX from the ground (Miles-Páez et al. 2017).
Both spectra share similar shapes in the 1.1–1.3 μm range, but
differ at the longer wavelengths: because of residual contam-
ination from the halo of the bright primary. WFC3 slitless
grism spectra of more widely separated faint companions to
bright stars have been successfully extracted in the past (e.g.,
Zhou et al. 2018). However, the HD203030B data presented

here are an extreme case. Hence, we do not consider the HST
spectrum in the remainder of our analysis.

3. Results and Analysis

3.1. HD 203030B is Periodically Variable over 1.2–1.4 μm

We detect flux changes in the photometric light curves of
HD 203030B that are not seen in the light curve of comparison
star R2 (Figure 2), or in the sum of the comparison star fluxes.
We investigated whether this modulation could be induced by

Figure 1. WFC3 F127M-band images of HD203030B at each of the two spacecraft orientations (panels (A) and (B)). Panel (C) shows the primary star and its halo
after median-combining all aligned images. The result of subtracting this image from the science images is shown in panel (D). The six reference stars R1–R6
considered for our flux calibration are also shown in the bottom right panel. Similar data were also collected and analyzed for the F139M filter.
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measurement systematics, such as the position of the stellar
centroid in each image, or the background brightness at the
object position. The normalized flux of HD203030B during
each orbit versus each of these parameters is shown in Figure 4.
No clear correlation is seen. To test this we computed
Pearson’s r, Spearman’s r, and Kendall’s τ coefficients of
correlation, that we also show in Figure 4. Their values are
small, indicating no significant statistical correlation of the
normalized flux of HD 203030B with the object’s position on
the detector or with the sky level. This is expected because if
there were some systematics affecting the differential photo-
metry, they should also induce a similar shape in the light curve
of the comparison star, which is however flat (Figure 2).

The main result from Figures 2 and 4 is that HD 203030B
exhibits temporal variability at both 1.27 μm and 1.39 μm that
(i) is not seen in other comparison stars in the same field of
view, and (ii) is not attributable to instrumental systematics.
Hence, we searched for periodicity in both light curves.
Figure 5 shows the Lomb–Scargle periodogram (Lomb 1976;
Scargle 1982) corresponding to the light curves of HD
203030B (red), comparison star R2 (blue), and the window
function (gray), related to the sampling of our data. The
periodograms of HD 203030B in both filters display a
significant peak in the 6–8 hr range that is not seen in the
periodogram of the comparison star. We also find a significant
peak in both filters close to ∼3.5 hr that we interpret as a
harmonic of the primary peak seen at 6–8 hr. Finally, at 1.5–2
hr there are other significant peaks present in the periodograms
of HD203030B and the comparison star that we attribute to the
HST orbital period (1.6 hr), as they are also seen in the
periodogram of the window function.

Independently from the output of the periodogram, we used
a Markov Chain Monte Carlo routine (MCMC; Gregory 2005)
to fit sine functions simultaneously to both HD203030B light
curves. We opted for a sine, i.e., p f= + +F A t P Ksin 2( ) ,

since it is the simplest periodic function, and because the light
curves do not exhibit a more complicated shape. A sine curve is
an adequate representation of a rotational modulation caused by
a planetary-scale wave, as may be common in brown dwarfs
(Apai et al. 2017). We assumed that the photometric period (P)

is the same in both filters and takes values in the range of 1–40
hr (the typical range seen in most ultra-cool dwarfs), while the
amplitude (A), phase (f), and mean level (K ) can vary
independently in each filter in the ranges 0%–10%, 0–2π, and
0.9–1.1, respectively. We used flat priors to sample the
parameter space and performed 5×105 iterations in our chain

Figure 2. Normalized light curves of HD 203030B (black symbols) at 1.27 μm
(top) and 1.39 μm (bottom). The normalized light curves of comparison star R2
(see Figure 1) are also shown (gray symbols) and offset vertically for clarity.
R2 is comparable in brightness to HD203030B and is the brightest comparison
star in our field of view. HD203030B exhibits variability at both wavelengths
that is not seen in the comparison star. The dashed curves show the best-fit sine
curve from the MCMC analysis described in Section 3. The Modified Julian
Date at time zero is 58056.276856.

Figure 3. Top: raw 2D WFC3 spectrum of HD203030A and B. The locations of
the spectra of the primary and the secondary are enclosed in white dotted rectangles.
The larger solid rectangle regions “A” and “B” are positioned symmetrically
around the trace of the primary, and were used for background subtraction. Region
B was mirrored around the trace of the primary and subtracted from region A, using
different scaling factors and offsets (see Section 2.2). Middle: zoomed-in image
of the location of the HD203030B spectrum after the subtraction of the bright
halo of the primary. Bottom: average spectrum of HD 203030B (black) in the
1.10–1.65 μm range after combining the 22 individual background-subtracted
spectra. The gray area is the standard deviation spanned by the individual spectra.
A ground-based IRTF/SpeX spectrum of HD 203030B with similar resolution
(dotted; Miles-Páez et al. 2017) is shown for comparison. Both spectra are
normalized to their average value in the 1.32–1.33 μm range.
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(the first 5×104 were discarded as part of the burn-in stage).
Our results for the posterior distribution of the variables are
shown in Figure 6 and summarized in Table 1. We find
amplitudes of variability of = mA 1.1% 0.3%1.27 m and

= mA 1.7% 0.4%1.39 m , and a period of -
+

7.5 0.5

0.6 hr (1σ). The
best fit derived from this analysis is shown in Figure 2 (dashed
line). The period obtained from our MCMC analysis is in
agreement with the primary peak at 6–8 hr identified in the
periodogram analysis. At 1σ, this period is compatible with
being a multiple of the HST orbital period (i.e., 1.6hr×5).
However, this is unlikely as we do not recover a similar period

value when repeating the MCMC analysis for the comparison
star. The posterior distribution for the period obtained from the
data of the comparison star is flat, and does not show any
preferred value in the investigated phase space. Our data only
cover ∼1.1 rotations of the period found from our MCMC
analysis, and so further observations could refine the measured
periodicity.
The retrieved HD203030B period is in the same range as

those seen in other young objects (Scholz et al. 2015; Lew et al.
2016; Zhou et al. 2016, 2018; Apai et al. 2017; Biller et al.
2018; Manjavacas et al. 2018; Vos et al. 2018). It conforms
with the finding of Schneider et al. (2018) that the median
rotation period of 10–300Myr brown dwarfs is about 10 hr,
more than twice the value of the median rotation period of
field-age brown dwarfs (∼4 hr).

3.2. The 1.27–1.39 μm Rotational Modulation of HD203030B
is Likely Wavelength-dependent

We chose the F127M and F139M filters for the WFC3
observations to sample differences between the water-free 1.27μm
region and the water-absorbed 1.39 μm region. We find marginal
(∼2σ) differences in both the amplitudes and the phases of
the F127M and F139M light curves. If real, these would disagree
with the linear amplitude and constant phase behavior across
1.1–1.7μm wavelengths observed by Manjavacas et al. (2018) in
the somewhat older L6 dwarf LP261–75B (≈300Myr; Liu et al.
2016), or in field mid-L dwarfs (Yang et al. 2016).
However, similar wavelength-dependent 1.1–1.7 μm rota-

tional modulation is seen in other young, cool late-L dwarfs.
The planetary-mass L7 member of the ≈23Myr (Mamajek
& Bell 2014) β Pictoris moving group PSOJ318.5–22 (Liu
et al. 2013) has a smaller (2.38%) semiamplitude in the
1.34–1.44 μm water absorption region compared to the broad-
band J filter (2.92%; Biller et al. 2018). The L6.5 member of
the ≈125Myr (Barenfeld et al. 2013) ABDoradus moving
group WISEP J004701.06+680352.1 (Gizis et al. 2012, 2015)

Figure 4. Normalized fluxes of HD 203030B (F127M, top; F139M, bottom) as a function of the x or y centroid positions on the detector (left, middle), or of the sky
level (right). No clear correlation is evident between these parameters and the flux of HD 203030B. Gray, dashed lines indicate mean values. The values for the
Pearson’s r, Spearman’s r, and Kendall’s τ correlation coefficients are also indicated. The photometry from each orbit is depicted with a different color.

Figure 5. LS periodogram of the light curves of HD 203030B (red), reference
star R2 (blue), and the window function (gray) at 1.27 μm (top) and 1.39 μm
(bottom). The dashed line indicates the 1% false-alarm-probability, calculated
from 104 simulated light curves using our data and their associated
uncertainties. Relevant peaks in the periodogram of HD203030B (see
Section 3) are also indicated.
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also shows diminished variability between 1.34 and 1.44 μm,
compared to the trend in the surrounding continuum (Lew et al.
2016). PSOJ318.5–22 and WISEP J004701.06+680352.1 are
the only two other young late-L dwarfs, besides HD203030B,
to have received precise 1.1–1.7 μm spectrophotometric
monitoring with HST/WFC3.

One issue that sets the variability of HD203030B apart from
that of PSOJ318.5–22 and WISEP J004701.06+680352.1 is
that the amplitude in the F139M water band is marginally

higher than in the shorter-wavelength F127M continuum. In
addition, neither PSOJ318.5–22 nor WISEP J004701.06
+680352.1 show phase shifts in the 1.1–1.7 μm region. As
our evidence for differences in the F127M and F139M
amplitudes and phases is at the ≈2σ level only, it is possible
that HD203030B behaves consistently with other young late-L
dwarfs. Alternatively, the flux variations may be driven by
thermal perturbations deeper in the atmosphere. Time-depen-
dent simulations of the atmospheric thermal structure under

Figure 6. Posterior distributions of the light-curve parameters from our MCMC sine curve fits to the HD203030B photometry. Indices 1 and 2 denote data at 1.27 μm
and 1.39 μm, respectively. We allowed the amplitudes (A), phases (f), and zero levels (K ) to vary uniformly over 0%–10%, 0–2π, and 0.9–1.1, respectively, while the
period (P) was fixed to be the same for both filters. Vertical dashed lines indicate the 16 and 84 percentiles and the mean value of the distributions. The ellipses show
the 1σ, 2σ, and 3σ credible intervals. Best fit values are shown in Table 1.
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such perturbations show that they can produce wavelength-
dependent variability amplitudes and phase shifts in high-
gravity T dwarfs (Robinson & Marley 2014). The dependence
of the effect of such thermal perturbations on warmer or lower-
gravity ultra-cool atmospheres has yet to be explored.

We assess the broader evidence for wavelength-dependent
spectrophotometric variations in L dwarfs below.

3.3. Wavelength-dependent 1.1–1.7 μm Variability in Young
Late-L Dwarfs Points to Condensate Sedimentation

Precise spectrophotometric variability monitoring of L and T
dwarfs with HST/WFC3 is enabling a comparison of their
water vapor and cloud condensate content over the corresp-
onding range of atmospheric pressures. The Cloud Atlas
program has shown that 300Myr old L dwarfs exhibit at most
a linear wavelength dependence of variability over 1.1–1.7 μm,
while T dwarfs are significantly less variable in the
1.34–1.44 μm water absorption band compared to the
surrounding continuum (Lew et al. 2016; Manjavacas et al.
2018; Zhou et al. 2018; D. Apai et al. 2019, in preparation).
This dichotomy is explained by the positioning of the highest
condensate cloud layer relative to the top of the water vapor
column (Yang et al. 2015). The cloud layer resides above the
water vapor column in field L dwarfs, and so solely determines
their 1.1–1.7 μm variability amplitudes and phases. Field L
dwarf variability across this wavelength range is thus fully
phased, and nearly wavelength-independent. In cooler T dwarfs
the condensate clouds have sunk below the top of the water
vapor column, and so the influence of the clouds on the
variability in the high-altitude 1.34–1.44 μm water vapor band
is diminished (Apai et al. 2013; D. Apai et al. 2019, in
preparation). Consequently, the variability characteristics of T
dwarfs in the 1.34–1.44 μm water band, which probes low-
pressure high-altitude atmospheric layers, become decoupled
from those in the surrounding continuum, which probes deeper
in the atmosphere.

Unlike their older counterparts, 150Myr old late-L dwarfs
appear to show a similar altitude differentiation between the top
condensate cloud layer and the top of the water vapor column
as do early T dwarfs (Section 3.2). The explanation is likely
rooted in a known similarity between young late-L dwarfs and
T dwarfs. Young L/T-transition dwarfs are 100–300 K cooler
than their ≈1300 K field-age counterparts (Metchev &
Hillenbrand 2006; Luhman et al. 2007; Dupuy et al. 2009;
Faherty et al. 2016). Young late-Ls, nevertheless, lack methane
absorption in the near-infrared because of a significant
departure from CO/CH4 chemical equilibrium, and an
accordingly diminished methane abundance at low surface
gravity (Barman et al. 2011a, 2011b). The cooler temperatures
of young late-Ls would enhance condensate growth, while their

lower surface gravities could increase the altitude differentia-
tion between the (denser) condensates and the top of the (less
dense) water vapor column. The result would be a low-gravity
L-type spectrum with a T dwarf-like decoupling of the
variability characteristics in and out of the water band, as
observed.
The wavelength-dependent nature of the 1.1–1.7 μm varia-

bility of young late-L dwarfs is a new manifestation of the role
of surface gravity at the L/T transition, adding to its known
effect on effective temperature and luminosity.
Marley et al. (2012) offer a theoretical picture on the effect

of decreased surface gravity on cloud formation and sedimen-
tation at the L/T transition. Their construct accounts for the
survival of photospheric clouds to lower effective temperatures
at lower surface gravities, as is inferred from the character-
istically red spectral energy distributions of young late-L
dwarfs. Marley et al. (2012) conclude that for two brown
dwarfs of the same effective temperature, the condensate
clouds reside higher in the atmosphere of the lower surface
gravity brown dwarf.
We compare this theoretical picture to our synthesis of late-L

dwarf spectrophotometric variability from HST/WFC3. We find
that for two late-L dwarfs of the same spectral subtype (e.g.,
L7), the younger one with lower gravity exhibits significant
wavelength-dependent differences in and out of the water band,
whereas the older one does not. In the context of cloud heights,
we conclude that the positioning of the condensate clouds
relative to the level where the water column becomes opaque is
lower in the low-gravity late-L dwarf. However, these two
constructs do not disagree: precisely because young late-L
dwarfs have lower effective temperatures at the same spectral
subtype. Conversely, at the same 1100 K effective tempera-
tures, young late-L dwarfs show comparable or smaller
variability amplitudes in 1.1–1.7 μm HST/WFC3 monitoring
(Lew et al. 2016; Zhou et al. 2016; Biller et al. 2018, this paper)
than field early- to mid-T dwarfs (Apai et al. 2013; Buenzli
et al. 2015; Yang et al. 2016; Zhou et al. 2018): in full
agreement with the Marley et al. (2012) picture.

3.4. Implications for Low-gravity L Dwarfs and Young Giant
Planets

In the preceding construct, flux variability in wavelength
regions outside of major sources of gas opacity is driven by
condensate hazes or clouds of nonuniform thickness that reside
at deeper, hotter atmospheric layers. While this is the accepted
explanation for T dwarfs, we have posited that a similar
differentiation between the scale heights of condensates and
water vapor can also exist in low-gravity late-L dwarfs, or more
generally, between condensates and any gas species in low-
gravity L dwarfs.
We anticipate that this construct may also hold for earlier-

type L dwarfs. That is, low-gravity early- to mid-L dwarfs may
also be experiencing a differentiation between the condensate
cloud layer and any gas species, such as water or carbon
monoxide vapor. The consequence would be potentially
enhanced variability amplitudes in young L dwarfs in
wavelength regions free of high-altitude gas opacity. Most
favorable for detecting such variability would be the
1.20–1.34 μm window, as we have pursued here with the
F127M WFC3 filter, since it probes deepest into L-dwarf
atmospheres (Ackerman & Marley 2001; Yang et al. 2016).
However, other wavelength regions in between the water and

Table 1

Rotational Modulation of HD 203030B from our MCMC Analysis

p f= + +F A t P Ksin 2( )

F127M F139M

A (%) 1.1±0.3 1.7±0.4
f (deg) 179±20 123±19
K 1.000±0.002 1.000±0.003
P (h) -

+
7.5 0.5

0.6

Note. Modified Julian date for zero time is 58056.276856.
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carbon monoxide absorption bands, could also be suitable:
such as the Spitzer 3.6 μ band or the near-infrared J band.

There is corroborating evidence that low-gravity L dwarfs
indeed exhibit higher-amplitude variations than their older field
counterparts at these wavelengths. Metchev et al. (2015) infer
this tentatively from Spitzer 3.6 μm-band (λcentral=3.55 μm,
FWHM=0.75 μm) monitoring of L3–L5.5 dwarfs. The
Spitzer 3.6 μm band is relatively free of major sources of gas
opacity in L dwarfs (Burrows et al. 2001). Probing deeper into
L-dwarf atmospheres with J-band monitoring, Vos et al. (2018)
confirm with 98% confidence that young L0–L8.5 dwarfs
exhibit higher-amplitude variations than field L dwarfs.

We note as a corollary that if altitude differentiation between
condensates and gasses is the reason for the enhanced
variability in low-gravity L dwarfs, then the effect may not
persist into the T dwarfs, since the condensates in their
atmospheres have already sunk below the scale heights of the
dominant gas species.

The implication for self-luminous young giant planets, such
as the handful that have already been directly imaged, is
straightforward. Young L-type giant planets, if adequately
inclined to reveal flux modulations with rotation, would be
most variable in the 1.20–1.34 μm region. At an estimated
mass of ∼11 times Jupiter’s (Miles-Páez et al. 2017),
HD203030B is one of the few known examples of variable
planetary-mass companions, along with 2MASS 1207–3932b
(Chauvin et al. 2004; Zhou et al. 2016), HNPegB (Luhman
et al. 2007; Zhou et al. 2018), Ross458C (Manjavacas et al.
2019), ABPicB (Chauvin et al. 2005; Zhou et al. 2019), and
2MASS0122–2439B (Bowler et al. 2013; Zhou et al. 2019).
More precise high-contrast near-infrared spectrophotometry
(see, Apai et al. 2016) could reveal variability in closer-in
extrasolar giant planets, too.

4. Conclusions

We collected imaging and spectroscopic data of the
30–150Myr old L7.5 dwarf HD203030B with the near-
infrared channel of WFC3 on the HST over 6 and 2 orbits,
respectively. The photometric data were collected during each
orbit by alternating two filters centered at wavelengths inside
(F139M) and outside of (F127M) the 1.34–1.44 μm water
band. Both sets of imaging data show clear modulation that
cannot be explained by instrumental systematics and that is not
seen in the light curves of other stars in the WFC3 field. We
found a likely rotation period of -

+
7.5 0.5

0.6 hr and a phase lag of
56°±28° between the light curves of the two filters.
Unfortunately, the spectroscopic data were too contaminated
by the halo of the bright primary to assess any rotation-induced
variability.

HD203030B shows marginal evidence for differences in both
the variability amplitude and phase between the light curves at
water-absorbed (F139M) and water-free (F127M) wavelengths: a
behavior not seen in warmer L dwarfs, but common in T dwarfs.
This could be an indication that the patchy cloud layer in this
young very late L dwarf resides near or below the level where
the water column becomes opaque. The Teff=1040±50 K
effective temperature of HD203030B is already known to be
well below that of older late-L dwarfs (Metchev & Hillenbrand
2006; Miles-Páez et al. 2017). Its low effective temperature could
thus facilitate the sinking of the cloud layer responsible for the
F127M variations. Similar wavelength-dependent spectrophoto-
metric variability is also seen in the only two other young and

similarly cool late-L dwarfs monitored with HST/WFC3. We
suggest that this condensate/gas differentiation mechanism could
explain the enhanced variability amplitudes of low-gravity L
dwarfs or L-type self-luminous giant planets in general, and that
their variability will be most pronounced in the water-free
1.20–1.34μm spectral window. Because the levels of condensate
and gas opacities are already well differentiated in T dwarfs, we
do not expect a similar enhancement of the variability amplitudes
among young T dwarfs.

Based on observations made with the NASA/ESA Hubble
Space Telescope, obtained at the Space Telescope Institute,
which is operated by AURA, Inc., under NASA contract NAS
5-26555, under GO 14241. We are grateful for research support
provided by the Natural Sciences and Engineering Research
Council of Canada (grant No. RGPIN-04396-2014) and the
Canada Research Chairs Program.
Facilities: HST: (WFC3), Gaia.
Software: IRAF (Tody 1986, 1993), Corner plot (Foreman-

Mackey 2016).
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