
Intel Serv Robotics (2016) 9:63–77

DOI 10.1007/s11370-015-0185-y

ORIGINAL RESEARCH PAPER

Cloud based centralized task control for human domain
multi-robot operations

Rob Janssen1
· René van de Molengraft1

· Herman Bruyninckx2
·

Maarten Steinbuch1

Received: 10 February 2015 / Accepted: 10 August 2015 / Published online: 11 September 2015

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract With an increasing number of assistive robots

operating in human domains, research efforts are being made

to design control systems that optimize the efficiency of

multi-robot operations. As part of the EU funded RoboEarth

project, this paper discusses the design of such a sys-

tem, where a variety of existing components are selected

and combined into one cohesive control architecture. The

Note to Practitioners The work described in this article is part of the

EU funded RoboEarth project, in which knowledge repositories and

intelligent services are developed to operate service robots world

wide. The centralized task controller described here can be regarded

as one of these intelligent services, that realizes a time-optimal

allocation of multiple robots. This work shows significant similarities

with the (not publicly available) ubiquitous task controller designed

by Ha, where our work uses a more expressive action language. The

general use of our system from a human end-user point of view is to

request for a list of tasks, for which an abstract plan and according

parameterizations are selected by the system. The selected plan is

subsequently parsed into a Golog based planning interpreter, that

binds available robots and all the other parameters (such as objects

and locations). The parametrized actions involved in the plan are

mapped onto computational algorithms and robots in a time-optimal

manner, and subsequently executed by interfacing with them through

a service(http)-based interface. What should be noted is that the

executing robots themselves serve merely as sensor-actuator

platforms, leaving all the computations to be performed on the Cloud.

Our opinion is that this deployment advances the opportunity for

calculation optimization and the instant reuse of updated task

knowledge, e.g. object locations, action plans, and robot capabilities

on a global level.

B Rob Janssen

robjanssen80@gmail.com

1 Department of Mechanical Engineering, Eindhoven

University of Technology, Den Dolech 2, 5600 MB

Eindhoven, The Netherlands

2 Department of Mechanical Engineering, University of

Leuven, Celestijnenlaan 300, Heverlee, 3001 Leuven,

Belgium

architecture’s main design principle stems from Radestock’s

‘separation of concerns’, which dictates the separation of

software architectures into four disjunct components; coordi-

nation, configuration, communication and computation. For

the system’s coordinating component a Golog based planning

layer is integrated with a custom made execution module.

Here, the planning layer selects and parametrizes abstract

action plans, where the execution layer subsequently grounds

and executes the involved actions. Plans and plan related con-

text are represented in the OWL-DL logics representation,

which allows engineers to model plans and their context using

first-order logic principles and accompanying design tools.

The communication component is established through the

RoboEarth Cloud Engine, enabling global system accessibil-

ity, secure data transmissions and the deployment of heavy

computations in a Cloud based computing environment. We

desire these computations, such as kinematics, motion plan-

ning and perception, to all run on the Cloud Engine, allowing

robots to remain lightweight, the instant sharing of data

between robots and other algorithms and most importantly,

the reuse of these algorithms for a variety of multi-robot oper-

ations. A first design of the system has been implemented and

evaluated for its strengths and weaknesses through a basic,

but fundamental real-world experiment.

Keywords Service robots · Knowledge engineering ·

Centralized control · Cloud computing

1 Introduction

In modern day robotics research, cognitive robots are widely

investigated as assistive technologies in everyday activities

for tasks that are either too boring, strenuous or dangerous

to be performed by humans, see Fig. 1.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11370-015-0185-y&domain=pdf

64 Intel Serv Robotics (2016) 9:63–77

Fig. 1 Examples of modern day robot assistants. Precise Path Robotics

RG3 lawnmower robot (a), Panasonic Hospi delivery bot (b) and Csiro

LHD mining robot (c)

Currently, most of these robots are assumed to operate

individually and autonomously, i.e., each robot receives a

private task request, collects raw sensor data of the nearby

environment, processes this sensor data through on-board

algorithms, deliberates on which action to perform next, and

subsequently executes this action through its actuators. With

the dawn of high-bandwidth communication technologies,

it is now however possible to communicate sensor infor-

mation in runtime. It has furthermore become possible, to

store and process this vast amount of information in big-

data storage facilities and cloud based computing platforms.

These technologies pave the way for centralized task control;

one intelligent, knowledge driven system that receives task

requests and sensor information on a global level, combines,

processes and reasons with this information and based on the

outcome, controls thousands of connected robots through a

multi-robot control algorithm. As opposed to robots calcu-

lating, reasoning and operating individually, such a system

has the following advantages:1

– It allows robots to cooperatively perform tasks by spread-

ing duties, in an omniscient and optimized manner;

– It allows task required knowledge, such as world informa-

tion, to be collected on a global scale and therefore being

most complete and up-to-date. Furthermore, it allows

newly obtained knowledge to be instantaneously reused

in subsequent task requests, without first having to be

distributed to all agents;

– It allows data averaging and data outlier removal, as infor-

mation is perceived by multiple sources (e.g. the state or

existence of an object);

– It allows faulty robots to be replaced instantaneously by

similarly capable ones. Additionally, these robot replace-

ments do not need to be individually programmed, as

all control configurations and computational algorithms

reside on the Cloud;

– The algorithms used for computations can be centrally

upgraded, as opposed to having to upgrade these algo-

rithms on all robots individually;

1 In line with the advantages of Cloud Computing identified in [2].

– The required computational bandwidth can be allocated

more efficiently, as there will be less computational down

time, i.e. when robots are on stand by, turned off or tem-

porarily taken out of order;

– Sensor information stored in databases can be easily

backed up (by database mirrors), as opposed to retrieving

that same information from the robots individually;

– Sensor information can be secured more efficiently, as

none of it remains on the robot and is therefore not locally

accessible;

– It reduces the energy consumption required for com-

putations, as any energy consuming overhead (such as

motherboards, cooling, storage) can be decreased more

effectively when applied centrally.

The design concept of centralized task control for ser-

vice robots aligns with the concept of ubiquitous robot

networks [36]; a distributed control and sensing architecture

that enables interoperability between heterogeneous systems

with different hard- and software capabilities. These capa-

bilities may vary from purely virtual, information retrieval

services, to real world perception and manipulation activi-

ties. In this context, earlier work by Sgorbissa created the

artificial ecosystem [58], where a service robot improved

its navigation capabilities by autonomously interacting with

nearby environmental agents, such as doors, elevators and

navigational beacons. Later, Safiotti et al. developed a

similar system called the PEIS ecology [56], where a

deliberative layer was added that supervised the alloca-

tion of robots and environmental agents, hereby checking

for plan feasibility and allowing plans to be instantiated

in a more flexible, i.e. non-static manner. A survey paper

by Mastrogiovanni [45] describes these methods in more

detail, and an application scenario is sketched, hereby

weighing the pros and cons of each individual architec-

ture. Extended work by Mastrogiovanni elaborates on the

scheduling of tasks under real-time constraints [46], and

the inclusion of ontologies to represent task related context

[44].

The use of logical languages and structured represen-

tations, such as ontologies, is crucial when desiring to

express and reason with the large amounts of data such

as those found in the service robot domain. In the work

of Lemaignan [38] information inference using an online

server is presented through a practical demonstration. Lim

[40] subsequently establishes a multi-level representation of

robot and environment knowledge, where Bayesian infer-

ence and heuristics are used to have a robot complete an

under-informed task. In recent work of Rockel [55] a robot

deployed system called RACE was developed, that elab-

orates on knowledge inference, by enabling the system

to learn new concepts from semantically labeled experi-

ences.

123

Intel Serv Robotics (2016) 9:63–77 65

To extend these investigations in to the multi-robot domain

and to use them for a wide spectrum of heterogenous sys-

tems, interoperability between robots has been addressed in

the work of Juarez [34], where Semantic Web [6] represen-

tations are adopted for the unified embodiment of sensor,

service and actuator topologies. The work of Ha [28] incor-

porates these web-based representations into the ubiquitous

robot network, and identical to the automated composi-

tion of web-services as proposed by Sirin [59], adds the

Hierarchical Task Network SHOP2 [4] for the automated

composition of multi-agent tasks. Their experiment describes

task planning for cooperative activities between a mobile

robot, a temperature sensor and actuated window blinds. For

plan composition, each of these agents was modeled as an

abstract web service based on the OWL-S [43] representa-

tion of tasks, originally designed to describe document or

procedure oriented invocations of services on the Semantic

Web.

Although the work of Ha establishes a centralized task

planning architecture as described above, they conclude that

scalability issues will arise, as in a real world application

of their system ad hoc networks with invocable services

are expected to be added dynamically. They also conclude

that safety and privacy issues may arise as their com-

munication framework is fully transparent. Offloading of

computationally intense algorithms and the segregation of

task related knowledge into separate repositories has in their

work not been discussed and most importantly, as their work

is closed-source and not publicly available, its implemen-

tation nor its design principles can be used and advanced

upon by the widely established, open-source robotics com-

munity.

Our work therefore focuses on the design of such a central-

ized control framework, which is required to be scalable and

secure, allows deployment of computationally intense algo-

rithms and task related knowledge bases on a Cloud based

computing and storage environment, and integrates with

existing software design efforts of the open-source robotics

community.

1.1 Outline

The following section will describe the design of the system,

and how a main software design principle together with a

list of system requirements leads to a basic component lay-

out. The adoption of existing components will be motivated,

and which alterations or custom additions are required. This

section will be followed by an experimental use-case, that

describes a first basic demonstration of the system. Conclu-

sions will follow in the end, together with a section on future

work required to make the system as general and user friendly

as intended.

2 System design

2.1 Main design paradigm

The architecture’s main design paradigm stems from Rade-

stock’s ‘separation of concerns’ [52], which dictates the sep-

aration of software systems into four disjunct components;

coordination, configuration, computation and communica-

tion, with each component having its own responsibilities

within a virtual system boundary. This segregated design

approach is different from the classical design of sequen-

tial software programs, where component boundaries are

often non-transparent and entangled. Coordination orches-

trates the activities that a system has to undertake to achieve

its desired goals or accomplish its instructed task. Config-

urability allows an engineer to develop generic functions,

which can be reused for different activities. These functions

are called computations, which transform incoming data to

output, and are cascaded according to the action sequence

of the desired task. Finally, the communication component

establishes the data transfer within the system. See Fig. 2 for

a general architecture layout.

Based on the commanded instruction, the coordination

component requests for an action diagram (or plan) from

the configuration database. This plan is subsequently exe-

cuted, where generic computations are invoked according to

the cascaded (or parallelized) action sequence of the plan.

Parameterizations of these computations are determined by

activity specific configuration files, which upon execution,

are retrieved from the configuration database. To devise a

concrete system realization from the above software com-

ponent layout, a set of system requirements needs to be

defined.

2.2 System requirements

The requirements of the system are (1) to serve as a cen-

tralized task controller for a variety of robot platforms,

where (2) robot allocation is optimized through the cen-

tral controller. As it is desirable that the involved robot

platforms remain lightweight by reducing on-board com-

Configuration

Coordination

Communication

Computation 3

Communication

CommunicationCommunication

Computation 2Computation 1

Fig. 2 Radestock general architecture layout

123

66 Intel Serv Robotics (2016) 9:63–77

Robot 3

Capability 1

Capability 2

Task

controller

Robot 1

Capability 1

Capability 2

Capability 3

Robot 2

Capability 1

Computing

environment

Algorithm 1

Algorithm 2

Algorithm 3

task

request

service

request

service

request

service

request

service

request

service

request

knowledge

request

User

interface

User 1

User 2

User 3

Knowledge

repository

Fig. 3 Basic component diagram of system requirements

puting requirements, (3) computational algorithms are to

be deployed in a central computing environment, instead

of running locally on the robots. Furthermore, as the exe-

cution of tasks in human domains requires vast amounts of

task related knowledge, such as binary models for percep-

tion and logic based plan representations, (4) the system is

required to have fast and direct access to a knowledge repos-

itory that is capable of storing and retrieving this information

securely.

2.3 Basic component diagram

A basic component diagram that maps onto Radestock’s

component structure of Fig. 2, and that aligns with above

requirements, is sketched in Fig. 3

For this architecture, the computational functions consist

out of robot sensing and actuating capabilities, user task

requests, and algorithms. To coordinate the invocations of

these functions a task controller is designed, which as such

is central to the system. Configurations of the system, that

provide the ability to reuse the same underlying architecture

for a variety of tasks, are stored in a knowledge repository.

System communications are performed in a request-response

message style format, which is explained in Sect. 3.1.

3 Component implementation

3.1 Communication framework

A key aspect of the component diagram sketched in Fig. 3, is

the communication framework that establishes message type

protocols and component interfaces. For robotic applications

there are several proprietary frameworks available, such as

Microsoft Robotics Studio [33] and We-bots [48]. However,

in-line with recent advances in mainstream robotics research,

it is preferable to target a communication framework that sup-

ports direct user contributions through open-source software

development licensing [10]. Amongst several open-source

available middle-wares, such as Player [23], Urbi [5] and

Orocos [11], ROS [51] can be regarded as currently the

most widely used and supported middle-ware. Reasons for

its popularity are the vast amount of supported packages and

libraries (currently over 3000), interface support for five com-

monly used programming languages (C++, Python, Octave,

Lisp and Lua), its peer-to-peer communication approach and

its thin messaging layer. This messaging layer currently sup-

ports over 400 different message types, such as point-cloud,

image, diagnostic and joint-state information.

Earlier attempts have been made to use ROS as a glob-

ally accessible data communication and storage mechanism

in the DAvinCi project [3], where the Apache Hadoop Map

Reduce [17] Framework was used as a data storage and

computing environment for the Fast-Slam algorithm [49].

However, the architecture established in the DAvinCi project

used only a single computing environment. It constitutes

no security protocols, leaving the computing containers and

their corresponding data (e.g. secure site navigation maps)

fully transparent to the outside world. Furthermore, although

the DAvinCi project was built upon the ROS open-source

messaging framework, the project by itself is not publicly

available.

A secure, ROS based communication framework that

is publicly available, is the RoboEarth Cloud Engine, or

Rapyuta [31]. Rapyuta is a well-documented communication

framework, and is developed as part of the effort for global

communication and knowledge reuse in the RoboEarth

project [61]. As a Platform As A Service (PAAS) framework

[15], Rapyuta offers the possibility to:

– Deploy one or more secured (through mandated user

privileges) computing environments, which subsequently

allow robots to offload their computational algorithms;

– Creating a scalable computing architecture, by allow-

ing containers to be launched in parallel (as opposed to

Google’s App Engine [57]);

– Push information from server to robot, through the use

of Web-Sockets [62] and serialized Java-Script Object

Notation (JSON) messages;

– Communicate messages between multiple ROS masters

over the same connection (as opposed to ROS-bridge

[16]).

3.2 Knowledge repository

An added advantage of using Rapyuta is the direct inte-

gration with the RoboEarth knowledge repository. This

123

Intel Serv Robotics (2016) 9:63–77 67

repository contains logical representations of tasks and task

related information, such as class and instance descriptions

of robots, objects and environments [60]. It furthermore con-

tains binary data, such as object models and navigation maps.

The RoboEarth knowledge repository stores its logical data

in a Sesame database [9], which can be queried through

the SeRQL query language [8]. Binary data is stored in the

Apache Hadoop File-system [64], allowing efficient and dis-

tributed data storage. Both types of knowledge are linked

through a relational database, and can be accessed through

either a web interface (by humans), or through a RESTful

API [54] (by software agents) called re_comm.2

The logical knowledge stored in the RoboEarth knowl-

edge repository is encoded in the web ontology language

OWL [50], or more specifically, in its language variant OWL

Description Logics (OWL-DL). OWL-DL provides in max-

imum expressivity, but remains decidable. This allows the

language to be used in most modern day reasoning tools, such

as Pellet, Racer, Fact++ or in theorem proving languages,

such as Prolog and SQL. A good read on the advantages of

using OWL-DL in robotics can be found in the work of Har-

tanto [29]. For the centralized task planning architecture as

proposed in this work, several OWL-DL type classifications

been made. These types will be discussed in Sect. 3.4.

3.3 Task controller

The central component in the proposed architecture is the task

controller. As typically described in robot control literature

[1], the goal of a task controller is twofold:

– It needs to identify if incoming user requests can be per-

formed, by attempting to select a logical course of actions

based on the available resources (planning);

– It needs to perform the selected course of actions by inter-

acting with the required resources (execution).

3.3.1 Planning

There are several goal-based methods available for planning,

such as STRIPS [22] and planning graphs [7]. However, as

these planning methods are proven to be very ineffective for

large-scale human domains [12], this work targets the Hierar-

chical Task Network (HTN) planning approach as described

in the work of Erol [20]. This approach allows a more effi-

cient search, by using full or partially pre-designed plans as

a plan heuristic. Compared to STRIPS planning, HTN plan-

ning can speed up planning by many orders of magnitude,

e.g. in polynomial time versus in exponential time [21].

In RoboEarth, pre-designed plans are called ‘action

recipes’ [42], and identical to HTN methods and operators,

2 http://wiki.ros.org/re_comm.

RoboEarth action recipes describe primitive tasks that are

directly executable, and composite tasks that are composed

of other composite or primitive tasks. In our system, a distinc-

tion is made between primitive tasks that can be performed on

a robot (either a sensor or actuator task), and primitive tasks

that can be performed by one of the computational algorithms

(which are all deployed on the Cloud Engine).

Planning commences by parsing the action recipes into

a planning language, that can be interpreted by a planning

algorithm. As the action recipes are stored and expressed in

OWL-DL (see Sect. 3.4), a planning language and accom-

panying algorithm are selected that represent full OWL-DL

expressivity. As HTN planning is typically based on PDDL

[24] propositional logic, it misses expressivity compared to

the description logics semantics of OWL-DL. A language

that is capable of expressing description logics semantics is

the situation calculus [47], a high-level, first-order plan exe-

cution language with some limited second-order features.

An accompanying language implementation, that accommo-

dates both planning and plan execution, can be found in

Hector Levesque’s Golog [39].

A first implementation of Golog lacked certain features

required for task planning in human domains, such as the

ability to plan with concurrent actions, exogenous events or

sensed input. Extensions of Golog have therefore been made,

such as ConGolog [25], which plans for tasks with concurrent

actions and exogenous events, and IndiGolog [26], which

executes plans iteratively based on sensed input. A recent

successor of IndiGolog that allows planning for multi-agent

systems, is called MIndiGolog [35]. As this work focuses

on the planning of human oriented tasks for multiple robots,

MIndiGolog will be used as the foundational planning imple-

mentation.3

As MIndiGolog is a Prolog implementation, task planning

occurs by the theorem proving property of Prolog (depth-

first search). A basic example of a MIndiGolog composite

procedure for placing an object at a certain location is given

in Listing 1.

proc(placeObjAtLoc(Agt,Obj,Loc) ,

has(Agt,Obj) / / at (Agt,Loc)

: placeObj(Agt,Obj,Dest)

: releaseObj(Agt,Obj)) .

Listing 1 MIndiGolog example of placing an object at a location. The

‘has’ and ‘at’ predicates are used as preconditions, and the actions

‘placeObj’ and ‘releaseObj’ are primitive actions. The symbols ‘//’ and

‘:’ indicate control procedures for respectively ‘sequential’ and ‘in-

parallel’, see [35].

A valid plan solution for this procedure can be obtained

through the following domain axiomatization:

3 An example of a MIndiGolog planning domain axiomatization for

multiple agents baking a cake, can be found at http://www.rfk.id.au/

ramblings/research/thesis/.

123

http://wiki.ros.org/re_comm
http://www.rfk.id.au/ramblings/research/thesis/
http://www.rfk.id.au/ramblings/research/thesis/

68 Intel Serv Robotics (2016) 9:63–77

agent(amigo_1) .

object (sprite_1) .

location (table_1) .

has(amigo_1, sprite_1) .

at (amigo_1, table_1) .

Listing 2 Domain axiomatization that leads to a plan solution. The class

restrictions (agent, object,location) are induced to prevent type mix-ups.

See Listing 4 how and why these class restrictions are enforced.

Execution of the plan is subsequently performed by the Pro

log query placeObjAtLoc(amigo_1,sprite_1,table_1),S0,S)

where ‘S0’ is the initial state as given in Listing 2 and ‘S’

is the final state. Predicate ‘do’ is used in Golog to start the

planning process, see [35] for its implementation details.

If in the example domain axiomatization of Listing 2

two agents would have been defined instead of one, e.g.,

agent(amigo_1) and agent(amigo_2), or another procedure

for ‘placeObjAtLoc’ is found, two valid plan solutions will

be found. Identical to the publicly available HTN planner

SHOP2 [4], a time optimal choice is then made, by accu-

mulating the durations of all involved primitive actions, and

choosing the plan solution with the least amount of total time.

In the case of two identical robots, the robot with the shortest

path length to the object will be selected. This path length is

calculated by the ‘compute:Path’ algorithm, as it is used in

the ‘Navigate’ task, see Fig. 12.

3.3.2 Execution

After a viable (and optimal) plan is selected by the Prolog

theorem prover, each of the involved subtasks is decomposed

until a set of primitive actions is found that can be iteratively

executed. Execution is performed by running the Prolog plan-

ning layer in an asynchronous thread with a custom made

executive module (coded in Python), that upon receiving an

action, consults the knowledge base for action parameters (a

process called grounding). Because this thread, and there-

fore the optimization between plans, runs continuously, a

change in parameters (such as an object being relocated), can

immediately lead to the selection of a new plan or a different

parameter binding.

The Python executive module executes the primitive

actions based on the grounding knowledge, and reports the

success of the actions back to the Prolog planning layer.

Depending on the success of the action, the Prolog planner

returns the following primitive action to be performed, or

searches for another plan if the action was unsuccessful. The

executive module is written in Python, as it allows fast devel-

opment cycles, type introspection and has native bindings for

all ROS message types.

Figure 4 depicts the integration between planning and exe-

cution as an activity diagram, in which the order of steps is

as follows:

Python executive

"serveDrinks()"

Prolog planner

query for

procedure

"serveDrinks()"

query

planning

knowledge

planning

knowledge

3) query planning knowledge

4) find (optimal) plan solution

5) return first action

9) determine next action

1) receive task request

2) query for corresponding procedure

6) parse execution knowledge

7) execute first action

8) assert action result

Action 1:

computePath

(RoboEarth1,

pico1,coke1)

success

true / false

Action 2:

actuateBase

(pico1)

query

grounding

knowledge

grounding

knowledge

send

data

action 1

send

data

action 2

response

data

action 1

response

data

action 2

grounding

knowledge

environment

knowledge
task

knowledge
robot

knowledge

Fig. 4 The integration between planning and execution

1. A (typed) task is received at the executive;

2. The executive forwards this task to the planner;

3. The planner queries the knowledge base for plans that

implement this task;

4. The planner tries to find a plan solution and if multiple

solutions found, selects the time-optimal one;

5. The planner returns the first primitive action of this plan;

together with the accompanying parameter bindings;

6. The executive queries the knowlegde base for grounding

knowledge on the action and its parameters;

7. The executive performs the first action, by interacting

with the relevant module (either sensor, actuator, or com-

putation);

8. The executive returns the success of the action to the

planner;

9. The planner determines the next action.

3.4 Knowledge representations

As the developed architecture intends to instantiate and exe-

cute parametrized plans for diverse algorithms and robot

platforms, targeting human domain operations, the knowl-

edge that is required for planning and execution consists out

of:

– Robot knowledge, that logically describes the capabilities

of a robot, such as the ability of using laser, arms or base,

– Environment knowledge, that describes the environment

the robots are operating in,

123

Intel Serv Robotics (2016) 9:63–77 69

Fig. 5 Topological layout of Eindhoven University robot class

‘Amigo’

– Task knowledge, that contains abstract representations of

primitive and composite tasks,

– Grounding knowledge, that describes how primitive

actions are executed by a robot or algorithm.

3.4.1 Robot knowledge

The robot knowledge base describes for each connected robot

what robot class it belongs to, and what the capabilities of

that class are. These capabilities are either sensors, such as a

Kinect or laser, or actuators, such as arms or base. As an

example, Fig. 5 depicts a topological layout of the TU/e

Amigo robot class, where each module can be seen as one

‘robot capability’.

The corresponding robot description for an instance of the

‘Amigo’ robot class is given in Listing 3.

<robot:Amigo rdf:ID="Amigo_1" />

<owl:Class rdf:about="robot .owl#Amigo">

<robot:hasSensor

rdf:resource="robot .owl#Kinect" />

<robot:hasSensor

rdf:resource="robot .owl#Laser" />

<robot:hasSensor

rdf:resource="robot .owl#Odometry" />

<robot:hasActuator

rdf:resource="robot .owl#ActuatedBase" />

<robot:hasActuator

rdf:resource="robot .owl#LeftArm" />

<robot:hasActuator

rdf:resource="robot .owl#RightArm" />

<robot:hasActuator

rdf:resource="robot .owl#MoveableHead" />

</owl:Class>

Listing 3 Robot description for ‘Amigo_1’, instance of robot class

‘Amigo’.

The robot descriptions are used to match robot capabilities

against task required components. This capability matching

is performed in the planning language, by adding ‘hasSensor’

or ‘hasActuator’ predicates as pre-conditions in the accord-

ing primitive action. An example, related to the primitive

action ‘placeObject’ from Listing 1, is given in Listing 4.

prim_action(placeObject(Agt,Obj,Dest)) :−

agent(Agt) , object (Obj) , location (Dest) ,

hasActuator(Agt, rightArm);

hasActuator(Agt, leftArm) .

Listing 4 Robot capability matching.

3.4.2 Environment knowledge

General information about the world, such as environment

and object properties, but also existence of class instances,

is contained in the environment knowledge base. Examples

are for instance the designated storage, dispose and serve

locations for drinks. In Listing 5, an example is given for

instance ‘Sprite_1’ of class ‘Sprite’ (subclass of ‘Drink’).

<environment:Sprite rdf:ID="Sprite_1" />

<owl:Class rdf:ID="Sprite">

<rdfs:subClassOf

rdf:resource="environment .owl#Drink" />

</owl:Class>

<owl:Class rdf:ID="environment .owl#Drink">

<environment:hasStorageLocation

rdf:resource="environment .owl#Refrigerator" />

<environment:hasDisposeLocation

rdf:resource="environment .owl#TrashBin" />

<environment:hasServeLocation

rdf:resource="environment .owl#People" />

</owl:Class>

Listing 5 Abstract knowledge description of a ‘Sprite’.

3.4.3 Task knowledge

For tasks, the abstract representation is built upon an existing

OWL extension for processes on the Semantic Web, namely

OWL-S [43] (formerly named DAML-S). Identical to the

RoboEarth action recipes, OWL-S processes can be either

one of two things;4 a primitive.5 process, which is directly

executable, or a composite process, which describes the exe-

cution order for other composite or primitive processes. The

execution order in composite tasks is dictated by the use

of control procedures, such as while-do, split-join, if-then-

else, sequential and parallel.6 For the evaluation of logical

conditions, OWL-S adopts the Semantic Web Rule Lan-

guage (SWRL) [30], which combines OWL with RuleML,

a Semantic Web standard for the evaluation of conditional

4 A third type simple process exists, but as this is an abstraction of a

composite process it will not be considered here.

5 Formally called an ‘atomic’ process in the OWL-S technical descrip-

tion.

6 Extensions to the MIndiGolog domain language have been made in

this work, as it natively does not support many OWL-S control con-

structs, such as any-order, split and repeat-while.

123

70 Intel Serv Robotics (2016) 9:63–77

Fig. 6 Protégé design of OWL-S control procedure for detecting an

object

expressions. As such, SWRL is used within OWL-S for

the evaluation of control procedure conditions (such as if-

then-else), and for process preconditions (such as for robot

capability matching).

With the Protégé OWL-S modeling tool [18], control pro-

cedures can be easily developed by the visual overview and

directly imposed logical constraints, see Fig. 6.

Primitive processes are indicated with single, and com-

posite processes with double rectangles. A distinction is

made between primitive processes that are executed on

a ‘robot’ platform (if that robot has the proper capabil-

ity), or executed by a computational algorithm running on

the RoboEarth Cloud Engine (indicated by the ‘compute’

namespace). Process inputs and outputs, such as 3D point-

clouds or joint state information, are not visualized on this

level of modeling. These are solely represented in the ground-

ing knowledge of each process, see the following section.

3.4.4 Grounding knowledge

OWL-S allows the process-flow modeling of primitive and

composite processes on an abstract level, in a description

logics representation. This allows logic based reasoning

algorithms, such as planners and schedulers, to use these

representations as planner building blocks. These abstract

representations however, do not describe how processes

are actually executed, which is called grounding. For this,

primitive processes require information on implementation,

interfacing, parametrization and communication. In the pro-

posed architecture, this information is represented by the

grounding knowledge, which is composed of an ontology

describing process types, messages, parameters and commu-

nication channels. The OWL-S ontology by itself provides

in a grounding representation suitable for invoking web ser-

vices through the Web Service Definition Language (WSDL)

[13]. WSDL provides in a concrete realization of abstract

Fig. 7 Example part of the ROS grounding ontology for a robot sensor

operations and messages, which can be either document

or procedure oriented, and interfaced through either SOAP,

HTTP, GET/POST or MIME. As this work targets the exe-

cution of tasks on ROS enabled platforms however, a ROS

message-type grounding ontology is specifically developed

for this purpose, see Fig. 7.

Grounding ontologies for different middle-wares, such as

Urbi or Orocos, are in general also possible to design, but that

is beyond the scope of this work. An example OWL snippet

of a ROS-grounded task for reading out laser scan messages

is given in Listing 6.

<owl:Class rdf:about="robot .owl#Laser">

<rosgrounding:hasSensorGrounding>

<rosgrounding:Sensor rdf:ID="ReadLaser">

<rosgrounding:hasService>

<rosgrounding:Service

rdf:ID="ReadLaserService">

<rosgrounding:hasServiceName

rdf:datatype="XMLSchema#string">/ laser

</rosgrounding:hasServiceName>

<rosgrounding:hasResponseMessage

rdf:resource="rosgrounding .owl#LaserScan" />

</ rosgrounding:Service>

</ rosgrounding:hasService>

</ rosgrounding:Sensor>

</rosgrounding:hasSensorGrounding>

</owl:Class>

Listing 6 ROS grounding snippet for reading out laser scanner mes-

sages.

123

Intel Serv Robotics (2016) 9:63–77 71

The complete grounding ontology is used for both the

grounding of primitive processes on real robots, and for the

grounding of (primitive) computational processes running in

the computing environment on the RoboEarth Cloud Engine.

3.5 ROS component model

Section 3.3.2 describes all processes being invoked by the

executive, as opposed to standard ROS architectures, where

nodes are programmed to communicate individually upon

the completion of an internal calculation. As this is effective

for single-robot architectures, it impedes scalability to larger

multi-robot architectures. Furthermore, this type of software

entanglement is an open invitation to in-code parameteriza-

tions that are specific for the application at hand, impeding

component reuse. This work therefore uses an altered ROS

node component model, that aligns with Radestock’s design

principles used in Sect. 2.1. Each algorithm now executes a

generic, single computation (or single robot process) which is

parametrized based on the configuration parameters (such as

the HUE colorspace of a coke bottle, used for e.g. perception)

found in the grounding ontology. As stated in Sect. 3.4.4,

process interfacing is based on the ROS service-call proto-

col. A time-line sketch of this interfacing is depicted in Fig. 8.

3.6 Component deployment

Based on the above mentioned component details, Fig. 9

depicts a concretized component layout of Fig. 3.

4 Experimental use-case

To validate the functionality of the proposed system, and to

identify the systems strengths and weaknesses, an experi-

mental use case has been devised. The experiment entails

two robots, the Eindhoven University Amigo and Pico, see

Fig. 10, which are given the task of serving and cleaning up

drinks at a ‘cocktailparty’ in the Eindhoven University robot-

ics lab. The goal of the experiment is to validate the desired

interactions between components, and to make a first assess-

ment on where the system or one of its internal components

needs to be improved upon.

Fig. 8 ROS component model and process interfacing

Fig. 9 Concretized component layout of Fig. 3

Fig. 10 TU/e Amigo (left) and Pico (right)

4.1 Experiment description

The top-level task for the ‘cocktailparty’ task7, depicted in

Fig. 11, consists out of 4 main subtasks;

– ‘TakeOrder’,

– If an order is received, ‘ServeDrink’,

– ‘FindEmptyDrink’,

– If an empty drink is found, ‘CleanupDrink’.

7 Designed with the Protégé OWL-S editor plug-in.

123

72 Intel Serv Robotics (2016) 9:63–77

Fig. 11 Top level control flow for the ‘cocktailparty’ task

(a) (b)

Fig. 12 Control flow for ‘FindEmptyDrink’(a) and subtask ‘Navi-

gate’(b)

The experiment described here will focus on one subtask,

namely ‘FindEmptyDrink’, see Fig. 12.

In this experiment, the robot capabilities for both Amigo

and Pico are identical:

– hasSensor(amigo_1,Kinect)

– hasSensor(pico_1,Kinect)

– hasSensor(amigo_1,Laser)

– hasSensor(pico_1,Laser)

– hasActuator(amigo_1,Base)

– hasActuator(pico_1,Base)

The accompanying services running on the robots are

depicted in Table 1.

Furthermore, six generic algorithms have been launched

on the Roboearth Cloud Engine, for which their inputs, out-

puts and parameterizations are listed in Table 2:

– LocMap: computes a nav_msgs/OccupancyGrid used

for localization.

– NavMap: computes a nav_msgs/OccupancyGrid used

for navigation.

– Path: computes a nav_msgs/Path from location parame-

ters A and B (A and B are bound by the planner to initial

robot and drink locations obtained from the ‘environ-

ment’ knowledge base).

– Pose: computes a geometry_msgs/PoseStamped that

indicates the current position of the robot.

– Detection: detects an object, parameterized by its HUE

values [53]. Successful detection is forwarded through

the boolean ‘success’ return value.

– VelCmd: computes velocity commands, based on desired

path and current pose. Returns true for success only if the

final point in the path is reached.

4.2 Simulator

To allow a fast development cycle and initial parameter tun-

ing (such as the parameters for maximum robot velocities and

object HUE values), a test environment has been devised in

the ROS Gazebo simulator. In this test environment, the two

robots are spawned together with two ‘empty’ drinks. The

goal is to execute the ‘FindEmptyDrink’ plan as it is devised

in Protége, where the planner binds the parameters of this

task (i.e. which robot searches at which location), in such a

Table 1 Services running on

the robots
Service Inputs Parameters Outputs

Kinect None None senMsgs/Image (depth)

senMsgs/CamInfo

senMsgs/Image (color)

Bool success

Laser None None senMsgs/LaserScan

Bool success

Base geoMsgs/Twist None Bool success

123

Intel Serv Robotics (2016) 9:63–77 73

Table 2 Generic algorithms

launched on RoboEarth Cloud

Engine

Service Inputs Parameters Outputs

LocMap None locMap.yaml navMsg/OccupancyGrid

Bool success

NavMap None navMap.yaml navMsgs/OccupancyGrid

Bool success

Path navMsgs/OccupancyGrid robot(x,y,θ) navMsg/Path

target(x,y,θ) Bool success

Pose navMsgs/OccupancyGrid robotFrame geoMsg/PoseStamped

senMsgs/LaserScan Bool success

geoMsgs/PoseStamped

Detection senMsgs/PointCloud HUE.yaml Bool success

senMsgs/CamInfo

VelCmd navMsgs/Path maxVelLin geoMsgs/Twist

geoMsgs/PoseStamped maxVelAng Bool success

Fig. 13 Gazebo simulator (a) and Rviz visualizer (b)

Fig. 14 Real world experiment initial positions

way that a time optimal plan is instantiated. See Fig. 13 for

a snapshot of the instantiated plan being executed.

4.3 Real world

In the real-world version of the experiment, RoboEarth client

interfaces are deployed on the robots, and the experiment is

conducted in a real lab environment, see Fig. 14.

Fig. 15 Real world experiment final positions

Table 3 Packet sizes on client ‘amigo_1’ (in bytes)

Service Sent Received

Laser 4136 0

Base 1 48

Kinect 2150929 0

Figure 15 shows the two robots reaching their final posi-

tions, where the ‘empty’ drinks are positively detected.8

For this experiment the packet size per service on

‘amigo_1’ has been recorded, see Table 3.9

Furthermore, planner data has been logged, hereby show-

ing the following incremental plan execution:

do [NavMap(amigo_1, "tue_lab")] at time 19.02

do [NavMap(pico_1 , "tue_lab")] at time 19.02

do [LocMap(amigo_1, "tue_lab")] at time 20.41

8 A video of the experiment can be found at http://youtu.be/

4jCGcRs6GZI.

9 As composed plans and hardware components are identical to both

robots, the communication data for ‘amigo_1’ is assumed to be identical

to the communication data of ‘pico_1’.

123

http://youtu.be/4jCGcRs6GZI
http://youtu.be/4jCGcRs6GZI

74 Intel Serv Robotics (2016) 9:63–77

do [LocMap(pico_1 , "tue_lab")] at time 20.43

do [Laser(amigo_1)] at time 21.98

do [Laser(pico_1)] at time 22.04

do [Pose(amigo_1)] at time 22.19

do [Pose(pico_1)] at time 22.25

do [Path(amigo_1,coke_1)] at time 23.98

do [Path(pico_1 ,coke_2)] at time 24.03

do [LocMap(amigo_1, "tue_lab")] at time 25.43

do [LocMap(pico_1 , "tue_lab")] at time 25.55

do [Laser(amigo_1)] at time 26.9

do [Laser(pico_1)] at time 26.98

do [Pose(amigo_1)] at time 27.05

do [Pose(pico_1)] at time 27.17

do [VelCmd(amigo_1)] at time 31.86

do [VelCmd(pico_1)] at time 31.96

do [Base(amigo_1)] at time 33.29

do [Base(pico_1)] at time 33.52

do [LocMap(amigo_1, "tue_lab")] at time 34.89

do [LocMap(pico_1 , "tue_lab")] at time 34.94

. . . .

do [Kinect(amigo_1)] at time 57.59

do [Detection(coke_1)] at time 58.71

do [Kinect(pico_1)] at time 61.04

do [Detection(coke_2)] at time 62.45

Listing 7 Planner log.

4.4 Results

What can be concluded from this log, is that the time between

two consecutive localization steps (between the second and

third ‘LocMap(Agt,Env)’ calculation), is approximately 9.46

s, and hence, has an update frequency of ∼0.1 Hz. This is a

lot lower than native ROS localization components, such as

AMCL,10 which typically run at 20–40 Hz. This is caused

primarily by the service based interface, which can be con-

sidered much slower than AMCL’s topic based interface.

Combining the planner log from Listing 7 with the packet

sizes displayed in Table 3, results in an average data transfer

rate of 442 Bps (Bytes/second) for one combined localization

and navigation step (based on the earlier concluded update

rate of 0.1 Hz). If the update frequency of the service interface

can be improved, and communication updates can be scaled

up to a rate of 30 Hz (comparable to that of AMCL), an

average data transfer rate of 130 KBps (KiloBytes/second)

will be obtained.

For dynamic look-and-move visual servoing applications

[32], that typically require point-cloud and image update

rates of ∼30 Hz [14], the transferring of data requires a sig-

nificantly larger amount of communication bandwidth. If the

Kinect service is called at 30 Hz, this will result in a data

transfer rate of 61.5 MBps (MegaBytes/second). For current

wireless router protocols, such as wireless B,G and N, these

speeds can not be achieved, as their maximum data trans-

fer rates under normal conditions are 1.4, 6.8 and 31 MBps,

10 http://wiki.ros.org/amcl.

respectively. This means that for visual servoing purposes,

the currently used interfacing methods are not suitable.

Computational efforts have also been logged on both client

robots, and CPU usage does not exceed 4 % during naviga-

tion (both are Intel I5 Quad-Core processors). Only when

the Kinect service is called upon, CPU usage increases tem-

porarily to 170 % (distributed over 2 cores).

5 Conclusions and future work

The work described in this article presents a centralized

control architecture, used for the time-optimal allocation

of multiple robots. A first experiment is conducted that,

although in a very first basic form, indicates the functional

success of this first implementation and the usability of such

an architecture. For future work, there are however a few

enhancements that can be made to the current implementa-

tions and design choices.

A first remark points towards the presented concept of

‘centralized’ control. Although our intention is to perform

all computations on the Cloud, for the reasons given in the

Introduction, the algorithms used for high-rate motion con-

trol (with >1000 Hz update rates) still run on-board of the

robots themselves. The reason for this is that existing WiFi

communication protocols are not yet capable of providing

the required real-time performance guarantees hat these con-

trollers demand [27]. Therefore in that sense, the architecture

is not fully centralized, i.e. some control ‘decisions’ are still

being made locally on the robot. We assume however, that

with future improvements of WiFi real-time capabilities such

as those proposed in [63], even high-rate motion controllers

can be deployed on the Cloud, and that also their functional

implementations (such as those used for position, velocity

and force control) can be run there and successfully reused

for a multitude of connected platforms and applications.

The goal based feature of HTN planning is currently not

used, but can be implemented by mapping the user request

onto a parametrized goal state, as opposed to mapping it

onto a parametrized task, as is done currently. In the current

experiment, there also was no optimization between multiple

plans, as there was only one available plan. The experiment

nevertheless demonstrates the optimization over parameters,

as it contained two robots and two drinks. Optimization over

plans is demonstrated identically, if multiple plans are added

that represent the same task. Adding multiple plans can also

be used to describe similar tasks for robot classes that require

different flowcharts, such as for e.g. ‘navigation’. Identifica-

tion of the correct plan based on robot capabilities can be

accomplished by using the ‘capability matching’ feature as

described in Sect. 3.4.1, which can be applied to not just

primitive actions, but also to composite tasks as a whole.

For this robot capability matching a first prototype was

included, that allows a straightforward modeling of required

123

http://wiki.ros.org/amcl

Intel Serv Robotics (2016) 9:63–77 75

components in OWL-S as static action pre-conditions. Anno-

tating these properties based on the capabilities found on a

robot, was achieved by manual design of the ‘robot’ knowl-

edge ontology. These robot descriptions can however also be

derived from robot configuration files already deployed on

the robot, such as those used for arm- and base-navigation.

Work in this direction has been done by Kunze, in the Seman-

tic Robot Description Language (SRDL) [37].

The RoboEarth knowledge repository, as it is used now,

merely serves as a storage container for static pre-designed

OWL-DL descriptions on tasks, and task related class infor-

mation (such as robots, objects, environments). Currently,

these descriptions can be queried for, but not dynamically

altered. An addition to the system can be to improve upon

the stored descriptions, either by learning new semantically

annotated concepts such as done in [55] or by generating

them, through the use of goal based planning methods. By

using either one of these methods, new descriptions can be

created and inferior or outdated ones (e.g. tasks that by the

lack of a better comparable task are considered optimal) can

be updated or discarded entirely.

What should be further noted, is that the current interface

to the robot components and the computational algorithms

running on the RoboEarth Cloud Engine using ROS services,

is not as fast as required for certain procedures. As can be

seen in the OWL-S process flow for ‘Navigate’ (Fig. 12b), is

that with every cycle the subtask ‘Localize’ is called upon,

which computes the robot’s pose by requesting its laser-

scanner data. For standard ROS navigation architectures this

laser-scanner data is broadcasted over ROS-topics at 30 Hz,

whereas with the service call implementation only a rate

of approximately 0.1 Hz can be achieved. This results in

having to stick with very slow movements of the robot (<1

cm/s for translational, and <0.01 rad/s for angular speeds),

as otherwise its recursive location estimation will ‘get lost’.

As concluded in Sect. 4.4, these low update rates combined

with high bandwidth requirements for the Kinect data, make

this system currently impractical for dynamic look-and-move

visual servoing applications. With the rise of new Wireless

protocols, such as 802.11ac, new bandwidth standards will be

achieved that go beyond 160 MBps. Together with a redesign

of how the current service call interface is made will make it

possible to communicate the required data in real-time

In addition to a change in the current service call interfac-

ing, faster execution times can be achieved by caching the

initialization phase of a primitive action if the same input

parameters are used. If called upon an algorithm which is

deterministic, even the final outcome can be cached, and

computed significantly faster using e.g. a look-up table.

These look-up tables are then subsequently also stored and

expanded within the existing RoboEarth database.

With respect to user friendliness a point of remark should

be pointed towards the OWL-S editor plug-in for Protégé,

that was used to model the required control procedures. The

plug-in shows quite some stability issues, resulting in fre-

quent Protégé crashes and unresolvable modeling anomalies.

This translates to a low user friendliness of the editor, and

therefore needs to be solved by inspecting and debugging

the plug-in. A secondary desire here, could be to upgrade

the plug-in to be used in the current Protégé version (4.3) as

this version, as opposed to version 3.5 used for the plug-in,

supports easier modeling of classes, object properties and

cardinality restrictions.

The return code of a primitive action was currently set to a

boolean true or false value, indicating the success or failure of

an action. However, to invoke dedicated error recovery tasks

capable of dealing with specific action failures, return codes

identical to those already used in several open-source arm

and base navigation libraries,11 can be used. As the planning

layer and the execution module run in a continuous thread, see

Sect. 3.3.2, these recovery behaviors can be invoked directly

upon receiving of an error return code. Identical to the selec-

tion of regular plans, also the selection for error recovery

plans can be optimized with respect to time, and can include

other robots if necessary. An example can be the re-opening

of a door by a nearby robot, if a person or other entity acci-

dentally closed it.

A final point that needs to be addressed, is the lack of

dynamic state representations in the current architecture.

Although the robot position was dynamically updated in the

task planning component as an internal state variable, cur-

rently there is no mechanism available to track objects over

time, and to associate incoming measurements with previ-

ously identified objects. For this a world model representation

using object tracking and data association algorithms, such

as the ones described by Elfring [19] and Safiotti [41], should

be promising additions.

Acknowledgments The research leading to these results has received

funding from the European Union Seventh Framework Programme

FP7/2007-2013 under grant agreement number 248942 RoboEarth.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

1. Alami R, Chatila R, Fleury S, Ghallab M, Ingrand F (1998) An

architecture for autonomy. Int J Robot Res 17(4):315–337

2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski

A, Lee G, Patterson DA, Rabkin A, Zaharia M (2009) Above the

clouds: a berkeley view of cloud computing. Tech Rep, Berkeley

11 See http://docs.ros.org/api/moveit_msgs/html/msg/MoveItError

Codes.html.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://docs.ros.org/api/moveit_msgs/html/msg/MoveItErrorCodes.html
http://docs.ros.org/api/moveit_msgs/html/msg/MoveItErrorCodes.html

76 Intel Serv Robotics (2016) 9:63–77

3. Arumugam R, Enti VR, Liu B, Wu X, Baskaran K, Foong FK,

Kumar AS, Kang DM, Goh WK (2010) Davinci: a cloud computing

framework for service robots. In: IEEE international conference on

robotics and automation, pp 3084–3089

4. Au TC, Ilghami O, Kuter U, Murdock JW, Nau DS, Wu D, Yaman

F (2011) Shop2: an htn planning system. CoRR

5. Baillie JC (2004) Urbi: towards a universal robotic body interface.

In: Humanoids, IEEE, pp 33–51

6. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci

Am 284(5):34–43

7. Blum A, Furst ML (1997) Fast planning through planning graph

analysis. Artif Intell 90(1–2):281–300

8. Broekstra J, Kampman A (2006) Serql: an rdf query and transfor-

mation language. Semantic Web and Peer-to-Peer, pp 23–39

9. Broekstra J, Kampman A, van Harmelen F (2002) Sesame: a

generic architecture for storing and querying RDF and RDF

Schema. In: International Semantic Web Conference, Springer Ver-

lag, Sardinia, Italy, Lecture Notes in Computer Science, vol 2342,

pp 54–68

10. Brooks A, Kaupp T, Makarenko A, Williams S, Oreback A (2005)

Towards component-based robotics. In: IEEE international confer-

ence on Intelligent Robots and Systems, pp 163–168

11. Bruyninckx H (2001) Open robot control software: the orocos

project. In: IEEE international conference on robotics and automa-

tion, pp 2523–2528

12. Bylander T (1994) The computational complexity of propositional

strips planning. Artif Intell 69:165–204

13. Chinnici R, Moreau JJ, Ryman A, Weerawarana S (2007) Web ser-

vices description language (wsdl) version 2.0 part 1: Core language.

World Wide Web Consortium, Recommendation REC-wsdl20-

20070626. <!– Wrong Number: [l]20 –>

14. Cho H (2003) Opto-mechatronic systems handbook: techniques

and applications. CRC Press, Abingdon

15. Cohen B (2013) Paas: new opportunities for cloud application

development. IEEE Computer 46(9):97–100

16. Crick C, Jay G, Osentoski S, Jenkins OC (2012) Ros and rosbridge:

roboticists out of the loop. In: Yanco HA, Steinfeld A, Evers V,

Jenkins OC (eds) HRI, ACM, pp 493–494

17. Dean J, Ghemawat S (2004) Mapreduce: simplified data processing

on large clusters. OSDI, p 13

18. Elenius D, Denker G, Martin D, Gilham F, Khouri J, Sadaati S,

Senanayake R (2005) The owl-s editor—a development tool for

semantic web services. In: Gmez-Prez A, Euzenat J (eds) ESWC,

lecture notes in computer science, vol 3532. ESWC, Springer,

Berlin, pp 78–92

19. Elfring J, Van Den Dries S, Van De Molengraft MJG, Steinbuch

M (2013) Semantic world modeling using probabilistic multiple

hypothesis anchoring. Robots Auton Syst 61(2):95–105

20. Erol K (1996) Hierarchical task network planning: formalization,

analysis, and implementation. PhD Thesis, University of Maryland

at College Park, College Park, MD, USA, uMI Order No. GAX96-

22054

21. Erol K, Hendler J, Nau DS (1996) Complexity results for htn plan-

ning. Ann Math Artif Intell 18(1):69–93

22. Fikes RE, Nilsson NJ (1971) Strips: a new approach to the appli-

cation of theorem proving to problem solving. Tech Rep 43R, AI

Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA

94025, sRI Project 8259

23. Gerkey B, Vaughan R, Howard A (2003) The player/stage project:

tools for multi-robot and distributed sensor systems. In: 11th inter-

national conference on advanced robotics (ICAR 2003), Coimbra,

Portugal

24. Ghallab M, Howe A, Knoblock C, Mcdermott D, Ram A, Veloso M,

Weld D, Wilkins D (1998) PDDL—the planning domain definition

language

25. de Giacomo G, Lespérance Y, Levesque HJ (2000) Congolog, a

concurrent programming language based on the situation calculus.

Artif Intell 121(1–2):109–169

26. Giacomo G, Lespérance Y, Levesque HJ, Sardina S (2009)

IndiGolog: a high-level programming language for embedded rea-

soning agents. Multi-agent programming. Springer, Berlin, pp

31–72

27. Gupta RA, Chow MY (2010) Networked control system: overview

and research trends. IEEE Trans Indu Electron 57(7):2527–2535

28. Ha YG, Sohn JC, Cho YJ, Yoon H (2007) A robotic service frame-

work supporting automated integration of ubiquitous sensors and

devices. Inf Sci 177(3):657–679

29. Hartanto R (2011) A hybrid deliberative layer for robotic agents—

fusing DL reasoning with HTN planning in autonomous robots,

lecture notes in computer science, vol 6798. Springer, Berlin

30. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean

M (2004) Swrl: a semantic web rule language combining owl and

ruleml. W3c member submission, World Wide Web Consortium

31. Hunziker D, Gajamohan M, Waibel M, DAndrea R, (2013)

Rapyuta: the RoboEarth cloud engine. Proceedings of the IEEE

international conference on robotics and automation (ICRA). Karl-

sruhe, Germany, pp 438–444

32. Hutchinson S, Hager G, Corke P (1996) A tutorial on visual servo

control. IEEE Trans Robot Autom 12(5):651–670

33. Jackson J (2007) Microsoft robotics studio: a technical introduc-

tion. Robot Autom Mag IEEE 14(4):82–87

34. Juarez A, Bartneck C, Feijs L (2011) Using semantic technologies

to describe robotic embodiments. In: Proceedings of the 6th inter-

national conference on human–robot interaction. ACM, New York,

NY, USA, HRI ’11, pp 425–432

35. Kelly RF (2008) Asynchronous multi-agent reasoning in the situ-

ation calculus. Phd, The University of Melbourne

36. Kim JH, Jeong IB, Park IW, Lee KH (2009) Multi-layer architecture

of ubiquitous robot system for integrated services. Int J Soc Robot

1(1):19–28

37. Kunze L, Roehm T, Beetz M (2011) Towards semantic robot

description languages. IEEE international conference on robotics

and automation (ICRA). Shanghai, China, pp 5589–5595

38. Lemaignan S, Ros R, Msenlechner L, Alami R, Beetz M (2010)

Oro, a knowledge management platform for cognitive architectures

in robotics. In: IROS, IEEE, pp 3548–3553

39. Levesque H, Reiter R, Lespérance Y, Lin F, Scherl R (1997) Golog:

a logic programming language for dynamic domains. J Log Progr

31(1–3):59–83

40. Lim GH, Suh IH, Suh H (2011) Ontology-based unified robot

knowledge for service robots in indoor environments. IEEE

Transac Syst Man Cybern 41(3):492–509

41. Loutfi A, Coradeschi S, Saffiotti A (2005) Maintaining coherent

perceptual information using anchoring. In: IJCAI-05, proceed-

ings of the nineteenth international joint conference on artificial

intelligence, Edinburgh, Scotland, UK, July 30–Aug 5, 2005, pp

1477–1482

42. Marco DD, Tenorth M, Hussermann K, Zweigle O, Levi P (2013)

Roboearth action recipe execution. In: Lee S, Yoon KJ, Lee J (eds)

Frontiers of intelligent autonomous systems, studies in computa-

tional intelligence, vol 466. Springer, Berlin, pp 117–126

43. Martin D, Paolucci M, McIlraith S, Burstein M, McDermott D,

McGuinness D, Parsia B, Payne T, Sabou M, Solanki M, Srini-

vasan N, Sycara K (2005) Bringing semantics to web services: the

owl-s approach. In: Semantic Web Services and Web Process Com-

position, Lecture Notes in Computer Science, vol 3387, Springer,

Berlin, Heidelberg, pp 26–42

44. Mastrogiovanni F, Sgorbissa A, Zaccaria R (2009) Context assess-

ment strategies for ubiquitous robots. In: 2009 IEEE international

conference on robotics and automation, ICRA 2009, Kobe, Japan,

May 12–17, 2009, pp 2717–2722

123

Intel Serv Robotics (2016) 9:63–77 77

45. Mastrogiovanni F, Sgorbissa A, Zaccaria R (2010) From

autonomous robots to artificial ecosystems. In: Handbook of ambi-

ent intelligence and smart environments. Springer, Berlin. pp

635–668

46. Mastrogiovanni F, Paikan A, Sgorbissa A (2013) Semantic-aware

real-time scheduling in robotics. Robot IEEE Trans 29(1):118–135

47. McCarthy J (1983) Situations, actions, and causal laws. Tech Rep,

Memo 2, Stanford Artificial Intelligence Project, Stanford Univer-

sity

48. Michel O (2004) Webots: professional mobile robot simulation. Int

J Adv Robot Syst 1(1):39–42

49. Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) Fastslam:

a factored solution to the simultaneous localization and mapping

problem. In: Proceedings of the AAAI national conference on arti-

ficial intelligence, AAAI, pp 593–598

50. OWL Working Group W (2009) OWL 2 Web Ontology Language:

document overview. W3C Recommendation

51. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler

R, Ng A (2009) Ros: an open-source robot operating system. In:

ICRA Workshop on Open Source Software

52. Radestock M, Eisenbach S (1996) Coordination in evolving sys-

tems. Trends in Distributed systems. Lecture notes in computer

science, vol 1161. Springer, Berlin, pp 162–176

53. Rhodes WL (1980) Color separation techniques. Color Res Appl

5(2):123–123

54. Richardson L, Ruby S (2007) Restful web services. Web engineer-

ing

55. Rockel S, Neumann B, Zhang J, Dubba SKR, Cohn AG, Konecny S,

Mansouri M, Pecora F, Saffiotti A, Günther M, Stock S, Hertzberg

J, Tomé AM, Pinho AJ, Lopes LS, von Riegen S, Hotz L (2013)

An ontology-based multi-level robot architecture for learning from

experiences. In: Designing intelligent robots: reintegrating AI II,

Papers from the 2013 AAAI Spring Symposium, Palo Alto, Cali-

fornia, USA, March 25-27, 2013, AAAI, AAAI Technical Report,

vol SS-13-04

56. Saffiotti A, Broxvall M, Gritti M, LeBlanc K, Lundh R, Rashid

MJ, Seo B, Cho Y (2008) The peis-ecology project: vision and

results. In: 2008 IEEE/RSJ international conference on intelligent

robots and systems, Sept 22–26, 2008, Acropolis Convention Cen-

ter, Nice, France, pp 2329–2335

57. Sanderson D (2010) Programming Google App Engine—build and

run scalable web apps on Google’s Infrastructure. O’Reilly

58. Sgorbissa A, Zaccaria R (2004) The artificial ecosystem: a dis-

tributed approach to service robotics. In: Proceedings of the 2004

IEEE iConference on robotics and automation, ICRA 2004, April

26– May 1, 2004, New Orleans, LA, USA, pp 3531–3536

59. Sirin E, Parsia B, Wu D, Hendler J, Nau D (2004) Htn planning for

web service composition using shop2. Web Semant 1(4):377–396

60. Tenorth M, Perzylo AC, Lafrenz R, Beetz M (2013) Representation

and exchange of knowledge about actions, objects, and environ-

ments in the RoboEarth Framework. IEEE Trans Autom Sci Eng

(T-ASE)

61. Waibel M, Beetz M, Civera J, D’Andrea R, Elfring J, Galvez-Lopez

D, Haussermann K, Janssen R, Montiel J, Perzylo A, Schiessle B,

Tenorth M, Zweigle O, van de Molengraft R (2011) Roboearth.

Robot Autom Mag IEEE 18(2):69–82

62. Wang V, Salim F, Moskovits P (2013) The definitive guide to

HTML5 WebSocket, 1st edn. Apress, Berkely

63. Wei YH, Leng Q, Han S, Mok AK, Zhang W, Tomizuka M, Li

T, Malone D, Leith D (2013) Rt-wifi: real-time high speed com-

munication protocol for wireless control systems. SIGBED Rev

10(2):28–28

64. White T (2009) Hadoop: the definitive guide, 1st edn. O’Reilly

Media Inc, Sebastopol

123

	Cloud based centralized task control for human domain multi-robot operations
	Abstract
	1 Introduction
	1.1 Outline

	2 System design
	2.1 Main design paradigm
	2.2 System requirements
	2.3 Basic component diagram

	3 Component implementation
	3.1 Communication framework
	3.2 Knowledge repository
	3.3 Task controller
	3.3.1 Planning
	3.3.2 Execution

	3.4 Knowledge representations
	3.4.1 Robot knowledge
	3.4.2 Environment knowledge
	3.4.3 Task knowledge
	3.4.4 Grounding knowledge

	3.5 ROS component model
	3.6 Component deployment

	4 Experimental use-case
	4.1 Experiment description
	4.2 Simulator
	4.3 Real world
	4.4 Results

	5 Conclusions and future work
	Acknowledgments
	References

