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Abstract—This paper presents an architecture, protocol, and
parallel algorithms for collaborative 3D mapping in the cloud
with low-cost robots. The robots run a dense visual odometry
algorithm on a smartphone-class processor. Key-frames from the
visual odometry are sent to the cloud for parallel optimization
and merging with maps produced by other robots. After
optimization the cloud pushes the updated poses of the local
key-frames back to the robots. All processes are managed by
Rapyuta, a cloud robotics framework that runs in a commercial
data center. The paper includes qualitative visualization of
collaboratively built maps, as well as quantitative evaluation of
localization accuracy, bandwidth usage, processing speeds, and
map storage.

Note to Practitioners—This paper presents an architecture
for cloud-based collaborative 3D mapping with low-cost robots.
The low-cost robots used in this work consist mainly of a mobile
base, a smart phone class processor, an RGB-D sensor and a
wireless interface. Each robot runs its own visual odometry
algorithm, which estimates the pose of the robot using the
color and the depth frames (images) from the RGB-D sensor.
The dense visual odometry algorithm presented herein uses
no image features and requires no specialized hardware. In
addition to pose estimation, the visual odometry algorithm also
produces key-frames, which is a subset of frames that in a
way summarizes the motion of the robot. These key-frames
are sent to the cloud for further optimization and merging
with the key-frames produced by other robots. By sending
only the key-frames (instead of all the frames produced by
the sensor), bandwidth requirements are significantly reduced.
Each robot is connected to the cloud infrastructure using
a WebSocket-based bidirectional full duplex communication
channel. The cloud infrastructure is provided using Rapyuta,
a Platform-as-a-Service framework for building scalable cloud
robotics applications. The key-frame pose optimization and
the merging processes are parallelized in order to make them
scalable. The updated key-frame poses are eventually sent back
to the robot to improve its localization accuracy. In addition
to describing the architecture and the design choices, the
paper provides qualitative and quantitative evaluations of the
integrated system.

Index Terms—Cloud-based mapping, cloud robotics, Platform-
as-a-Service, dense visual odometry

Submission Type—Regular Paper

I. INTRODUCTION

The past decade has seen the first successful, large-scale

use of mobile robots. However, a large proportion of these

robots continue to either use simple control strategies (e.g.
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robot vacuum cleaners) or be remotely operated by humans

(e.g. drones, telepresence robots). A primary reason for the

lack of more complex algorithms in such systems is the cost

(both direct and indirect) of onboard computation and storage.

The rapid progress of wireless technologies and the avail-

ability of commercial data centers, with high-bandwidth con-

nections and highly scalable computation, storage, and com-

munication infrastructures (‘the cloud’ [1]) may allow robots

to overcome many of the current bottlenecks. Currently, sev-

eral frameworks [2], [3], [4], [5] and robotic applications [6],

[7] are being developed to exploit the cloud’s potential for

creating light, fast, and intelligent low-cost robots.

In this paper, we focus on using the cloud for mapping and

localization – two of the most important tasks for any mobile

robot. The process of simultaneously building a map and

localizing a robot, also known as Simultaneous Localization

and Mapping (SLAM), has been a research topic for many

years and many SLAM algorithms have been proposed. Al-

though the algorithms are increasing in precision, they require

substantial onboard computation and often become infeasible

when used for making larger maps over a long period of

time. Furthermore, running everything locally also limits the

potential for collaborative mapping.

A cloud-based parallel implementation of Fast-SLAM [8]

was presented in [4] and showed a significant reduction in

computation time. In this work, the authors presented a cloud

infrastructure based on Hadoop [9] and received data from

the robot using a common Robot Operating System (ROS)

[10] master that managed all communications. Similar to [4],

authors of [11] proposed a collaborative mapping framework

where they moved the computationally intensive bundle adjust-

ment process of the Parallel Tracking and Mapping (PTAM)

[12] algorithm to a high performance server connected to the

client computer. In addition to the above robotic scenarios,

the Kinect@Home project [13] aims to develop a collection

of RGB-D datasets through the use of crowdsourcing, by

allowing any user with a Kinect and an appropriate web

browser plugin to scan their environment. Once the dataset is

uploaded, Kinect@Home performs a batch optimization and

generates a 3D representation of the map for the user in the

web browser.

Matterport [14] is now developing a commercial system

with custom cameras (similar to Kinect@Home), with the goal

of making it easy for anyone to create 3D images of real-world

spaces and share them online. Several centralized collaborative

approaches that have the potential to run in a decentralized

manner also exist. A 2D mapping system using manifold

representation was introduced in [15], where the problem of
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(a) Top view

(b) Side view with a photo taken in a similar perspective.

Fig. 1: A point cloud map of a room at ETH Zurich built in

real-time by the two robots shown in Fig. 3. The individual

maps generated by the two robots are merged and optimized

by processes running on a datacenter in Ireland. The robots are

re-localized and the robot models are overlaid in the merged

map.

map optimization and merging maps from different robots has

been discussed. However, loop closure and map merging were

only possible when another robot was recognized visually.

In [16] the authors present a collaborative visual SLAM

system for dynamic environments that is capable of tracking

camera pose over time and deciding if some of the cameras

observe the same scene; information is combined into groups

that run the tracking together. More recently, several visual-

inertial odometry systems [17], including Google’s Project

Tango [18] that runs on a custom cellphone with specialized

hardware, has shown superior accuracy and consistency over

the other approaches. But scalability, global optimization, and

map merging remains open in the above mentioned visual-

inertial systems.

This paper shows that low-cost robot platforms with a

smartphone-class processor and a wireless connection are able

to collaboratively map relatively large environments at quality

levels comparable to the current SLAM methods. Furthermore,

this paper shows a scalable approach to map optimization,

storage, and merging of maps from different sources.

The main contributions of this paper are:

• Open source parallel implementation of dense visual

odometry on a smartphone-class ARM multi-core CPU

• A novel cloud-based SLAM architecture and protocol,

which significantly reduces the bandwidth usage

• Techniques for parallel map optimization and merging

over multiple machines in a commercial data center

• An experimental demonstrator for quantitative and qual-

itative evaluation of the proposed methods

The remainder of this paper is organized as follows: We

first give an overview of the system architecture in Sec. II.

Onboard algorithms are presented in Sec. III. After presenting

the data representation and communication protocol in Sec. IV

we introduce the optimization and merging algorithms in

Sec. V. Finally, the evaluation results of our implementation

are presented in Sec. VI and we conclude in Sec. VII.

II. SYSTEM ARCHITECTURE

Real-time constrains, data I/O, network bandwidth, and

computational requirements played an important role in the de-

sign choices of the proposed architecture. Generally, processes

that were sensitive to network delays or which connected high-

bandwidth sensors were run on the robot, while computation-

or memory-intensive processes without hard realtime con-

straints were run in the cloud.

Our architecture, see Fig. 2, mainly consists of

• mobile robot: low-cost robots, each with an RGB-D sen-

sor, smartphone-class processor and a wireless connection

to the data center, see Fig. 3.

• robot clone: A set of processes for each robot connected

to the cloud that manages key-frames and other data accu-

mulation tasks, while updating the robot with optimized

(or post-processed) maps. Currently, the robot clone sends

the pre-programmed motion commands to the robot. This

‘cloud-based control’ functionality can be extended in the

future to do motion planning based on the map being

built, see Fig. 2.

• database: a database for storing maps. A relational

(MySQL) database and a non-relational database (Mon-

goDB) was used for comparison.

• map optimizer: Parallel optimization algorithm to find the

optimal pose graph based on all accumulated key-frames.

After each optimization cycle, the map optimizer updates

the database and triggers the robot clone to update the

robot with the new map.

• map merger: This process tries to match frames from

different maps. Once a match is found, transformations

between two maps are computed and the two maps are

merged into a single map.

All computational processes run on Rapyuta [2], a cloud

Robotic platform that manages the computational processes

and handles the robots’ bidirectional communication and au-

thentication. See Sec. II-B for more details.

A. Robot

Our robots, shown in Fig. 3, consist mainly of off-the-shelf

components. The differential drive base of the iRobot Create
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Fig. 2: The overview of the proposed architecture based

on Rapyuta: Each robot has a corresponding clone in the

cloud. The clone is a set of processes (light-gray circles)

running under a secured computational environment (rectan-

gular boxes). Every computational environment has its own

ROS master and Rapyuta acts as a multi-master connecting

processes running in different environments. Map optimization

and merging are parallelized using multiple computational en-

vironments (stacked rectangles). All processes running inside

the computational environments have a high bandwidth access

to the database (cylinders). Robots have a WebSocket-based

bidirectional full duplex connection (dotted curved lines) to

the their corresponding clones in the cloud.

provides the serial interface for sending control commands and

receiving sensor information. PrimeSense CARMIN 1.08 is

used for the RGB-D sensing, and provides two registered depth

and color images in VGA resolution at 30 frames per second.

A 48 × 52 mm embedded board with a smartphone-class

multi-core ARM processor is used for onboard computation.

The embedded board runs a standard Linux operating system

and connects to the cloud through a dual-band USB wireless

device. In addition to running the RGB-D sensor driver and

controlling the robot, the onboard processor also runs a dense

visual odometry algorithm to estimate the current pose of

the robot. The key-frames produced by the visual odometry

are sent to the cloud processes through the wireless device.

See Sec. III for more information on the visual odometry

algorithm.

B. The Cloud and Software

We use Rapyuta [2], a cloud robotics platform we devel-

oped previously, to run all our processes in the cloud. Since

Rapyuta uses the WebSocket protocol to communicate with

the robots, the robots and mapping processes need not be in

Fig. 3: The two low-cost (< 600$) robots used in our evalu-

ations: Each robot consists mainly of a differential drive base

(iRobot Create), an RGB-D sensor (PrimeSense), an ARM-

based single board computer (ODROID-U2), and a dual band

USB wireless device.

Fig. 4: The onboard processor Odroid-U2: 48 × 52 mm

embedded board with a smartphone-class quad core ARM

Cortex-A9 processor.

the same network as they were in [4] and [11]. This allows

us to seamlessly connect our robots in Zurich, Switzerland

to a commercial Amazon [19] data center in Ireland. Fur-

thermore, since WebSockets allow for persistent connection

between processes, the processes running in the cloud can

push data/updates to the robots without the robots having to

periodically poll for updates.

Rapyuta can spawn multiple secure ROS-compatible com-

puting environments, launch processes inside these computing

environments, and facilitate the communication between these

processes (even across different computing environments).

This allowed graceful scaling of map optimizer and map

merger processes in experiments. Moreover, Rapyuta enables

custom message converters to be employed between the robot

and the cloud. This flexibility enabled us to use optimal

compression schemes, resulting in a more than 50% reduction

in bandwidth as compared to [11]. Visit http://rapyuta.org/ for

http://rapyuta.org/
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more details on Rapyuta.

III. ONBOARD VISUAL ODOMETRY

In order to build a map of the environment it is necessary

to track the position of the robot over time. Although several

methods (such as wheel odometry, visual odometry, and the

use of Inertial Measurement Units) provide information on the

relative motion of the robot, only a few of these (i.e. visual

odometry) provide the option to remove the accumulated errors

with global optimization. The dense visual odometry algorithm

used on board the robots is largely inspired by [20], [21], and

[22].

A. Preliminaries

This subsection defines some concepts and introduces the

symbols used throughout the paper. Let

I :R2 → [0, 1]3,

Z :R2 → R+,

represent the (color) intensity image and depth image of the

camera respectively. To represent the camera’s rigid body

motion we use the twist vector ξ ∈ R
6 and define ξ̂ as

ξ̂ :=









0 −ξ(3) ξ(2) ξ(4)
ξ(3) 0 −ξ(1) ξ(5)
−ξ(2) ξ(1) 0 ξ(6)

0 0 0 0









.

The over parametrized transformation matrix T can now be

expressed as

T =

(

R ∈ SO(3) t ∈ R
3

03×1 1

)

= exp(ξ̂).

Using a pinhole camera model, the projection π, and the

inverse projection π−1 between the 3D point p := (X,Y, Z)
and its corresponding pixel representation, x = (x, y) is given

by

x = π(p) =

(

Xfx

Z
+ ox,

Y fy

Z
+ oy

)

,

p = π−1(x, Z) =

(

x− ox

fx
Z,

y − oy

fy
Z,Z

)

,

where fx, fy denotes the focal lengths and ox, oy denotes

the image center. Note that the second argument of inverse

projection for our scenario comes from the corresponding

depth pixel Z(x).

Given a frame, a tuple consisting of I, Z and some other

information (See Sec. IV), the warp of its pixel x to a frame

with the relative pose M is given by

w(x,M) := π
(

Mπ−1(x,Z(x))
)

.

Finally, Key-frames are a subset of frames that in a way

summarizes the full set. The key-frames are also used as a

base/reference to represent the pose of other frames.

B. Dense Visual Odometry Algorithm

The dense visual odometry algorithm starts with an empty

set of key-frames. When it receives the first pair of color and

depth images, they are added to the map as an initial key-

frame with the initial pose. A map in our scenario consists of

key-frames and their corresponding poses.

After initialization, the dense visual odometry algorithm

estimates the pose of the camera based on each incoming

frame from the camera. This pose estimation is done by

minimizing the photometric error between the intensity images

of the current frame and the key-frame given by

Rk(Mk) =
∑

x∈Ω

(I(x)− Ik(w(x,Mk)))
2,

=:
∑

x∈Ω

r2
x
(Mk), (1)

where Ω is a set of all pixels that are available in both frames

that were not occluded while warped, and Mk is the relative

pose of the key-frame with respect to the current frame. The

key-frame that is closest to the last estimate of camera pose

is used as the current key-frame.

To minimize the non-linear cost function given in (1) with

respect to Mk we use the Gauss-Newton method for solving

non-linear least-squares problems [23]. Here, the jth iteration

is given by

Mj+1 = exp(ξ̄)Mj ,

ξ̄ = −(JT
j Jj)

−1JT
j r(Mj),

where Jj is the Jacobian of the residual

r(Mj) := [rx(Mj)]x∈Ω

and Mj is initialized with

M0 =

[

I3×3 03×1

01×3 1

]

.

This iteration converges to

argmin
Mk

Rk(Mk) = lim
j→∞

Mj .

At every iteration the Jacobian Jj can be calculated using

the following chain rule

Jj = −
∂Ik(w(·))

∂w
·
∂w(·, exp(ξ̂)Mj)

∂ exp(ξ̂)
·
∂ exp ξ̂

∂ξ

∣

∣

∣

∣

∣

ξ=0

.

Note that the first term in the right-hand side is the color

gradient and the other terms can be calculated analytically.

The implementation of this algorithm was optimized to run

on a multi-core ARM processor. All operations, such as

color conversion, sub-sampling, image gradient computation,

and 3D point re-projection are parallelized. These operations

involve independent per pixel operations, so they can be easily

parallelized by splitting all pixels between several CPU cores.

To achieve this we use a Threading Building Blocks library

[24], which provides templates for easy code parallelization.

In particular the parallel for and parallel reduce templates

are used heavily in our implementation. We also use the auto-

vectorization tools of the GCC compiler, which automatically
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replaces the regular instructions with specialized vector in-

structions where possible.

Since 3D point positions and image gradients are needed

only for key-frames, they are computed only when a new

key-frame is added (0-2 FPS depending on the robot speed).

All images are stored in fixed-point values format (8-bit

for intensity images and 16-bit for depth images), which

may decrease the accuracy due to the rounding errors, but

significantly improves the computational efficiency compared

to processing images represented with floating-point values.

With our implementation we were able to achieve a processing

time of 15-20 [ms] for QVGA depth and color images. During

this process, the visual odometry algorithm adds a new key-

frame when the distance or the angle to the nearest key-frame

in the map exceeds a predefined threshold.

IV. MAP REPRESENTATION AND

COMMUNICATION PROTOCOL

Every map is a set of key-frames and a key-frame is a tuple

represented as

(k, Ik,Zk, qk, tk, Ik),

where k is a global index of the key-frame, Ik is the intrinsic

parameters of the camera, qk the unit quaternion and tk the

translation vector. Note that qk and tk together represent the

pose of the key-frame in the coordinate system of the current

robot map. In the current implementation the global index k is

a 64-bit integer, where the first 32-bits are used to identify the

robot and the rest are used to index the key-frames collected

by that robot. This indexing scheme saves approximately 4

billion key-frames from 4 billion robots, which is far beyond

current needs.

The map is synchronized using the protocol shown in Fig. 5.

When the visual odometry adds a new key-frame to the local

map, it also sends one to the robot clone. All depth and color

images are compressed with PNG for transmission. PNG is a

lossless image compression that supports RGB and gray-scale

images with up to 16-bit per pixel.

Once the key-frame has reached the robot clone, it is added

to the database; the map optimizer process includes this key-

frame in its next cycle. The map optimizer triggers the robot

clones after the end of each cycle in order to update the local

map on the robot. Once triggered, the robot clone gets the

key-frame IDs of the local map on the robot, retrieves the

updated key-frame pose from the database, and sends it back

to the robot. The bandwidth requirement of this map update

protocol is relatively low, since the update does not include

any images/key-frame transmissions.

V. MAP OPTIMIZATION AND MERGING

The visual odometry that runs on the robot accumulates

errors over time and causes a drift in the key-frame pose. This

section presents the optimization techniques used to reduce

the accumulated errors; these techniques work by minimizing

error measures that include all acquired key-frames.

robot robot clone back-end

init

new key-frame

add key-frame

update trigger

get key-frames

key-frame ids

key-frame ids

updated poses

updated poses

Fig. 5: Sequence diagram of the proposed map synchronization

protocol: All key-frames from the robot are added to the back-

end database. After every cycle of back-end optimization, the

robot clone gets the local key-frame IDs from the robot and

updates the local key-frame poses.

A. Map Initialization

Although this map initialization step is optional, it is rec-

ommended since it allows for the calibration of the camera

intrinsic parameters. Further, where map initialization was

used in experiments, the highly optimized initial map resulted

in increased tracking stability.

During initialization the robot makes a 360 [◦] in-place

rotation. Assuming pure rotation allows to use well-established

methods such as panorama optimization to be used. Our map-

initialization is based on [25] and it globally optimizes all

key-frame poses and the intrinsic camera parameters. When

pure rotation is assumed, pixels from k′-th key-frame can be

transformed to k-th key-frame by simply multiplying with the

homography matrix

Hkk′ = KR−1

k Rk′K−1,

where Rk and Rk′ are rotation matrices of the key-frames

k and k′ with respect to a common reference, and K is an

intrinsic calibration matrix parametrized by fx, fy , ox, and

oy (see Sec. III-A). In order to find the optimal key-frame

orientations and the intrinsic parameters, one must find the

parameter vector

p = (fx, fy, ox, oy, R0, ...RN ),

that minimizes the per-pixel error of each overlapping pair of
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frames k, k′ given by

E(p) =
∑

k,k′

∑

x∈Ωi

(Ik(x)− Ik′(H(p)x))2

where Ik and Ik′ are intensity images of the overlapping

key-frames k and k′. The minimization of E(p) with respect

to p was performed using the Gauss-Newton method after

parametrizing the updates using the Lie Algebra (see [25] for

details). After the optimization, the floor of the map is selected

using RANSAC and the XY -plane of the (world) coordinate

frame was aligned with the floor.

B. Map Optimization

The global optimization of a map reduces errors accumu-

lated during visual odometry, and consists of two main steps:

• Step 1: Construct a graph G where: 1) every key-frame

of the map has a corresponding node; and 2) an edge

between two nodes exists if the corresponding key-frames

overlap and a relative transformation can be determined

from the image data.

• Step 2: Solve the graph-based non-linear least squares

problem given by:

p
∗ = argmax

p

∑

i,j∈G

‖ e(pi, pj , pij) ‖
2
2,

where p = [pi]i∈G is the pose vector of all key-frames,

pij is the constraint due to the overlap of key-frames i

and j (calculated in Step 1), and e is an appropriate error

measure that describes how well the pair pi, pj satisfy the

constraint pij . In our case we are using the error function

that minimizes the translational error and the rotational

error (magnitude of the real part of the unit quaternion

that represents the rotational error) both equally weighted.

Once the graph is constructed, several state-of-the-art open

source frameworks such as g2o [26] and Ceres [27] can be

used to solve Step 2. Our architecture uses g2o for step 2.

Since construction of the graph G in Step 1 involves the

matching of key-frames, which is a computationally expensive

task, we parallelize this process over multiple machines as

shown in Fig. 6.

The graph optimization node retrieves pairs of key-frame

indexes from the database, which don’t have a transformation

yet, and distributes these between worker nodes. Note that the

graph optimization node only selects the key-frame pairs that

are within a distance threshold in order to limit the exponential

increase of the number of key-frame pairs.

The worker nodes try to compute the transformation be-

tween each pair of key-frames they receive. To compute the

transformation, worker node loads the precomputed SURF

keypoints for these key-frames and their respective 3D po-

sitions from the database and tries to find a transformation

between them using RANSAC. If it succeeds, it saves the

transformation to the database and proceeds to the next pair.

Once all worker nodes have finished, the optimization node

optimizes the error function, completing the optimization

cycle. After every optimization cycle, key-frame poses are

updated in the database and an update trigger is sent to the

map optimizer

database

graph
optimization

worker node

worker node

worker node

worker node

worker node

Fig. 6: Map optimization architecture: Pose graph construction

is distributed among worker nodes and the constructed graph

is optimized in the graph optimization node.

robot clones to update the local map on the robot. The graph

structure of each map is stored as a table of pairs in a database

and updated every time the new key-frames are added.

C. Map Merging

During collaborative mapping the robots can enter areas that

have already been already explored by other robots. Being

aware of the overlaps significantly decreases the mapping time

and increases the map accuracy.

For the collaborative mapping, no prior knowledge on the

initial robot poses is assumed and robots starts out with a

separate map. The map merging runs as background process,

continuously selecting a random key-frame from a map in the

database and trying to find a matching key-frame from the

other map. The process extracts SURF key-points from these

key-frames and tries to match them using RANSAC. If a valid

transformation is found, all key-frame poses of the smaller

map are transformed into to the coordinate system of the other

and the database entries are updated with the new values. Note

that except for a minor difference in database update logic, the

same worker nodes of the map optimization can be reused to

parallelize map merging. Figure 1 shows a map merged from

two robots and the re-localized robots in the new map.

VI. EVALUATION

The experimental setup for evaluation consisted of two low-

cost robots (Fig 3) in Zurich, Switzerland and the cloud-

based architecture (Fig. 2) running in Amazon’s data center

in Ireland. In addition to qualitatively evaluating the building

and merging of maps created in different environments as

shown in Figs 1 (72 key-frames) and 7 (423 key-frames), we

quantitatively evaluated network usage, localization accuracy,

and global map optimization times.

Figures 8 and 9 show the network usage of the robot

executing a 360 [◦] in-place rotation and a 2 [m] straight
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Fig. 8: Network usage in bytes per second for a single robot

performing a 360 [◦] in-place rotation.

motion with different speeds. It is clearly visible that band-

width is proportional to the velocity of the robot, with the

highest bandwidth about 500 [KB/s]. This value is half the

bandwidth requirement of [11] (1 [MB/s]). For purposes of

comparison, note that our cloud-based KinectFusion [28], a

dense mapping algorithm, uses around 3.5 [MB/s] since all

frames must be sent to the cloud for processing. For more

details on this demonstrator and the video compressions used

visit https://github.com/IDSCETHZurich/rapyuta-kinfu.

To evaluate the accuracy of visual odometry and influence

of the global optimization, a high precision commercial motion

tracking system was used. Figures 10 and 11 show the transla-

tion and rotation(yaw) errors error of the visual odometry with

and without the cloud-based global optimization during a 360

[◦] in-place rotation. Figure 12 shows translation error for a 2
[m] straight line motion. The yaw error during the straight line

motion was below 0.01 [rad] for both the optimized and the

non-optimized visual odometry. Note that, due to the relatively

low visual features in the motion capture space, the maps of

this space were of low quality compared to the ones given in

Figs 1 and 7.

Finally, Fig. 13 shows the time taken for map optimization

against the number of worker nodes. Although the processing

time initially decreases with the number of worker nodes, this

decrease later vanishes due to communication latencies. The

measurements also show that the gain due to parallelization

is significantly more for larger sets of key-frames. To reduce

latencies due to database access during map optimization,

we compared a relational and a non-relational database with

respect to their I/O speeds. MySQL was used to represent

relational databases, whereas MongoDB was used to represent

non-relational databases and the results are shown in Figs. 13a

and 13b. Although both databases gave a similar performance

with respect to speed, using the JOIN clause of MySQL

(join clause combines records from two or more tables in a

database), a significant amount of computation was offloaded

from the graph optimization node to the database during the

key-frame pair selection (see Sec. V-B).

0 20 40 60

1

2

3

·105

Time [s]

B
ad

n
w

id
th

U
sa

g
e

[B
/s

]

0.5 m/s

0.3 m/s

0.1 m/s

Fig. 9: Network usage in bytes per second for a single robot

performing a 2 [m] straight motion.
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Fig. 10: Translation error of key-frames extracted by visual

odometry during a 360 [◦] in-place rotation with and without

map optimization. The errors are based on the ground truth

measurements from VICON, a high-precision motion capture

system.
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map optimization. The errors are based on the ground truth

measurements from VICON, a high-precision motion capture

system.

https://github.com/IDSCETHZurich/rapyuta-kinfu
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Fig. 7: A point cloud map of a 40m-long corridor. The map was collaboratively built by two robots, and consists of 423

key-frames.
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Fig. 12: Translation error of key-frames extracted by visual

odometry during a 2 [m] forward motion with and without

map optimization. The errors are based on the ground truth

measurements from VICON, a high-precision motion capture

system.

VII. CONCLUSION

We presented first steps towards a scalable cloud robotics

service for mapping and localization using Rapyuta [2], an

open-source cloud robotics framework we developed in our

previous work.

First, we provided an open source implementation of a state-

of-the art, dense visual odometry algorithm on a smartphone-

class ARM multi-core CPU1. Second, we developed a data

protocol that sends only compressed key-frames to the cloud,

reducing bandwidth requirements by a factor of two over

previous approaches [11]. In addition, the protocol allows

the cloud processes to push key-frame pose updates back

to the robots without the need for constant polling. Third,

we presented techniques for parallelizing the computationally

expensive operations of map optimization and map merging in

a commercial data center, and provided a corresponding open

source software implementation1.
As illustrated by our demonstrator, this cloud-based archi-

tecture holds the potential to greatly increase the number of

mobile robot platforms capable of creating large, high-quality

maps and performing accurate localization. The robots used

were entirely built using low-cost, off-the-shelf components,

i.e., an Odroid-U2 board (USD 90), a PrimeSense CARMIN

RGB-D sensor (USD 200), a simple iRobot Create robot base

(USD 220), and a USB wireless device (USD 40)). Further,

the commercial cloud-infrastructure provides computational

services at very low cost (USD 0.130 per hour for every

m1.medium instance (∼2×1.7 GHz, 3.75 GB) [19].
Finally, we showed both qualitative and first quantitative

results achieved with the architecture. As shown in Figs. 1 and

7 as well as in the accompanying video, our implementation

yields maps comparable to those obtained with more expen-

sive robot hardware. First quantitative experiments confirmed

1http://github.com/IDSCETHZurich/rapyuta-mapping

http://github.com/IDSCETHZurich/rapyuta-mapping
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Fig. 13: Map optimization times against the number of worker nodes. The numbers in parenthesis in the legend denote the

number of key-frames. loop0 and loop1 are the two loops of the corridor shown in Fig. 7. loop merged is a combination of

both. fr2 desk is a public data set obtained from [29].

that bandwidth requirements are well within those typically

available in modern wireless networks (< 0.5 [MB/s]). They

also confirmed that map optimization provided via the cloud

significantly reduces uncertainty of the robot’s visual odome-

try. Moreover, they confirmed the computational advantage of

parallelization for map optimization in the cloud.

Possible future improvements include the incorporation of

the depth error into visual odometry [21], substituting the

current naive bag-of-words-based place recognition to a more

probabilistic approach such as FAB-MAP [30] for map merg-

ing, and the creation of larger maps using more robots.
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