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Cloud-based Digital Twinning for Structural Health

Monitoring Using Deep Learning

Abstract—Digital Twin technology has recently gathered pace
in the engineering communities as it allows for the convergence
of the real structure and its digital counterpart throughout
their entire life-cycle. With the rapid development of supporting
technologies, including machine learning, 5G/6G, cloud com-
puting, and Internet of Things, Digital Twin has been moving
progressively from concept to practice. In this paper, a Digital
Twin framework based on cloud computing and deep learning for
structural health monitoring is proposed to efficiently perform
real-time monitoring and proactive maintenance. The framework
consists of structural components, device measurements, and dig-
ital models formed by combining different sub-models including
mathematical, finite element, and machine learning ones. The
data interaction among physical structure, digital model, and
human interventions are enhanced by using cloud computing
infrastructure and a user-friendly web application. The feasibility
of the proposed framework is demonstrated via case studies of
damage detection of model bridge and real bridge structures
using deep learning algorithms, with high accuracy of 92%.

I. INTRODUCTION

During their lifetime, infrastructure is constantly susceptible

to various stimuli such as environmental changes, vehicular

loads, chemical actions, and human-induced factors, which

cause significantly negative impacts on their conditions. As

a consequence, one needs to monitor the civil structures

regularly to assess their operational behaviour, detect early

structural damage, prevent catastrophic failures, and extend

their lifetime. However, the inspection work of infrastructures

has been considered laborious and expensive due to their rela-

tively large sizes. The conventional non-destructive evaluation

methods such as ultrasonic, thermography, X-ray, and visual

inspection can provide detailed information about the state of

structures. However, they require experienced labour and ease

of access, which often come at the cost of interruption to the

operational services. Therefore, it is vital to develop effective

structural health monitoring (SHM) techniques to enable cost-

effective and proactive maintenance.

Recently, thanks to notable improvements in technologies

such as 5G, Wireless Sensor Networks (WSNs), Internet of

Things (IoT), deep learning algorithms, cloud framework,

and high-performance computers, a new data-driven paradigm,

termed Digital Twin (DT) [1], has emerged and received

increasing attention. The DT creates a high-fidelity digital

mirror of the physical entity; the former evolves synchronously

with the latter throughout their entire life cycle [2]. On the

other aspect, the construction process is becoming more and

more digitalized with the help of digital design packages

such as 3D computer aid design (CAD), building information

modeling (BIM), finite element analysis (FEA); thus, it is

more straightforward to create digital data related to structures

and infrastructures. With these advances, this paper presents

a concept of Cloud based Digital Twin for Structural Health

Monitoring (cDTSHM) framework aiming to perform continu-

ous monitoring and proactive maintenance through continuous

data from physical entities to virtual counterparts. In this

way, monitoring service evolves from periodical, generic, and

physics-based models to real-time, personalized, and data-

driven ones, thus optimizing maintenance strategy, increasing

reliability and safety of the structure, and extending its re-

maining service life. We validate the framework for different

case studies of a model bridge in the lab and the real bridge

structure Nam O in Vietnam, where the cloud platform is

tested and validated to confirm the fast computation of 0.003s

per one testing sample while achieving an accuracy of 92%.

The rest of the paper is organized as follows: Section II

summarizes related works on DT for structural engineering.

Section III presents the key components of the proposed DT-

based SHM framework. In Section IV, the proposed approach’s

viability is validated through two case studies, including a toy

model and a 3D steel bridge structure. Finally, the conclusions

and perspectives are drawn in Section V.

II. RELATED WORK

Xu et al. [3] developed a dual fault diagnosis method on

the basis of DT and applied the method on a car body-side

production line. Their results demonstrated that the digital

twin–based method achieved high diagnosis accuracy and had

the capability in predicting the trend of production through-

put with respect to changes in working conditions and data

efficiencies. Wang et al. [4] proposed a DT model for fault

diagnosis of rotation machinery, unifying physical knowledge,

experimental data, and model updating technique into one

model. The study achieved a clear improvement compared

to the traditional fault diagnosis method with error rates

under 5% in locating fault and assessing its extent. Revetria

et al. [5] presented a DT-based real-time monitoring system

for mechanical structures to improve the safety of the work

environment. The essential components of the system included

strain gauges mounted to the structure for deformation mea-

surement, Arduino card for data integration, augmented reality

glasses, and FEA Toolbox in the software Matlab for numeri-

cal simulation. Knezevic et al. [6] investigated the fatigue life

of structures in the energy industry via a DT concept. The

workflow of the presented framework included four stages:

build of a detailed finite element (FE) model, collection of data

from strategically placed accelerometers to calibrate the FE

model with real-world conditions, fatigue calculations based

on continuous monitoring, and statistical correlation between

structural response and environmental loads. Shim et al. [7]

presented a DT approach for bridge structure, having the

ability to monitor the structural behavior continuously, and
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assess different facets of the structure timely such as material

properties and surface cracking.

Of the other advances, Cloud Computing technology is

an exciting field with numerous advantages, including cost

efficiency, parallel and high-performance computing, massive

storage, and remote access from anywhere via the network,

hence, potentially fuelling the SHM tasks. Liao et al. [8] pre-

sented a cloud-based open-source framework named SnowFort

for SHM using an elaborated decision support system when

addressing the massive monitoring data flow. With the help

of Cloud Computing, Zhang et al. [9] developed a cyber-

infrastructure platform termed SenStore which unifies sensor

data, bridge metadata, data mining, data visualization, and data

interpretation into one system. In various industries, more and

more large companies leverage the DT technology to enhance

their complex processes [10]. For example, Predix of General

Electric [11] is regarded as one of the leading industrial DT

platforms, especially for power plants. Predix allows plant

managers and workers to ingest large volumes of sensory

data, run analytic models, and perform business rules engine

at the same time, thus enabling the detection of abnormal

phenomenons and improving plant reliability. For offshore

applications such as port infrastructure, offshore structure,

floating vessels, Akselos [12] has developed a novel DT

framework to carry out real-time risk-based decisions using a

massively parallel cloud-based server. The computation is en-

hanced by using simultaneously multiple solvers. In addition,

a decision support system powered by Machine learning (ML)

algorithms and deep domain knowledge from engineers, yields

fast and accurate assessment about the asset (cracks, corrosion,

fatigue, defection). Siemens empower their friendly 3D CAE

software Simcenter [13] with DT approach by combining

physics-based simulation, closed-loop of data from operation

to design, and their IoT platform MindSphere, to perform real-

time simulation and achieve more predictive results throughout

the product lifecycle. Of all above existing works, there is

lack of a unified DT framework that uses Cloud platform to

handle continuous data and facilitate the two-way feedback to

iteratively improve both the digital and physical structures as

one closed system along their life cycle using deep learning

algorithms. Thus, our work focuses on the design of such DT

platform towards real-time SHM applications.

III. DIGITAL TWIN-BASED STRUCTURAL HEALTH

MONITORING FRAMEWORK

A. General Concept of Digital Twin

A typical architecture of DT involves three main compo-

nents [14]: physical object, virtual object, and connected data

interface (see Fig. 1). There is no universal approach for an

optimal DT architecture because each project has different

contexts: input data, requirements, budget, and domain. The

physical model is built based on the data collected using

measurement devices installed on the real objects. As a result,

one could obtain a large amount of data, such as functional

parameters of the systems (speed, pressure, intensity, quantity),

the environmental data (temperature, location, weather) as

well as historical data, log files, maintenance records, and

so on. In addition, there exist different types of data formats

and various communication protocols for data transmission.

The digital replica of a physical model could consist of

a number of sub-models: mathematical models, numerical

models, and machine learning models, which work jointly

to mimic the real counterpart and predict its behavior in

the future or hypothesis scenarios. By aggregating different

techniques, one could construct a smart virtual mirror that

could evolve simultaneously and reflect the physical model

closely. In terms of data, there exist unavoidable errors in

reality, such as device instability, incomplete measurements,

and hardware corruption. Therefore, the cleaning process,

including duplication technique, handling missing data, rule-

based methods, are applied before sending data to the central

servers, thus reducing system errors and storage cost. In

addition, due to the aforementioned heterogeneous formats of

collected data from multiple sources, it is indispensable to

adopt clustering methods to ease the information query and

data management.

Fig. 1. Main components of a Digital Twin model: physical entity, digital
mirror and connected data.

B. Digital Twin-based Structural Health Monitoring

The eventual purpose of this research direction is to develop

a SHM solution for monitoring the structures in a real-

time or near real-time manner with high accuracy within a

reasonable development/operation budget and maintaining its

performance in the long run. To do this, one needs to combine

physical and structural expertise [15] with new advanced tech-

nologies. Existing methods using only physics-based models

normally work with processed data rather than directly with

large collections of raw data [16], while ignoring the physics

may lead to a low-performance model, which cannot be

compensated by increasing the data volume. In order to make

development and structure monitoring reasonably affordable

within its whole life cycle, we leverage open-source machine

learning libraries to develop data-driven models and to create

a friendly and light web application for data visualization. To

ensure the accuracy of the framework, the data-driven model is

used on top of a mathematical baseline model. In addition, the

model is trained based on a database augmented by synthetical

data obtained from physics-based numerical models. For near

real-time monitoring, cloud and fog computing [17] is adopted.

And the long-term performance of the framework is ensured

by using transfer learning and periodically retraining the AI

models with updated data. Working together, all above compo-

nents and characteristics form the proposed DT framework for

SHM featuring the Structure-Human-Machine interactions as

illustrated in Fig. 2. The proposed framework allows engineers

to discover defects before they become apparent, improve
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Fig. 2. A Cloud based Digital Twin model

the control system, and prepare better for preventing sudden

damages. Moreover, different scenarios of infrastructures such

as structural defects, element replacement, new device instal-

lation, and post-damage behaviors can be tested in virtual

environment before scheduling and implementing the actual

changes. The key differences between the conventional SHM

methods and the cDTSHM are listed in Table I. The main

components of cDTSHM includes: Physical Structure, Virtual

Structure, Cloud based DT platform (see Fig. 2), and a cross-

platform SHM web application for users.

1) Physical Structure: The physical entity in cDTSHM is

divided into four subcategories jointly connected (see Fig. 3):

main structural elements, auxiliary elements, external excita-

tion, and measurement devices. The main structural elements

play a critical role in assuring the integrity and safety of

the structure. They are usually designed according to relevant

standards in response to various scenarios of loadings, even

extreme cases such as an earthquake or explosion. For an

infrastructure such as a bridge, the main structural elements

could be foundations, girder, deck, and prestressed cables,

whose behavior during operation should satisfy predefined

ultimate limit states and services limit states [18]. These

requirements can be formulated in the following generic form:

F (α, β, γ, t, . . . ) ≤ D, (1)

where α, β, γ are time-variant properties of main structural

elements such as displacement, deformation, crack, corrosion,

material property degradation, t denotes time, and D denotes

required threshold value determined in various standards.

Furthermore, contractors and designers often aim to optimize

the working capacity of structures to increase profitability,

leading to optimization problems as follows:

maxG(α, β, γ, t, . . . ) w.r.t F (α, β, γ, t, . . . ) ≤ D. (2)

where G(·) is the objective/utility function. However, time-

variant parameters mostly possess stochastic nature rather

than deterministic one, then obtained results with conven-

tional statistic methods usually have large variances. With

DT method, current states of the structure are continuously

updated, thus reducing uncertainty in parameter estimation and

increase the reliability of structural assessment. The auxiliary

elements do not directly influence the safety of the structure,

but they can provide significant protections for structure and

improve users’ comfort. For example, paints give an additional

protection layer for steel structural elements against corrosion

under unfavorable environmental factors such as rain, sun

exposure, marine atmosphere. In contrast, an inappropriate

auxiliary element can cause heavier loads or introduce un-

expected additional restraints to the structure.

The excitation on the structure can have various forms,

involving the permanent loads, self-weights of structural el-

ements, live loads, and vehicular loads. It could also be

chemical reactions, environmental changes, and accidental

events. In general, excitations do not have fixed values but

vary over time, then they are modeled by a stochastic process,

and in design practice, engineers adopt their statistical values

and empirical formulae to determine corresponding behaviors

of the structure. Measurement devices consist of sensors,

accelerometers, strain gauge, actuators, scanning machines,

cameras, and smartphones, that are supported by relevant

software (e.g., Labview, Dewsoft for gathering signals from

sensors, OpenCV for capturing live video, Trimble RealWork

for 3D laser scanning).

The above physical components have inherent dynamic

and uncertain properties. Thus, the physical model can be

considered as a system of systems and it is a challenging task

to model the behavior, patterns, and laws of whole systems

with real scenarios.

2) Virtual Structure: The digital copy of the physical

counterpart is expected to accurately replicate the behavior

of the latter in real-world scenarios, predicting evolution in

the future, and conducting as-if studies. Computed results of

the digital model can be formulated as follows [19]:

z(x) = y(x) + e = η(x, θ) + δ(x) + e (3)

where z(x) denotes the observational outputs; y(x) stands

for model discrepancy-corrected outputs; e is the additional

error, accounting for uncertainty in observations; η(x, θ) is

the computed results, δ(x) is the model discrepancy. To

obtain y(x), the digital mirror in cDTSHM uses ensemble

methods that aggregate multiple computation models ranging

across the quick and exact mathematical model, the popular

finite element model (FEM), and the promising ML model.

The mathematical model makes use of classical mechanic

theory and probability theory to calculate the response of

the structural element under excitations and analyze their

reliability and safety. Although this theoretical model could
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TABLE I
KEY DIFFERENCES BETWEEN CONVENTIONAL SHM AND DT-BASED SHM

Conventional SHM cDTSHM

Concept Model-based approach Data driven-based approach.

Data source Monitoring data from physical entities Monitoring data from physical entities, historical data,

simulation data of digital model.

Technologies optimization, statistical methods, FEM IoT, Big Data, Reduced-order modeling, surrogate model,

machine learning model, augmented reality.

Data fusion Synchronize data from different sensing devices Heterogeneous data in different format, from different sources.

Visualization Table, chart, 2D images Table, chart, virtual reality, dashboard.

Frequency Periodical monitoring Continuous monitoring.

Services Damage detection, damage severity, damage localization Damage diagnostic, crisis warning, asset management,

proactive maintenance, decision-making support system.

Fig. 3. Four subcategories of physical structure.

give a quick and exact solution that serves as a baseline

result for other models, it can only be applied for relatively

simple structures and require some ideal assumptions. For

more complicated structures with a large number of degrees

of freedom and complex interactions between elements, one

needs to resort to the finite element model which is nowadays

the most popular computation method in both the academic

and industrial community for modeling from the solid object

to fluid and gas phenomenon. At first, FEMs of the structures,

including geometry, material, and connectivity, are built with

the help of commercial software such as ABAQUS, SAP2000,

or open-source program such as Code-Aster, Opensees, in

which both elastic and plastic constitutive laws of materials are

incorporated, then time and space-dependent behaviors of the

structures are obtained via the dynamic analysis from pristine

condition to failure scenarios (collapse or local damage). The

main drawback of the FEM is their high computational costs.

Because of the instantaneous nature of external excitation, it

requires a detailed 3D model in FEM using fine space and

time discretization to assure FEM results converge to real

solutions. However, such small discretization and large size

of the structure leads to a huge number of elements and total

time steps required, then a paramount volume of computation.

To overcome the intractability of computational time, in

cDTSHM, we develop deep learning (DL) models to infer the

structure behavior from historical data, measured data, and

simulated data obtained from FEM. The deep learning model

consists of multiple layers of neurons designed for extracting

automatically hierarchical features from raw data. Initially, it

takes significant effort to develop an appropriate DL algorithm

for SHM applications and train the model with a large quantity

of data. The most common DL algorithm in SHM is performed

in a supervised way; it means that before training process, each

sample xn ∈ x in the data is labeled by the corresponding

operational state s of the infrastructure, resulting in a set of

pairs (x1, s1), . . . , (xN , sN ). Then, the DL model will seek a

predictor f(., θ), parametrized by θ to fit as close as possible

to the given labeled data:

f(xn, θ
∗) ≈ sn for n = 1, . . . , N. (4)

Once the DL model is trained, and its parameters are de-

termined, it provides a rapid and automatic tool to assess

operational states of the structure which is suitable for long-

term SHM with continuous flow of data. One of the major

obstacles with DL methods is the requirement of large associ-

ated datasets. If the real data are insufficient, one could resort

to the FEM to create synthetic data for the training process.

The obtained DL models can be updated in an adaptive fashion

with data obtained in the future.

In summary, the mathematical model is used to build a

baseline model, the FEM model help to formulate the initial

behavior of the physical entity and generate synthetic data,

the DL model is helpful in rapidly inferring the patterns

of structure’s behaviors. By combining these models, the

cDTSHM is able to create a digital mirror of the infrastructure,

executing in parallel mode, thus allowing the prediction of

the structural capacity, performing structural health evaluation,

and testing different maintenance strategies (see Fig. 4).

3) Cloud Computing Platform: The proposed cDTSHM

framework utilises hybrid cloud computing services, which is

a mix of the private fog environment and public cloud environ-

ment (Fig. 5). On the one hand, it facilitates data access from

anywhere in the world via the Internet and provides an elastic

environment when dealing with a suddenly increasing flow of

data, and calculation resource demand, such as earthquakes,
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Fig. 4. Digital mirror in DTSHM involving multiple computation models:
mathematical, Finite element and Machine Learning ones.

Fig. 5. Illustration of cloud computing framework of cDTSHM.

accidents, brittle damage. On the other hand, one could also

save significant economic resources because of the reduced

requirement for storage. This is due to the pre-processing for

raw data, i.e., data cleaning, data duplication, as well as the

training of complex digital models, is performed firstly in the

private environment, i.e., fog layer. After that, only processed

data and trained models are deployed across public cloud

environments. Depending on the type of structures and the

volume of measured data, further advanced task scheduling

algorithms such as parallel or hierarchical ones and more

edge devices can be resorted to reduce the requirements of

CPU power and memory of the fog layer’s local server [20].

Detailed studies about the fog layer’s main components and

architectures can be found in [17], [21], [22].

Besides, it is essential to ensure the security of data com-

munication as DT is able to send recommendations back to the

control system, then make intentional adjustments to the struc-

ture’s operational services. In the hybrid cloud framework, data

privacy is ensured by adopting encrypted data communication

between the public cloud environment and fog layers, which

is more economically profitable than building a whole private

framework for single or two civil infrastructures.

Regarding the cloud platform, it includes three modes of

service: Infrastructure as a Service (IaaS), Platform as a

Service (IaaS), Software as a Service (SaaS). The IaaS acts as

a virtual machine made of highly scalable compute resources

and cost depending on consumption; the PaaS is used mainly

for application, based on which the data analytic and machine

learning components of cDTSHM run on the fly, and the SaaS

provides smooth services for end-users. In practice, one can

run cDTSHM directly on the web browser without any special

installation on local devices.

Although the cloud platform is flexible and scalable, there

exist constraints to take into account when deploying the cDT-

SHM application. First, the computation resources required by

virtual machines should not exceed the total capacity of the

IaaS provider. Second, each cloud user has corresponding pri-

ority and resource budget involving time and payment within

which their requests should be completed to avoid potential

conflicts with other users. These constraints are formulated as

follows [23]:

Ccpu
≥
∑

xcpu
i , CRAM

≥
∑

xRAM
i ,

B ≥
∑

qij , T ≥
∑

tij .
(5)

where xi is either CPU or RAM requested by a virtual

machine, qij and tij stand for the payment and required time

of the cloud user i for request j, and C,B, T are available

resources of IaaS provider.

In terms of data storage, owing to the heterogeneous nature

and large quantity of the collected data such as time-series

data from sensors, tabular information, video, plain texts, the

Hadoop distributed framework and Map Reduce are employed

to optimize the storage and improve query process. The server

is divided into clusters of a number of machines, each performs

computation and storage in parallel mode. The scalability

of the platform is achieved through the split-apply-combine

strategy, i.e. map and reduce, well-known in functional pro-

gramming. Once the Cloud Computing based platform is set

up, initial testing to evaluate its performance over a short

period is conducted, where impact of different factors on

the data communication process is examined (e.g., distance,

data recording time interval, device’s battery life, continuous

connectivity) and then adjust technical issues to guarantee the

stability of communication.

4) User Application: The fourth component of the cDT-

SHM is a Human-Computer interface, which is a web-based

application for real-time monitoring and timely controlling of

infrastructure. The application helps explore different types of

data in a graphical way by using dynamic charts, live graph,

table of critical indexes such as allowable stress, vibration

limits, and service temperature threshold. When a problem

occurs, for example, measured data exceed value limits, the

web service will display a red light alarm on the interface.

Besides, a 3D space model window is also introduced on

the web application interface for the visualization of the

structure’s behavior predicted by the digital model. In addition,

there are controllable parameters, through which engineers can

adjust the infrastructure’s operation and maintenance activities

based on monitoring information, to improve the operation

efficiency and ensure the safety and ease of operations. The

cDTSHM web application is written in Python, using popular

web framework Flask and Javascript charting library Chartjs.
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Fig. 6. Various services potentially provided by cDTSHM for different users.

The application is deployed on the PaaS of cloud computing;

the transfer data between cloud servers and web application

is realized through the HTTP streaming technique in which

data from the server is segmented in chunks, received, and

processed further on-the-fly by the client. The web application

serves as a collaborative environment for continuously sharing

information among different end-users as indicated in Fig. 6.

For example, real-time monitoring information is exploited

by engineers for early damage detection, by contractors for

planning maintenance services, by the government for ensur-

ing security, by other stakeholders for increasing businesses

and enhancing the conformity of users. On the other aspect,

to avoid conflict among the users, role-based access control

is utilized, and if more than one user access to the web

application at the same time, the first come first served basis

is applied unless priority is indicated.

C. Implementation

Before building a DT, one needs to clarify the requirements

of the project and its relevant constraints, which could relate to

physical properties, economics profitability, and environment

requirements. Requirements and constraints are translated into

well-defined mathematical functions and variables, e.g., as

seen in (1), which are iteratively updated over time. Next,

a system of measurement devices is installed across the

structure to collect data related to the structure and surrounding

environments. In general, a uniform placement strategy plus

some predefined critical locations are selected for device

installation. The layout of devices is updated based on the

output assessment of the cDTSHM for further improvement

of the system. Then, the measured data are passed to a local

server using cable/5G networks and the Internet. On the local

server (fog layer), data preprocessing steps are performed to

capture relevant information, as well as to remove insensible

data before being sent to the cloud, thus lowering the burden

of computation and cost financing.

In addition, a numerical counterpart of the physical model

is established with as-built input data provided by contractors

and corresponding standards. As there is a large number

of input parameters with inherent uncertainty, the numerical

model needs to be validated, calibrated, and updated to reflect

the current state of the physical structure based on various

laboratory or in-situ test results and optimization methods. In

addition, the driven-data models are also developed with the

help of not only current information but also historical data

and numerically simulated data. In general, the performance

of such models will significantly improve with increasingly

available data. Indeed the inference times of the data-driven

model and mathematical model are faster than those of the

model-based one. Then, the data-driven model will be de-

ployed in a real-time fashion on the cloud service, whereas, the

model-based method is periodically carried out to simulate and

generate synthetic data, especially in extreme scenarios, which

are scarce in reality but could cause substantial damages, such

as earthquake and explosion.

The results of data analytics, involving critical monitoring

parameters, reliability index, and safety margin, are interac-

tively visualized on a web application, which facilitates the

exploration of the structure behavior under external factors

such as weather, loading, and human activity. As the in-

frastructure is a large-scale and nearly immobile entity, the

digital-to-physical feedback is indirectly realized through a

control and decision-making system. With recommendation

system algorithms and condition analysis, the DT is capable of

providing appropriate suggestions for failure prevention, early

warning, and optimized planning, which traditionally depends

largely on the subjective perception of responsible personnel.

In short, the data interaction among the triplet structure-

machine-human is the core of the cDTSHM (Fig. 2), which

brings unprecedented advantages for the SHM applications.

IV. CASE STUDIES AND RESULTS

The first proof-of-concept demonstration is carried out via

a simplified toy model as seen in Fig. 7. The toy model is the

Sydney Harbour bridge model built by using K’nex plastic

rods and connectors. The model has a length of about 2m,

consisting of around 800 elements. The model is manually

excited by hand-shaking, where its vibration is recorded by

using a set of accelerometer sensors MPU-6050 uniformly

distributed across the model. The measured signals are subse-

quently transmitted to a local server through microcontroller

boards Arduino Uno, then stored in SQL relational databases

on a cloud service, which is Amazon Relational Database

Service for this example. These vibration signals are visualized

by line charts in a near-real-time fashion. The database for

the first example was experimentally obtained by the authors.

The damage states were created by randomly removing one

(minor damage) or two consecutive (severe damage) chord

bars (in yellow/blue color). After that, the bridge was vibrated,

its vibration signals at three truss joints (one-quarter, mid-span,

and third-quarter points) were then measured for 30 s with a

frequency of 100Hz and labeled correspondingly. In total, the

size of data is 1000; each data sample consists of three time-

series sequences having a length of 3000. After that, to assess

the model’s structural integrity, two data analytic components

have been developed, and both are continuously deployed with

the help of a cloud computing platform, which is Amazon

Elastic Compute Cloud, herein. The first component is a

lightweight mathematic model simply making use of statistic
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Fig. 7. Web application interface of cDTSHM for SHM of bridges. Further information can be found at https://dt.mdx.ac.uk/?p=1106

features such as maximum and minimum values derived for a

time window of 20 seconds. When these values remain within

a given band of safety involving an upper and lower bound, the

structure is regarded in a healthy working condition; otherwise,

if these extrema cross the safety band, damage likely occurs.

A second component is a Deep Learning-based model, which

not only classify healthy/damaged states of the structure, but

it also can spatially localize damage location and quantize

damage severity if the model is trained with appropriate data.

The measured vibration signal is converted to a spectrogram

image able to represent the signal’s properties in both time and

frequency domain. After that, the image is fed into a ResNet-

34 architecture whose output are probabilities of all possible

structural states. The states with the highest probability will

be assigned to the current state of the structure. Further details

can be found in [24].

The second case study is the validation of the framework

for the real structure, Nam O railway bridge located in Da

Nang, Vietnam, which is a large-scale steel truss continuous

bridge, as shown in Fig. 8. The bridge of more than 60 years

old frequently experiences daily unfavorable factors such as

the maritime environment, unpredictable tropical weather, and

dynamic loadings, rendering in potential loss of stiffness at

truss connections. Thereby, a network of triaxle accelerometers

are installed at truss connections to collect vibration data,

and vibrational-based structural health monitoring is carried

out using the deep learning algorithm. The bridge is 300m

long, consists of four simply supported spans of equal length

(75m each). The width of the bridge is 5m, and its height is

14m. Its material properties are Young’s modulus E = 200

GPa, Poisson’s ratio = 0.3, mass density ρ = 7850kg/m3,

and the modal ratio = 2%. As all the spans of the bridge

are identical and designed as a simply supported truss, the

identification test was performed only on the first span. The

vibration of the bridge is induced by a train composed of four

identical vehicles moving at constant speeds, with parameters

as follows: the vehicle length is 22.5 m, the distance of wheels

is 15.6 m, the mass of vehicle including wheels is 50 tons, and

the moving speed is 30m/s.

For the second example, the database is collected both

experimentally and numerically. The current state of the bridge

was monitored through a set of sensors uniformly installed

along its length. Based on measurement data, the dynamical

characteristics of the current state of the bridge are determined

using reliable and widely used identification methods such

as Operational Modal Analysis. Then, a detailed 3D finite

element model of the structure is built and updated such

that the deviations between modal characteristics, including

eigenfrequency values and mode shapes from the FEM and

experimental ones are small, specifically, within a predefined

tolerance. Because the bridge is still in a healthy operational

state, the damaged states and associated data are synthetically

created through the 3D Finite element models. It means

that artificial connection stiffness losses with various damage

levels are introduced into an arbitrary truss connection, then

finite element analysis is carried out and yields corresponding

simulated vibration data. Each vibration data is further labeled

by the associated artificial damage state, i.e., damage location

and damage level (damage severity). In total, a database of

10000 samples was created to train and validate the data-

driven model; the number of samples for each state is equally

distributed.

Once the database is already prepared, they are split into

three sub datasets, namely, the training set, validation set

and testing set to train and validate the deep learning model,

which is able to infer the structural state accurately and fast.

The foregoing workflow is schematically illustrated in Fig. 9.

The details of a FEM is described as follows. The bridge is

modeled in the Finite Element software Abaqus [25], using

the three dimensional (3D) beam. The element has six degrees

of freedom (DoFs) at each node, including three translations

and three rotations around the x, y, and z directions. Section

properties of structural members are summarized in Table II. In

terms of connectivity, the semi-rigid link with rotational spring

is applied to model the connection between truss members.

The selected deep learning architecture is the deep 1D Con-

volution neural network-based method commonly acknowl-

edged by its outstanding performance on local pattern recogni-
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Fig. 8. Architecture of the Deep CNN algorithm designed for structural damage detection.

TABLE II
NUMBER OF PARAMETERS AND THE SHAPE OF OUTPUTS OF EACH LAYER IN THE 1D CONVOLUTIONAL NEURAL NETWORK

Layer 1
st 1DConv 2

nd 1DConv Max Pooling 1
st Dense 2

nd Dense

N × L N × L× 16 N × L× 16 N × L/4× 16 N× 100 N× 20

N is the number of samples, L is the length of time-series.

Fig. 9. Workflow of training process for CNN-based SHM.

tion and reduced computational complexity compared to con-

ventional artificial neural networks in various domains [26],

[27], [28]. Its configuration included a sequence of layers

involving an input layer, two convolutional layers, a max-

pooling layer, two fully connected (FC) layers, and a soft-

max output layer. The formula of one convolutional layer is

expressed as follows [29]:

hk = conv1D(wk, X) + bk, (6)

where conv1D(·) is the 1D convolution operator, hk, wk and

bk are respectively the output vector, weight matrix and bias

vector parameters of the kernel k, X is the input vector. Once

vibration data enter into the network, the 1DCNN layers will

extract inner relationships between measured points and their

higher derivatives before feeding to the last fully connected

layers serving as a classifier.

In terms of the training process setting, the following details

are adopted. Adam optimizer is used, the batch size is set to

64, a learning rate is initially set to 1E-4, which is divided

by 2 when the validation loss does not decrease for five

consecutive epochs, and early stopping is set to 20, which

means the training process is stopped after 20 consecutive

epochs of no improvement. During the training process, the

early convergence problem could be alleviated thanks to using

a proper initialization strategy. Here the Kaiming He [30]

approach is adopted, in which the weights of each layer are

initially selected from a zero-centered Gaussian distribution

scaled by
√

(2/n) with n is the total coming inputs for a given

layer. By doing so, for each layer with nonlinear activation

such as ReLU function, their weights will have a standard

deviation equal to around 1 on average, mitigating the gradient

exploding/vanishing problem during the training process of

very deep NN models. Another way to address the premature

convergence is to maintain the data diversity by using the

K-fold cross-validation approach. Instead of using a single

training/validation split, the K fold cross-validation divides

the database into K equal portions and repeats the training

process K times, each time one different part is selected for

validation, and the final results are obtained by averaging those

of K folds. In this way, the distribution of different structural

conditions among sub-dataset is better balanced, thus ensuring

data diversity.

Fig. 10. Evolution of train and validation loss during the training process.
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Fig. 11. Predicted probability for all classes at 1DCNN’s output layer.

Fig. 12. Confusion matrix of damage localization - Deep CNN algorithms

Figures 10, 11 and 12 highlight the computed results of the

proposed method for damage localization tasks. The evolution

of training errors and corresponding accuracy on validation

with respect to the number of epochs are depicted in Fig. 10.

It is noted that the accuracy increases steadily for the first

200 epochs, then surge to a value of 92% at a epoch around

500; after that, no significant improvement is observed. Thus,

the converged validation accuracy is taken as 92%, with a

small variation of around 1.5%. Once the training process is

terminated, the system’s parameters are fixed and applied to

the testing data set. Fig. 11 presents an example of a test case;

the DL model provides the probability associated with every

truss connections, the sum of probabilities is equal to 100%.

The connection with the highest probability value is identified

as the location of damages. Fig. 12 shows the confusion matrix

of results calculated on the testing data set in which rows

denote the ground truth of test cases, i.e., the actual number

of connections subjected to stiffness loss, whereas columns are

the damaged connection number inferred by the DL model. As

expected from the validation results, the testing result achieves

a high accuracy of 91.7%. Moreover, in terms of inference

time, it only took 0.003s for one testing sample using a cloud

virtual machine with specification of 6-core Xeon CPU and 16

Gb RAM, thus ensuring the required speed of real-time SHM

applications. In short, these results confirm the correctness and

effectiveness of the SHM method based DL algorithm.

A comparative analysis between cDTSHM with existing

SHM frameworks is presented in Table III. It can be seen that

the industrial solutions provide most of the functionalities, but

with a considerable cost. The framework using only physics-

based models are yet able to perform the near real-time capac-

ity. Some data-driven models can only detect the existence of

damage yet provide further information about damage location

or damage severity. Note that as these reviewed frameworks

are not publicly available or the relevant data are censored,

quantitative comparisons are not possible.

In the table, one suggests that the development and op-

erational cost of cDTSHM are from low to medium for two

reasons: i) the fog layer helps reduce the volume of data stored

on the cloud, ii) the data analytic component is built based on

free and open-source deep learning libraries. Besides, thanks

to the transfer learning technique and a data augmentation

strategy combining real data and synthetic data, the cDTSHM

can perform multiple SHM tasks with increasing complexity

levels ranging from detecting damage existence (level 1) to

identifying damage location (level 2) to quantifying damage

severity.

V. CONCLUSION AND FUTURE WORK

A cloud-based DT framework for SHM (cDTSHM) was

proposed for real-time monitoring and proactive maintenance

of civil structures. The proposed method facilitates two-way

mapping between physical structure and digital counterpart,

as well as interaction among structure, machine, and human,

paving the way towards a real-time intelligent monitoring sys-

tem. A layer of fog computing was implemented prior to the

cloud layer to reduce the data volume and the computational

demand for the digital model. The feasibility of cDTSHM was

demonstrated through the case studies of structural damage

detection in bridges using deep learning algorithms, with

accuracy of 92%.

When implementing the cDTSHM, the fidelity of the DL

models is one of the main challenges. In addition, the difficulty

in actively updating the models for facing the future damage

scenarios also accentuates the challenge. To address this issue,

one uses statistic models as baselines on the one hand and uses

3D numerical simulations for introducing different levels of

damages to augment SHM data on the other hand. By doing

so, the DL models’ performance will always provide better

or at least similar results to conventional statistic/numerical

models. The second challenge is the scarcity of relevant data.

Because most of the data are related to a normal state of

the structures; hence, transmitting and storing full data all

the time is unnecessary. Thus, one adopts a hybrid scheme

to augment SHM database via synthetical data obtained from

reliable FEMs as discussed in the second example. Another

way to increase the data efficiency is to engineer a hierarchical

strategy. Some basic features will be extracted from data to

detect the damage existence first; if no damage occurs, data

are discarded, or only basic features are stored. In contrast, if

the damage is detected, the more advanced feature extractions

are adopted for preparing inputs for the mathematical and ML

models to perform complex tasks such as damage localization

or damage severity.

Although this paper presents promising results, further

works can be identified and addressed in the next studies.

Currently, the framework works with predefined types of

damages, i.e., stiffness reduction; however, in reality, there

exist numerous potential defection scenarios such as corrosion,



10

TABLE III
COMPARATIVE ANALYSIS BETWEEN CDTSHM WITH REVIEWED FRAMEWORKS

Features Proposed cDTSHM Shim et al. [7] Industrial solutions [12] Qian et al. [31] Jeong et al. [32] Tran et al. [16]

Data type Time-series data Various Various Time-series data Time-series data Tabular data

Data collection Semi-Automatic Manual Automatic Semi-automatic Semi-automatic Manual

Data pre-processing Fog layer Local server Cloud computing Cloud computing Cloud computing Local server

Data storage On cloud Local server On cloud On cloud On cloud Local server

Data analytic Data-driven model Data-driven model Data-driven model Data-driven model Data-driven model Physic-based model

Data visualization Web application Desktop program Web application N/A Web application N/A

Security Good N/A Good N/A Good N/A

Portability Multi-devices PC multi-devices multi-devices multi-devices PC

Budget/costs Low to medium N/A High N/A Medium-High Low

Monitoring Near real-time Periodic Near real-time Near real-time Near real-time Periodic

SHM level 3 levels 3 levels 3 levels 1 level 1 level 3 levels

material degradation, etc. Therefore, unsupervised and semi-

supervised learning algorithms should be applied to increase

the generalization. Another aspect is that the proposed frame-

work only uses vibration data which are not very sensitive

to local damages. Therefore, it is usually required a large

number of sensors installed along the structure’s body to

detect the damage localization to some degree of accuracy.

It is recommended to apply some breakthrough measurement

devices such as optical fiber sensors, which can provide richer

information about the structures’ behavior, thus extending the

framework’s capacity.

As the real-world application of cDTSHM is highly com-

plex and dynamically evolving over time, further work can

also include: i) Long-term efficiency of cDTSHM on mul-

tiple facets (e.g., performance, reliability, practicality, cost

financing), particularly when facing the variability/fuzziness of

real structure parameters and uncertainty of data acquisition;

ii) Relating/learning from DT applications in other domains:

useful feedback from the digital replica can be improved by

conceiving more other insights (e.g., control functions).
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