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Abstract

Motivation: Large scale genomic sequencing is now widely used to decipher questions in diverse

realms such as biological function, human diseases, evolution, ecosystems, and agriculture. With

the quantity and diversity these data harbor, a robust and scalable data handling and analysis solu-

tion is desired.

Results: We present interactive analytics using a cloud-based columnar database built on Dremel

to perform information compression, comprehensive quality controls, and biological information

retrieval in large volumes of genomic data. We demonstrate such Big Data computing paradigms

can provide orders of magnitude faster turnaround for common genomic analyses, transforming

long-running batch jobs submitted via a Linux shell into questions that can be asked from a web

browser in seconds. Using this method, we assessed a study population of 475 deeply sequenced

human genomes for genomic call rate, genotype and allele frequency distribution, variant density

across the genome, and pharmacogenomic information.

Availability and implementation: Our analysis framework is implemented in Google Cloud

Platform and BigQuery. Codes are available at https://github.com/StanfordBioinformatics/mvp_

aaa_codelabs.

Contact: cuiping@stanford.edu or ptsao@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic sequencing projects have grown from sequencing a few

genomes to thousands or even tens of thousands of genomes in the

past decade (1000 Genomes Project Consortium et al., 2015; Ball

et al., 2014; Telenti et al., 2016), generating massive amount of data

that present challenges ranging from affordable long-term storage,

controlled data sharing, flexible data retrieval, fast and scalable

data processing, and interactive mining of biological information.

Recently, jointly analyzing genomic data from multiple studies

(Fortney et al., 2015; Fuchsberger et al., 2016; van Rheenen et al.,

2016) as well as with other types of data (Abul-Husn et al., 2016;

Akbani et al., 2014; GTEx Consortium, 2015) has proven to be in-

valuable in improving study power and thus yielded important new

discoveries. These data integration efforts have highlighted the need

for a scalable analysis platform that can combine various informa-

tion sources.
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Standard public tools, run on local files on fixed-size computer

clusters, do not readily scale for large studies. Public cloud plat-

forms, with sufficient computing capacity for large batch analysis

jobs, can provide part of the solution and have demonstrated early

potential to grow into mature solutions for processing large-scale

genomic data (Afgan et al., 2015; Calabrese and Cannataro, 2016;

Huang et al., 2013; Karczewski et al., 2014; Reid et al., 2014;

Wilkinson and Almeida, 2014; Shringarpure et al., 2015; Souilmi

et al., 2015). Another part of the solution may be new frameworks

for interactive analytics based on distributed computing approaches,

such as Dremel, a SQL query engine based on a columnar database

(Melnik et al., 2011).

Here we present a new paradigm for cloud-based genomic com-

putation using a Dremel database to effectively structure dense gen-

omic information and perform complex analytics for large volumes

of genomic data (Fig. 1). Our implementation was primarily SQL

queries, but also used other distributed computing approaches. We

applied this framework to analyzing 475 deeply sequenced human

genomes, assessed its performance with larger simulated datasets,

and achieved interactive queries in a web browser in seconds for

terabytes of variants data.

2 Materials and methods

2.1 Study sample, DNA sequencing and variant calling

The study protocols were approved by the IRB committee at

Stanford University. A total of 475 unrelated study subjects were re-

cruited and consented through three local hospitals (VAPAHCS,

Stanford Hospitals and Clinics, and Kaiser Permanente). Study IDs

were given to each subject for de-identification purpose, which were

used throughout this research project.

Blood collection and DNA preparation followed standard proto-

cols. DNA were sequenced using the 101 base-pair pair-end revers-

ible terminator massively parallel sequencing on the HiSeq 2000

instrument to an average genome coverage of 50�. Alignment and

variant calling from sequence reads were performed by Genome

Analysis Toolkit (GATK) Best Practices (DePristo et al., 2011), via

the Google Pipelines Application Program Interface (API), a cloud-

based task runner similar to Grid Engine. Briefly, reads were aligned

with BWA-MEM v0.7.10 to decoy human reference genome

hs37d5, and variants were called for each genome by

HaplotypeCaller and recalibrated by Variant Quality Score

Recalibration in GATK v3.3. The turnaround for individual sample

alignment and variant calling was �2 days and the total wall-time

for all samples, based on our parallelization strategy, was �5 days.

2.2 Representing genomic calls in Dremel

To collectively analyze a cohort of genomes, we attempted to repre-

sent genotypes along with their variant calling metrics in a single

table. The current VCF file format provides a good template in

which the first five columns denote positional information, followed

by three columns denoting variant calling metrics, one column spe-

cifying the genotypic format, and the last columns presenting

sample-specific genotypes. An apparent limitation of such file for-

mat is, should there be more than one genome documented, the vari-

ant calling metrics will only represent the first genome and therefore

losing the granularity that one wishes to have to examine each indi-

vidual call across all the genomes. To overcome this problem, we

made use of the repeated and nested features of the Dremel data-

base, with which the key information for every called position across

all genomes could be retained. Dremel was originally built by

Google to analyze petabyte scale log files (Melnik et al., 2011). Its

available implementations include Apache Drill, Cloudera Impala,

Amazon Athena, and Google BigQuery. In our test case, we used

BigQuery in our implementation.

The schema we designed used nested and repeated fields to or-

ganize variant calling results in a tree structure (Supplementary Fig.

S1). Generally, chromosomal positions for a genomic event, such as

reference block, single nucleotide variant (SNV) or short insertion

and deletion (INDEL), were recorded as one “record” in the Dremel

database. Within a record, definitive parameters such as chromo-

some name, positions and reference bases were listed as single vari-

ables and parameters that could vary across genomes, such as

alternate bases, were repeated to accommodate all existing scenarios

that appeared in the cohort. For example, in a chromosomal pos-

ition, if an A to C variation was detected for some genomes, an A to

G variation was detected for other genomes, and the rest genomes

had a base pair matching to the reference genome, then the alternate

bases would be reported in three repeated lines, denoting as C, G

Fig. 1. The computational paradigm of cloud platform-based data processing and Dremel-based interactive analytics for large-scale genomic data. Shown here is

the Google Cloud Platform-enabled solution. Variant calling from raw reads to genotypes is performed by GATK via Google Genomics API in Compute Engine

Virtual Machines (VMs). Genomic data is represented in a Dremel database to enable interactive data QC and analytics

3710 C.Pan et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
3
/2

3
/3

7
0
9
/4

0
3
6
3
8
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

Deleted Text: ; Calabrese &hx0026; Cannataro, 2016
Deleted Text:  
Deleted Text: ,
Deleted Text: x
Deleted Text: approximately 
Deleted Text: &hx2009;
Deleted Text: approximately 
Deleted Text: &hx2009;
Deleted Text: D
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,


and null, and the corresponding genome IDs were listed for each

case.

We also hierarchically organized records into flat and nested

fields. For example, call was nested to reflect multiple parameters

from read alignment and variant calling. This hierarchical structure

facilitated the retrieval of cohort information by traversing less data

and therefore reducing both computation time and cost. The nested

fields could be unfolded to access detailed information. Such feature

of repeated and nested fields in Dremel databases enabled preserva-

tion of read alignment and variant calling details for each genome in

a single table.

Finally, to achieve intuitive queries and interactive performance,

we designed two types of Dremel tables to represent genomic data.

The genome_calls table denoted all detected positions, capturing

both reference calls and variant calls. In this table, consecutive refer-

ence calls were presented as blocks of chromosomal positions (‘ref-

erence blocking’), a feature resembling the GATK HaplotypeCaller

results. On the other hand, the multi_sample_variants table centered

on only the variable positions, i.e. where at least one genome had a

DNA variant, whereas positions with only reference calls were omit-

ted. This variant-centric table thus overcomes the issue brought by

reference blocking, i.e. a position under examination might be in the

middle of a reference block. By explicitly extracting all calls for the

positions of interest, one can conveniently examine its values across

all genomes. For our study dataset of 475 genomes, the genome_call

table was 1.2 terabytes and the multi_sample_variants table was 1.4

terabytes.

2.3 Simulation of larger genomic datasets

In order to test the scalability of the BigQuery implementation, we

simulated large genomic datasets containing 1000, 2500 and 5000

genomes using an Apache Beam pipeline (aka Dataflow). For gen-

omic positions where minor allele frequencies >0.5% were observed

in the 1000 Genomes, we randomly generated genotypes for each

genome but maintained the same allele frequency rates as in the

1000 Genomes. Additionally, to simulate rarer and unique variation

in each individual in concordance with other cohorts of this size

(1000 Genomes Project Consortium et al., 2015), we added 20 000

singleton SNVs to each genome according to a uniform distribution

across all genomic coordinates. The resulting multi_sample_variants

tables in BigQuery were 3.6 terabytes for 1000 genomes, 14.6 tera-

bytes for 2500 genomes, and 48.4 terabytes for 5000 genomes.

2.4 Other distributed computing approaches

We used the GA4GH Genomics APIs, e.g. the variant API, for pre-

processing and developed other analytical methods using distributed

computing approaches such as Apache Beam and Apache Spark,

where SQL query was found to be less optimal for the analyses.

Primarily, these non-SQL approaches were used in, but not limited

to, data quality control (QC) steps (Supplementary Material).

3 Results

Our study started with sequencing 475 whole human genomes to an

average genome coverage of 50� and resulted in 48 terabytes of

aligned reads in BAM format and 1.1 terabytes of genotypic infor-

mation in the compressed gVCF format. We structured these geno-

types along with a few preselected variant calling metrics, which we

regarded as important for downstream interrogation, in two forms

of Dremel tables: the genome_calls table and the multi_sample_var-

iants table. The former captured all reference and variant calls and

therefore presented the most comprehensive genotypic information

of the cohort; the latter recorded positions where at least one variant

had to be present across all genomes, hence variant-centric. These

two tables were 1.2 and 1.4 terabytes, respectively. We then used

these tables to assess our analytical approaches by its capability in

enabling biological discoveries and by systems performance such as

runtime, scalability and cost.

3.1 Interactive genomic analytics enabled by Dremel

database for biological discoveries

We implemented SQL-based, comprehensive QC steps on the gen-

omic tables following recommendations for genome-wide associ-

ation studies (GWAS) (Turner et al., 2011) and derived a good

quality dataset containing 461 genomes with 26 948498 SNVs and

8656234 INDELs (Supplementary Table S1, Supplementary Fig. S2

and S3, method validation see Supplementary Material). Fourteen

genomes were excluded from downstream analysis due to various

reasons (Supplementary Table S2). This sample dropout rate is con-

sistent with other large-scale genomic sequencing studies adopting

similar QC methods (Fuchsberger et al., 2016; Guo et al., 2017;

Kenna et al., 2016). Notably, most of our QC computations, which

were carried out on database tables of one terabytes large, were

completed in tens of seconds. Next, we sought to gain deep under-

standing of these 461 genomes for deriving statistical, biological,

and medical information.

3.1.1 Near-complete call rate

First, we assessed the call rate in each genome with regard to all pos-

itions in the human reference genome hs37d5 (Fig. 2). Briefly, gen-

omic positions on the reference genome were classified into uncalled

and called positions. Uncalled positions were those not reported by

variant calling. The called positions were further divided into low

quality and high quality sub-groups, depending on if they failed or

passed QC steps (Fig. 2A). In our deep sequencing genomic dataset,

99.98% of the base pairs in the reference genome were detected,

demonstrating the capability of deep sequencing to access almost all

positions in the human reference genome (Fig. 2B). The 0.02% un-

called positions were enriched in 1–9 bp, with the longest uncalled

region (UR) of 323 bp, suggesting our sequencing left mostly very

short gaps in the genome (Fig. 2C left). These URs did not display

significant difference among chromosomes (Fig. 2C middle), most of

them occurred only once across the study population, and the longer

the uncalled gaps, the rarer they became (Fig. 2C right). When over-

laying these uncalled gaps with the ENCODE blacklisted regions,

we found little overlap (Supplementary Fig. S4). Our analysis sug-

gested little systematic bias of variant detection. Among the called

genomic positions, we examined variant counts at different QC lev-

els (Fig. 2D) and in different categories (Fig. 2E), and observed that

after complete QC, 99.78% of the genomic positions were reference

calls, whereas 0.12% base pairs had an SNV event and 0.08% base

pairs had INDEL events (Fig. 2E).

3.1.2 Genomic statistics for individual genomes

We carried on to compute genomic statistics for each genome.

Overall, about 3.6 million SNVs and 800000 INDELs were detected

in each genome, of which more than 97% SNVs and 85% INDELs

had been previously reported in the dbSNP135 database

(Supplementary Fig. 5A and B). In each genome, about 22 000 SNV

and 8500 INDEL events were private, i.e. only occurred to a single

genome in this study population. Interestingly many private INDEL

calls were almost exclusively heterozygous with enrichment in 1/2

Interactive analytics for large genomic data 3711
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genotypes, indicating these variations could be rather heterogeneous

(Supplementary Fig. S5C and D). For all the variants detected in

each genome, the ratio of transition to transversion was about 2.05,

and the ratio of heterozygous variants to homozygous variants was

around 1.46 (Supplementary Fig. S5E and F). These parameters

matched what have been reported in literature (Lam et al., 2011).

3.1.3 Distribution of variants and allele frequencies

Our study subjects, except a few, had genetic ancestry of European

(Supplementary Fig. S3E). We computed variant allele frequencies

for all genomes in this study, and observed that 25% SNVs and

22% INDELs were common (minor allele frequency [MAF] > 5%),

17% SNVs and 28% INDELs had low frequency (MAF between 0.5

and 5%), and 58% SNVs and 50% INDELs were rare (MAF <

0.5%). There have been multiple deep sequencing efforts in various

populations, e.g. the Southeast Asian Malays (Wong et al., 2013),

Dutch population (Genome of the Netherlands Consortium, 2014),

Icelandic population (Gudbjartsson et al., 2015), and Japanese

population (Nagasaki et al., 2015), and all of them reported over

half of the variants being rare. Our study, together with these

population-based deep sequencing studies, demonstrated that low

frequency to rare variants are the main components of an individual

genome and should therefore be considered in a comprehensive gen-

omic study, whether in population-based diseases mapping or in

clinical interpretation of personal genomes.

Previously, the 1000 Genomes project reported sequencing 503

genomes of European ancestry with average genome coverage of

7.4� (1000 Genomes Project Consortium et al., 2015). When com-

paring it with our dataset, we found that our dataset had similar

number of SNVs but significantly larger number of INDELs

(Supplementary Fig. S6). Likely this difference was caused by

sequencing depths. While SNVs were easier to detect, detection of

INDELs was much more challenging and often required higher

sequencing coverages. Despite the difference in absolute counts, the

variant distribution pattern across chromosomes was similar. When

normalizing by chromosome lengths, in both datasets, chromosomes

9 and 15 consistently displayed proportionally fewer variants than

their neighbouring chromosomes. This suggested that our genomic

dataset was of high quality and suitable for further discovery.

Next, we assess the saturation call rate in our dataset by the

accumulative variant counts with increasing number of genomes.

The most rapid increase of SNVs and INDELs occurred to the ini-

tial dozens of genomes, and slowed down when genomes further
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accumulated, although not reaching saturation at the maximal

number of genomes in this study (Fig. 3A). Different allele fre-

quency groups displayed distinct distribution pattern, with rare

variants and singletons (i.e. allele count of one) rapidly accumulat-

ing. We expect further sequencing beyond this study will reveal

many more variants of low to rare frequency. Interestingly, SNV

displayed a stronger increase momentum than INDEL, suggesting vari-

ation at single nucleotide level occurred more often than those involv-

ing longer nucleotides. We observed no obvious difference between the

allele frequency distributions for SNV and INDEL (Fig. 3B and C).

3.1.4 Most variable regions of the genome

We surveyed the density of variants by one million bp window

across the genome and observed that the most variable regions

located on chromosome 6 and chromosome 8 (Supplementary Fig.

S7A). The chromosome 6 region exclusively corresponded to the

human leukocyte antigen (HLA) genes, which encoded major histo-

compatibility complex proteins in humans that were responsible for

regulating the immune system (Supplementary Fig. S7B). The exces-

sive polymorphism on HLA genes has been known for producing

highly variable peptides in the antigen docking regions of MHC that

are responsible for docking diverse antigens to the cell surface, thus

forming a strategy for our immune system to cope with a broad spec-

trum of pathogens. On the highly variable region on chromosome 8

variants were more evenly distributed, although an enrichment in the

CSMD1 gene was observed (Supplementary Fig. S7C). CSMD1 en-

codes the CUB and sushi domain-containing protein 1, whose function

have been indicated in various human diseases including cancer

(Escudero-Esparza et al., 2016; Sun et al., 2001), inflammation

(Chandran, 2013), and neurological diseases (Athanasiu et al., 2017).

It is unknown whether our study population was enriched in any of

the CSMD1-related diseases. We suspect the high polymorphism in

this gene was related to its versatile cellular functions.

3.1.5 Pharmacogenomics suggested for reduced Warfarin dosage

Last, in lieu of the increasing efforts to understand medical implica-

tions from genomic sequencing data (Caudle et al., 2017; Dewey

et al., 2014; Kalia et al., 2017; Thompson et al., 2014), we exam-

ined the genomes in our dataset for pharmacogenomic information.

Warfarin is an anticoagulant whose excessive dosing could lead to

lethal bleeding, and according to the PharmGKB knowledge base

(Caudle et al., 2016), variation patterns of more than 50 genomic

positions on CYP2C9 gene and VKORC1 gene can affect sensitivity

to Warfarin to different degrees. Particularly, rs1799853 and

rs1057910 on CYP2C9 gene, and rs9923231 on VKORC1 gene

play important roles in decreasing Warfarin metabolism, which in

turn leads to extended accumulation of Warfarin in blood and there-

fore excessive dosing. We queried these genomic positions in our

dataset and concluded that 30% of our study subjects harbored the

variation patterns that would conferred them higher sensitivity to

Warfarin (Supplementary Fig. S8).

3.2 Scalability and cost analysis

3.2.1 Scalability assessment

In our own experience, batch mode public tools such as VCFtools

and bcftools scaled roughly linearly with the number of genomes. For

example, when sample sizes increased from 5 to 461 genomes, run-

time of the public tools increased from interactive mode (i.e. 1–2min)

to batch mode (i.e. 1–2h) (Supplementary Table S3). Cloud computa-

tion, given the parallel computational paradigm it enables, is known

to better overcome the scalability problem. The limit of scalability is

thus likely to reside in our data schema design.

We addressed the scalability of our method by comparing per-

formance on 5, 100, 200, 300, 400 and 461 genomes, sampled from

our study subjects and represented in multi_sample_variants tables

in Dremel with sizes of 19.8GB, 320GB, 636GB, 952GB, 1.24 TB

and 1.43 TB, respectively. The non-linear increase in table size was

due to the inclusion of rare variants, which caused increasing spars-

ity in the tables. We chose to evaluate four queries: two queries

spanned across all genomes (total variant counts and missingness

per site) and two queries ran on individual genomes (Ti/Tv summary

and heterozygosity). For most of the queries examined, we observed

the run-time of seconds to tens of seconds (Fig. 4A).

In a further testing, we simulated datasets of 1000, 2500 and

5000 genomes resulting in multi_sample_variants tables in Dremel

of 3.6, 14.6 and 48.4 TB, respectively (‘Method’ section). The

queries remained interactive for 1000 genomes, but slowed down

when the dataset increased to 5000 genomes (Fig. 4B). For example,

computing the ratio of heterozygous calls to homozygous calls for

each of the 5000 genomes simultaneously took 30min in total. This

indicated that our schema design, with the intent to retain many key

variant calling metrics in a single table, was no longer achieving

interactive speeds when unfolding the nested and repeated records

for 5000 genomes. Future improvement could consider alternate

schemas. For example, another schema has since been developed to

store genotypes only when they differ from the reference allele and

noting the identity of samples matching the reference in a separate

column. This schema drastically reduces the sparsity introduced

by large numbers of low frequency or rare variants that are un-

covered by whole genome sequencing, and was proven to be able to

handle 5205 genomes with interactive speed (Yuan et al., 2017).

3.2.2 Cost assessment

The cost of running queries on the BigQuery database is determined by

the amount of data that the SQL computation traverses for each query.
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Based on the unit cost at the time of writing i.e. $5/TB, we computed

the cost of running the four queries in differently sized datasets in the

BigQuery and presented them along the runtime (Fig. 4C and D).

Costs of platforms were more difficult to compare because of the in-

tegrative computational environment. We singled out the cost based on

runtime with the following considerations. For batch mode tools

VCFtools and bcftools, (i) we estimated cost based on core-hours and

chose the minimum time taken between the tools, (ii) we present results

from running the tools on local high-performance computing clusters at

near full capacity (on-premise), as well as on Google Compute Engine

which resembled the local computing clusters environment to a large

extent (cloud) and (iii) we assumed $0.05/core-h for both on-premise

and cloud environments. We ignored any fixed or temporary storage

costs associated with storing 1.1 terabytes data in the compressed gVCF

format. For the Dremel database, we estimated cost based on the

amount of data that the queries traversed and ignored the cost for stor-

ing the Dremel tables. Analyzing four different queries, we found a

tradeoff between cost, scalability, and wall time (Supplementary Table

S4). Though the cost for BigQuery was higher, the difference was mod-

est given the pronounced performance gains at orders of magnitude.

Notably, benchmarking of cost is complex and requires some

simplifications and caveats. First, the units across which costs were

measured differ. Server costs are typically provided in units of core-

hours, which is the number of hours the CPU core is engaged during

computation taking data transfer into account, whereas on

BigQuery, setting aside the cost of data storage itself, the cost of a

query is defined by data traversed by the query. These were funda-

mentally different measurements. Second, cost of an on-premise ser-

ver is difficult to generalize across all academic centers as different

settings and financial models, such as subsidies and charge back,

often exist. Third, a fair comparison between on-premise and cloud

computation requires taking the entire infrastructure into account

such as server cost, storage cost, network cost, and system adminis-

tration costs for the duration of the project. A complete analysis of

system level cost comparison is beyond the scope of this publication.

4 Discussion

In this study, we presented an accessible and novel Big Data oriented

computational paradigm combining cloud-based distributed database

and computation to address the scalability and interactivity in large

genomic data analytics. With the actual data of 475 deeply sequenced

human genomes and simulated datasets expanding to 5000 human

genomes, we demonstrated that such solutions can greatly shorten the

cycle of data analysis and hypothesis testing, transforming long-

running batch jobs into questions that can be asked from a web

browser interactively. Further, we developed a wide variety of SQL

methods to extensively interrogate the 475 genomes from various as-

pects, leading to insight on the data and novel biological discoveries.

Notably, our analyses were implemented in short, standard SQL

code in a browser window without requiring further software devel-

opment, and most queries completed running in tens of seconds. This

fast runtime was partially achieved by the hierarchical and nested

schema that we designed to structure genomic data in the database,

and partially by parallel computation implemented on the levels of

both distributed storage and an elastic computational cluster. A sig-

nificant advantage of cloud-based computing is that the map-reduce

implementation of parallelization was available as a standard infra-

structure feature, leaving us to focus on data analysis itself without

the need to worry about performance optimization of the computing

cluster. Furthermore, various tools are natively available in public

clouds to facilitate visualization, documentation and more complex

computation, such as hosted Apache Spark and Apache Beam.

Our solution used GA4GH APIs extensively to support inter-

operability between datasets and systems. We also provided tools to

connect our approaches with existing tools, e.g. converting existing

VCF data to our proposed schema, and transforming the Dremel

table multi_sample_variants to the standard multi-sample VCF file.

Our experience showed that the use of interoperable standards sim-

plified data exploration by bringing code simplification, standard-

ization, and analytical transparency. We believe that the API centric

approach will allow for development of ‘behind-the-scene’ data

compression schemes, perhaps even from third party providers, that

will further reduce cost and enhance performance.

In this study, though we tested a cloud-based service implement-

ing Dremel, researchers restricted from using public clouds can

choose to install and operate one of the multiple implementations

on-premises, and benefit from much of the performance, subject to

the constraints of cluster size, and utilization. The performance and

scalability of these Big Data oriented distributed databases make

them specifically applicable to large sequencing data.
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