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ABSTRACT 

Cloud computing offers new approaches for scientific computing 
that leverage the major commercial hardware and software 
investment in this area. Closely coupled applications are still 
unclear in clouds as synchronization costs are still higher than on 
optimized MPI machines. However loosely coupled problems are 
very important in many fields and can achieve good cloud 
performance even when pleasingly parallel steps are followed by 
reduction operations as supported by MapReduce. However we 
can use clouds in several ways and here we compare four different 
approaches using two biomedical applications. We look at the 
cloud infrastructure service based virtual machine utility 
computing models of Amazon AWS and Microsoft Windows 
Azure; Map Reduce based computing frameworks Apache 
Hadoop (deployed on raw hardware as well as on virtual 
machines) and Micrsoft DryadLINQ. We compare performance 
showing strong variations in cost between different EC2 machine 
choices and comparable performance between the utility 
computing (spawn off a set of jobs) and managed parallelism 
(MapReduce). The MapReduce approach offered the most user 
friendly approach. 
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1. INTRODUCTION 
Scientists are overwhelmed with the increasing amount of data 
processing needs arising from the storm of data that is flowing 
through virtually every field of science. One example is the 
production of DNA fragments at massive rate by the now widely 
available automated DNA Sequencer machines. Cloud computing 
offerings by major commercial players provide on demand 
computational services over the web which can be purchased 
within minutes just by use of a credit card. This utility computing 
model offered through cloud computing opens up exiting new 
opportunities for the computational scientists to perform their 
computations, as this model suits well with the occasional 
resource intensive (spiky) compute needs of the scientists. 
Another advantage is the ability increase the throughput of the 
computation by horizontally scaling the compute resource without 
additional cost overhead as for an example 100 hours in 10 nodes 
cost same as 10 hours in 100 nodes. 

In addition to the leasing of virtualized compute nodes, the cloud 
computing platforms offer a rich set of distributed cloud 
infrastructure services including storage, messaging and database 
services with cloud specific service guarantees. These services 
can be leveraged to build and deploy scalable distributed 

applications on cloud environments. At the same time we notice 
the emergence of different cloud oriented data processing 
frameworks such as Map Reduce[1] technologies, which allow 
users to effectively to perform distributed computations in 
increasingly brittle environments like commodity clusters and 
computational clouds.  

In this paper we introduce a set of abstract frameworks 
constructed using the cloud oriented programming models to 
perform pleasingly parallel computations. We present 
implementations of bio medical applications such as Cap3[2] 
sequence assembly, MDS & GTM interpolation using these 
frameworks. We analyze the performance and the usability of 
different cloud oriented programming models using the Cap3 
application to assemble a large collection of genome fragments 
and using GTM & MDS interpolation applications to process 26 
million 166-dimensional dataset obtained from the PubChem 
project database. Pubchem is a NIH funded repository of over 60 
million chemical molecules and provides their chemical structures 
and biological activities. We use Amazon Web Services[3] and 
Microsoft Windows Azure[4] cloud computing platforms and use 
Apache Hadoop[5] Map Reduce and Microsoft DryaLINQ[6] as 
the distributed parallel computing frameworks.  

2. CLOUD TECHNOLOGIES AND 

APPLICATION ARCHITECTURE 
Processing of large data sets using existing sequential executables 
is a common use case we encounter in many scientific 
applications. Some of these applications exhibit pleasingly 
parallel characteristics where the data can be independently 
processed in parts allowing the applications to be easily 
parallelized. In the following sections we explore the cloud 
programming models and application frameworks we developed 
using them for the pleasingly parallel computations. These 
frameworks have been used to implement the applications 
mentioned in section 3. 

2.1 Amazon Web Services & Microsoft Azure 

Platform 
Amazon Web Services (AWS)[3] are a set of cloud computing 
services by Amazon, offering on demand compute and storage 
services including but not limited to Elastic Compute Cloud 
(EC2), Simple Storage Service (S3) and Simple Queue Service 
(SQS). EC2 provides users the capability to lease hourly billed 
Xen based virtual machine instances which allows users to 
dynamically provision resizable virtual clusters in a matter of 
minutes through a web service interface. EC2 supports both Linux 
and Windows virtual instances. SQS is an eventual consistent 
distributed message queue service which provides a reliable, 
scalable messaging mechanism for storing messages while 
communicating with distributed components of an application. S3 



is a distributed storage system where users can store and retrieve 
data through a web services interface and is accessible from 
anywhere in the web.  

Amazon EC2 offers a variety of instance types giving a richer set 
of options for the user to choose from depending on his need. One 
particular instance type of interest is the high CPU extra large 
instances, which costs the same as an extra large instance but 
offers more CPU power at the cost of lesser memory. Similarly 
EC2 offers high-memory instance types too. Table 1 provides a 
summary of the EC2 instance types we used in this paper. 

Table 1 : Selected EC2 Instance Types 

Instance Type Memory EC2 compute 
units 

Actual CPU 
cores 

Cost per 
hour 

Large (L) 7.5 GB 4 2 X (~2Ghz) 0.34$ 

Extra Large (XL) 15 GB 8 4 X (~2Ghz) 0.68$ 

High CPU Extra 
Large (HCXL) 

7 GB 20 8  X 
  (~2.5Ghz) 

0.68$ 

High Memory 
4XL (HM4XL) 

68.4 GB 26 8X 
(~3.25Ghz) 

2.40$ 

 

Microsoft Azure platform[4] also offers a set of cloud computing 
services similar to the Amazon web services. Windows Azure 
compute, Azure Storage Queues and Azure Storage blob services 
are the Azure counterparts for Amazon EC2, Amazon SQS and 
the Amazon S3 services. Azure only supports Windows virtual 
instances and offer a limited variety of instance types when 
compared with Amazon EC2. A single Azure small instance costs 
0.12$ per hour and comprises of 1 CPU core, 1.7 GB memory and 
250 GB disk space. Azure medium, large and extra large instances 
are multiples of 2, 4 & 8 of the small instance in cost wise as well 
as in the configuration wise. It’s been speculated that a single 
CPU core in Azure is 1.5Ghz to 1.7Ghz. In section 4.1 for the 
Cap3 program, we found that 8 Azure small instances perform as 
better as a single Amazon high CPU extra large instance with 20 
compute units. 

2.1.1 Classic cloud architecture 
Figure 1 depicts the architecture of the classic cloud processing 
model. The classic cloud processing model uses the cloud 
instances (EC2 or Azure) for data processing and uses Amazon S3 
or Windows Azure for the data storage. For the task scheduling, it 
uses an Amazon SQS or an Azure queue as a queue of tasks 
where every message in the queue corresponds to a single task. 
The client populates the scheduling queue with tasks, while the 
worker processes pick tasks from the scheduling queue. Both SQS 
queue instances and the Azure queue instances have a 
configurable visibility timeout where a message will not be visible 
to other workers for the given amount of time after it’s read by a 
worker unless it is deleted by the worker upon completion of the 
task. This feature provides a simple fault tolerance capability to 
the system, where a message will get processed by some worker if 
the task does not get completed with the initial reader (worker) 
within a certain time limit. 

 

Figure 1: Classic Cloud Processing Model 

In the applications discussed in this paper a single task 
corresponds to a single input file. The worker processes will 
retrieve the input files from the cloud storage and will process 
them using an executable program before uploading the results 
back to the cloud storage. In this implementation a user can 
configure the workers to use any executable program installed in 
the virtual machine provided that it takes input in the form of a 
file. Our implementation uses a monitoring message queue to 
monitor the progress of the computation, but for more 
sophistication one can use cloud data stores like Amazon 
simpleDB to store the monitoring and state data.  

 

2.2 Hadoop 

 

Figure 2: Hadoop Map Reduce Processing Model 

Apache Hadoop[5] is an open source implementation of the 
Google Map Reduce[1] technology. It shares many characteristics 
with the Google MapReduce implementation. Apache Hadoop 
uses HDFS parallel file system for data storage, which stores the 
data across the local disks of the compute nodes while presenting 
a single file system view. Hadoop optimizes the data 
communication by scheduling computations near the data using 
the data locality information provided by the HDFS file system. 
Hadoop handles failures by rerunning the failed tasks. 

The parallel application framework on Hadoop is developed as a 
set of map tasks which process the given data splits using the 
configured executable program. Input to Hadoop map tasks 



comprises of key, value pairs, where by default Hadoop parses the 
contents of the file split to read them. Frequently the executable 
data processing programs expect a file path for the input, rather 
than the contents, which is not possible with the Hadoop built-in 
formats and record readers. We implemented a custom 
InputFormat and a RecordReader for Hadoop so that map tasks 
will receive the file name and the HDFS path of the data split 
respectively as the key and the value, while preserving the 
Hadoop data locality based scheduling.  

2.3 DryadLINQ 
Dryad[7] is a framework developed by Microsoft Research as a 
general-purpose distributed execution engine for coarse-grain 
parallel applications. Dryad applications are expressed as directed 
acyclic data-flow graphs (DAG), where vertices represent 
computations and edges represent communication channels 
between the computations. Similar to Map Reduce, Dryad 
scheduler optimizes the data transfer overheads by scheduling the 
computations near data and handles failures through rerunning of 
tasks and duplicate instance execution. Data for the computations 
need to be partitioned manually and stored beforehand in the local 
disks of the computational nodes via windows shared directories. 
Dryad is available for academic usage through the DryadLINQ 
API. DryadLINQ[8] is a high level declarative language layer on 
top of Dryad. DryadLINQ queries get translated in to distributed 
Dryad computational graphs in the run time. Latest version of 
DryadLINQ operates on Window HPC clusters only.  

The DryadLINQ implementation of the framework uses the 
DryadLINQ “select” operator on the data partitions to perform the 
distributed computation. The resulting computation graph looks 
much similar to the figure 2, where instead of using HDFS, Dryad 
will use the windows shared local directories for data storage. As 
mentioned above, the data partitioning, distribution and the 
generation of metadata files for the data partitions needs to be 
performed manually.  

2.4 Usability of the technologies 
As expected, implementing the above mentioned application 
framework using Hadoop and DryadLINQ was easier than 
implementing them using the cloud services as most of the data 
processing framework was already in place with Hadoop & 
DryadLINQ. Hadoop & DryadLINQ takes care of scheduling, 
monitoring and fault tolerance. With Hadoop we had to 
implement a Map function, which contained the logic to copy the 
input file from HDFS to the working directory, execute the 
external program as a process and to upload the results files to the 
HDFS. In addition to this, we had to implement a custom 
InputFormat and a RecordReader to support file inputs to the map 
tasks. With DryadLINQ we had implement a side effect free 
function to execute the program on the given data and to copy the 
result to the output shared directory. But significant effort had to 
be spent on implementing the data partitioning and the 
distribution programs to support DryadLINQ. 

EC2 & Azure classic cloud implementations involved more effort 
than the Hadoop & DryadLINQ implementations, as all the 
scheduling, monitoring and fault tolerance had to be implemented 
from the scratch using the features of the cloud services. Amazon 
EC2 provides infrastructure as a service by allowing users to 
access the raw virtual machine instances while windows Azure 
provides the .net platform as a service allowing users to deploy 
.net applications in the virtual machines through a web interface. 
Hence the deployment process was easier with Azure as oppose to 

the EC2 where we had to manually create instances, install 
software and start the worker instances. On the other hand the 
EC2 infrastructure as a service gives more flexibility and control 
to the developers. Azure provides better development & testing 
support through the visual studio integration and the local 
debugging environment of the Azure SDK. Azure platform is 
heading towards providing a more developer friendly 
environment, but as of today (Mar 2010) the platform is less 
mature compared to the AWS. 

3. APPLICATIONS 

3.1 Cap3 
Cap3 [2]  is a sequence assembly program which assembles DNA 
sequences by aligning and merging the sequence fragments from 
the respective sequences. Sequence assembly is an integral part of 
genomics as the current DNA sequencing technology, such as 
shotgun sequencing, is capable of reading only parts of whole 
genomes at once. The Cap3 algorithm operates on collection of 
gene sequence fragments presented as FASTA formatted files. It 
removes the poor regions of the DNA fragments, calculates the 
overlaps between the fragments, identifies and removes the false 
overlaps, joins the fragments to form contigs of one or more 
overlapping DNA segments and finally through multiple sequence 
alignment generates consensus sequences.  

The increased availability of DNA Sequencers is generating 
massive amounts of sequencing data that needs to be assembled. 
Cap3 program is often used in parallel with lots of input files due 
to the pleasingly parallel nature of the application. 

3.2 GTM & MDS Interpolation 
MDS[9] and GTM[10] are known as an algorithm for dimension 
reduction, which finds an optimal user-defined low-dimensional 
representation out of the data in high-dimensional space. 
However, although MDS and GTM share the same objective for 
optimal dimension reduction, GTM finds a non-linear mapping 
based on Gaussian probability density model in vector space. On 
the other hand, MDS tries to construct a mapping in target 
dimension with respect to the pairwise proximity information, 
mostly dissimilarity or distance. 

Multidimensional Scaling (MDS):  MDS is a general term of the 
techniques to configure low dimensional mappings of the given 
high-dimensional data with respect to the pairwise proximity 
information, while the pairwise Euclidean distance within target 
dimension of each pair is approximated to the corresponding 
original problem to find low-dimensional configuration which 
minimizes the objective function, called STRESS or SSTRESS. 
Definition of STRESS (1) and STRESS (2) are as following: 

 

 𝜎 𝑋 =   𝑤𝑖𝑗  𝑑𝑖𝑗  𝑋 −  𝛿𝑖𝑗  2𝑖<𝑗≤𝑁  
(1) 

 𝜎2 𝑋 =   𝑤𝑖𝑗  𝑑𝑖𝑗2  𝑋 −  𝛿𝑖𝑗2  2𝑖<𝑗≤𝑁  
(2) 

where 𝑑𝑖𝑗  𝑋 = ||𝑥𝑖 −  𝑥𝑗  ||,  1 ≤ 𝑖 < 𝑗 ≤ 𝑁 and 𝑤𝑖𝑗  is a weight 

value, so 𝑤𝑖𝑗 ≥ 0. 

Generative Topographic Mapping (GTM): GTM is an 
unsupervised learning method for modeling the density of data 
and finding a non-linear mapping of high-dimensional data in a 
low-dimensional space. GTM is also known as a principled 



alternative to Self-Organizing Map (SOM) [11]which does not 
have any density model, GTM defines an explicit density model 
based on Gaussian distribution [12] and finds the best set of 
parameters associated with Gaussian mixtures by using an 
Expectation-Maximization (EM) optimization algorithm[13]. 

Interpolation of MDS[14] and GTM is an out-of-sample extension 
of the original algorithms and it is designed to process much 
larger data points with minor trade-off of approximation. Instead 
of processing full dataset which is the case of original MDS and 
GTM algorithms, interpolation approach takes only a part of the 
full dataset, known as samples, for a computer-intensive training 
process and applies the trained result to the rest of dataset, known 
as out-of-samples, which is usually faster than the former process. 
With this interpolation approach in MDS and GTM, one can 
visualize millions of data points with modest amount of 
computations and memory requirement. Currently we use MDS, 
GTM, MDS interpolation and GTM interpolation applications for 
DNA sequence studies and chemical information mining & 
exploration of the Pubchem database data. 

 

4. PERFORMANCE 

4.1 Application performance with different 

cloud instance types 
 

Table 2: EC2 Cap3 performance with different instance types 

to assemble 200 FASTA files with 458 reads in each file 

Node 
Type 

No. of 
Nodes 

No. of 
Workers per 

Node 

Total Time 
(s) 

Amortized 
Compute Cost  

Compute Cost 
(hour units) 

Large 10 2 1389.0 $2.33 $3.40 

Large 10 4 1414.6 $1.34 $3.40 

XLarge 5 2 2486.6 $2.35 $3.40 

XLarge 5 4 1424.3 $1.35 $3.40 

XLarge 5 8 1459.6 $1.38 $3.40 

HCXL 2 5 2302.2 $0.87 $1.36 

HCXL 2 10 1554.7 $0.59 $1.36 

HCXL 2 20 1452.9 $0.55 $1.36 

 

Table 2 presents the benchmark results for Cap3 application on 
different EC2 instance types. EC2 small instance size was not 
included in our study as it does not support 64bit operating 
systems. EC2 instances are hourly billed. The compute cost (hour 
units) assumes the instances are used only for that particular 
computation. The amortized cost assumes that the instance will be 
used for useful work for the remainder of the hour.  

According to these results we can infer that memory is not a 
bottleneck for the Cap3 program and that for the above instance 
types, the performance is proportional to the number of actual 
compute cores. The most efficient performance for the Cap3 EC2 
application is gained using high CPU extra large instances. 

Table 3 : EC2 GTM performance with different instance types 

to process 100,000 Pubchem data points 

Node 
Type 

No. of 
Nodes 

No. of 
Workers per 

Node 

Total 
Time (s) 

Amortized 
Compute Cost  

Compute Cost 
(per hour units) 

Large 5 2 478.8 $0.23  $1.70  

Large 5 4 422 $0.20  $1.70  

XLarge 2 5 710.8 $0.27  $1.36  

XLarge 2 10 721.5 $0.27  $1.36  

HCXL 1 10 866.5 $0.16  $0.68  

HCXL 1 20 878.4 $0.17  $0.68  

HM4XL 1 10 320.8 $0.21  $2.40  

HM4XL 1 20 319.5 $0.21  $2.40  

 

According to the table 3, we can infer that memory (size & 
bandwidth) is a bottleneck for the GTM interpolation application. 
The GTM interpolation application performs better in the 
presence of more memory and less processor core sharing the 
memory. But still the high CPU extra large instance appears as the 
most economic choice.  

4.2 Performance comparison between 

different implementations 
In the following studies we use parallel efficiency as the measure 
to evaluate the different frameworks. Efficiency is calculated 
using the following formula.  𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐸𝑝) =

T(1)

pT(ρ)
 

T(1) is the best sequential execution time for the application in a 
particular environment using the same data set or a representative 
subset if the sequential time is prohibitively large to measure. In 
all the cases the sequential time was measured with no data 
transfers, i.e. the input files are present in the local disks. T(ρ) is 
the parallel run time for the application while “p” is the number of 
processor cores used.  

Efficiency is a relatively good measure to evaluate the different 
approaches we use in our studies as we don’t have the possibility 
to use identical configurations across the different environments. 
At the same time we cannot use efficiency to directly compare the 
the different technologies due to the following reasons. Even 
though efficiency accounts the differences of the systems which 
effects the sequential running time as well as the parallel running 
time, it does not reflect other differences such as memory size, 
memory bandwidth and network that can effect when running 
parallel computations. 

Per core per computation time is calculated in each test to give an 
idea about the actual execution times in the different 
environments. 𝑃𝑒𝑟 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟 𝐶𝑜𝑟𝑒 𝑡𝑖𝑚𝑒 =

pT(ρ)𝑁𝑜.𝑜𝑓 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

4.2.1 Cap3 
We benchmarked the Cap3 classic cloud implementation 
performance using a replicated set of FASTA formatted data files, 
each containing 458 reads, and compared with our previous 
performance results[15] for Cap3 DryadLINQ on bare metal, 
Cap3 Hadoop bare metal and Cap3 Hadoop on virtual machine 
results. 16 High CPU extra large instances were used for the EC2 
testing and 128 small instances were used for the Azure Cap3 
testing. DryadLINQ, Hadoop bare metal & Hadoop VM results 
were obtained using a 32 node X 8 core (2.5 Ghz) cluster with 16 
GB memory in each node. An EC2 extra large instance was 
considered as 8 actual cores while an Azure small instance was 



considered as a single core for the following calculations. In all 
the cases the data was already present in the frameworks preferred 
storage location.  

 

Figure 3 : Cap3 parallel efficiency 

 

Figure 4 : Cap3 time to process a single file (458 reads) per 

core with different frameworks 

 

Cost to process 4096 FASTA files (~1GB) on EC2 (58 minutes) 

Compute 1 hour X 16 HCXL instances  = 0.68$ * 16 = 10.88 $ 

10000 SQS requests    = 0.01 $ 

Storage per 1GB per month    = 0.15 $ 

Data transfer out per 1 GB    = 0.15 $ 

Total      = 11.28 $ 

Cost to process 4096 FASTA files (~1GB) on Azure (59 minutes) 

Compute 1 hour X 128 small instances  = 0.12 $ * 128 = 15.36 $ 

10000 SQS requests    = 0.01 $ 

Storage per 1GB per month    = 0.15 $ 

Data transfer in/out per 1 GB   = 0.10 $ + 0.15 $ 

Total      = 15.77 $ 

In addition to the above cost, there will be additional costs for the 
instance uptime for environment preparation and minor 
miscellaneous platform specific charges for things such as number 
of storage requests.  

Based on figure 4 we can conclude that all four implementations 
exhibit reasonable efficiency within reasonable limits. When 
interpreting figure 5, it should be noted that the Cap3 program 
performs ~12.5% faster on windows environment than on the 
Linux environment. As we mentioned earlier we cannot use these 
results to claim that a given framework performs better than 
another, as only approximations are possible as the underlying 
infrastructure configurations of the cloud environments are 
unknown. Still, one interesting result to note in figure 5 is that the 
EC2 performance is better than the Hadoop VM performance. In 
the above performance tests the Cap3 Hadoop implementation 
relied on a shared file system for data storage rather than on the 
HDFS, which might have contributed to the lower performance of 
Hadoop Cap3 implementation. In the figure 6 & 7 we compare the 
performance of Cap3 Hadoop application using HDFS and using a 
shared file system on a 32 node X 24 core cluster. It clearly shows 
the bottleneck of the shared file system and network I/O. The 
difference is much bigger in the 24 maps per node case as the 
concurrent load on the network and file system is much higher. 

 

Figure 5 : Hadoop Cap3 parallel efficiency using shared file 

system vs HDFS on a 768 core (24 core X 32 nodes) cluster 

 

Figure 6 : Hadoop Cap3 performance shared FS vs HDFS 



4.2.2 GTM Interpolation 

 

Figure 7: GTM interpolation efficiency on 26 Million 

Pubchem data points 

 

 

Figure 8 : GTM interpolation performance on 26 Million 

Pubchem data set 

We used the pubchem data set of 26 million data points with 166 
dimensions to analyze the GTM interpolation implementations. 
We used a 100,000 already processed subset of the data as a seed 
for the GTM interpolation. EC2 Cap3 tests were performed on 
EC2 High CPU Extra Large instances (considered as 8 cores) as 
they give the best cost efficiency according to the table 3. 
DryadLINQ Cap3 tests were performed on a 16 core (AMD 
Opteron 2.3 Ghz) per node, 16GB memory per node cluster. 
Hadoop Cap3 tests were performed on a 24 core (Intel Xeon 2.4 
Ghz) per node, 48 GB memory per node cluster which was 
configured to use only 8 cores per node.  

Once again we can notice that the 3 frameworks perform 
comparably. Characteristics of the GTM interpolation application 
are different from the Cap3 application as GTM is more memory 
intensive and the memory bandwidth becomes the bottleneck, 
which gives rise to the lower efficiency numbers. Also the grain 
size of the computational tasks in the GTM application was 
relatively smaller than Cap3 or MDS interpolation. Compressed 

data splits, which were unzipped before handing over to the 
executable, were used due to the large size of the input data. 
When the input data size is larger, Hadoop & DryadLINQ 
applications have an advantage of data locality based scheduling 
over EC2. Hadoop & DryadLINQ model brings computation to 
the data optimizing the I/O load, while the classic cloud model 
brings data to the computations. 

 

4.2.3 MDS interpolation 

 

Figure 9 : DryadLINQ MDS interpolation performance on a 

768 core cluster (32 node X 24 cores)  

 

 

Figure 10 : Azure MDS interpolation performance on 24 small 

Azure instances 

Figure 9 presents the results for processing millions of data points, 
broken in parts of 10000 data points, from the Pubchem data set 
with the DryadLINQ MDS interpolation application using 
100,000 already MDSed seed data. A 24 core (Intel Xeon 2.4 
Ghz) 48 GB memory per node 32 nodes cluster was use for this 
study. The dip of efficiency we notice in the figure 9 from 23 
million to 26 million is due to the unbalanced partition that occurs 
when distributing 2600 parts among 768 cores.  

 Figure 10 presents results for Azure MDS interpolation 
application using 24 Azure small instances using a much smaller 
data set. The Azure MDS interpolation application exhibits very 
good efficiency, especially when considering the input and output 



data transfers it needs to perform from and to the Azure blob 
storage. The efficiency difference between DryadLINQ MDS 
interpolation & Azure MDS interpolation should be due to the fact 
that Azure small instances have a single exclusive memory per 
core while in the DryadLINQ cluster 24 cores have to share a 
single memory bus. 

 

5. RELATED WORKS 
There exist many studies [16-18] of using existing traditional 
scientific applications and benchmarks on the cloud. In contrast in 
this paper we focused on implementing and analyzing the 
performance of biomedical applications using cloud 
services/technologies and cloud oriented programming 
frameworks. 

In one of our earlier work[15] we analyzed the overhead of 
virtualization and the effect of inhomogeneous data on the cloud 
oriented programming frameworks. Also Ekanayake and Fox[18] 
analyzed the overhead of MPI running on virtual machines under 
different VM configurations and using different MPI stacks. 

CloudMapReduce[19] is an effort to implement a map reduce 
framework using the cloud infrastructure services. Amazon 
AWS[3] also offers Map Reduce as a cloud service through  
Elastic Map Reduce.  

In addition to the biomedical applications we have discussed in 
this paper, we also developed distributed pair-wise sequence 
alignment applications using the Map Reduce programming 
models[15]. There are also many other bio-medical applications 
developed using Map Reduce programming frameworks such as 
CloudBLAST[20], which implements BLAST algorithm and 
CloudBurst, which performs parallel genome read mappings. 

 

6. CONCLUSION  
We have demonstrated that clouds offer attractive computing 
paradigms for two loosely coupled scientific computation 
applications. Cloud infrastructure based models as well as the 
Map Reduce based frameworks offered very good parallel 
efficiencies given sufficiently coarser grain task decompositions. 
The higher level MapReduce paradigm offered a simpler 
programming model. Also by using two different kinds of 
applications we showed that selecting an instance type which suits 
your application can give significant time & monetary advantages. 
Our previous work has tackled a broader range of data intensive 
applications under MapReduce and also compared them to MPI 
on raw hardware. The cost effectiveness of cloud data centers 
combined with the comparable performance reported here 
suggests that loosely coupled science applications will 
increasingly be implemented on clouds and that using MapReduce 
will offer convenient user interfaces with little overhead. 
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