
Cloud Computing Paradigms for Pleasingly Parallel
Biomedical Applications

Thilina Gunarathne1,2, Tak-Lon Wu1,2, Judy Qiu2, Geoffrey Fox1,2
1
School of Informatics and Computing,

2
Pervasive Technology Institute

Indiana University, Bloomington.
{tgunarat, taklwu, xqiu,gcf}@indiana.edu

ABSTRACT

Cloud computing offers new approaches for scientific computing
that leverage the major commercial hardware and software
investment in this area. Closely coupled applications are still
unclear in clouds as synchronization costs are still higher than on
optimized MPI machines. However loosely coupled problems are
very important in many fields and can achieve good cloud
performance even when pleasingly parallel steps are followed by
reduction operations as supported by MapReduce. However we
can use clouds in several ways and here we compare four different
approaches using two biomedical applications. We look at the
cloud infrastructure service based virtual machine utility
computing models of Amazon AWS and Microsoft Windows
Azure; Map Reduce based computing frameworks Apache
Hadoop (deployed on raw hardware as well as on virtual
machines) and Micrsoft DryadLINQ. We compare performance
showing strong variations in cost between different EC2 machine
choices and comparable performance between the utility
computing (spawn off a set of jobs) and managed parallelism
(MapReduce). The MapReduce approach offered the most user
friendly approach.

General Terms

Measurement, Performance, Economics.

Keywords

Cloud Technology, Map Reduce, Interpolation, Sequence
Assembly

1. INTRODUCTION
Scientists are overwhelmed with the increasing amount of data
processing needs arising from the storm of data that is flowing
through virtually every field of science. One example is the
production of DNA fragments at massive rate by the now widely
available automated DNA Sequencer machines. Cloud computing
offerings by major commercial players provide on demand
computational services over the web which can be purchased
within minutes just by use of a credit card. This utility computing
model offered through cloud computing opens up exiting new
opportunities for the computational scientists to perform their
computations, as this model suits well with the occasional
resource intensive (spiky) compute needs of the scientists.
Another advantage is the ability increase the throughput of the
computation by horizontally scaling the compute resource without
additional cost overhead as for an example 100 hours in 10 nodes
cost same as 10 hours in 100 nodes.

In addition to the leasing of virtualized compute nodes, the cloud
computing platforms offer a rich set of distributed cloud
infrastructure services including storage, messaging and database
services with cloud specific service guarantees. These services
can be leveraged to build and deploy scalable distributed

applications on cloud environments. At the same time we notice
the emergence of different cloud oriented data processing
frameworks such as Map Reduce[1] technologies, which allow
users to effectively to perform distributed computations in
increasingly brittle environments like commodity clusters and
computational clouds.

In this paper we introduce a set of abstract frameworks
constructed using the cloud oriented programming models to
perform pleasingly parallel computations. We present
implementations of bio medical applications such as Cap3[2]
sequence assembly, MDS & GTM interpolation using these
frameworks. We analyze the performance and the usability of
different cloud oriented programming models using the Cap3
application to assemble a large collection of genome fragments
and using GTM & MDS interpolation applications to process 26
million 166-dimensional dataset obtained from the PubChem
project database. Pubchem is a NIH funded repository of over 60
million chemical molecules and provides their chemical structures
and biological activities. We use Amazon Web Services[3] and
Microsoft Windows Azure[4] cloud computing platforms and use
Apache Hadoop[5] Map Reduce and Microsoft DryaLINQ[6] as
the distributed parallel computing frameworks.

2. CLOUD TECHNOLOGIES AND

APPLICATION ARCHITECTURE
Processing of large data sets using existing sequential executables
is a common use case we encounter in many scientific
applications. Some of these applications exhibit pleasingly
parallel characteristics where the data can be independently
processed in parts allowing the applications to be easily
parallelized. In the following sections we explore the cloud
programming models and application frameworks we developed
using them for the pleasingly parallel computations. These
frameworks have been used to implement the applications
mentioned in section 3.

2.1 Amazon Web Services & Microsoft Azure

Platform
Amazon Web Services (AWS)[3] are a set of cloud computing
services by Amazon, offering on demand compute and storage
services including but not limited to Elastic Compute Cloud
(EC2), Simple Storage Service (S3) and Simple Queue Service
(SQS). EC2 provides users the capability to lease hourly billed
Xen based virtual machine instances which allows users to
dynamically provision resizable virtual clusters in a matter of
minutes through a web service interface. EC2 supports both Linux
and Windows virtual instances. SQS is an eventual consistent
distributed message queue service which provides a reliable,
scalable messaging mechanism for storing messages while
communicating with distributed components of an application. S3

is a distributed storage system where users can store and retrieve
data through a web services interface and is accessible from
anywhere in the web.

Amazon EC2 offers a variety of instance types giving a richer set
of options for the user to choose from depending on his need. One
particular instance type of interest is the high CPU extra large
instances, which costs the same as an extra large instance but
offers more CPU power at the cost of lesser memory. Similarly
EC2 offers high-memory instance types too. Table 1 provides a
summary of the EC2 instance types we used in this paper.

Table 1 : Selected EC2 Instance Types

Instance Type Memory EC2 compute
units

Actual CPU
cores

Cost per
hour

Large (L) 7.5 GB 4 2 X (~2Ghz) 0.34$

Extra Large (XL) 15 GB 8 4 X (~2Ghz) 0.68$

High CPU Extra
Large (HCXL)

7 GB 20 8 X
 (~2.5Ghz)

0.68$

High Memory
4XL (HM4XL)

68.4 GB 26 8X
(~3.25Ghz)

2.40$

Microsoft Azure platform[4] also offers a set of cloud computing
services similar to the Amazon web services. Windows Azure
compute, Azure Storage Queues and Azure Storage blob services
are the Azure counterparts for Amazon EC2, Amazon SQS and
the Amazon S3 services. Azure only supports Windows virtual
instances and offer a limited variety of instance types when
compared with Amazon EC2. A single Azure small instance costs
0.12$ per hour and comprises of 1 CPU core, 1.7 GB memory and
250 GB disk space. Azure medium, large and extra large instances
are multiples of 2, 4 & 8 of the small instance in cost wise as well
as in the configuration wise. It’s been speculated that a single
CPU core in Azure is 1.5Ghz to 1.7Ghz. In section 4.1 for the
Cap3 program, we found that 8 Azure small instances perform as
better as a single Amazon high CPU extra large instance with 20
compute units.

2.1.1 Classic cloud architecture
Figure 1 depicts the architecture of the classic cloud processing
model. The classic cloud processing model uses the cloud
instances (EC2 or Azure) for data processing and uses Amazon S3
or Windows Azure for the data storage. For the task scheduling, it
uses an Amazon SQS or an Azure queue as a queue of tasks
where every message in the queue corresponds to a single task.
The client populates the scheduling queue with tasks, while the
worker processes pick tasks from the scheduling queue. Both SQS
queue instances and the Azure queue instances have a
configurable visibility timeout where a message will not be visible
to other workers for the given amount of time after it’s read by a
worker unless it is deleted by the worker upon completion of the
task. This feature provides a simple fault tolerance capability to
the system, where a message will get processed by some worker if
the task does not get completed with the initial reader (worker)
within a certain time limit.

Figure 1: Classic Cloud Processing Model

In the applications discussed in this paper a single task
corresponds to a single input file. The worker processes will
retrieve the input files from the cloud storage and will process
them using an executable program before uploading the results
back to the cloud storage. In this implementation a user can
configure the workers to use any executable program installed in
the virtual machine provided that it takes input in the form of a
file. Our implementation uses a monitoring message queue to
monitor the progress of the computation, but for more
sophistication one can use cloud data stores like Amazon
simpleDB to store the monitoring and state data.

2.2 Hadoop

Figure 2: Hadoop Map Reduce Processing Model

Apache Hadoop[5] is an open source implementation of the
Google Map Reduce[1] technology. It shares many characteristics
with the Google MapReduce implementation. Apache Hadoop
uses HDFS parallel file system for data storage, which stores the
data across the local disks of the compute nodes while presenting
a single file system view. Hadoop optimizes the data
communication by scheduling computations near the data using
the data locality information provided by the HDFS file system.
Hadoop handles failures by rerunning the failed tasks.

The parallel application framework on Hadoop is developed as a
set of map tasks which process the given data splits using the
configured executable program. Input to Hadoop map tasks

comprises of key, value pairs, where by default Hadoop parses the
contents of the file split to read them. Frequently the executable
data processing programs expect a file path for the input, rather
than the contents, which is not possible with the Hadoop built-in
formats and record readers. We implemented a custom
InputFormat and a RecordReader for Hadoop so that map tasks
will receive the file name and the HDFS path of the data split
respectively as the key and the value, while preserving the
Hadoop data locality based scheduling.

2.3 DryadLINQ
Dryad[7] is a framework developed by Microsoft Research as a
general-purpose distributed execution engine for coarse-grain
parallel applications. Dryad applications are expressed as directed
acyclic data-flow graphs (DAG), where vertices represent
computations and edges represent communication channels
between the computations. Similar to Map Reduce, Dryad
scheduler optimizes the data transfer overheads by scheduling the
computations near data and handles failures through rerunning of
tasks and duplicate instance execution. Data for the computations
need to be partitioned manually and stored beforehand in the local
disks of the computational nodes via windows shared directories.
Dryad is available for academic usage through the DryadLINQ
API. DryadLINQ[8] is a high level declarative language layer on
top of Dryad. DryadLINQ queries get translated in to distributed
Dryad computational graphs in the run time. Latest version of
DryadLINQ operates on Window HPC clusters only.

The DryadLINQ implementation of the framework uses the
DryadLINQ “select” operator on the data partitions to perform the
distributed computation. The resulting computation graph looks
much similar to the figure 2, where instead of using HDFS, Dryad
will use the windows shared local directories for data storage. As
mentioned above, the data partitioning, distribution and the
generation of metadata files for the data partitions needs to be
performed manually.

2.4 Usability of the technologies
As expected, implementing the above mentioned application
framework using Hadoop and DryadLINQ was easier than
implementing them using the cloud services as most of the data
processing framework was already in place with Hadoop &
DryadLINQ. Hadoop & DryadLINQ takes care of scheduling,
monitoring and fault tolerance. With Hadoop we had to
implement a Map function, which contained the logic to copy the
input file from HDFS to the working directory, execute the
external program as a process and to upload the results files to the
HDFS. In addition to this, we had to implement a custom
InputFormat and a RecordReader to support file inputs to the map
tasks. With DryadLINQ we had implement a side effect free
function to execute the program on the given data and to copy the
result to the output shared directory. But significant effort had to
be spent on implementing the data partitioning and the
distribution programs to support DryadLINQ.

EC2 & Azure classic cloud implementations involved more effort
than the Hadoop & DryadLINQ implementations, as all the
scheduling, monitoring and fault tolerance had to be implemented
from the scratch using the features of the cloud services. Amazon
EC2 provides infrastructure as a service by allowing users to
access the raw virtual machine instances while windows Azure
provides the .net platform as a service allowing users to deploy
.net applications in the virtual machines through a web interface.
Hence the deployment process was easier with Azure as oppose to

the EC2 where we had to manually create instances, install
software and start the worker instances. On the other hand the
EC2 infrastructure as a service gives more flexibility and control
to the developers. Azure provides better development & testing
support through the visual studio integration and the local
debugging environment of the Azure SDK. Azure platform is
heading towards providing a more developer friendly
environment, but as of today (Mar 2010) the platform is less
mature compared to the AWS.

3. APPLICATIONS

3.1 Cap3
Cap3 [2] is a sequence assembly program which assembles DNA
sequences by aligning and merging the sequence fragments from
the respective sequences. Sequence assembly is an integral part of
genomics as the current DNA sequencing technology, such as
shotgun sequencing, is capable of reading only parts of whole
genomes at once. The Cap3 algorithm operates on collection of
gene sequence fragments presented as FASTA formatted files. It
removes the poor regions of the DNA fragments, calculates the
overlaps between the fragments, identifies and removes the false
overlaps, joins the fragments to form contigs of one or more
overlapping DNA segments and finally through multiple sequence
alignment generates consensus sequences.

The increased availability of DNA Sequencers is generating
massive amounts of sequencing data that needs to be assembled.
Cap3 program is often used in parallel with lots of input files due
to the pleasingly parallel nature of the application.

3.2 GTM & MDS Interpolation
MDS[9] and GTM[10] are known as an algorithm for dimension
reduction, which finds an optimal user-defined low-dimensional
representation out of the data in high-dimensional space.
However, although MDS and GTM share the same objective for
optimal dimension reduction, GTM finds a non-linear mapping
based on Gaussian probability density model in vector space. On
the other hand, MDS tries to construct a mapping in target
dimension with respect to the pairwise proximity information,
mostly dissimilarity or distance.

Multidimensional Scaling (MDS): MDS is a general term of the
techniques to configure low dimensional mappings of the given
high-dimensional data with respect to the pairwise proximity
information, while the pairwise Euclidean distance within target
dimension of each pair is approximated to the corresponding
original problem to find low-dimensional configuration which
minimizes the objective function, called STRESS or SSTRESS.
Definition of STRESS (1) and STRESS (2) are as following:

 𝜎 𝑋 = 𝑤𝑖𝑗 𝑑𝑖𝑗 𝑋 − 𝛿𝑖𝑗 2𝑖<𝑗≤𝑁
(1)

 𝜎2 𝑋 = 𝑤𝑖𝑗 𝑑𝑖𝑗2 𝑋 − 𝛿𝑖𝑗2 2𝑖<𝑗≤𝑁
(2)

where 𝑑𝑖𝑗 𝑋 = ||𝑥𝑖 − 𝑥𝑗 ||, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 and 𝑤𝑖𝑗 is a weight

value, so 𝑤𝑖𝑗 ≥ 0.

Generative Topographic Mapping (GTM): GTM is an
unsupervised learning method for modeling the density of data
and finding a non-linear mapping of high-dimensional data in a
low-dimensional space. GTM is also known as a principled

alternative to Self-Organizing Map (SOM) [11]which does not
have any density model, GTM defines an explicit density model
based on Gaussian distribution [12] and finds the best set of
parameters associated with Gaussian mixtures by using an
Expectation-Maximization (EM) optimization algorithm[13].

Interpolation of MDS[14] and GTM is an out-of-sample extension
of the original algorithms and it is designed to process much
larger data points with minor trade-off of approximation. Instead
of processing full dataset which is the case of original MDS and
GTM algorithms, interpolation approach takes only a part of the
full dataset, known as samples, for a computer-intensive training
process and applies the trained result to the rest of dataset, known
as out-of-samples, which is usually faster than the former process.
With this interpolation approach in MDS and GTM, one can
visualize millions of data points with modest amount of
computations and memory requirement. Currently we use MDS,
GTM, MDS interpolation and GTM interpolation applications for
DNA sequence studies and chemical information mining &
exploration of the Pubchem database data.

4. PERFORMANCE

4.1 Application performance with different

cloud instance types

Table 2: EC2 Cap3 performance with different instance types

to assemble 200 FASTA files with 458 reads in each file

Node
Type

No. of
Nodes

No. of
Workers per

Node

Total Time
(s)

Amortized
Compute Cost

Compute Cost
(hour units)

Large 10 2 1389.0 $2.33 $3.40

Large 10 4 1414.6 $1.34 $3.40

XLarge 5 2 2486.6 $2.35 $3.40

XLarge 5 4 1424.3 $1.35 $3.40

XLarge 5 8 1459.6 $1.38 $3.40

HCXL 2 5 2302.2 $0.87 $1.36

HCXL 2 10 1554.7 $0.59 $1.36

HCXL 2 20 1452.9 $0.55 $1.36

Table 2 presents the benchmark results for Cap3 application on
different EC2 instance types. EC2 small instance size was not
included in our study as it does not support 64bit operating
systems. EC2 instances are hourly billed. The compute cost (hour
units) assumes the instances are used only for that particular
computation. The amortized cost assumes that the instance will be
used for useful work for the remainder of the hour.

According to these results we can infer that memory is not a
bottleneck for the Cap3 program and that for the above instance
types, the performance is proportional to the number of actual
compute cores. The most efficient performance for the Cap3 EC2
application is gained using high CPU extra large instances.

Table 3 : EC2 GTM performance with different instance types

to process 100,000 Pubchem data points

Node
Type

No. of
Nodes

No. of
Workers per

Node

Total
Time (s)

Amortized
Compute Cost

Compute Cost
(per hour units)

Large 5 2 478.8 $0.23 $1.70

Large 5 4 422 $0.20 $1.70

XLarge 2 5 710.8 $0.27 $1.36

XLarge 2 10 721.5 $0.27 $1.36

HCXL 1 10 866.5 $0.16 $0.68

HCXL 1 20 878.4 $0.17 $0.68

HM4XL 1 10 320.8 $0.21 $2.40

HM4XL 1 20 319.5 $0.21 $2.40

According to the table 3, we can infer that memory (size &
bandwidth) is a bottleneck for the GTM interpolation application.
The GTM interpolation application performs better in the
presence of more memory and less processor core sharing the
memory. But still the high CPU extra large instance appears as the
most economic choice.

4.2 Performance comparison between

different implementations
In the following studies we use parallel efficiency as the measure
to evaluate the different frameworks. Efficiency is calculated
using the following formula. 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐸𝑝) =

T(1)

pT(ρ)

T(1) is the best sequential execution time for the application in a
particular environment using the same data set or a representative
subset if the sequential time is prohibitively large to measure. In
all the cases the sequential time was measured with no data
transfers, i.e. the input files are present in the local disks. T(ρ) is
the parallel run time for the application while “p” is the number of
processor cores used.

Efficiency is a relatively good measure to evaluate the different
approaches we use in our studies as we don’t have the possibility
to use identical configurations across the different environments.
At the same time we cannot use efficiency to directly compare the
the different technologies due to the following reasons. Even
though efficiency accounts the differences of the systems which
effects the sequential running time as well as the parallel running
time, it does not reflect other differences such as memory size,
memory bandwidth and network that can effect when running
parallel computations.

Per core per computation time is calculated in each test to give an
idea about the actual execution times in the different
environments. 𝑃𝑒𝑟 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟 𝐶𝑜𝑟𝑒 𝑡𝑖𝑚𝑒 =

pT(ρ)𝑁𝑜.𝑜𝑓 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

4.2.1 Cap3
We benchmarked the Cap3 classic cloud implementation
performance using a replicated set of FASTA formatted data files,
each containing 458 reads, and compared with our previous
performance results[15] for Cap3 DryadLINQ on bare metal,
Cap3 Hadoop bare metal and Cap3 Hadoop on virtual machine
results. 16 High CPU extra large instances were used for the EC2
testing and 128 small instances were used for the Azure Cap3
testing. DryadLINQ, Hadoop bare metal & Hadoop VM results
were obtained using a 32 node X 8 core (2.5 Ghz) cluster with 16
GB memory in each node. An EC2 extra large instance was
considered as 8 actual cores while an Azure small instance was

considered as a single core for the following calculations. In all
the cases the data was already present in the frameworks preferred
storage location.

Figure 3 : Cap3 parallel efficiency

Figure 4 : Cap3 time to process a single file (458 reads) per

core with different frameworks

Cost to process 4096 FASTA files (~1GB) on EC2 (58 minutes)

Compute 1 hour X 16 HCXL instances = 0.68$ * 16 = 10.88 $

10000 SQS requests = 0.01 $

Storage per 1GB per month = 0.15 $

Data transfer out per 1 GB = 0.15 $

Total = 11.28 $

Cost to process 4096 FASTA files (~1GB) on Azure (59 minutes)

Compute 1 hour X 128 small instances = 0.12 $ * 128 = 15.36 $

10000 SQS requests = 0.01 $

Storage per 1GB per month = 0.15 $

Data transfer in/out per 1 GB = 0.10 $ + 0.15 $

Total = 15.77 $

In addition to the above cost, there will be additional costs for the
instance uptime for environment preparation and minor
miscellaneous platform specific charges for things such as number
of storage requests.

Based on figure 4 we can conclude that all four implementations
exhibit reasonable efficiency within reasonable limits. When
interpreting figure 5, it should be noted that the Cap3 program
performs ~12.5% faster on windows environment than on the
Linux environment. As we mentioned earlier we cannot use these
results to claim that a given framework performs better than
another, as only approximations are possible as the underlying
infrastructure configurations of the cloud environments are
unknown. Still, one interesting result to note in figure 5 is that the
EC2 performance is better than the Hadoop VM performance. In
the above performance tests the Cap3 Hadoop implementation
relied on a shared file system for data storage rather than on the
HDFS, which might have contributed to the lower performance of
Hadoop Cap3 implementation. In the figure 6 & 7 we compare the
performance of Cap3 Hadoop application using HDFS and using a
shared file system on a 32 node X 24 core cluster. It clearly shows
the bottleneck of the shared file system and network I/O. The
difference is much bigger in the 24 maps per node case as the
concurrent load on the network and file system is much higher.

Figure 5 : Hadoop Cap3 parallel efficiency using shared file

system vs HDFS on a 768 core (24 core X 32 nodes) cluster

Figure 6 : Hadoop Cap3 performance shared FS vs HDFS

4.2.2 GTM Interpolation

Figure 7: GTM interpolation efficiency on 26 Million

Pubchem data points

Figure 8 : GTM interpolation performance on 26 Million

Pubchem data set

We used the pubchem data set of 26 million data points with 166
dimensions to analyze the GTM interpolation implementations.
We used a 100,000 already processed subset of the data as a seed
for the GTM interpolation. EC2 Cap3 tests were performed on
EC2 High CPU Extra Large instances (considered as 8 cores) as
they give the best cost efficiency according to the table 3.
DryadLINQ Cap3 tests were performed on a 16 core (AMD
Opteron 2.3 Ghz) per node, 16GB memory per node cluster.
Hadoop Cap3 tests were performed on a 24 core (Intel Xeon 2.4
Ghz) per node, 48 GB memory per node cluster which was
configured to use only 8 cores per node.

Once again we can notice that the 3 frameworks perform
comparably. Characteristics of the GTM interpolation application
are different from the Cap3 application as GTM is more memory
intensive and the memory bandwidth becomes the bottleneck,
which gives rise to the lower efficiency numbers. Also the grain
size of the computational tasks in the GTM application was
relatively smaller than Cap3 or MDS interpolation. Compressed

data splits, which were unzipped before handing over to the
executable, were used due to the large size of the input data.
When the input data size is larger, Hadoop & DryadLINQ
applications have an advantage of data locality based scheduling
over EC2. Hadoop & DryadLINQ model brings computation to
the data optimizing the I/O load, while the classic cloud model
brings data to the computations.

4.2.3 MDS interpolation

Figure 9 : DryadLINQ MDS interpolation performance on a

768 core cluster (32 node X 24 cores)

Figure 10 : Azure MDS interpolation performance on 24 small

Azure instances

Figure 9 presents the results for processing millions of data points,
broken in parts of 10000 data points, from the Pubchem data set
with the DryadLINQ MDS interpolation application using
100,000 already MDSed seed data. A 24 core (Intel Xeon 2.4
Ghz) 48 GB memory per node 32 nodes cluster was use for this
study. The dip of efficiency we notice in the figure 9 from 23
million to 26 million is due to the unbalanced partition that occurs
when distributing 2600 parts among 768 cores.

 Figure 10 presents results for Azure MDS interpolation
application using 24 Azure small instances using a much smaller
data set. The Azure MDS interpolation application exhibits very
good efficiency, especially when considering the input and output

data transfers it needs to perform from and to the Azure blob
storage. The efficiency difference between DryadLINQ MDS
interpolation & Azure MDS interpolation should be due to the fact
that Azure small instances have a single exclusive memory per
core while in the DryadLINQ cluster 24 cores have to share a
single memory bus.

5. RELATED WORKS
There exist many studies [16-18] of using existing traditional
scientific applications and benchmarks on the cloud. In contrast in
this paper we focused on implementing and analyzing the
performance of biomedical applications using cloud
services/technologies and cloud oriented programming
frameworks.

In one of our earlier work[15] we analyzed the overhead of
virtualization and the effect of inhomogeneous data on the cloud
oriented programming frameworks. Also Ekanayake and Fox[18]
analyzed the overhead of MPI running on virtual machines under
different VM configurations and using different MPI stacks.

CloudMapReduce[19] is an effort to implement a map reduce
framework using the cloud infrastructure services. Amazon
AWS[3] also offers Map Reduce as a cloud service through
Elastic Map Reduce.

In addition to the biomedical applications we have discussed in
this paper, we also developed distributed pair-wise sequence
alignment applications using the Map Reduce programming
models[15]. There are also many other bio-medical applications
developed using Map Reduce programming frameworks such as
CloudBLAST[20], which implements BLAST algorithm and
CloudBurst, which performs parallel genome read mappings.

6. CONCLUSION
We have demonstrated that clouds offer attractive computing
paradigms for two loosely coupled scientific computation
applications. Cloud infrastructure based models as well as the
Map Reduce based frameworks offered very good parallel
efficiencies given sufficiently coarser grain task decompositions.
The higher level MapReduce paradigm offered a simpler
programming model. Also by using two different kinds of
applications we showed that selecting an instance type which suits
your application can give significant time & monetary advantages.
Our previous work has tackled a broader range of data intensive
applications under MapReduce and also compared them to MPI
on raw hardware. The cost effectiveness of cloud data centers
combined with the comparable performance reported here
suggests that loosely coupled science applications will
increasingly be implemented on clouds and that using MapReduce
will offer convenient user interfaces with little overhead.

7. REFERENCES
[1] J. Dean, & Ghemawat, S., "MapReduce: simplified data

processing on large clusters," Commun. ACM, vol. 51, pp.
107-113, 2008.

[2] X. Huang, & Madan, A., "CAP3: A DNA sequence assembly
program.," Genome Res, vol. 9, pp. 868-77, 1999.

[3] Amazon Web Services. Available: http://aws.amazon.com/

[4] Windows Azure Platform. Available:
http://www.microsoft.com/windowsazure/

[5] Apache Hadoop. Available: http://hadoop.apache.org/core/

[6] Yu Y, Fetterly D, Budiu M, Erlingsson U, Gunda PK, Currey
J, "DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language,"
presented at the Symposium on Operating System Design
and Implementation (OSDI), San Diego, CA, 2008.

[7] M. Isard, Budiu, M., Yu, Y., Birrell, A., & Fetterly, D.,
"Dryad: Distributed data-parallel programs from sequential
building blocks," presented at the ACM SIGOPS Operating
Systems Review, 2007.

[8] Y. Yu, Isard, M., Fetterly, D., Budiu, M., Erlingsson, U.,
Gunda, P., et al., "DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-
Level Language. ," Symposium on Operating System Design
and Implementation (OSDI), 2008.

[9] Kruskal JB, Multidimensional Scaling. Beverly Hills, CA,
U.S.A: Sage Publications Inc, 1978.

[10] J. Y. Choi, "Deterministic Annealing for Generative
Topographic Mapping GTM," September 2 2009.

[11] T. Kohonen, "The self-organizing map," Neurocomputing,
vol. 21, pp. 1--6, 1998.

[12] C. M. Bishop and M. Svensén, "GTM: A principled
alternative to the self-organizing map," Advances in neural
information processing systems, pp. 354--360, 1997.

[13] A. Dempster, et al., "Maximum Likelihood from incomplete
data via the EM algorithm," Journal of the Royal Statistical
Society. Series B, pp. 1--38, 1977.

[14] Jong Youl Choi, Seung-Hee Bae, Xiaohong Qiu and
Geoffrey Fox, "High Performance Dimension Reduction and
Visualization for Large High-dimensional Data Analysis "
Technical Report submitted for publication, November 14
2009.

[15] Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, "Cloud
Technologies for Bioinformatics Applications," Indiana
University2010.

[16] E. Walker. http://www.usenix.org/publications/login/2008-
10/openpdfs/walker.pdf. ;login: The USENIX Magazine.
Available: http://www.usenix.org/publications/login/2008-
10/openpdfs/walker.pdf

[17] Constantinos Evangelinos, Chris N. Hill, "Cloud Computing
for parallel Scientific HPC Applications: Feasibility of
running Coupled Atmosphere-Ocean Climate Models on
Amazon’s EC2.," presented at the Cloud computing and it's
applications (CCA-08), Chicago, IL, 2008.

[18] Jaliya Ekanayake, Geoffrey Fox, "High Performance Parallel
Computing with Clouds and Cloud Technologies," presented
at the First International Conference CloudComp on Cloud
Computing, Munich, Germany, 2009.

[19] cloudmapreduce. Available:
http://code.google.com/p/cloudmapreduce/

[20] A. T. Matsunaga, M. Fortes, J., "CloudBLAST: Combining
MapReduce and Virtualization on Distributed Resources for
Bioinformatics Applications " in IEEE Fourth International

Conference on eScience (eScience '08), Indianapolis, IN 2008.

