
THÈSE DE DOCTORAT CONJOINT TELECOM SUDPARIS et
L’UNIVERSITE PIERRE ET MARIE CURIE

Spécialité : Informatique et Réseaux

École doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

Nesrine KAANICHE

Pour obtenir le grade de
DOCTEUR DE TELECOM SUDPARIS

La sécurité des données stockées dans un environnement
Cloud, basée sur des mécanismes cryptographiques

Soutenue le 15 Décembre 2014, devant le jury composé de :

Christophe BIDAN
Professeur, Supélec, France – Rapporteur

Sébastien CANARD
Ingénieur de recherche, Orange Labs, France – Rapporteur

Georg CARLE
Professeur, Technische Universität München, Allemagne – Examinateur

Thierry COUPAYE
Directeur de recherche, Orange Labs, France – Examinateur

Yves ROUDIER
Maître de conférences, EURECOM, France – Examinateur

Pierre SENS
Professeur, Université Pierre et Marie Curie, France – Examinateur

Maryline LAURENT
Professeur, Télécom SudParis, France – Directrice de thèse

Thèse No : 2014TELE0033

PHD THESIS TELECOM SUDPARIS IN PARTNERSHIP WITH PIERRE ET
MARIE CURIE UNIVERSITY

Speciality : Informatics and Networks

Doctoral School : Informatique, Télécommunications et Électronique de Paris

Presented by

Nesrine KAANICHE

To obtain the degree of
DOCTOR OF TELECOM SUDPARIS

Cloud Data Storage Security based on Cryptographic
Mechanisms

Presented on December 15th, 2014 with the Jury composed by :

Christophe BIDAN
Professor, Supélec, France – Reporter

Sébastien CANARD
Researcher, Orange Labs, France – Reporter

Georg CARLE
Professor, Technische Universität München, Germany –Examiner

Thierry COUPAYE
Research Director, Orange Labs, France – Examiner

Yves ROUDIER
Associate Professor, EURECOM, France – Examiner

Pierre SENS
Professor Université Pierre et Marie Curie, France – Examiner

Maryline Laurent
Professor, Télécom SudParis, France – Thesis Director

Thesis No : 2014TELE0033

Dedicated to Chrif for 1001 reasons.

i

ABSTRACT

ii

Abstract

Recent technological advances have given rise to the popularity and success of cloud.
This new paradigm is gaining an expanding interest, since it provides cost efficient archi-
tectures that support the transmission, storage, and intensive computing of data. However,
these promising storage services bring many challenging design issues, considerably due to
the loss of data control. These challenges, namely data confidentiality and data integrity,
have significant influence on the security and performances of the cloud system. Some
threat models assume that the cloud service provider cannot be trusted, and therefore
security designers propose a high level security assurance, such as storing encrypted data
in cloud servers. Others suppose that cloud providers can be trusted, and that potential
threats come primarily from outside attackers and other malicious cloud users. Further-
more, a cloud user can never deny a potential server breakdown. Therefore, there are several
challenges that need to be addressed with respect to security and privacy in a cloud context.

This thesis aims at overcoming this trade-off, while considering two data security
concerns.

On one hand, we focus on data confidentiality preservation which becomes more com-
plex with flexible data sharing among a dynamic group of users. It requires the secrecy of
outsourced data and an efficient sharing of decrypting keys between different authorized
users.
For this purpose, we, first, proposed a new method relying on the use of ID-Based Cryp-
tography (IBC), where each client acts as a Private Key Generator (PKG). That is, he
generates his own public elements and derives his corresponding private key using a secret.
Thanks to IBC properties, this contribution is shown to support data privacy and confi-
dentiality, and to be resistant to unauthorized access to data during the sharing process,
while considering two realistic threat models, namely an honest but curious server and a
malicious user adversary.
Second, we define CloudaSec, a public key based solution, which proposes the separation
of subscription-based key management and confidentiality-oriented asymmetric encryption
policies. That is, CloudaSec enables flexible and scalable deployment of the solution as well
as strong security guarantees for outsourced data in cloud servers. Experimental results,
under OpenStack Swift, have proven the efficiency of CloudaSec in scalable data sharing,

iii

ABSTRACT

while considering the impact of the cryptographic operations at the client side.

On the other hand, we address the Proof of Data Possession (PDP) concern. In fact,
the cloud customer should have an efficient way to perform periodical remote integrity
verifications, without keeping the data locally, following three substantial aspects : secu-
rity level, public verifiability, and performance. This concern is magnified by the client’s
constrained storage and computation capabilities and the large size of outsourced data.
In order to fulfill this security requirement, we first define a new zero-knowledge PDP proto-
col that provides deterministic integrity verification guarantees, relying on the uniqueness
of the Euclidean Division. These guarantees are considered as interesting, compared to
several proposed schemes, presenting probabilistic approaches.
Then, we propose SHoPS, a Set-Homomorphic Proof of Data Possession scheme, suppor-
ting the 3 levels of data verification. SHoPS enables the cloud client not only to obtain
a proof of possession from the remote server, but also to verify that a given data file is
distributed across multiple storage devices to achieve a certain desired level of fault tole-
rance. Indeed, we present the set homomorphism property, which extends malleability to
set operations properties, such as union, intersection and inclusion. SHoPS presents high
security level and low processing complexity. For instance, SHoPS saves energy within the
cloud provider by distributing the computation over multiple nodes. Each node provides
proofs of local data block sets. This is to make applicable, a resulting proof over sets of
data blocks, satisfying several needs, such as, proofs aggregation.

iv

Résumé

Au cours de la dernière décennie, avec la standardisation d’Internet, le développement
des réseaux à haut débit, le paiement à l’usage et la quête sociétale de la mobilité, le
monde informatique a vu se populariser un nouveau paradigme, le Cloud. Le recours au
cloud est de plus en plus remarquable compte tenu de plusieurs facteurs, notamment ses
architectures rentables, prenant en charge la transmission, le stockage et le calcul intensif
de données. Cependant, ces services de stockage prometteurs soulèvent la question de la
protection des données et de la conformité aux réglementations, considérablement due à la
perte de maîtrise et de gouvernance.

Cette dissertation vise à surmonter ce dilemme, tout en tenant compte de deux préoc-
cupations de sécurité des données, à savoir la confidentialité des données et l’intégrité des
données.

En premier lieu, nous nous concentrons sur la confidentialité des données, un enjeu
assez considérable étant donné le partage de données flexible au sein d’un groupe dyna-
mique d’utilisateurs. Cet enjeu exige, par conséquence, un partage efficace des clés entre
les membres du groupe.
Pour répondre à cette préoccupation, nous avons, d’une part, proposé une nouvelle mé-
thode reposant sur l’utilisation de la cryptographie basée sur l’identité (IBC), où chaque
client agit comme une entité génératrice de clés privées. Ainsi, il génère ses propres éléments
publics et s’en sert pour le calcul de sa clé privée correspondante. Grâce aux propriétés
d’IBC, cette contribution a démontré sa résistance face aux accès non autorisés aux don-
nées au cours du processus de partage, tout en tenant compte de deux modèles de sécurité,
à savoir un serveur de stockage honnête mais curieux et un utilisateur malveillant.
D’autre part, nous définissons CloudaSec, une solution à base de clé publique, qui propose
la séparation de la gestion des clés et les techniques de chiffrement, sur deux couches.
En effet, CloudaSec permet un déploiement flexible d’un scénario de partage de données
ainsi que des garanties de sécurité solides pour les données externalisées sur les serveurs
du cloud. Les résultats expérimentaux, sous OpenStack Swift, ont prouvé l’efficacité de
CloudaSec, en tenant compte de l’impact des opérations cryptographiques sur le terminal
du client.

En deuxième lieu, nous abordons la problématique de la preuve de possession de données
(PDP). En fait, le client du cloud doit avoir un moyen efficace lui permettant d’effectuer

v

RESUME

des vérifications périodiques d’intégrité à distance, sans garder les données localement. La
preuve de possession se base sur trois aspects : le niveau de sécurité, la vérification pu-
blique, et les performances. Cet enjeu est amplifié par des contraintes de stockage et de
calcul du terminal client et de la taille des données externalisées.
Afin de satisfaire à cette exigence de sécurité, nous définissons d’abord un nouveau proto-
cole PDP, sans apport de connaissance, qui fournit des garanties déterministes de vérifica-
tion d’intégrité, en s’appuyant sur l’unicité de la division euclidienne. Ces garanties sont
considérées comme intéressantes par rapport à plusieurs schémas proposés, présentant des
approches probabilistes.
Ensuite, nous proposons SHoPS, un protocole de preuve de possession de données capable
de traiter les trois relations d’ensembles homomorphiques. SHoPS permet ainsi au client
non seulement d’obtenir une preuve de la possession du serveur distant, mais aussi de vé-
rifier que le fichier, en question, est bien réparti sur plusieurs périphériques de stockage
permettant d’atteindre un certain niveau de la tolérance aux pannes. En effet, nous pré-
sentons l’ensemble des propriétés homomorphiques, qui étend la malléabilité du procédé
aux propriétés d’union, intersection et inclusion.

vi

Acknowledgement

Most of the important things in the
world have been accomplished by
people who have kept on trying when
there seemed to be no hope at all.

Dale Carnegie.

-

T
here are quite a few people that have contributed in one way or another to the accom-
plishment of this work. Some of these people even come unexpectedly to our lives to

give us a word of courage or just to listen to us when we are down, or when we do not find
an answer to our multiple questions. I would like to thank all of you from very deep inside.

I would like to express my sincerest gratitude and thanks to Maryline LAURENT,
my thesis director, for her support, her dedication, her trust and her advices throughout
the three years of my thesis. It is absolutely difficult to succeed in the process of finding and
developing an idea without the help of a specialist in the domain. I found in my director
not only the source of wonderful ideas to develop, but also the support that a PhD student
needs. Without any doubt, the influence of Maryline in my life has largely contribute to
what I have accomplished today.

I am very much thankful to Aymen BOUDGUIGA, my senior project supervisor,
for his guidance and valuable advice during the first year of my PhD. He always helps me
improve new ideas and dedicates part of his time to discuss and find an interesting solution
to most of the problems I faced. Thanks to Ethmane EL MOUSTAINE for his time,
his suggestions and the attention he put to my work.

A special thank to the Project “ODISEA” (Open DIstributed and networked StoragE
Architecture) and all the partners, that contributed with this dissertation in providing a
variety of real case studies. Thanks to Mohammed El Barbori for his implementation
of CloudaSec, and above all, for being always willing to help in searching the best solution
to the different technical problems faced during the integration.

I would also like to thank Prof. Christophe BIDAN and Dr. Sébastien CANARD
who, as reporters and members of the jury, had the hard task of reading my thesis and

vii

ACKNOWLEDGEMENT

giving their advice in order to improve its content. Thanks a lot to Prof. Georg CARLE,
Prof. Thierry COUPAYE, Prof. Yves ROUDIER, and Prof. Pierre SENS for their
interest, involvement and for being part of the jury of my thesis.

I am eternally indebted to my loving parents, my husband Chrif and all my family
members especially my father Nejib, my father in law Hassan, my mother Habiba, my
mother in law Leila, my crazy and lovely sisters Najla, Imen, Nedia and Nada. They
readily and selflessly tried to provide the best conditions, generous care, dedication and
support to achieve my thesis. Thanks for always showing the pride in their faces while
referring to me and my achievements.

A special thank to Hanen, Nahed and Wijdene for their love, patience and encoura-
gement whenever I was in need. My very sincere thanks to Nadia & Rachid BOUTAR
for their parent-like support, generous care and the home feeling whenever I was in need.

A big big thank to all my friends, Majdi, Haytham, Walid and especially Moutie,
who always finds 1001 ways to disturb me, but who supported me so much. You guys have
all been my family in this country, thanks for being white share of this adventure.

Thanks to my colleagues for all the time spent together, the team meetings, and dis-
cussions. It has been a great experience having you all around.

I can not conclude this acknowledgement without thanking Francoise ABAD for her
love and her effort in making sure that our missions were treated properly, and for always
helping us in finding a solution to our flights and hotel problems.

Thanks a lot, Merci beaucoup, Muchas Gracias to everybody that contributed directly
and indirectly to the realization of this dissertation.

Enjoy your reading ! ! !

viii

Contents

Abstract iii

Résumé v

Acknowledgement vii

1 Introduction 7
1.1 Cloud Storage Basics & Challenges . 8
1.2 Problem Statement and Objectives . 13
1.3 Contributions . 14
1.4 Thesis Organization . 15

I Cloud Data Storage Confidentiality 17

2 Cryptography in Cloud Data Storage Environments 21
2.1 Introduction . 22
2.2 Fundamentals on Cryptography . 22

2.2.1 Symmetric Cryptography . 23
2.2.2 Public Key Cryptography . 25

2.3 Cryptographic Mechanisms in Clouds . 29
2.3.1 Identity Based Cryptography . 29
2.3.2 Attribute Based Cryptography . 33
2.3.3 Homomorphic Cryptography . 35

2.4 Formal Security Models . 38
2.4.1 Computational Security . 39
2.4.2 Provable Security . 40

2.5 Conclusion . 42

3 ID-Based Cryptography for Secure Cloud Data Storage 43
3.1 Introduction . 44
3.2 Architecture and Security Requirements . 44

3.2.1 Architecture . 45
3.2.2 Security Requirements . 45

3.3 ID-Based Cryptography for Securing Cloud Applications 46
3.3.1 Prerequisites . 47

x

CONTENTS

3.3.2 Secure Data Storage . 48
3.3.3 Secure Data Backup . 49
3.3.4 Secure Data Sharing . 49

3.4 Security Analysis . 52
3.5 Limitations and Possible Improvements . 54

3.5.1 Computation Complexity . 54
3.5.2 Deduplication Concern . 56

3.6 Implementation Results . 58
3.7 Conclusion . 60

4 CloudaSec: A Public Key based Framework to handle Data Sharing
Security in Clouds 63
4.1 Introduction . 64
4.2 Problem Statement . 65
4.3 CloudaSec Framework . 66

4.3.1 CloudaSec Overview . 66
4.3.2 Cryptographic Background . 68
4.3.3 CloudaSec Procedures in Data Plane 69
4.3.4 CloudaSec Management Layer Procedures 73

4.4 Security Analysis . 76
4.4.1 Threat Model . 76
4.4.2 Data Confidentiality . 76
4.4.3 Access Control . 79

4.5 Performance Evaluation . 81
4.5.1 Context . 82
4.5.2 Computation Cost Evaluation . 82
4.5.3 Communication Cost Evaluation . 84
4.5.4 Storage Cost Evaluation . 87

4.6 Synthesis . 87
4.7 Conclusion . 88

II Cloud Data Storage Integrity 91

5 Remote Data Checking in Clouds 97
5.1 Introduction . 97
5.2 PDP and PoR Review . 99

5.2.1 Naive Approach . 99
5.2.2 Introduction to Remote Data Checking Schemes 100

5.3 Security Requirements . 100
5.3.1 Public Verifiability . 101
5.3.2 Efficiency . 102
5.3.3 Dynamic Data Support . 102

5.4 Summary . 103
5.5 Conclusion . 106

xi

CONTENTS

6 A Zero-Knowledge Scheme for proof of Data Possession in Cloud Stor-
age Applications 109

6.1 Introduction . 110
6.2 Zero-Knowledge Proofs . 111
6.3 Model Description . 112

6.3.1 System Model . 112
6.3.2 Security Model . 113
6.3.3 Assumptions . 114

6.4 A New-Zero Knowledge PDP Protocol . 114
6.4.1 Private Data Possession Scheme . 114
6.4.2 Public Data Possession Scheme . 118

6.5 Security Analysis . 119
6.5.1 Security and Privacy Discussion . 120
6.5.2 Resistance to Attacks . 122

6.6 Performance Evaluation . 123
6.6.1 Theoretical Performance Analysis . 123
6.6.2 Time Performance Discussion . 125

6.7 Conclusion . 127

7 SHoPS: Set Homomorphic Proof of Data Possession Scheme in Cloud
Storage Applications 129

7.1 Introduction . 130
7.2 Requirement Analysis . 132
7.3 Model Description . 133

7.3.1 SHoPS Overview . 133
7.3.2 Complexity Assumptions . 135

7.4 SHoPS: A New Set Homomorphic PDP Scheme 135
7.4.1 Single Data Block SHoPS . 136
7.4.2 Set-Homomorphic Properties of the proposed Scheme 140
7.4.3 Energy efficiency . 144

7.5 Security Discussion . 145
7.5.1 Threat Model . 146
7.5.2 SHoPS Resistance to Cheap and Lazy Server Adversary 146
7.5.3 SHoPS Resistance to Malicious Verifier Adversary 150

7.6 Experimental Study . 150
7.7 Theoretical Performance Analysis . 152

7.7.1 Computation Cost Evaluation . 153
7.7.2 Bandwidth Cost Evaluation . 153
7.7.3 Storage Cost Evaluation . 154

7.8 Conclusion . 154

8 Conclusion & Perspectives 157

Glossary of Acronyms 161

Author’s Publications 166

xii

CONTENTS

Bibliography 166

A French Summary 179
A.1 Définitions . 179
A.2 Problématiques, Objectifs et Contributions 180
A.3 Confidentialité des données stockées dans le Cloud 183

A.3.1 Cryptographie Basée sur l’Identité pour un stockage sécurisé des don-
nées . 184

A.3.2 CloudaSec: Un protocle à clé publiques pour un partage sécurisé de
données . 188

A.4 Intégrité des données dans le cloud . 192
A.4.1 Protocoles de Preuves de Possession des Données 192
A.4.2 Preuve de Possession de Données (PDP), sans apport de connaissance193
A.4.3 SHoPS: Preuve de possession d’ensembles de données homomorphiques196

A.5 Conclusion . 198

xiii

CONTENTS

xiv

List of Figures

2.1 Vernam encryption scheme . 23
2.2 Public Key Cryptography (PKC) . 25

3.1 Architecture of cloud data storage . 45
3.2 Secure Data Storage . 48
3.3 Secure Data Backup . 50
3.4 Secure Data Sharing One To One . 51
3.5 Secure Data Sharing One To Many . 51
3.6 Cloud data storage scenario . 55
3.7 New Data File Storage . 57
3.8 Subsequent Data File Storage . 58
3.9 IBE encryption and decryption duration (in ms) 60

4.1 CloudaSec architecture . 67
4.2 Schematic diagram of CloudaSec one to one sharing procedures 72
4.3 Computation overhead of data encryption and decryption at the client side

with different data size (from 105 to 106 bytes) (ms) 83
4.4 Computation duration of Type A vs Type E pairing functions (ms) 84
4.5 Impact of cryptographic operations on CloudaSec at the client side (log10(ms)) 84
4.6 OpenStack upload and download overhead with different data size (ms) . . 85
4.7 Computation complexity of a group update (ms) 87

5.1 Generic PDP scheme . 99

6.1 Magical Cave [QQQ+89] . 112
6.2 General Framework of Private Data Possession Scheme 115
6.3 General Framework of Public Data Possession Scheme 118
6.4 Communication cost (bytes) . 127

7.1 Computation cost of the gen procedure (s) 151
7.2 Computation cost of the stp procedure (s) 151
7.3 Computation cost of {clg, prf and vrf} procedures (s) 152

A.1 Architecture d’un service de stockage en nuage 184
A.2 Scénario de stockage de données . 185
A.3 Scénario de récupération des données . 186
A.4 Scénario de partage de données entre un déposant et un récépteur 187
A.5 Scénario de partage de données entre un déposant et plusieurs récepteurs . . 187

1

LIST OF FIGURES

A.6 Architecture de CloudaSec . 189
A.7 Schéma représentatif des relations entre les différentes procéduces CloudaSec

du scénario de partage entre un déposant et un récépteur 191
A.8 Schéma représentatif d’un prorocole PDP 193

2

List of Tables

1.1 Summary of Cloud security and privacy challenges 12

2.1 RSA and EC key sizes for equivalent security level 28

3.1 IBE encryption and decryption duration (in ms). 59

4.1 CloudaSec Notations . 68
4.2 List of Non Revoked users LNR . 74
4.3 Average time to upload/download an encrypted data file of size varying from

10 to 104 bytes . 85
4.4 Average time to upload/download an encrypted data file of size varying from

103 to 9× 103 bytes . 86
4.5 Average time to upload/download an encrypted data file of size varying from

106 to 9× 107 bytes . 86
4.6 Comparison between Our Contributions and Different Cryptographic mech-

anisms in Clouds . 88

5.1 Approaches of Data Integrity Checking in the Cloud Storage Environments 104
5.2 Performances Comparison for Remote Data Verification Schemes in Cloud

Data Storage Environments (n is the number of data blocks) 106

6.1 Complexity comparison between different PDP techniques (n is the number
of data blocks) . 124

6.2 Mathematical operations cost (in ms). 126

7.1 Comparison between SHoPS and a classical Cloud Service Provider (CC) . . 145
7.2 Mathematical operations costs in a multiplicative group Gq (in ms) 152
7.3 Complexity comparison between different PDP techniques (n is the number

of data blocks) . 153

3

LIST OF TABLES

4

List of Algorithms

1 GenerateParameters . 70
2 EncryptData . 70
3 EncryptKeyOneToOne . 71
4 ShrinKey . 71
5 DecryptKeyOneToOne . 71
6 DecryptData . 72
7 EncryptKeyOneToMany . 73
8 DecryptKeyOneToMany . 73
9 GenerateGroup . 74
10 UserKeyShareElt . 74
11 KeyGen Procedure (Private Data Possession) 116
12 Setup Procedure (at the data owner side) 116
13 gen procedure . 136
14 stp procedure . 136
15 prf procedure . 137
16 La procédure EncryptData . 190
17 La procédure EncryptKeyOneToOne . 190
18 La procédure ShrinKey . 191
19 La procédure DecryptKeyOneToOne . 191
20 La procédure DecryptData . 192
21 La procédure gen de SHoPS . 197
22 La Procédure stp de SHoPS . 197
23 La procédure prf de SHoPS . 198

5

LIST OF ALGORITHMS

6

Chapter 1

Introduction

There is nothing more difficult to take
in hand, more perilous to conduct, or
more uncertain in its success, than to
take the lead in the introduction of a
new order of things

The Prince

N. Machiavelli - 1513

R
ecent technological advances relieve an explosive growth of digital contents. The US
International Data Corporation (IDC) proclaims that the digital universe will grow

by a factor of 300, up to 40 trillion gigabytes of replicated data by 2020 [GR12]. This
proliferation of digital universe continues to rise the demand for new storage and network
utilities, along with an increasing need for more cost-effective usage of storage capacities
and network bandwidth for data transfer. As such, the use of remote storage systems is
gaining an expanding interest, namely the Cloud storage based services, since they provide
profitable architectures. These architectures support the transmission, storage, and inten-
sive computation of outsourced data in a pay per use business model.
This widespread interest in cloud storage services mainly emanates from business orga-
nizations and government agencies seeking for more resilient and cost-effective systems.
That is, the benefits of cloud adoption are very tangible in a new era of responsiveness,
effectiveness and efficiency in Information Technology service delivery. Hence, there is no
longer need to spend large amounts of capital on buying expensive application software
or sophisticated hardware that they might never need again. These economical benefits
present the main essential motivations for cloud adoption as they help enterprises reduc-
ing the Capital Expenditure (CapEx), reserved to buy fixed assets and the Operational
Expenditure (OpEx) which is an ongoing cost for running a product, business, or a system.

However, despite all these attractive features, this new paradigm brings several cloud-
specific security issues, especially due to its outsourcing and multi-tenancy characteristics.

7

CHAPT 1. INTRODUCTION

Dealing with these issues more closely, we perceive that many of the cloud security concerns
are essentially old problems in a new setting. For example, corporate partnerships and
offshore outsourcing involve similar trust and regulatory issues. Similarly, open source
software enables IT departments to quickly build and deploy applications, but at the cost of
control and governance. Moreover, virtual machine attacks and Web service vulnerabilities
existed long before cloud computing became fashionable. Thus, the diversity of these
services delivered through cloud infrastructures increases their vulnerability to security
incidents and attacks. Therefore, these challenges need to be addressed with respect to
security and privacy in a cloud context.

1.1 Cloud Storage Basics & Challenges

Many people are confused about what cloud computing is, especially as the term is
overused. Roughly, it describes highly scalable resources provided as an external service
via the Internet on a pay per use basis. Cloud computing can be defined as a specialized
distributed computing model, which is dynamically configured and delivered on demand.
This new massively scalable paradigm is different from traditional networks. It is highly
abstract to deliver three levels of services.
Economically, the main attractiveness of cloud computing is that users only use what they
need, and only pay for what they actually use. Resources are available to be accessed
from the cloud at any time, and from any location through networks. There is no need to
worry about how things are being maintained. The US National Institute of Standards and
Technology (NIST) [PT09] provides a formal definition of the cloud computing as follows:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.”

In this sense, cloud users are raised to a level of abstraction that hides the details of
hardware or software infrastructures, deployed for supporting intensive computation and
data storage. From this definition, three main key points have to be considered. First,
NIST outlines the development of technologies that support an omnipresent, universal and
appropriate new business model. Second, it involves the importance of network access
techniques to shared resources that assure a fluid interaction between the cloud providers
and their clients. Third, this definition focuses on the associated pricing model of cloud
which allows users to pay only for consumed resources.
To better understand the core concepts and technologies in the cloud, we extract from the
NIST definition document [PT09] five attributes. These attributes describe a cloud based
system as a general model providing metered on demand services to his clients. These
characteristics are presented as follows:

• on-demand self-service– cloud users may obtain extra resources, such as the usage
of storage capacities and computing performances, without any human intervention.

8

1.1. Cloud Storage Basics & Challenges

Similar to the principle of autonomic computing, this cloud property refers to the
self managing characteristics of distributed computing resources, adapting to unpre-
dictable changes while hiding intrinsic complexity to operators and users, in order to
overcome the growing complexity of computing systems management, and to reduce
the barrier that complexity raises.

• broad network access– the large variety of heterogeneous devices, such as mobile
phones, PCs, tablets, and all hand-held and static equipments have to be able to ac-
cess to cloud services through standard mechanisms. This cloud ubiquitous network
access characteristic is usually supported using standard protocols via Internet. Nev-
ertheless, public networks are considered as untrusted, and therefore, several attacks
may be relevant to the cloud context, like Man In The Middle attacks (MITMs).

• shared resources– based on a multi-tenant model, cloud resources are shared among
several users. We must note that there are no resources dedicated to a specific client.
These shared capabilities are assigned, allocated and reassigned as needed to the
requesting entities.
The shared resources property is almost supported by several providers based on
virtualization techniques, where multiple Operating Systems (OSs) co-reside on the
same physical machine. However, Virtual Machines (VMs) co-residence has raised
certain security requirements, namely data and process isolation.
Moreover, in multi-tenant environments, the loss of physical control and even the
lack of trustful relations between the cloud client and his service provider show a
great need to traditional security concerns with a new framework, such as ensuring
confidentiality and integrity of outsourced data on remote servers.

• elasticity– along with self provisioning resources, cloud is characterized with the ma-
jor capability to efficiently locate and release resources. This property demonstrates
a scalability of greater resources. In fact, these resources are abstracted to cloud
users in order to appear as unlimited and suitable.
One key vulnerability that must be considered is the bandwidth under provisioning,
of which malicious users can take advantage to target a service or an application
availability, through Denial Of Service (DOS) attacks. Therefore, the scalability and
network reliability remain important key factors to guarantee the elasticity charac-
teristic of a cloud model.

• metered service– this property refers to the business model adopted by cloud based
services, where users pay on a consumption basis, enabling major cost reductions. By
this way, the authentication and the accountability requirements have to be consid-
ered as significant needs. Moreover, the provision of metered services is supported by
several monitoring tools, in order to ensure business continuity and data investigation
needs.

These attributes illustrate cloud based characteristics compared to traditional computing
models, supporting more efficient and scalable services.
Cloud systems can be classified based on their deployment as private, public or hybrid
infrastructures. As a combination of hardware and software resources, cloud infrastructures

9

CHAPT 1. INTRODUCTION

provide the aforementioned characteristics, to support three cloud service models [PT09]:
Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service
(IaaS). Building upon hardware facilities, these service models are offered in various forms:

• Infrastructure as a Service (IaaS)– in this service model, resources are managed,
aggregated and delivered to users as storage capacities (e.g., Amazon Simple Stor-
age Service (S3) [Ama]), network mediums, or computing capabilities (e.g., Amazon
Elastic Compute Cloud (EC2) [Inc08]). Users can then run any operating systems
and software that best meet their requirements. Merely, they cannot manage or
control the underlying cloud infrastructure.

• Platform as a Service (PaaS)– this service model provides a development environ-
ment or platform, on which users execute their applications. That is, users can
customize applications that target a specific platform, with the tools offered by their
Cloud Service Provider (CSP). They also have full control over their deployed appli-
cations and the associated configuration. Benefits of Paas are more prominent for
startup enterprises. In fact, these small companies can develop and deploy their own
applications and business software with no need for procuring servers and working
teams to manage them. Google App Engine [Goo11] and Microsoft Azure Plat-
form [Cha10] are good examples of PaaS service models.

• Software as a Service (SaaS)– in this model, the cloud provider offers software ap-
plications as a service. For instance, instead of buying and installing software on
individual systems, clients use the proposed applications, in a pay per use basis.
Access to these applications can be performed from various devices through either
a client interface or a program interface. Along with provisioning services, the CSP
engagement is to maintain a set of facilities, for ensuring software updating and
managing a large scale cloud system. The proliferation of SaaS is illustrated by the
increasing number of applications that are proposed, like Google Docs [AGJ+08],
Salesforce [chaf] and Dropbox [chad].

Along with these different service models, the portfolio of the proposed cloud services is
continuously enriched. The proliferation of these services and the diversity of the cloud
components and the complexity of architectures are raising new security and privacy chal-
lenges issues (e.g., virtualization). Threats, vulnerabilities and risks are usually associated
to the technologies adopted in a specific environment. In cloud service models, vulnerabil-
ities are associated to technologies, as well as to the main attributes of this environment.
According to [XX12], there are three main challenges that are closely related to the cloud
characteristics:

• outsourcing – outsourcing is delegating the responsibility for performing data storage
or business functions to a third party. By outsourcing data, users remove the burden
of establishing and maintaining a local storage infrastructure. However, outsourcing
also means that users partially loose control on their data and tasks. Many cloud
providers are not up to the level they should be in order to effectively guarantee a
trustworthy security architecture. In fact, data may be read, altered or deleted, when
outsourced. In the sequel, owners have to be aware of these confidentiality, integrity

10

1.1. Cloud Storage Basics & Challenges

and privacy challenges. They also must worry about the availability of services, the
error recovery of data and the business continuity. Thus, the control loss concern has
become one of the root causes of cloud security challenges. Consequently, data and
process security remains a dominating barrier to the development and widespread
use of cloud storage. To deal with outsourcing security issues, the cloud provider
has to provide trust and secure data storage. Moreover, outsourced data have to
be protected, controlled and verified to ensure confidentiality, integrity and other
security services. In case of external incident, outsourced data may incur privacy
violations which should be assured by providers.

• multi-tenancy – multi-tenancy means that the cloud infrastructure is shared and
used by multiple users. As such, in a virtual environment, data belonging to differ-
ent users may be placed on the same physical machine, based on a certain resource
allocation policy. Although multi-tenancy is an essential choice of cloud vendors
due to its economic efficiency, it provides new vulnerabilities to the cloud platform.
That is, malicious users may exploit this co-residence issue to perform flooding at-
tacks [Zun12].

• massive data – the scale of data and applications grows exponentially and brings
new challenges of dynamic data monitoring and security protection, such as image
processing and data mining in the cloud context. That is, traditional security mech-
anisms are insufficient and inefficient, due to heavy computation and communication
overhead. For example, in a cloud storage security setting, we cite the integrity
verification of outsourced data. Thus, current technologies of privacy preservation
are mainly based on static data sets, while data are always dynamically changed,
including data patterns and variation of attributes and access rights. As such, new
strategies and protocols are expected.

Various security challenges are widespread due to the joint emergence of several technolo-
gies and new concepts in order to provide new cloud objectives, such as virtualization
[BSPN04,Cla05,CA10,AF12,MRSP12].

Table 1.1 summarizes the relation between security requirements, vulnerabilities and
threats, in cloud environment. As with any remote storage system, there are principal
security properties that are highly recommended in cloud storage, namely, confidentiality,
integrity and freshness. These properties ensure that client data are secure and cannot be
modified by unauthorized users. Moreover, data need to be protected when transferred
and stored in cloud storage servers. As such, service providers have to ensure fine grained
access, data availability claims, and effective data and process isolation which remains a
major issue in cloud systems. We have also to underline the importance of the regulation
and the legislation compliance, when outlining the different security requirements. That
is, when stored, data may be transmitted through different cloud architectures, and then
they might fall under different regulatory compliance restrictions which can give rise to
Service Level Agreement (SLA) or privacy violations.

In Table 1.1, we consider five security attributes namely confidentiality, integrity, avail-
ability, accountability and privacy.

11

CHAPT 1. INTRODUCTION

When dealing with clouds, confidentiality implies that client’s data and computation tasks
have to be kept secret from cloud providers and other unauthorized users. Confidentiality
remains as one of the greatest concerns with regards to clouds, largely due to the loss of
physical control. Similar to confidentiality, the notion of integrity in clouds concerns both
data and process integrity. Data integrity implies that data should be honestly stored on
cloud servers, and any violations (e.g. data are lost, altered or compromised) have to be de-
tected. Computation integrity implies that programs are executed without being distorted
by malware, cloud providers or other malicious users, and that any incorrect computation
have to be detected.
Privacy is yet another critical concern with regards to cloud environments, due to the fact
that clients’ data reside among remote distributed servers, maintained by potentially un-
trusted cloud providers. Therefore, there are potential risks that the confidential data or
personal information are disclosed to unauthorized entities. Obviously, in order to guar-
antee privacy preservation, confidentiality and integrity become essential, ensuring that
data and computation are kept secret and uncorrupted. Contrary, accountability may
undermine privacy since these two security attributes usually conflict. That is, account-
ability implies the capability to of identifying a party, with undeniable evidence. In fact,
a fine-grained identity may be employed to identify a specific entity or even a malicious
program.

Table 1.1 - Summary of Cloud security and privacy challenges

Requirements Vulnerabilities Threats

Confidentiality VM co-residence Cross-VM attacks [RTSS09,
AHFG10]

Loss of physical control Data manipulation
[ABC+07,ABC+11]

Cloud user management Vertical/Horizontal privilege at-
tacks

Integrity Loss of physical control Data loss

Dishonest computation [WRW11]

SLA violation

Availability Bandwidth under provisioning Flooding attack [Zun12]

Cloud Pricing Model Fraudulent Resource Consump-
tion attack

Accountability Cloud Pricing Model Inaccurate billing of resource con-
sumption

Loss of physical control Hidden identity adversaries

Privacy Loss of physical control Privacy breach

12

1.2. Problem Statement and Objectives

1.2 Problem Statement and Objectives

Cloud data storage services bring many challenging design issues, considerably due to
the loss of physical control. These challenges have significant influence on the data security
and performances of cloud systems. That is, cloud data are often subject to a large number
of attack vectors, as depicted in Table 1.1.

On one side, providing data confidentiality, in multi-tenant environments, becomes
more challenging and conflicting. This is largely due to the fact that users outsource their
data on remote servers, which are controlled and managed by possible untrusted Cloud
Service Providers (CSPs). It is commonly agreed that data encryption at the client side is
a good alternative to mitigate such concerns of data confidentiality [KL10,CGJ+09]. Thus,
the client preserves the decrypting keys out of reach of the cloud provider. Nonetheless, this
approach gives rise to several key management concerns, such as, storing and maintaining
keys’ availability at the client side. In addition, the confidentiality preservation becomes
more complicated with flexible data sharing among a group of users. First, it requires
efficient sharing of decrypting keys between different authorized users. The challenge is to
define a smooth group revocation which does not require updating the secret keys of the
remaining users. So that, the complexity of key management is minimized. Second, the
access control policies should be flexible and distinguishable among users with different
privileges to access data. That is, data may be shared by different users or groups, and
users may belong to several groups.

On the other side, the data integrity is considered as a relevant concern, in cloud
environments. That is, the responsibility of securely managing outsourced data is splitting
across multiple storage capacities. Such distribution provides resilience against hardware.
Nonetheless, in order to reduce operating costs and save storage capacities, dishonest
providers might intentionally slight these replication procedures, resulting in unrecoverable
data errors or even data losses. Even when cloud providers implement a fault tolerant
policy, clients have no technical means for verifying that their files are not vulnerable, for
instance, to drive-crashes. There might be implementations of remote data checking at the
three following levels:

• Between a client and a CSP – a cloud customer should have an efficient way to
perform periodical remote integrity verifications, without keeping the data locally.
Additionally, the client should also detect SLA violation, with respect to the stor-
age policy. This customer’s concern is magnified by his constrained storage and
computation capabilities and the large size of outsourced data.

• Within a CSP – it is important for a cloud provider to check the integrity of data
blocks stored across multiple storage nodes, in order to mitigate byzantine failures
and drive-crashes.

• Between two CSPs – in the case of the cloud of clouds scenarios, where data are
divided on different cloud infrastructures. Therefore, a CSP, through its cloud gate,

13

CHAPT 1. INTRODUCTION

should periodically verify the authenticity of data blocks hosted by another cloud
platform.

These security concerns are even more important, as the European regulations will
be more severe and inflexible, including further derogations to effectively protect personal
data which are outsourced on remote servers. The EU General Data Protection Regulation
(GDPR) is expected to be passed this year and takes effect beginning of 2015 [chab].
The US Skyhigh Networks company conducted a survey of over 7000 cloud services, and
shows that actually only 1 in 100 cloud providers fulfills all the security requirements
outlined by the new European regulation. As such, cloud providers will have serious work
to ensure compliance with these new derogations [chaa].

To meet the aforementioned challenges, we set the following objectives:

• Objective A – improving data confidentiality in cloud storage environments while
enhancing dynamic sharing between users. Indeed, the proposed security mechanisms
should ensure both robustness and efficiency, namely the support of flexible access
control, efficient user revocation and performances.

• Objective B – addressing the issue of provable data possession in cloud storage
environments for data integrity verification support, following three substantial as-
pects: security level, public verifiability, and performance, and considering the limited
storage and processing capacities of user devices.

• Objective C – implementing the proposed techniques using standards and widely
deployed schemes, and validating their feasibility and impact on real hardware.

• Objective D – providing mathematical proofs of soundness and correctness of the
proposed schemes.

1.3 Contributions

When defining the solutions for confidentiality and integrity of outsourced data, we take
into consideration the following aspects: ease of deployment, robustness, supported flexi-
bility when activating/deactivating security services and performances. The contributions
of this dissertation are summarized as follows:

• Contribution 1 – proposition of a cryptographic scheme for cloud storage, based on
an original usage of ID-Based Cryptography (IBC) [KBL13]. First, the proposed
scheme ensures better data confidentiality. That is, every client acts as a Pri-
vate Key Generator (PKG) by computing an ID-based pair of keys to encrypt the
data that he intends to store in the cloud. As such, data access is managed by the
data owner. Second, by using a per data ID-based key, we provide a flexible sharing
approach. Indeed, the distribution of decrypting keys between the client and the
authorized users, does not reveal any information about the client’s secret (Objective
A, Objective C).

14

1.4. Thesis Organization

In order to alleviate the computation complexity at the client side, a possible re-
finement to our first contribution is introduced [KL14]. Indeed, [KL14] details a
client-side deduplication scheme for cloud applications, based on a content hash key-
ing approach.

• Contribution 2 – definition of CloudaSec, a public key based solution for improving
data confidentiality in cloud storage environments and enhancing dynamic sharing
between users [KLEB14]. CloudaSec applies the convergent encryption mechanism
on data contents. That is, the data owner uploads encrypted content to the cloud
and seamlessly integrates the deciphering key encrypted into the metadata to ensure
data confidentiality. In addition, CloudaSec integrates a conference key distribution
scheme, based on parallel Diffie Hellman exchanges, in order to guarantee backward
and forward secrecy. That is, only authorized users can access metadata and decipher
the decrypting data keys. As such, user revocation is achieved without updating the
private keys of the remaining users (Objective A, Objective C).

• Contribution 3 – proposition of an efficient remote data integrity verification frame-
work based on a fundamental arithmetic Euclidean Division (ED), adapted to limited
storage capacities [KEML14]. The framework is demonstrated to be resistant against
data privacy leakage within a Zero-Knowledge Proof System, in the key role of public
verifiability and the privacy preservation support (Objective B, Objective D).

• Contribution 4 – presentation of SHoPS, a novel Set-Homomorphic Proof of data
possession Scheme, supporting the 3 levels of data integrity verification. SHoPS
enables a verifier not only to obtain a proof of possession from the remote server,
but also to verify that a given data file is distributed across multiple storage devices
to achieve a certain desired level of fault tolerance. Indeed, we introduce the set
homomorphism property, which extends malleability to set operations, such as union,
intersection and inclusion (Objective B, Objective D).

1.4 Thesis Organization

This dissertation is divided into 2 parts described below.

Part I – Cloud Data Storage Confidentiality – this part focuses on data confi-
dentiality preservation which becomes more complicated with flexible data sharing among
a dynamic group of users. It requires the secrecy of outsourced data and an efficient shar-
ing of decrypting keys between different authorized users. Besides, access control policies
should be distinguishable among users with different granted privileges.

Chapter 2 – Cryptography in Cloud Data Storage Environments – we discuss
research directions and technology trends to mitigate cloud data confidentiality issue. That
is, we mainly focus on public key algorithms and several cryptographic primitives and we
discuss the potential use of certain techniques in cloud environments. Then, we introduce
practical techniques to validate proposed protocols, as cryptographic protocols can be
vulnerable to attacks outside the scope of the existing formal analyses.

15

CHAPT 1. INTRODUCTION

Chapter 3 – ID-Based Cryptography for Secure Cloud Data Storage – this
chapter describes Contribution 1. The proposed prototype relies on the use of ID-Based
Cryptography (IBC), where each client (data owner) acts as a Public Key Generator
(PKG). That is, he generates his own public elements and derives his corresponding private
key using a secret.

Chapter 4 – CloudaSec: A Public Key based Framework to handle Data
Sharing Security in Clouds – this chapter presents Contribution 2. A Swift-based
CloudaSec framework is introduced, where data sharing and deduplication are the main
objectives of the solution. CloudaSec is a public key based solution applying the convergent
encryption on the data file. That is, the data owner uploads encrypted content to the cloud,
using a symmetric cryptographic algorithm. Then, he integrates the encrypted key, relying
on the public key of the recipient(s), in metadata in order to preserve data confidentiality.

Part II – Cloud Data Storage Integrity – this part addresses the Proof of Data
Possession, by cloud servers. In fact, cloud customer should have an efficient way to
perform periodical remote integrity verifications, without keeping the data locally. This
concern is magnified by the client’s constrained storage and computation capabilities and
the large size of outsourced data.

Chapter 5 – Remote Data Checking in Clouds – in practice, many sophisticated
protocols have been proposed in the literature to address remote data checking concerns.
This Chapter highlights the requirements that should be fulfilled by a PDP scheme and
provides an overview on the approaches that have been proposed in the literature to address
the verification of the authenticity of data stored on untrusted servers.

Chapter 6 – A Zero-Knowledge Scheme for proof of Data Possession in
Cloud Storage Applications – this chapter details Contribution 3. We present a novel
PDP model based on the well-known GPS scheme proposed by Girault et al. in [GPS06].
Hence, we extend the GPS scheme to the verification of the authenticity of files stored on
untrusted servers in cloud platforms.

Chapter 7 – SHoPS: Set Homomorphic Proof of Data Possession Scheme in
Cloud Storage Applications – this chapter presents Contribution 4. It addresses the
PDP concern, while supporting the verification of several data blocks outsourced across
multiple storing nodes. We propose a new set homomorphic proof of data possession,
called SHoPS, which ensures the verification of aggregated proofs, under an interactive
proof system.

Chapter 8 – Conclusions and Perspectives – this Chapter concludes the disser-
tation with a summary of contributions and presents the perspectives for future work.

16

Part I

Cloud Data Storage Confidentiality

17

Table of Contents

2 Cryptography in Cloud Data Storage Environments 21
2.1 Introduction . 22
2.2 Fundamentals on Cryptography . 22

2.2.1 Symmetric Cryptography . 23
2.2.2 Public Key Cryptography . 25

2.3 Cryptographic Mechanisms in Clouds . 29
2.3.1 Identity Based Cryptography . 29
2.3.2 Attribute Based Cryptography . 33
2.3.3 Homomorphic Cryptography . 35

2.4 Formal Security Models . 38
2.4.1 Computational Security . 39
2.4.2 Provable Security . 40

2.5 Conclusion . 42

3 ID-Based Cryptography for Secure Cloud Data Storage 43
3.1 Introduction . 44
3.2 Architecture and Security Requirements . 44

3.2.1 Architecture . 45
3.2.2 Security Requirements . 45

3.3 ID-Based Cryptography for Securing Cloud Applications 46
3.3.1 Prerequisites . 47
3.3.2 Secure Data Storage . 48
3.3.3 Secure Data Backup . 49
3.3.4 Secure Data Sharing . 49

3.4 Security Analysis . 52
3.5 Limitations and Possible Improvements . 54

3.5.1 Computation Complexity . 54
3.5.2 Deduplication Concern . 56

3.6 Implementation Results . 58
3.7 Conclusion . 60

4 CloudaSec: A Public Key based Framework to handle Data Sharing
Security in Clouds 63
4.1 Introduction . 64

TABLE OF CONTENTS

4.2 Problem Statement . 65
4.3 CloudaSec Framework . 66

4.3.1 CloudaSec Overview . 66
4.3.2 Cryptographic Background . 68
4.3.3 CloudaSec Procedures in Data Plane 69
4.3.4 CloudaSec Management Layer Procedures 73

4.4 Security Analysis . 76
4.4.1 Threat Model . 76
4.4.2 Data Confidentiality . 76
4.4.3 Access Control . 79

4.5 Performance Evaluation . 81
4.5.1 Context . 82
4.5.2 Computation Cost Evaluation . 82
4.5.3 Communication Cost Evaluation . 84
4.5.4 Storage Cost Evaluation . 87

4.6 Synthesis . 87
4.7 Conclusion . 88

20

Chapter 2

Cryptography in Cloud

Data Storage Environments

It is possible to build a cabin with no
foundations, but not a lasting building

Isidor Goldreich - 1980

Contents
2.1 Introduction . 22

2.2 Fundamentals on Cryptography . 22

2.2.1 Symmetric Cryptography . 23
2.2.2 Public Key Cryptography . 25

2.2.2.1 Diffie Hellman Algorithms 26
2.2.2.2 Elliptic Curve Cryptography (ECC) 27
2.2.2.3 Limits of Traditional Cryptographic Systems in Clouds 28

2.3 Cryptographic Mechanisms in Clouds 29

2.3.1 Identity Based Cryptography 29
2.3.1.1 Prerequisites on Pairing Functions 30
2.3.1.2 ID-Based Key Construction 30
2.3.1.3 Examples of ID-Based Encryption Schemes 31
2.3.1.4 IBC in Cloud Data Storage Security 32

2.3.2 Attribute Based Cryptography 33
2.3.3 Homomorphic Cryptography . 35

2.3.3.1 General Concept . 35
2.3.3.2 Homomorphic Cryptosystems in Cloud Storage Envi-

ronments . 37
2.4 Formal Security Models . 38

2.4.1 Computational Security . 39
2.4.2 Provable Security . 40

2.5 Conclusion . 42

21

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

2.1 Introduction

C
loud Storage is an evolving paradigm, shifting the computing and storage capa-
bilities to external service providers. Especially due to this loss of direct control on

outsourced data, users are reluctant for adopting cloud services. The data security and
privacy concerns are quite legitimate, given the latest mediated revelations. That is, in
November 2013, the Washington Post points more indiscriminate data capture, by the US
National Security Agency (NSA), than even the PRISM revelations suggest. This col-
lection is done by intercepting private links that connect Google and Yahoo data centers
around the world – and decrypting the traffic that should be protected in transit 1 [nsaa].
In addition, in December 2013, a PriceWaterhouseCoopers (PwC) survey revealed that 54
percent of German companies find the cloud risky after learning of NSA spying [nsab].
Therefore, several security measures have to be set up, in order to cope with the emerged
cloud concerns, namely outsourcing encrypted data and periodically checking data in-
tegrity and availability. However, the choice of effective security mechanisms has to take
into consideration peripheral challenges. For example, storing encrypted data yields to a
cumbersome key management and access control, and regularly checking huge amounts of
data tightens the bandwidth consumption.

In this chapter, we provide an introductory compendium to some cryptographic tech-
niques for ensuring security and privacy in clouds. Cloud security concerns have emerged
to be of an increasing interest and importance, in the applied cryptography and computer
research community, while demanding adequate measures for cloud challenges. For this
purpose, we consider a storage scenario, where the client outsources data in remote servers.
The cloud servers act as distributed black boxes, from the client’s perspective. The tech-
niques presented in this chapter are partially to be used at the service provider’s side or the
client’s side, but in any case should protect the interests of both, to establish a successful
and trustworthy service.
Next, we give an overview of cryptography fundamentals in Section 2.2. Then, we inves-
tigate the use of cryptographic mechanisms in cloud storage environments in Section 2.3,
before presenting formal security models (Section 2.4).

2.2 Fundamentals on Cryptography

For many years, cryptography was the exclusive domain of military, diplomatic and
governmental secret services, and has been used to mainly provide security properties,
such as data confidentiality, data integrity and data origin authentication [ISO89]. Pre-
sented as the art of coding information into secrets, cryptography enables the intended
receivers to recover the original content of messages. During the second part of the twenti-
eth century, the field of cryptography has expanded due to the proliferation of computers
and networks and the appearance of new cryptographic systems. In 1976, Diffie Hellman
conducted radical changes in cryptography, presenting the first asymmetric cryptographic

1Data in transit is commonly delineated into two primary categories – data that is moving across public
or untrusted networks such as the Internet, and data that is moving within the confines of private networks
such as corporate Local Area Networks (LANs).

22

2.2. Fundamentals on Cryptography

algorithm [DH76]. In 1978, Rivest, Shamir and Adelman defined their well-known RSA
algorithm [RSA78]. Then, Shamir continued publishing revolutionizing ideas, namely,
threshold schemes, ID-based cryptographic systems and privacy homomorphisms. Concur-
rently, Koblitz and Miller independently proposed novel cryptographic schemes based on
elliptic curve structures [Kob87,Mil86]. Recently, quantum cryptography appears as the
cryptography of the future, as it does not rely on abstract algebra and groups theory, but
on optic and light theories, where every bit is represented by the polarization of a photon.
In this section, we first present the general concepts of symmetric cryptography (Sec-
tion 2.2.1). Then, we describe in depth public key cryptography (Section 2.2.2).

2.2.1 Symmetric Cryptography

A fundamental distinction between cryptographic schemes refers to the relation between
the pair of keys, involved in message encryption and decryption algorithms. Symmetric or
conventional cryptography relies on the share of a secret key between two communicating
entities Alice and Bob. Symmetric cryptography, as well as asymmetric cryptography, is
based on using two related algorithms for message encryption and decryption.
Let C be the ciphertext message space, M the plaintext message space and K the key
space. We denote the encryption algorithm by E, and the decryption algorithm by D,
defined as follows:

• The encryption algorithm E :M×K −→ C takes as input the plaintext message m,
and the secret key k, and returns the ciphertext c. E is often randomized.

• The decryption algorithm D : C × K −→ M takes as input the ciphertext message
c, and k, and returns m. D is always deterministic.

We say that a symmetric cryptographic scheme is well defined, if it fulfills Equation 2.1:

∀m ∈M, k ∈ K, D(E(m, k), k) = m (2.1)

The Vernam one-time pad [Ver19] is one of the well known symmetric algorithms. It was
proposed by Gilbert Vernam, in 1917. Vernam supposes that the secret key k is a random
bit string as long the message m. As depicted in Figure 2.1, when Alice wants to encrypt
a message m, using the shared secret key k, with Bob, she computes c = E(m, k) = m⊕k.
Thus, Bob uses the same key k to decrypt the received ciphertext c as m = D(c, k) = c⊕k.

Figure 2.1 - Vernam encryption scheme

23

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

The Vernam’s encryption scheme is called one-time pad as the secret key k is used once
for enciphering a unique message. Therefore, the key has to be renewed for every message.
One-time pads are perfectly secure in that the encrypted message provides no information
about the original message to a cryptanalyst. This is a very strong notion of security first
developed by Claude Shannon and proved, mathematically, to be true for the one-time pad
by Shannon about the same time.

Shannon first introduces the perfect secrecy definition of a cipher, in 1949, as detailed
in Definition 2.2.1 [Sha49].

Definition 2.2.1 Perfect Secrecy –

Let (E,D) be a cipher defined over (M, C,K). We say that (E,D) has a perfect secrecy if:

∀m0,m1 ∈M, (|m0| = |m1|), and ∀c ∈ C, P r[E(m0, k) = c] = Pr[E(m1, k) = c]

where k is uniformly chosen in K (k
R←− K).

The perfect secrecy definition is twofold. First, it induces the indistinguishably property
of an encryption scheme. In fact, an eavesdropper Eve, intercepting the communication
channel between Alice and Bob, cannot distinguish between the encryption of m0 from
the encryption of m1. Second, Definition 2.2.1 states that the most powerful adversaries
cannot recover information from the enciphered message.
Shannon proved that the Vernam one-time pad algorithm ensures the perfect secrecy as
follows.

Proof.
On the one side, we know that ∀m ∈M, c ∈ C, P rk[E(m, k) = c] = ♯{k∈K,E(m,k)=c}

|K| , where
k is uniformly chosen in K. As such, if the set ♯{k ∈ K, E(m, k) = c} is constant, we say
that the cipher has a perfect secrecy.
On the other side, for the one-time pad algorithm, ∀m ∈ M, c ∈ C, E(m, k) = m⊕ k = c.
As such, k = m⊕ c. In the sequel, the set ♯{k ∈ K, E(m, k) = c} is constant and it is equal
to 1.
Therefore, the one-time pad is perfectly secure. �

Despite the different strengths of the Vernam algorithm, it reveals many drawbacks. That
is, in order to support strong secrecy, Shannon proved that the length of the secret key
|k| has to be equal or greater than that of the message |m| [Sha49]. In addition, we recall
that the key has to be renewed for every message. As such, Alice and Bob must maintain
a secure communication channel to exchange a new secret key for every transmitted mes-
sage. This is obviously not feasible in practice because Alice and Bob will be wasting half
of their communication time in exchanging keys.
In order to settle the problems of the Vernam algorithm, new types of symmetric encryp-
tion schemes appeared, referred to as block ciphers. These algorithms encrypt blocks of
data, using small keys of pre-fixed bit lengths. Block ciphers mainly rely on permutations.
The most famous algorithms are the Data Encryption Standard (DES) [NIS99], and the
Advanced Encryption Standard (AES) [FIP01]. This latter is widely deployed by several

24

2.2. Fundamentals on Cryptography

cloud service providers, such as the US provider Amazon Simple Storage Service S3 [Ama].

Cloud storage researchers are giving more focus on data security, while considering
the impact of the proposed algorithms on cloud performances. Thus, modern symmetric
encryption algorithms join several cloud security requirements, namely, cloud availability
and compliance. In fact, these conventional schemes are typically fast and computationally
less intense than asymmetric algorithms. Therefore, they are suitable for processing large
streams of outsourced data.
However, symmetric encryption algorithms presume that Alice and Bob are able to ex-
change the key in a secure manner prior to each communication. As such, the key man-
agement is a significant challenge in a multi-tenant environment, especially for Security as
a Service models (SecaaS). So that, secret key schemes are usually mixed with public key
algorithms to obtain a blend of security and speed.

2.2.2 Public Key Cryptography

Public Key Cryptography (PKC) ensures several security properties, namely data con-
fidentiality, non repudiation, and authentication, while exchanging information over an
insecure channel. Contrary to symmetric cryptography where two communicating entities
have to share the same secret key, public key cryptography relies on two related keys to
secure the exchanged information. The pair of keys consists of a public key and a private

key, where each entity shares its public key with its peers. However, the private key is kept
secret, as depicted in Figure 2.2.

Figure 2.2 - Public Key Cryptography (PKC)

This pair of keys is defined over a mathematical relation. Solving this mathematical
equation comes to breaking a hard computational problem. In fact, the field of public key
cryptography has motivated a number of complex computational problems, such as the in-
teger factorization related to the well-known RSA cryptosystem [RSA78]. The supposition
that these problems are in general computationally difficult to resolve in polynomial time
defines the most contemporary cryptographic systems. By computationally infeasible, we
mean that a computationally bounded adversary A has only a negligible chance succeeding
in calculating D given E, with respect to some pre-defined security parameter ξ . In several
works, ξ is selected to be the bit-length of the public parameters of a given cryptographic
scheme (Definition 2.2.2).

25

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

Definition 2.2.2 A function τ : N → R is said to be negligible if for any non zero poly-
nomial p ∈ R[x], there exists m ∈ N such that:

∀n > m, |τ(n)| < 1

|p(n)|

In practice, a Public Key Infrastructure (PKI) is deployed and a Certification Author-
ity (CA) is used to securely bind public keys to their related entities. The CA is a trusted
third party which signs the certificate containing the public key and the identification in-
formation of a user.
We next present the first public key scheme, appeared in the Diffie Hellman seminal pa-
per in 1976 [DH76], based on the multiplicative groups’ theory (Section 2.2.2.1). Then,
we introduce the Elliptic Curve Cryptography (ECC) [HMV03] which relies on additive
groups derived from elliptic curve structures (Section 2.2.2.2). Finally, we enumerate some
functional challenges, due to the application of traditional cryptographic mechanisms in
cloud storage environments (Section 2.2.2.3).

2.2.2.1 Diffie Hellman Algorithms

Whitfield Diffie and Martin Hellman proposed the Diffie Hellman algorithm (DH), in
1976. This algorithm is now celebrating its 38th anniversary while it is still playing an
active role in Internet protocols today.
DH is a mechanism for securely exchanging a shared secret between two communicating
entities, Alice and Bob, in real time over an untrusted network. A shared secret is important
between two parties that may not have ever communicated previously. The public elements
provided to each party is a large prime p and a nonzero generator g of Z∗p.

First, Alice and Bob generate, respectively, their public values PubA and PubB from
their secret keys PrivA and PrivB. The private keys are randomly chosen in Z

∗
p−1. And,

the public values satisfy the following relation:

∀i ∈ {A,B}, Pubi ≡ gPrivi(mod[p]) (2.2)

After exchanging these public values, Alice and Bob use their private keys, again to calcu-
late PubA

′ ≡ PubB
PrivA(mod[p]) and PubB

′ ≡ PubA
PrivB (mod[p]) , respectively. These

computed values, PubA
′ and PubB

′, are the same, since:

PubB
PrivA(mod[p]) ≡ gPrivBPrivA

(mod[p]) ≡ gPrivAPrivB
(mod[p]) ≡ PubA

PrivB (mod[p])
(2.3)

The main weakness of the DH algorithm is the Man In the Middle attack (MIM). That
is, Eve can create a shared secret with Alice and Bob by impersonating as Bob to Alice
side and as Alice to Bob side. Mitigation of MIM attacks is possible by making Alice and
Bob signing their selected public elements.
Although the Diffie Hellman key exchange algorithm provides a method for publicly sharing
a random secret key, it does not achieve the full goal of being a public key cryptographic
system, as a cryptosystem permits exchanging messages, not just a random string of bits.

26

2.2. Fundamentals on Cryptography

The first public key cryptographic scheme following the Diffie Hellman construction is a
system proposed by Taher ElGamal in 1985 [Elg85].
The DH security is based on the definition of two computational problems, namely the
Diffie Hellman Problem (DHP) and the Discrete Logarithm Problem (DLP), detailed in
Section 2.4.1.

2.2.2.2 Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) was discovered in 1985 by Victor Miller (IBM)
and Neil Koblitz (University of Washington) as an alternative mechanism for implement-
ing public key cryptography. ECC algorithms rely on the algebraic structure of elliptic
curves over finite fields.
Elliptic curves (EC) are cubic forms that are defined over finite fields, generally a prime
or a binary field denoted Fp or F2p , where p and 2p represent the order of the field respec-
tively. By order, we mean the number of elements of the finite field. In this thesis, we only
consider elliptic curves which are defined over finite prime fields, fulfilling the Weistrass
equation [HMV03].
The set of points of an elliptic curve E(Fp), with the binary operation + : E(Fp)×E(Fp)→
E(Fp) forms an additive abelian group (E(Fp),+). That is, the binary operation of the
group is the addition of two points of the curve. The elliptic curve E(Fp) is said to be
well defined (smooth) if its discriminant △ is different from 0. This latter ensures that the
elliptic curve does not contain singular points for whom the addition cannot be defined.
This abelian group has to fulfill four properties, namely the associativity, the commutativ-
ity, the existence of inverses and the identity element. The identity element is a rational
element called the point at infinity P∞ [HMV03].

The Diffie-Hellman algorithm is widely adapted to elliptic curve groups. As explained
in Section 2.2.2.1, Alice and Bob have to exchange their public elements PubA and PubB,
respectively, to compute the shared key.
In fact, let G be a subgroup of E(Fp). The additive group G is generated by the point P
of prime order n. Alice and Bob choose random integers PrivA ∈ Z

∗
n and PrivB ∈ Z

∗
n,

as their private keys. Then, each communicating entity computes the related public key
as follows:

∀i ∈ {A,B}, Pubi ≡ [Privi]P

That is, the problem of finding the private key given the generator P and the published
public key denotes the Elliptic Curve Discrete Logarithm Problem (ECDLP), presented in
Section 2.4.1.

Then, after exchanging the public elements, Alice and Bob calculate the shared secret
as follows:

[PrivA]PubB = [PrivA.P rivB]P = [PrivB.P rivA]P = [PrivB]PubA (2.4)

The security level is a recurrent concept in cryptography. It permits to evaluate the
hardness of breaking an encryption or a signature algorithm. That is, the longer the level

27

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

of security is, the harder the cryptanalysis of the algorithm becomes. The security level
of a symmetric encryption scheme is defined as the number of operations needed to crack
an algorithm using a key of k-bits length. In fact, the number of elementary operations
needed to break a symmetric encryption algorithm is 2k. As such, the current key size
recommendation for symmetric schemes is equal to 112 bits [chae].
Regarding the asymmetric cryptography, the security level of an algorithm sets the length of
RSA and EC keys with respect to the hardness of breaking a mathematical computational
problem, such as, factoring integers in the case of RSA or solving the DLP and DH problems
in the case of DH algorithms. Table 2.1 depicts the equivalence between the lengths of
RSA and EC keys respectively to the security level lk, where lk presents the length of a
symmetric key k [MVO96].

Table 2.1 - RSA and EC key sizes for equivalent security level
Security level lk 80 112 128 192 256
EC key length (bits) 160 224 256 384 512
RSA key length (bits) 1024 2048 3072 7680 15360

Table 2.1 shows that the use of EC keys is more interesting than RSA keys, in pub-
lic key cryptography. That is, for the same security level, the 2048 bits current key-size
recommendation is offered by a hugely smaller 224 bits EC keys. In favor of ECC, this
advantage significantly increases with the security level. The use of elliptic curve crypto-
graphic schemes becomes fascinating as stronger security mechanisms become mandated
and devices get smaller. In addition, the usage of ECC takes an expanding interest as the
implementation of elliptic curves requires less storage and computation capacities.

2.2.2.3 Limits of Traditional Cryptographic Systems in Clouds

Despite traditional cryptographic systems provide strong security guarantees, they may
be inadequate for modern storage systems. In fact, several limitations reduce the account
of these traditional schemes, especially due to the huge amounts of outsourced data.
In cloud storage environments, bandwidth, memory and power consumptions are a big con-
cern, as they impact the availability and performances of delivered services. Consequently,
the selection of adequate cryptographic tools for security support is accurate.

First, under an untrusted service provider security model, the client generally chooses
to encipher data before outsourcing to remote servers. Thus, the usage of traditional
asymmetric algorithms is overly cumbersome for large amounts of data, and computation
capacities at the client side are significantly reduced, even by using elliptic curves.

Second, classical asymmetric algorithms require deploying PKI and certificate manage-
ment functions for the generation and delivery of certificates to authenticated entities. In
addition, the periodic downloading of revocation lists by the clients from the Certification
Authority (CA) is necessary to verify the validity of certificates. Thus, the bandwidth
consumption, and then, availability requirements are deteriorated.

28

2.3. Cryptographic Mechanisms in Clouds

Third, while using symmetric cryptographic schemes to encipher data at the client side,
this latter preserves the decrypting keys out of reach of the service provider. However, the
confidentiality provision becomes more complex with flexible data sharing among a group
of users. That is, it requires efficient sharing of decrypting keys between different autho-
rized users. The challenge is to define a smooth group revocation which does not require
updating the secret keys of the remaining group members. Therefore, the complexity of
key management is minimized.

Finally, as these traditional cryptographic tools are mostly deterministic, they are
not malleable and do not allow operations over encrypted data, such as the search over
enciphered texts. Search is a convenient method for retrieving outsourced data information
on remote servers. Hence, several applications, that index data, have emerged to allow
quick search, namely, Apple Spotlight and Google Desktop.

2.3 Cryptographic Mechanisms in Clouds

Modern cryptography provide much more flexible decryption mechanisms, and explic-
itly allow malleability on ciphertexts, namely search over encrypted data, Proofs of Data
Possession (PDP) and Proofs of data Retrievability (PoR). These promoting approaches
are greatly interesting in a multi-tenant cloud environment. PDP and PoR concepts will
be investigated, in depth, in Chapter 5.
In the next section, we introduce emerging asymmetric schemes. First, we introduce the
Identity Based Cryptography (IBC), in section 2.3.1. In IBC, the public key of an entity
is directly derived from its identity, with no need for certificates. Then, we briefly present
the Attribute Based Cryptography (ABC), in section 2.3.2 and the homomorphic cryptog-
raphy, in section 2.3.3, allowing several mathematical operations on enciphered data.

2.3.1 Identity Based Cryptography

In 1984, ID-Based Cryptography (IBC) was introduced by Shamir [Sha85] with the
original idea to provide public and private key pairs with no need for certificates and CA
deployment. Shamir assumes that each entity uses one of its identifiers as its public key.
These identifiers have to be unique. In addition, he assigns the private key generation func-
tion to a special entity called the Private Key Generator (PKG). That is, before accessing
the network, every entity has to contact the PKG to get its private key. This private key
is computed so as to be bound to the public key of the entity. During the last decade,
IBC has been enhanced by the use of the Elliptic Curve Cryptography (ECC) [HMV03].
As a consequence, new ID-based encryption and signature schemes emerged. These new
schemes differ from Shamir approach relying on smart cards to store the private keys of
users and the ciphering information.
In 2001, Boneh and Franklin [BF01] proposed the first ID-based encryption scheme, rely-
ing on the use of bilinear pairing functions to bind elliptic curve points to a number of a
multiplicative group.
We note that certificates may be considered as an identity based feature, as they map the
user’s public key to his identity. In this dissertation, we focus on identity based schemes

29

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

where the public key is computationally derived from the user identity. This public key is
generally considered as the output of hash function that takes as input the identity of the
user.

In the following sections, we first present the pairing functions that were widely used
in modern cryptographic systems, thanks to its interesting properties in section 2.3.1.1.
Then, we introduce the key generation process for ID-based schemes, which are based on
pairing functions.

2.3.1.1 Prerequisites on Pairing Functions

The pairing function ê is a bilinear map, non degenerate and efficiently computable.
That is, the pairing map has to verify the following properties:

• Bilinearity – the pairing function ê : G1 ×G2 → GT is linear with respect to each of
its inputs as follows:

∀P ∈ G1, ∀Q ∈ G2 and {a, b} ∈ Z
2, ê(a.P + b.P,Q) = ê(P,Q)aê(P,Q)b

∀P ∈ G1, ∀Q ∈ G2 and {a, b} ∈ Z
2, ê(P, a.Q+ b.Q) = ê(P,Q)aê(P,Q)b

• Non degeneracy – this property defines two relations as follows:

∀P ∈ G1, ê(P,Q∞) = 1GT

∀Q ∈ G2, ê(P∞, Q) = 1GT

Let us consider a generator P of G1 and a generator Q of G2, so that, the value
ê(P,Q) is equal to the generator of GT .

• Efficiency – the efficiency property means that there is an algorithm that computes
the pairing function.

Pairing functions can be divided into symmetric and asymmetric functions. The sym-
metric pairings require the same input group G1 = G2, while the asymmetric functions
verify G1 6= G2 [HMV03].
In practice, bilinear maps are generally derived from the well known Weil or Tate pair-
ing [BSSC05].

2.3.1.2 ID-Based Key Construction

In order to be able to derive a client’s private key, the PKG first defines a set of ID-
based public elements (IBC–PE). The PKG generates the groups G1, G2 and GT and the
pairing function ê from G1 × G2 in GT . G1 and G2 are additive subgroups of the group
of points of an Elliptic Curve (EC). However, GT is a multiplicative subgroup of a finite
field. G1, G2 and GT have the same order q. In addition, G1, G2 and GT are generated
by P , Q and the generator g = ê(P,Q), respectively. The bilinear function ê is generally
derived from the Weil or Tate pairing [BSSC05,BF01].

30

2.3. Cryptographic Mechanisms in Clouds

After the specification of the groups, the PKG defines a set of hash functions in ac-
cordance to the ID-based encryption and signature schemes in use [RRP04]. For example,
the PKG defines a hash function Hashpub() to transform the client’s identity (ID) into a
public key as follows:

PubID = Hashpub(ID) (2.5)

Generally, the public key of a client is computed as a hash of one of his identities and it is
either a point of an elliptic curve [BF01] or a positive integer [SK03].

The PKG generates the private key of an entity using a local secret sPKG ∈ Z
∗
q and a

private key generation function PrivGen(). Note that the private key is computed as:

PrivID = PrivGen(sPKG, PubID) (2.6)

For example, Boneh and Franklin [BF01] compute the private key as PrivID = sPKG.PubID,
where PubID is a point ∈ G1. However, Sakai and Kasahara [SK03] generate the private
key as PrivID = [1/(PubID+sPKG)].P , where PubID is an integer. Differently, Boneh and
Boyen define a new key derivation function [BB04]. That is, they first compute three pub-
lic points as P1 = α.P , P2 = β.P and P3 = γ.P , where α, β and γ are secrets selected by
the PKG. The Boneh and Boyen key derivation scheme computes the user private key as a
couple of elliptic curve points PrivID = (Priv1, P riv2) = (PubID.r.P1+α.P2+ r.P3, r.P),
where the random r ∈ Z

∗.

The groups G1 and G2, the pairing ê, the points P , Q and Qpub = sPKG.Q, and the
hash functions H1(), ..., Hk() form the ID-based public elements, as follows:

IBC − PE = {G1,G2,GT , q, ê, g, P,Q,Qpub, Hashpub(), H1(), ..., Hk()} (2.7)

After generating a private key, the PKG has to secure its transmission to the related
owner either using cryptography or directly to the physical person (using a secure trans-
portation device). In the aforementioned key derivation schemes, the PKG computes the
private keys of entities. Thus, the PKG is able to impersonate as any of them by illegally
deciphering encrypted data files. This attack is known as the Key Escrow Attack (KEA).
In order to mitigate that KEA, a strong assumption is usually made necessary that the
PKG is a trustworthy entity.

2.3.1.3 Examples of ID-Based Encryption Schemes

In this section, we describe three ID-Based encryption schemes, relying on differ-
ent key derivation algorithms. First, we introduce Boneh and Franklin encryption al-
gorithm [BF01]. Then, we present Boneh and Boyen encryption scheme [BB04]. Finally,
we describe Chen et al. scheme [CCMLS06] which relies on Sakai-Kasahara key construc-
tion [SK03].
The security of these schemes is based on the hardness of the Bilinear Diffie-Hellman
(BDH) problem which consists on calculating ê(P, P)abc, given the public points P, a.P, b.P
and c.P and the symmetric pairing function ê.

31

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

• Boneh and Franklin encryption scheme – the Boneh and Franklin IBE scheme
uses a symmetric pairing function. Thus, the public elements are defined as IBC–
PE={G1, GT , q, ê, g, P , Q, Qpub, Hashpub(), H1()}, where H1 : GT → {0, 1}n. The
PKG computes the user’s public key, using a hash-to-point function, as PubID =
Hashpub(ID). Then, it generates the related private key as PrivID = sPKG.PubID.
To encrypt a message M ∈ {0, 1}n using the public key PubID, the sender generates a
random r and computes C such that C = (U, V) = (r.P,M ⊕H1(ê(PubID, Qpub)

r)).
The recipient user decrypts the message as M = V ⊕H1(ê(PrivID, U)).

• Boneh and Boyen encryption scheme – relying on a symmetric pairing, Boneh
and Boyen define two hash functions H1 and H2 as H1 = {0, 1}∗ → Z

∗
q and H2 =

GT → {0, 1}n. So that, the Boneh and Boyen public elements are {G1, GT , q, ê, g,
P , u, P1, P2, P3, H1(), H2()}, where u = ê(P1, P2) computed by the PKG after the
generation of the public points (Section 2.3.1.2).
To encrypt a message M ∈ {0, 1}n using the public key PubID, the sender generates a
random r and computes C such that C = (U, V,W), where U = M⊕H2(u

r), V = r.P

and W = PubID.r.P + r.P3. The recipient user first computes k = ê(V,Priv1)
ê(V,Priv2)

, where
PrivID = (Priv1, P riv2) (Section 2.3.1.2). Then, he recovers the message M as
M = U ⊕H2(u

k).

• Chen et al. encryption scheme – Chen et al. presented an IBE scheme us-
ing a symmetric pairing function. They define two hash functions H1 and H2 as
H1 = {0, 1}∗ → Z

∗
q and H2 = GT → {0, 1}n. The key derivation procedure follows

the Sakai-Kasahara algorithm (Section 2.3.1.2).
To encrypt a message M ∈ {0, 1}n using the public key PubID, the sender gener-
ates a random r and computes C = (U, V), where U = r.(Qpub + PubID.P) and
V = M ⊕ H2(g

r). The recipient user recovers the encrypted message as M =
V ⊕H2(ê(U,PrivID)).

2.3.1.4 IBC in Cloud Data Storage Security

The application of ID-Based Cryptography, in a distributed environment, is an emerg-
ing and interesting area, which has been partially investigated in the literature. IBC was
first adapted to grid networks. Ian Foster [Fos02] defines the grid as a flexible system that
coordinates resource sharing among individuals and institutions, using standard and open
protocols, in order to achieve a common goal. Recently, Ian Foster et al. [Fos09] show that
grids tightly join clouds in technology and architecture, but they differ in several aspects
such as security models. The idea of applying IBC to grid security was explored by Lim
and Robshaw in 2004 [LR04]. In their proposal, each virtual organization has its own PKG,
and all of its users share the same IBC–PE certified by a grid certification authority. Their
scheme offers to the encrypting entity more flexibility during the key generation process,
and permits to add granularity to the ID-based public key. In fact, Lim and Robshaw
propose to include the security policy into the identifier used as input for the public key
computation algorithm. However, their proposal has two drawbacks. First, the user needs
to maintain an independent secure channel with the PKG for the retrieval of his private

32

2.3. Cryptographic Mechanisms in Clouds

key. Second, the PKG is able to perform a key escrow attack, due to its knowledge of the
clients’ private keys.

Then, Lim and Robshaw [LR05] introduced a new concept of dynamic key infrastructure
for grid, to simplify the key management issues listed in [LR04]. That is, Lim and Robshaw
proposed a hybrid approach combining identity based mechanisms at the client level, and
traditional PKI to support key management above the client level. In [LR05], each user
distributes a fixed parameter set through a X.509 certificate. This parameter allows the
other users to act as their own trusted authorities for the purposes of delegation and single
sign-on. Therefore, they remove the need for a proxy certification. On one hand, this
technique avoids the key escrow attack and the need for a secure channel for private key
distribution in an ID-based system. Unfortunately, users have to support the cumbersome
task of verifying the parameter sets of other entities. In addition, this paper does not
address the arising risk of Man In the Middle attacks [SDJ+10].

In 2005, Lim and Paterson [LP11] proposed to use IBC in order to secure a grid environ-
ment. They describe several scenarios in which IBC simplifies the current grid solutions,
like the elimination of the use of certificates, simple proxy generation, easy revocation of
proxy certificates and the savings of bandwidth by using the pairing based approach pro-
posed by Boneh and Franklin in [BF01].
In the same way, Li et al. [LDTY09] propose to use IBC as an alternative to the SSL
authentication protocol in a cloud environment. That is, [LDTY09] introduces an identity
based hierarchical model relying on three levels. The top level is the root PKG and it cor-
responds to the cloud administrator. The second level presents a sub-PKG corresponding
to a cloud data center, while the third level is presented by any cloud client. As such, each
client public key is derived from the concatenation of a set of identities in the hierarchical
model. Obviously, this scheme suffers from the needed trust hierarchy to ensure a secure
working system.

Recently, Schridde et al. [SDJ+10] presented a novel security infrastructure, using IBC,
for service-oriented cloud applications to overcome the problems of certificate based solu-
tions. In their proposal, each client has to be registered at a corresponding authority server.
The registration includes specifying how to pay for the desired service and retrieving lo-
gin credentials for the corresponding account. During the registration, each client has a
unique private identity key for the chosen account. This key serves as a mapping between
the client identity and the allowed services. Although [SDJ+10] relieves the burden of
maintaining a trusted environment, the usage of a unique identity arises the problem of
sharing data among a dynamic group of users.

2.3.2 Attribute Based Cryptography

In 2005, Sahai and Waters introduced the concept of Attribute Based Cryptography
(ABC) [SW05], as a new mean for encrypted access control. In ABC, ciphertexts are
not necessarily encrypted to one particular user as in traditional public key cryptography.
Instead both users’ private keys and ciphertexts are associated with a set of attributes or a
policy over attributes. The user is able to decrypt a ciphertext if there is a match between
his private key and the ciphertext.

33

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

This section gives a brief overview of ABC, as this cryptographic system is not addressed
in this dissertation. However, it was interesting to introduce ABC, given its attractive
features in cloud data storage environments. Interested readers may refer to [LCH13] for
more details.

In [SW05], Sahai and Waters presented a threshold Attribute Based Encryption (ABE)
scheme. That is, ciphertexts are labeled with a set of attributes S and a user private key
is associated with both a threshold parameter t and another set of attributes S ′. In order
to decrypt enciphered data, at least t attributes must match between the ciphertext and
the user private key. One of the primary original motivations for this work was to design
an error-tolerant (Fuzzy) identity-based encryption scheme that could use biometric iden-
tities.
In 2006, Goyal et al. proposed a key-policy attribute based encryption (KP-ABE) scheme
[GPea06] that built the access policy into the user private key. That is, ciphertexts are
labeled with sets of attributes and private keys are associated with access structures that
control which ciphertexts a user is able to decrypt.
KP-ABE schemes ensure flexible and fine grained access control. In fact, data are out-
sourced in an encrypted form, while different users are still allowed to decrypt different
pieces of data per security policy. This effectively eliminates the need to rely on the storage
server for preventing unauthorized data access. However, the disadvantage of KP-ABE is
that the access policy is built onto one user private key. As such, the data owner cannot
choose who can decrypt the data except choosing a set of attributes which can describe
the outsourced data. In addition, the sender must trust that the key-issuer issues the
appropriate keys to grant or deny access to the appropriate users.
In 2007, Bethencourt et al. presented the first construction of a ciphertext policy attribute
based encryption (CP-ABE) scheme [BSW07]. In their scheme, the user secret key is asso-
ciated with a set of attributes, and the ciphertext is associated with an access policy over
attributes. The user can decrypt the ciphertext if and only if the attribute set of his secret
key satisfies the access policy specified in the ciphertext. [BSW07] is conceptually closer
to traditional access control methods such as Role Based Access Control (RBAC).

Attribute based Cryptography (ABC) is referred to as an innovative concept and one of
the most attractive way to manage and control file sharing in cloud, thanks to the compu-
tation properties on attributes. In fact, traditional access control architectures generally
assume that remote servers storing the data are fully trusted by their clients. So that,
they are often responsible for defining and enforcing access control policies. However, this
statement does not usually hold in multi-tenant cloud data storage environments, espe-
cially due to the abstract nature of this business model. Consequently, cloud clients are
still reluctant, while outsourcing their data file contents.

ABC is considered as a promotive solution, to ensure fine grained access control to
data, which are outsourced on untrusted storage servers. First, ABC allows searching over
encrypted data. That is, the ciphertext is assigned with a set of descriptive attributes.
Thus, viewing these attributes as keywords in such a system leads a keyword based search
on encrypted data. Second, although data are outsourced in an encrypted form, each au-
thorized user is allowed to decrypt different pieces of enciphered contents, thanks to the
security policy included in the ciphertext and a required match with the decrypting key of

34

2.3. Cryptographic Mechanisms in Clouds

this recipient. This effectively eliminates the need to rely on the cloud storage server for
preventing unauthorized data access.

There are several common drawbacks of the above works. First, they usually assume
the use of a single trusted authority in the system. This not only may create a load
bottleneck, but also suffers from the key escrow problem. In fact, this entity can access all
the encrypted files, opening the door for potential privacy exposure. In addition, it is not
practical to delegate all attribute management tasks to one entity, including certifying all
users attributes or roles and generating secret keys. For instance, different organizations
usually form their domains. For example, a professional association would be responsible
for certifying medical specialties, while a regional health provider would certify the job
ranks of its staffs. Second, there still lacks an efficient and on demand user revocation
mechanism for attribute based schemes with the support for dynamic policy updates and
changes, which are essential components of secure sharing use cases.

Recently, several research works used attribute based schemes to ensure fine grained
access control for outsourced data [IAP09,YWRL10a,IPN+09,YWRL10b,CC09]. In these
schemes, there has been an increasing interest in applying ABC to secure Electronic Health
Records (EHRs). They consider that the use and disclosure of Protected Health Infor-
mation should meet the requirements of Health Insurance Portability and Accountability
Act (HIPAA) [MD11]. So that, they propose to provide a fine grained access policy ad-
mitted by HIPAA. For example, Ibraimi et al. [IAP09] applied ciphertext policy ABE
(CP-ABE) [BSW07] to manage the sharing of PHRs, and introduced the concept of social
and professional domains.
In 2010, Yu et al. proposed a key-policy ABE scheme to secure outsourced data in the
cloud [YWRL10a], where a single data owner can encrypt his data and share with multiple
authorized users, by distributing keys to them. The distributed keys contain attribute-
based access privileges. They also propose a method for the data owner to revoke a user
efficiently by delegating the updates of affected ciphertexts and user secret keys to the
cloud server. Since the key update operations can be aggregated over time, their scheme
achieves low overhead.

2.3.3 Homomorphic Cryptography

Homomorphic cryptosystems are cryptographic schemes whose encryption function is a
homomorphism, and thus preserves group operations performed on ciphertexts. Homomor-
phic encryption algorithms allow a third party to perform computations on ciphertexts,
ensuring privacy preservation. In this section, we first introduce the concept of the ho-
momorphic cryptography. Then, we give a review of some applications to homomorphic
encryption schemes in cloud storage environments.

2.3.3.1 General Concept

The main idea of performing simple computations on encrypted messages was first
introduced by Rivest, Adleman and Dertouzous [RAD78], who referred to these computa-

35

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

tions as privacy homomorphism. The original motivation for privacy homomorphism was
the ability to store an encrypted database by an untrusted third party, while allowing to
the owner to perform simple updates and queries such that nothing about the database
contents is revealed.

Several cryptographic schemes are defined over algebraic groups or rings [Coh00]. Sys-
tems, defined over groups, naturally support a single operation, usually denoted by mul-
tiplication or addition for cryptographic purposes. Meanwhile, cryptographic schemes
defined over a ring naturally support two operations – addition and multiplication. Thus,
if the encryption algorithm E, where both the plaintext and ciphertext spaces are groups,
is a homomorphism, then such a cryptosystem is referred to as an homomorphic scheme
(Definition 2.3.1).

Definition 2.3.1 Let a cryptographic system S defined over (M, C,K), where M and C
are both groups such that for any k ∈ K, the two ciphertexts c1 and c2 are defined as:
c1 = E(m1, k) and c2 = E(m2, k).
S is said to be homomorphic if and only if the following condition holds:

D(c1 · c2) = m1 ·m2

where · are the respective group operations in C and M.

Several cryptographic systems, defined over groups, were proposed to allow simple
computations in encrypted data and have been known for over 30 years. For example, the
encryption systems of Goldwasser and Micali [MRS88], El Gamal [Elg85], RSA [RSA78]
and Paillier [Pai99], support either adding or multiplying over encrypted ciphertexts, but
not both operations in the same time.

Definition 2.3.1 obviously extends to a system defined over a ring as follows.

Definition 2.3.2 Let a cryptographic system S defined over (M, C,K), where M and C
are both groups such that for any k ∈ K, the two ciphertexts c1 and c2 are defined as:
c1 = E(m1, k) and c2 = E(m2, k).
S is said to be algebraically homomorphic, or ring homomorphic if and only if the following
two conditions hold:

1. D(c1 + c2) = D(E(m1, k) + E(m2, k)) = m1 +m2

2. D(c1 · c2) = D(E(m1, k) · E(m2, k)) = m1 ·m2

where + and · are the respective ring operations in C and M.

Generally, a homomorphic cryptographic scheme can be considered as a black box,
when given two ciphertexts and an operation, return an encryption of the result of that
operation on the two corresponding plaintexts. While addition and multiplication are
common operations provided by a homomorphic scheme, we consider the symbol ⊞ to
denote the operation on ciphertexts which produces an encryption of the sum of n messages.

36

2.3. Cryptographic Mechanisms in Clouds

Similarly, we consider the symbol ⊠ to denote the operation on ciphertexts which provides
an encryption of the product of n messages as follows:

D(E(m1, k)⊞ E(m2, k)⊞ · · ·⊞ E(mn, k)) = m1 +m2 + · · ·mn

D(E(m1, k)⊠ E(m2, k)⊠ · · ·⊠) = m1 ·m2 · · · · ·mn

In 2005, Boneh et al. [BGN05] were the first to introduce a construction of a scheme
capable of performing both operations in the same time. However, their scheme does an
arbitrary number of additions and just one multiplication.
In 2009, Gentry proposed the first Fully Homomorphic Encryption (FHE), performing an
arbitrary number of additions and multiplications [Gen09]. Later, two further fully ho-
momorphic schemes were presented [VDHV10, SV10] following Gentry’s framework. The
underlying tool behind all these schemes is the use of Euclidean lattices, which have previ-
ously proved powerful for devising many cryptographic primitives [Grä78].

2.3.3.2 Homomorphic Cryptosystems in Cloud Storage Environments

The ability to perform simple deterministic computations on encrypted data make
homomorphic schemes ideal for creating privacy preserving protocols. In general, privacy
preserving protocols present the following scenario. Bob has a secret function f , and
Alice has a set of inputs {x1, · · · , xn}, for which she wants to learn f(x1, · · · , xn), without
revealing her inputs. If Bob’s function can be designed as an homomorphic function, then,
Alice can submit encrypted inputs to Bob. This latter performs the necessary homomorphic
operations, randomizes the resulting ciphertext, and sends the encrypted result back to
Alice. Upon decryption, Alice learns y = f(x1, · · · , xn). Similarly, a group of users may
wish to collectively compute the result of a public function, but without revealing their
inputs. This situation presents a voting system, where each participant has a vote, and
wishes to learn the final result without revealing who they voted for.

Privacy preserving protocols are usually considered secure under an honest but curious
model or a malicious model. The security of these two threat models is defined with
respect to an ideal implementation of a protocol where all participants securely transmit
their inputs to a trusted third party, who then performs the required computation and
returns the result.

In the honest but curious model, all entities honestly provide proper inputs, at each
step of the protocol, and properly perform any calculations expected from them. The
model is named honest but curious because each entity is honest in the sense that it does
not provide false input, but curious in the sense that it attempts to gain extra information,
if the protocol makes it possible. A protocol is considered as secure, under an honest but
curious threat model, if the amount of information gained by each entity is identical to the
information gained when using a trusted third party.
Unlike honest but curious adversaries, malicious users may attempt to deviate from the
protocol or to provide invalid inputs. As such, a malicious entity is able to completely
disrupt the protocol. While controlling the behavior of a malicious user is impossible,
security in malicious settings is limited to preventing the malicious user from learning

37

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

extra information about another entity’s input. It is important to note that a protocol
being secure under the malicious model does not necessarily mean that a malicious user
cannot compromise privacy. For example, in calculating a set union for two entities, the
malicious user could submit the empty set, thus learning the other user’s complete set from
the result. Because the same technique is possible using a trusted third party, this is not
considered a failure of the protocol.

Homomorphic schemes have numerous applications in the context of the cloud [NLV11,
MR14]. For example, they enable private queries to a search such that the cloud client
submits an encrypted query and the cloud server computes an encrypted answer without
ever looking at the query in the clear. In addition, homomorphic schemes enable searching
on encrypted data, where the user stores encrypted files on a cloud storage server and can
later have the server retrieve only files that (when decrypted) satisfy some constraints,
even though the remote server cannot decrypt the files on its own.

As discussed previously, the adoption of cloud services by consumers and businesses is
limited by concerns over the loss of privacy or business value of private data. In this section,
we introduce concrete and valuable applications of homomorphic encryption schemes, in
medical and financial sectors. These applications can help preserving client’s privacy while
outsourcing various kinds of processing to the cloud.

First, in a cloud medical storage system, homomorphic implementation enables cloud
to perform computation on the encrypted data on behalf of the patient. Then, the cloud
provider can send the patient updates, alerts, or recommendations based on the received
data. The functions to be computed in this scenario may include averages, standard
deviations or other statistical functions such as logistical regression which can help predict
certain dangerous health situations.

Second, in the financial industry, there is a potential application scenario in which both
the data and the function to be computed on the data are private. As an example, data
about corporations, their stock price or their inventory is often relevant to making invest-
ment decisions. With homomorphic functions, some functions can be evaluated privately
as follows. The user uploads an encrypted version of the function to the cloud, for example
a program where some of the evaluations include encrypted inputs which are specified.
The streaming data are encrypted with the user public key and uploaded to the cloud.
The cloud service evaluates the private function by applying the encrypted description of
the program to the encrypted inputs it receives. After processing, the cloud returns the
encrypted output to the client.

2.4 Formal Security Models

In order to propose efficient cryptographic protocols, it is important to understand
the validation tools. In this section, we present two kinds of security validation. We first
investigate computational problems in Section 2.4.1. Second, we introduce the provable
security in Section 2.4.2.

38

2.4. Formal Security Models

2.4.1 Computational Security

The field of cryptography has motivated a number of complex computational problems.
The supposition that these problems are in general computationally difficult to resolve in
polynomial time provides the basis of the most contemporary cryptosystems.

• Discrete Logarithm Problem (DLP) – the discrete logarithm is the group equiv-
alent of the logarithm function for real numbers. A formulation of the DLP is given
as follows:

Definition 2.4.1 Given a generator g of a multiplicative cyclic group G of order
p, and given the public element y = gx ∈ G, the problem of finding x is called the
Discrete Logarithm Problem.

The difficulty of solving DLP depends on the representation and the order of the
group considered. The basic solution for solving DLP is the exhaustive search. This
approach requires O(p) multiplications, which is inefficient for long prime p. How-
ever, other methods, such that the Pollard’s lambda and the baby-step giant-step
algorithms, require only O(√p). Nowadays, the most efficient method for solving
the DLP is referred to as the index calculus (more details about DLP can be found
in [Sho97,MVO96]).
When building cryptographic algorithms relying on the difficulty of solving DLP,
this often translates to the adversary being unable to distinguish between the dis-
crete logarithms of two group elements.
The Computational Diffie Hellman Problem (CDH) and the Decisional Diffie Hell-
man Problem (DDH) attempt to capture the difficulty of problems related to DLP
as they generally arise in cryptography.

• Computational Diffie Hellman problem (CDH) – the motivation for CDH
Problem is that many security systems use mathematical operations that are fast to
compute, but hard to reverse [DH76].

Definition 2.4.2 Given a generator g of a multiplicative cyclic group G of order
p, and given two group elements ga ∈ G and gb ∈ G, where a, b ∈ Zp

∗ are two
secrets, the problem of calculating gab from ga and gb is called the Computational
Diffie Hellman problem.

Dan Boneh believes that there is a solution to DLP that can be polynomially reduced
to a solution to CDH [Bon98].

• Decisional Diffie Hellman problem (DDH) – The decisional version of the CDH
requires an adversary to distinguish between gab and gc for some random integer c.

Definition 2.4.3 Given a generator g of a multiplicative cyclic group G of order p,
and given two group elements ga ∈ G and gb ∈ G, where a, b ∈ Zp

∗ are two secrets,
the problem of distinguishing between tuples of the form (ga, gb, gab) and (ga, gb, gc)
for some random integer c, is called the Decisional Diffie Hellman problem.

39

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

Unlike CDH, there exist groups where DDH is tractable, but the DLP is not. For
example, an elliptic curve that supports a bilinear pairing function. That is, given a
pairing ê and three group elements ga, gb an gc, then an adversary can easily compute
ê(ga, gb) = ê(g, g)ab and ê(g, gc) = ê(g, g)c. If the two values are equal then ab = c
otherwise ab 6= c.

• Elliptic Curve Discrete Logarithm Problem (ECDLP) – the Elliptic Curve
Discrete Logarithm Problem (ECDLP) is the projection of the DLP in an additive
group.

Definition 2.4.4 Let G be a subgroup of E(Fq), which is generated by the point P
of prime order p. Given a generator P of an additive group G of order p, and given
the public element Q = x.P ∈ G, the problem of finding x is called the Elliptic Curve
Discrete Logarithm Problem.

The ECDLP can be solved using the baby-step giant-step algorithm or the Pollard’
Rho algorithm in O(√p) steps ([MVO96]). The ECDLP is widely used to derive EC
keys. That is, the EC key derivation function relies on the hardness of this problem
to protect the selected secret key x, given the public key Q and the generator P .

2.4.2 Provable Security

The simple fact that a cryptographic algorithm withstands cryptanalytic attacks for
several years is often considered as a kind of validation procedure. Nonetheless, there
is a completely different paradigm which is provided by the concept of provable security.
A significant line of research has tried to provide proofs in the framework of complexity
theory.
The first step in provable security is to define security goals. Then, it examines whether
this goal is achieved by studying the probability that an adversary wins an experiment
conducted by a challenger. This win condition can take many different forms such as
finding the decryption of a given challenge ciphertext or choosing correctly which of the two
games is being played. We call the experiment a security model. An adversary’s advantage
is a measure of how much more successful it is at winning the experiment compared to
simply guessing.

In 1984, Goldwasser and Micali made a progress in provable security, introducing se-
mantic security for encryption schemes [GM84]. In [MRS88], Micali et al. proved that the
semantic security is equivalent to the indistinguishability (IND) under a chosen plaintext
attack security. The IND of encryption means that if an adversary has some information
about the plaintext, he should not learn about the ciphertext. This security notion requires
computational impossibility to distinguish between two messages chosen by the adversary,
with a probability significantly greater than a half.
For example, if an adversary selects two equal-lengths plaintexts m0 and m1. The chal-
lenger picks randomly one of the two plaintexts, encrypts it and gives the resulting challenge
ciphertext to the adversary. Then, this adversary should not guess which message had been

40

2.4. Formal Security Models

encrypted. This model is said IND–Chosen Plaintext Attack (IND–CPA). In fact, the ad-
versary is allowed to query the encryption oracle with any message and will be given the
corresponding ciphertext in return. This is formalized in Definition 2.4.5:

Definition 2.4.5 A cryptosystem is said to be indistinguishable under chosen plaintext at-
tack (IND-CPA), if a probabilistic polynomially bounded adversary cannot win the following
game with a probability greater than 1

2 + τ(ξ), where ξ is a selected security parameter and
τ is a negligible function:

1. Using the security parameter ξ, the challenger derives the public key pk and sends it
to the adversary. The challenger keeps secret the private key.

2. The adversary may perform a polynomially bounded number of encryptions or other
operations. Then, the adversary chooses two different messages m0,m1 ∈ M and
sends them to the challenger.

3. The challenger randomly selects one bit b ∈ {0, 1} and sends the encryption E(mb, pk).

4. The adversary is free to perform any number of additional computations or encryp-
tions. The adversary responds by either 0 or 1, and wins the game if the selected
bit-value is the same chosen by the challenger.

The IND-CPA allows an adversary to encrypt a polynomially bounded number of arbi-
trary messages without access to any secret information. Thus, the adversary may select a
ciphertext and guess the related plaintext. This attack is called Chosen Ciphertext Attack
(CCA). Definition 2.4.6 presents the IND-CCA security, based on a decryption oracle. This
latter acts as a black box that takes as input a ciphertext and responds with the related
plaintext.

Definition 2.4.6 A cryptosystem is said to be indistinguishable under non-adaptive cho-
sen plaintext attack (IND-CCA1), if a probabilistic polynomially bounded adversary cannot
win the following game with a probability greater than 1

2+τ(ξ), where ξ is a selected security
parameter and τ is a negligible function:

1. Using the security parameter ξ, the challenger derives the public key pk and sends it
to the adversary. The challenger keeps secret the private key.

2. The adversary is given access to the decryption oracle and may perform a polynomi-
ally bounded number of decryption or other operations.

3. The adversary chooses two different messages m0,m1 ∈ M and sends them to the
challenger.

4. The challenger randomly selects one bit b ∈ {0, 1} and sends the encryption E(mb, pk).

5. The access to the oracle is stopped. The adversary responds by either 0 or 1, and
wins the game if the selected bit-value is the same chosen by the challenger.

41

CHAPT 2. CRYPTOGRAPHY IN CLOUD DATA STORAGE ENVIRONMENTS

A non-adaptive chosen attack is also called lunchtime attack, because the adversary
could sneak a protected system while the owner was out for lunch (Definition 2.4.6, step 2).
However, he cannot rely on access later. The strongest form of indistinguishably assumes
that the adversary retains access to the decryption oracle, after the challenge ciphertext is
received. Otherwise, the decryption oracle does not respond, if the adversary requests the
decryption of the challenge.

2.5 Conclusion

In this first chapter, we present a general introduction to public key cryptography.
We investigate the usage of attribute based cryptography and homomorphic schemes in
clouds. As a specific variant of attribute based cryptography, we describe the ID-based
cryptosystems which rely on the use of elliptic curve groups. ECC is a promising approach
that significantly reduces the size of keys and encryption algorithms. Thus, it is well-suited
for the security applications designed to resource constrained devices. These cryptographic
systems are referred to as interesting mechanisms, to mitigate cloud data security concerns,
thanks to their attractive features. For instance, they provide much more flexible decryp-
tion schemes, and allow malleability on ciphertexts. Finally, we present some validation
tools, namely the computational security and the provable security.

In the next chapter, we leverage the usage of ID Based Cryptography in cloud storage
environments. We propose an original ID-based client side encryption approach, where
cloud clients are assigned the IBC–PKG function. So that, they can issue their own public
elements, and can keep confidential their resulting IBC secrets.
Thanks to the lightweight ID-based public key computation process and contrary to the
existing classical sharing schemes, our proposal does not require for the depositor to be
connected, when the recipients want to retrieve the shared data.

42

Chapter 3

ID-Based Cryptography

for Secure Cloud Data Storage

Integrity simple means not violating
one’s own identity

Erich Fromm - 1900-1980

Contents

3.1 Introduction . 44

3.2 Architecture and Security Requirements 44

3.2.1 Architecture . 45

3.2.2 Security Requirements . 45

3.3 ID-Based Cryptography for Securing Cloud Applications 46

3.3.1 Prerequisites . 47

3.3.2 Secure Data Storage . 48

3.3.3 Secure Data Backup . 49

3.3.4 Secure Data Sharing . 49

3.3.4.1 Scenario E1: Secure Data Sharing One To One . . . 50

3.3.4.2 Scenario E2: Secure Data Sharing One To Many . . . 50

3.4 Security Analysis . 52

3.5 Limitations and Possible Improvements 54

3.5.1 Computation Complexity . 54

3.5.2 Deduplication Concern . 56

3.6 Implementation Results . 58

3.7 Conclusion . 60

43

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

3.1 Introduction

B
y moving their data to the cloud, users remove the burden of building and maintaining
a local storage infrastructure. As such, they only have to pay their cloud service

providers for the allocated resources. Indeed, these providers offer to their clients the
possibility to store, retrieve and share data with other users in a transparent way.
Unfortunately, in addition to its several advantages, cloud storage brings several security
issues, namely data confidentiality preservation. Kamara and Lauter [KL10], and Chow et
al. [CGJ+09] agreed that encrypting outsourced data by the client is a good alternative to
mitigate such concerns of data confidentiality. So that, the client preserves the decrypting
keys out of reach of the cloud provider. However, the confidentiality provisioning becomes
more complicated with flexible data sharing among a group of users. It requires efficient
sharing of decrypting keys between different authorized users. As such, only authorized
users are able to obtain the cleartext of data stored in the cloud.

In this chapter, we present our first contribution [KBL13]. That is, we propose a
new method for improving data confidentiality in cloud storage systems and enhancing
dynamic sharing between users. It can be used by an authenticated client for his data
storage, backup and sharing in the cloud. Our proposal relies on the use of ID-Based
Cryptography (IBC), where each client acts as a Private Key Generator (PKG). That is,
he generates his own public elements and derives his private key using a secret.
The originality of our proposal is twofold. First, it ensures better confidentiality. That is,
every client acts as a PKG by computing an ID-based pair of keys to encrypt the data that
he intends to store in the cloud. As such, the data access is managed by the data owner.
Second, by using a per data ID-based key, we provide a flexible sharing approach. Indeed,
the distribution of decrypting keys between the client and the authorized users, does not
reveal any information about the client’s secret.

This chapter is organized as follows. First, we describe, in Section 3.2, the cloud archi-
tecture considered in our work, and the related security requirements. Second, we describe
in Section 3.3 our ID-based proposal, while presenting three different scenario, namely
the storage, backup and sharing of data between two users and among a group of users.
Then, we give a security analysis in Section 3.4 and some possible refinements in Sec-
tion 3.5. Finally, we present our implementations results in section 3.6, before concluding
in Section 3.7.

3.2 Architecture and Security Requirements

We present, in this section, a typical cloud storage architecture. Then, we review the
security requirements, while considering realistic threats models. We first point out the
case where an untrusted service provider has a curious behavior. Second, we consider the
case of a malicious user that intends to get information about outsourced contents of an
other data owner.

44

3.2. Architecture and Security Requirements

3.2.1 Architecture

Figure 3.1 illustrates a descriptive network architecture for cloud storage. It relies on

the following entities, permitting a customer to store, retrieve and share data with multiple

users:

• Cloud Service Provider (CSP)– a CSP has significant resources to govern distributed

cloud storage servers and to manage its database servers. It also provides virtual

infrastructure to host application services. These services can be used by the client

to manage his data stored in the cloud servers.

• Client (C)– a client is a data owner who makes use of provider’s resources to store,

retrieve and share data with multiple users. A client can be either an individual or

an enterprise. Each client has a unique and authentic identity, denoted by IDC .

• Users (U)– the users are able to access the content stored in the cloud, depending

on their access rights which are authorizations granted by the client, like the rights

to read, write or re-store the modified data in the cloud. These access rights serve

to specify several groups of users. Each group is characterized by an identifier IDG

and a set of access rights.

Figure 3.1 - Architecture of cloud data storage

In practice, the CSP provides a web interface for the client to store data into a set of

cloud servers, which are running in a cooperated and distributed manner. In addition, the

web interface is used by the users to retrieve, modify and re-store data from the cloud,

depending on their access rights. Moreover, the CSP relies on database servers to map

clients identities to their stored data identifiers and groups identifiers.

3.2.2 Security Requirements

When outsourcing data to a third party, providing confidentiality and privacy becomes

more challenging and conflicting. Privacy is a critical concern with regards to cloud storage

45

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

due to the fact that clients’ data reside among distributed public servers. Therefore, there
are potential risks where the confidential information (e.g., financial data, health record)
or personal information (e.g., personal profile) are disclosed. Meanwhile, confidentiality
implies that client’s data have to be kept secret from both cloud provider and other users.
Confidentiality remains as one of the greatest cloud security concerns. This is largely
due to the fact that users outsource their data on cloud servers, which are controlled and
managed by potentially untrusted CSPs. That is why, it is compulsory to provide secrecy
by encrypting data before their storage in cloud servers while keeping the decryption keys
out of reach of CSP and any malicious user.

For designing the most suitable security solutions for cloud storage, we are considering
a honest but curious cloud provider, as a threat model (Section 2.3.3.2). In such cases,
the remote server honestly performs the operations defined by our proposed scheme, but
it may actively attempt to gain the knowledge of the outsourced data.

In addition, we addressed the case of a malicious user, with regards to the second
threat model, presented in Section 2.3.3.2. For instance, an attacker can be either a
revoked user with valid data decryption keys, an unauthorized group member or a group
member with limited access rights. Therefore, secure data sharing should support flexible
security policies including forward and backward secrecy.

• Forward secrecy – this property requires that the confidentiality of previously en-
crypted data has to be ensured even after the long-term secrets are exposed. For
example, a user cannot access stored data before he joins a group.

• Backward secrecy – this property means that a compromise of the secret key does
not affect the secrecy of future encrypted data. A such, a revoked group member is
unable to access data that were outsourced after he leaves the group.

Beyond these security requirements, our proposal aims to achieve several security and
system performances. That is, the overhead of implemented security mechanisms should
be acceptable.

3.3 ID-Based Cryptography for Securing Cloud Applications

In this section, we introduce our ID-based construction for securing cloud applications,
before enumerating the considered prerequisites (Section 3.3.1). Then, we describe in depth
our proposed solutions for data storage, backup and sharing.

Our main idea consists in using ID-Based Cryptography to provide a per data pair
of keys. In fact, our proposition inherits attractive properties from IBC such as being
certificate-free and having small key sizes. This potentially offers a more lightweight key
management approach.
In [KBL13], we propose to use each client as a Private Key Generator (PKG) which gener-
ates his own ID-Based Cryptography Public Elements (IBC–PE). These IBC–PE are used
to compute ID-based keys. These keys serve to encrypt the data before their storage and

46

3.3. ID-Based Cryptography for Securing Cloud Applications

sharing in the cloud. Note that for every different data, the client computes the corre-
sponding private and public keys relying on his IBC–PE and a local secret sC .

The choice for IBC is motivated by several reasons. First, we benefit from an easier key
management mechanism thanks to the certificate-free feature of IBC. That is, the compu-
tation of public keys from the unique data identifiers does not require the deployment of a
Public Key Infrastructure (PKI) and the distribution of certificates. Second, IBC permits
deriving public keys with no need for previous computation of corresponding private keys.
That is, contrary to traditional public key derivation schemes, IBC does not require to
generate the private key before the public key. Indeed, users have only to generate ID-
based public keys to encrypt data before storage. As such, any user can directly encipher
data for a client at no extra cost of communication. The derivation of the corresponding
private keys is only needed at the time of data recovery. Third, IBC permits to derive a
per data key from a unique data identifier thanks to the lightweight key computation. The
derivation of a per data key is well suited for a sharing process. That is, the client uses
a different ID-based pair of keys for each new data storage. Therefore, he has merely to
reveal the ID-based private key needed for shared data decryption. As such, we avoid the
use of the same key for enciphering all the outsourced data. That is, when the private key
used for the decryption is captured by an attacker, he cannot get any information about
the other per data keys. In fact, the client should not use a unique long term key for all
his data encryption. He has just to reveal the ID-based private key needed for the data
decryption.

3.3.1 Prerequisites

This section gives the prerequisites considered for designing our ID-based solution.
First, we assume that there is an established secure channel between the client and the CSP
(cf. Fig 3.1). This secure channel supports mutual authentication and data confidentiality
and integrity. It can be implemented through the Transport Layer protocol (TLS) [DR08],
where the client can authenticate with a certificate or password. TLS permits data to be
transmitted securely.

Second, each client generates his own IBC–PE that he intends to use to secure his
data storage. By acting as a PKG, the cloud client bears the responsibility of generating
the ID-based public elements. That is, the client computes the probabilistic polynomial
time algorithm which outputs the groups G1, G2 and GT and the pairing function ê from
G1 ×G2 in GT .

Note that the client keeps secret sC which is needed for IBC–PE generation and private
keys derivation. We must also note that, in practice, the client should first select the ID-
based encryption scheme which will be used for ciphering messages. Our proposal does not
depend on the defined scheme. However, that choice depends on the way the private keys
are generated.

After successfully authenticating with the CSP, the client starts the storage process as
detailed in Section 3.3.2. Indeed, the client enciphers his data using a per data ID-based
public key PubD that is derived from the concatenation of the client’s identity IDC and

47

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

the data identifier IDD, as follows:

PubD = Hashpub(IDC ||IDD) (3.1)

IDD is locally generated by the client and is derived from the meta-data (MD) using a one
way hash function H() as IDD = H(MD). We assume that MD supports the data model
as specified by the Cloud Data Management Interface standard (CDMI) [Sni10]. The CDMI
defines many different types of metadata, including HTTP meta-data, data system meta-
data, user meta-data, and storage system meta-data. In our proposal, MD are referred
to as user meta-data, which are arbitrarily-defined information that are specified by the
CDMI client and attached to objects.
Our choice to hide the content of MD is motivated by the need to ensure the data privacy
of a client. After ciphering his data, the client sends his signed encrypted data in order to
be stored. When the client wants to get back his information, he starts with the provider
the backup process presented in Section 3.3.3. When he wants to share the stored data
with other clients, he executes the sharing procedure described in Section 3.3.4.

3.3.2 Secure Data Storage

When a client wants to store data in the cloud, he has to generate the data identifier
IDD. This identifier, associated to a client’s identity, must be unique in the CSP database.
Thus, the client starts the storage process by sending a ClientRequestVerif message to
verify the uniqueness of the generated IDD to his CSP. Recall that, in practice, the client
should first select the ID-based encryption scheme which will be used for enciphering
messages. Our proposal does not depend on the defined scheme. However, that choice
depends on the way of generating the private keys. In addition, the client defines the
corresponding IBC–PEC .

Figure 3.2 - Secure Data Storage

The storage process consists in exchanging the four following messages (cf. Fig 3.2):

48

3.3. ID-Based Cryptography for Securing Cloud Applications

• ClientRequestVerif : this first message contains the generated data identifier IDD.
This message is a request for the verification of the uniqueness of the IDD. More
specifically, the client sends the IDD derived from MD in order to verify the unique-
ness of the data identifier in the cloud database servers. The CSP replies with a
ResponseVerif message to validate or unvalidate the claimed identifier. Note that
the data storage process has to be stopped when the uniqueness verification fails.

• ResponseVerif : this acknowledgement message is generated by the CSP to validate
the requested IDD. When receiving this message, the client concatenates IDC and
IDD for deriving the public key PubD used to encipher his data.

• ClientRequestStorage: it contains the public elements generated by the client IBC–
PEC , the encrypted data PubD(D) and optionally a selected group identifier IDG

with the access rights granted by the client to the associated users of the group. IDG

is only required if data are stored for a sharing purpose (Section 3.3.4). Recall that
sC is kept secret by the client.

• ResponseStorage: this acknowledgement message, sent by the CSP, is used to confirm
to the client the success of his data storage.

3.3.3 Secure Data Backup

The data backup process starts when the client requests for retrieving the data previ-
ously stored in the cloud. The data backup process, presented in Figure 3.3, includes two
messages:

• ClientRequestBackup: this first message is sent by the data owner. It contains the
data identifier IDD of the requested data that the client wants to retrieve.

• ResponseBackup: the response of the CSP includes the encrypted outsourced data
PubD(D). Upon receiving the ResponseBackup message, the client derives the data
private key PrivD from the local stored secret sC and the IBC–PEC , in order to
decipher the data.

3.3.4 Secure Data Sharing

We consider the data sharing process, where the client outsources his data to the cloud
and authorizes a group of users to access the data. Next, we refer to these user(s) as
the recipient(s) and to the data owner as the depositor. Afterwards, we distinguish two
different scenarios. First, the data sharing one to one, presented in Section 3.3.4.1, when
a depositor stores for one recipient. Second, the data sharing one to many, described in
Section 3.3.4.2, when a depositor shares data among a group of recipients. We must note
that our proposal does not require from the recipients to be connected during the sharing
process. Indeed, recipients’ access rights are granted by the data owner and managed by
the CSP. That is, the CSP is in charge of verifying each recipient access permissions before
sending him the outsourced data.

49

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

Figure 3.3 - Secure Data Backup

3.3.4.1 Scenario E1: Secure Data Sharing One To One

The Data Sharing One To One scenario is defined when a depositor wants to share data
with one recipient. That is, the depositor IDU can store encrypted data for this recipient
client IDC by using a per data ID-based public key and the public elements IBC–PEC of
the recipient. The depositor derives the identifier of the data that he intends to share with
the recipient and generates the per data public key as follows:

PubD = Hashpub(IDU ||IDC ||IDD)

This sharing process includes the following messages (cf. Fig 3.4):

• UserRequestStorage: this message is a request sent by the depositor that includes the
new generated data identifier IDD and the data encrypted with PubD. After verify-
ing uniqueness of IDD, the CSP stores the data and sends back the ResponseStorage

message.

• ResponseStorage: it is an acknowledgement message sent by the CSP to the request-
ing depositor. Then, the CSP sends a notification to the recipient to notify the
availability of new data enciphered with his public elements. Note that, the CSP
also includes, in this notification, the depositor identity IDU and the data identifier
IDD. When the recipient receives this notification, he starts a backup process, as
detailed in Section 3.3.3.

3.3.4.2 Scenario E2: Secure Data Sharing One To Many

When a depositor wants to share data among a group of recipients, he has first to
generate the data identifier IDD and a selected group identifier IDG with the access rights

50

3.3. ID-Based Cryptography for Securing Cloud Applications

Figure 3.4 - Secure Data Sharing One To One

granted to the associated users of the group. Then, he computes a per data public key as
follows:

PubD = Hashpub(IDG||IDD)

In practice, each recipient is assumed to know the corresponding private key for de-
crypting outsourced data. This private key distribution problem can be solved in two ways.
Either the depositor sends the deciphering key to the recipient as soon as he stores data
or a proxy is in charge of distributing the private keys. Once the depositor stored the data
with the authorized access rights of the group, each member of the group can start the
data sharing process based on the two following messages (cf. Fig 3.5):

Figure 3.5 - Secure Data Sharing One To Many

• UserRequestAccess : this message contains the requested data identifier IDD. Once

51

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

receiving this message, the CSP searches for the read/write permissions of the recip-
ient, and then, he generates a ResponseAccess message.

• ResponseAccess : the CSP includes, in its response, the public elements of the depos-
itor IBC–PEC and the encrypted data PubD(D).

3.4 Security Analysis

In this section, we give an informal security analysis of our proposal, following the
design goals, presented in Section 3.2. Recall that we have considered two threat models
namely an honest but curious cloud provider and a malicious user that intends to get
extra-information from outsourced data. In addition, we expose its possible refinements to
mitigate other threats.

• Privacy– privacy is a critical concern with regards to cloud storage due to the fact
that clients’ data reside among distributed public servers. Therefore, there are po-
tential risks where the confidential information (e.g., financial data, health record)
or personal information (e.g., personal profile) are disclosed.

Based on cryptographic solution to keep data content secret, sensitive information are
generally included in meta-data (e.g., file name, client identity, keywords) [CM05].
Therefore, in our proposal, we present an ID-based cryptographic solution based on
hashed meta-data. As such, these meta-data form the data identifier, which is used
to derive the per data public key. Thus, the client has privacy guarantees on his
stored data. First, meta-data content can never be disclosed to the CSP, as he only
has access to hashed information IDD = H(MD). Second, the CSP cannot reveal
the content of stored data. In fact, although, he has the data identifier and the public
elements of the client IBC–PEC , he does not have the secret sC needed to derive the
private key and decipher data.

Furthermore, searching for stored data, for a backup process, may also endanger the
privacy. That is, general retrieval methods are based on keywords search. However,
the enforcement of these propositions partially violates privacy protection, since the
CSP can guess the content of the stored data based on keywords. To alleviate this
privacy problem, we propose to use the hashed meta-data as a data identifier. This
identifier is unique and it will serve to search data from cloud servers.

Moreover, privacy is also threatened by the accountability requirement. That is,
accountability implies the capability of identifying a party, with undeniable evidence.
This remains an essential requirement for the Cloud Pricing Model (CPM).
In order to identify a cloud user, general accountability approaches include user
profiling, information logging, replay, tracing [YPX05], etc. These operations may
not be completed without revealing some private information. Unfortunately, this
security conflict between accountability and user privacy has not been solved yet by
our approach. That is, our proposal is based on identities. Nevertheless, we may rely
on third trusted party, to manage a federation identity mechanism.

52

3.4. Security Analysis

Finally, we note that privacy is tightly related to confidentiality, due to the notion
that they both prevent information leakage. Therefore, if data confidentiality is ever
violated, privacy will also be violated.

• Data confidentiality– when dealing with cloud storage environments, confidentiality
implies that client’s data have to be kept secret from both cloud provider and other
users. As we assumed that data are stored on cloud servers, which are controlled
and managed by honest but curious providers, confidentiality remains as one of the
greatest concerns.

In this proposal, we perform an ID-based cryptographic solution to ensure data
confidentiality for secure data storage, backup and sharing.

First, we propose to outsource encrypted data to cloud servers. In our approach, the
client is in charge of enciphering his data before their storage in the cloud. He acts
as a PKG entity and he is responsible for generating and managing his secrets on his
own. Thus, he is the only entity knowing the IBC secret sC . This secret, which is
kept locally by the client, is needed to derive any deciphering key. Therefore, it is
impossible for the CSP or a malicious user to retrieve the deciphering key to decrypt
data.

Second, we propose to use a per data key for enciphering data. This proposal is well
suited for the sharing process, as, the client uses a different ID-based pair of keys for
each new data storage. He has only to reveal the ID-based private key needed for
shared data decryption. As such, we avoid using the same key for enciphering all the
outsourced data. In fact, when the private key used for the decryption is captured
by an attacker, he cannot get any information about the other per data keys.

• Access control to data– the proposed secure sharing scheme, discussed in Section 3.3.4,
authorizes recipients to have access to data, based on their respective access rights.
In [KBL13], we distinguish two sharing scenarios, on the basis of the number of
recipient users. As an example, the one to one scenario ensures forward secrecy, since
data encryption is performed using the public key of the recipient. Additionally, we
guarantee backward secrecy, as each storage and sharing scenario requires a per data
decrypting key. This deciphering key depends on both outsourced data identifier and
the recipient identity.

The issue of unauthorized access to data is twofold. First, the issued access rights
to the recipients are granted by the depositor and managed by the CSP. In addition,
when a recipient wants to access to data, he has first to authenticate with the CSP.
That is to say that the access to data has already been strictly controlled by an
authentication phase, before the verification of the authorizations granted by the
depositor. Therefore, the enforcement of the access control policy is safeguarded.

Second, even though the CSP or a malicious recipient can gain access to the data,
the enforcement of data confidentiality is still guaranteed. In fact, they can only
have access to encrypted data or to hashed meta-data. They cannot have the needed
private key to decipher data.

Finally, our first contribution is not restricted to any specific ID-based encryption
scheme. So, instantiation of our proposal is given flexibility to implement appropriate ID-

53

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

based encryption schemes. No change to the adopted ID-based schemes is made, hence,
the security properties of the cryptographic primitives are well respected. However, like
for any distribution scenario (e.g., sharing one to many), the issue of revoking some users’
access privileges arises but can be classically solved at the cost of key re-distribution and
data re-encryption, in order to ensure forward and backward secrecy.

3.5 Limitations and Possible Improvements

In this section, we lead a general discussion, while introducing possible improvements
of our ID-based proposal.

3.5.1 Computation Complexity

Our proposition assumes that the client acts as a PKG. That is, he bears the respon-
sibility of generating his own public elements IBC-PEC and deriving the corresponding
private keys of all outsourced data files.
In an effort to alleviate the computation complexity at the client side, we propose that the
PKG role is distributed partly to the cloud server and to the client. As such, the only one
operation that remains to the client is the derivation of the data private key instead of the
computation of the ID public elements, as proposed in our solution (Section 3.3).
In fact, the CSP relies on a SystemInit procedure, in order to generate the IBC-PECSP .
This algorithm takes as input a security parameter ξ and outputs the algebraic groups and
pairing functions, which will be used for ciphering data contents.

In practice, the cloud server first selects the ID-based encryption scheme. Then, it de-
fines the corresponding public elements. We must note that the choice of the IBE scheme
depends on the way data private keys are generated. Our ID-based contribution does not
depends on the defined IBE schemes. However, we next present the storage scenario, using
the Boneh and Franklin scheme [BF01]. That is, we suppose that the cloud server chooses
to generate his private key by multiplying his public key with its secret sCSP [BF01]. In
addition, it creates the following IBC-PECSP ={G1, GT , q, ê, g, P , Hashpub(), H1()},
where H1 : GT → {0, 1}n. The CSP keeps secret the random sCSP , which will serve to
generate a part of the data private key as: PartPrivD = sCSP .PubD.

When a client (C) wants to store a new data file (D) in cloud servers, he has to
authenticate with the CSP, based on EAP-TLS protocol [DR08]. Recall that TLS supports
mutual authentication between clients and servers and it enables the secure transmission
of all information elements needed for the derivation of a pre-shared key kCS .
Then, the client starts the storage process, which consists in exchanging the four following
messages (cf. Fig. 3.6):

• Message 1: is the ClientRequestVerif message. It is sent by the data owner to the
cloud server. It contains the data identifier IDD. Message 1 is sent enciphered using
the pre-shared key kCS . When the CSP receives this first message, it first verifies

54

3.5. Limitations and Possible Improvements

Figure 3.6 - Cloud data storage scenario

the uniqueness of the claimed identifier. In fact, the CSP does not accept a data
identifier unless it does not exist in its database. Then, the cloud server computes
the data public key as: PubD = Hashpub(IDD), using the public elements IBC-PE.
We must note that the IDD is locally generated by the client and is derived from the
meta-data (MD) using a one way hash function H() as IDD = H(MD). In addition,
the CSP computes the first part of the data private key as PartPrivD = sCSP .PubD.

• Message 2: acknowledges the claimed data identifier and it includes PartPrivD and
PubD. It is enciphered using the pre-shared key and is sent by the cloud provider to
the data owner.
Upon receiving this message, the data owner first selects a random sC and computes
the data private key, using the IBC-PE and PartPrivD = cCSP .PubD, as: PrivD =
sC .PartPrivD = rC .sCSP .PubD. Then, the client enciphers the data file D, using the
public key PubD. With the Boneh and Franklin encryption scheme, the enciphered
data file is formed by the pair (U, V), such that:

C = (U, V) = (k.P,D ⊕H1(ê(PubD, Ppub)
k)) (3.2)

where k ∈ Zn
∗, and Ppub = rC .P .

• Message 3: is a ClientRequestStorage message. It contains the enciphered data file
PubD(D). This message is sent by the client to the cloud server.

• Message 4: is a ResponseStorage message which is sent by the CSP to confirm the
success of the data file storage.

When the data owner wants to retrieve his outsourced data, he has to start a backup
process, as presented in Section 3.3.3.
While sharing the PKG function between the data owner and the cloud provider, we
significantly reduce the computation complexity at the client side. In fact, the CSP has
the responsibility of generating the largest part of IBC-PE. By definition, the cloud server is
assumed to have a lot of processing capabilities and storage capacities. As such, managing
the IBC-PE and generating private keys will have no effect on its natural function. In
addition, the CSP has to refresh these IBC-PE periodically in order to avoid attacks
against his master secret key sCSP .

55

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

3.5.2 Deduplication Concern

Our ID-based proposal relies on the use of a per data keying approach, while the de-
positor takes charge of generating the related enciphering key to encrypt data contents,
before storing on remote servers. Thus, this approach leads to encrypt the same content
several times, and then, to decrease the storage capacities of the cloud provider.
For saving resources consumption in both network bandwidth and storage capacities,
many cloud services, namely Dropbox, Wuala and Memopal, apply client side deduplica-
tion [HPSP10,Dut08]. This concept avoids the storage of redundant data in cloud servers
and reduces network bandwidth consumption associated to transmitting the same contents
several times.
Despite these significant advantages in saving resources, client data deduplication brings
many security issues, considerably due to the multi-owner data possession challenges
[HPSP10]. For instance, several attacks target either the bandwidth consumption or the
confidentiality and the privacy of legitimate cloud users. For example, a user may check
whether another user has already uploaded a file, by trying to outsource the same file to
the cloud.
Recently, to mitigate these concerns, many schemes have been proposed under differ-
ent security models [NWZ12, DPS12, XCZ13, HHPSP11, SGLM08]. These schemes are
called Proof of Ownership systems (PoW). They allow the cloud server to check a user
data ownership, based on a static and short value (e.g. hash value). These security proto-
cols are designed to guarantee several requirements, such as lightweight of verification and
computation efficiency. Even though existing PoW schemes have addressed various security
properties, we still need a careful consideration of potential attacks such as data leakage
and poison attacks, that target privacy preservation and data confidentiality disclosure.

In order to mitigate such concern, we propose in [KL14] a content hash keying approach,
ensuring client side deduplication in cloud storage applications. That is, [KL14] improves
data security in cloud storage systems while ensuring efficient data deduplication. Our idea
consists in using the Merkle-based Tree over encrypted data, in order to derive a unique
identifier of outsourced encrypted data [Mer88]. On one hand, this identifier serves to
check the availability of the same data in remote cloud servers. On the other hand, it is
used to ensure efficient access control in sharing scenarios.
In fact, when a data owner wants to store a new data file D in the cloud, he derives the
enciphering key kD based on a one-way hash function H(). Note that data are stored
enciphered in cloud servers, based on a symmetric algorithm, using the derived key kD.
Hence, the data owner has first to encipher the data file that he intends to outsource.
Then, he generates the data identifier MTD. That is, it is the Merkle Tree over encrypted
data. This identifier, associated to the file, must be unique in the CSP database. Thus,
the client starts the storage process by sending a ClientRequestVerif message to verify the
uniqueness of the generated MTD to his CSP.

• New Data File Storage – The storage process consists in exchanging the four
following messages (cf. Fig 3.7):

– ClientRequestVerif : this first message contains the generated data identifier
MTD, associated to a nonce n. The nonce is used to prevent from replay

56

3.5. Limitations and Possible Improvements

attack or potential capture of the data identifier. This message is a request
for the verification of the uniqueness of the MTD. The CSP replies with a
ResponseVerif message to validate or unvalidate the claimed identifier. Note
that if the sent identifier exists, the client has to perform a subsequent upload
extra-proof procedure with the provider. Once the verification holds, the cloud
server tags the requesting entity as a data owner and asks the client to send
only the access rights of authorized users.

– ResponseVerif : this acknowledgement message is generated by the CSP to in-
form the client about the existence of the requested MTD in its database.

– ClientRequestStorage: this message is sent by the client. If the file does not
exist in the cloud servers, the client sends the encrypted file, and the data
decrypting key kD enciphered with the public keys of authorized users. Then,
the enciphered kD is included in the meta data of the file and it serves as an
extra access right provision.

– ResponseStorage: this acknowledgement message, sent by the CSP, is used to
confirm to the data owner the success of his data storage.

Figure 3.7 - New Data File Storage

• Subsequent Data File Storage – When a subsequent data owner wants to store
a previously outsourced data file, he sends the data file identifier MTD to the cloud
provider. Since the claimed identifier exists in cloud database, the cloud has to verify
that the requesting entity is a legitimate client. That is, the subsequent data storage
procedure includes these four messages (cf. Fig 3.8):

– ClientRequestVerif : a subsequent data owner includes in this first message the
generated data identifier MTD, associated to a nonce n, in order to check its
uniqueness in cloud database.

– OwnershipRequest : this message is sent by the CSP, to verify the client’s data
ownership. It contains random leaves’ indices of the associated Merkle tree of
the requested file. Upon receiving this message, the client has to compute the
associated sibling path of each leaf, based on the stored Merkle tree, in order
to prove his ownership of the requested file.

– ClientResponseOwnership: in his response, the client must include a valid sibling
path of each selected leaf. The CSP verifies the correctness of the paths provided

57

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

by the client. We must note that this data subsequent storage process stops if
the verification fails.

– ResponseStorage: if the data ownership verification holds, the CSP sends an
acknowledgement, to confirm the success of storage.

Figure 3.8 - Subsequent Data File Storage

3.6 Implementation Results

As stated above, our proposition does not require any specific ID-based encryption
scheme. For instance, the effort to evaluate the performance of our ID-based contribution
leads us to study the time performance of some well-known ID-based encryption schemes.
Our tests are conducted in order to understand the execution cost of our proposal on real
hardware. First, we implemented Boneh–Franklin [BF01], Boneh–Boyen [BB04] and Chen
et al. [CCMLS06] encryption algorithms using the Pairing-Based Cryptography (PBC) li-
brary [Ben07]. The choice of IBE schemes joins our motivation to evaluate different private
key derivation functions. Then, we evaluated their encryption and decryption durations,
of the same 10 kB block of random data for each IBE algorithm, using a symmetric pairing
function (type A).
For our tests, we used 1000 samples in order to get our average durations. The standard
deviations are of order of 10

−2, compared to key generation times. We computed the
standard deviations with respect to the generation time of our implemented key derivation
functions, which are launched before any encryption and decryption schemes. In addition,
we conducted our experiments on an Intel core 2 duo, started on single mode, where each
core relies on 800 MHz clock frequency (CPU). Single mode avoids taken into account the
CPU time consumed by other interrupting programs during time evaluation.
In fact, to evaluate the different operation times, we used an assembly code that evaluates
the CPU usage time of a function. processor time is different from actual wall clock time
because it does not include any time spent waiting for input and output.
Let us suppose that we are going to evaluate the running time of a certain procedure p.
The assembly code gets from the processor internal counter the number of ticks before
launching the procedure p and the number of ticks 1 at the end of p execution. The

1a tick is a system clock pulse

58

3.6. Implementation Results

processor internal counter is incremented at every clock pulse since the system is booted.
Then, we calculate the number of ticks relative to p by computing the difference of the two
previously fixed values. Finally, we divide the function’s ticks number by the processor
frequency.

Table 3.1 and Figure 3.9 summarize the results of the implementation of Boneh and
Franklin, Boneh and Boyen, and Chen et al. encryption and decryption algorithms.

Table 3.1 - IBE encryption and decryption duration (in ms).
Security level (in bits) 80 112 128

Encryption time
Boneh–Franklin 11.2 45.1 106.6
Boneh–Boyen 15.6 53.4 110.8
Chen et al. 5.9 19.8 41.4

Decryption time
Boneh–Franklin 5.3 25.5 65.5
Boneh–Boyen 10.5 50.8 130.9
Chen et al. 5.3 25.4 65.4

During the encryption phase, we noticed that Boneh and Boyen algorithm was the
slowest encryption algorithm even if Boneh and Franklin encryption contained one pairing
function. That is, Boneh and Boyen contains three scalar and point multiplications while
Boneh and Franklin contains only one scalar and point multiplication. Thus, the number
of operations in the group of elliptic curve points is as important as the number of pairings
during the selection of the most efficient encryption algorithm, given constrained resources
of end users’ devices.
We note also from Table 3.1 and Figure 3.9 that Chen et al. algorithm is more faster than
the other encryption schemes. Chen et al. encryption scheme relies on Sakai-Kasahara key
derivation function which reduces the number of computed pairings and scalar and point
multiplications, while defining encryption algorithms.
Table 3.1 shows that the selection of algorithm and security level have great impact over
time performances of IBE encryption and decryption operations. This is due to IBE
algorithms integrating a varying number and type of pairing functions and operations
in the group of elliptic curve (scalar and point multiplications). For example, during
the decryption phase, Boneh–Boyen algorithm took twice the time (10 ms) than Boneh–
Franklin and Chen et al. algorithms put to end the decryption (5 ms). In fact, Boneh–
Boyen relies on 2 pairing computations when the two other algorithms rely only on one
pairing calculus.

Better IBE performances can be expected in the future with definition of new pairing
functions like Beuchat et al. running in less than 1 ms [BGDM+10]. However, IBE schemes
will still remain slower than the classical AES encryption algorithm mostly used today by
cloud storage providers [Ama]. As a matter of fact, IBC should be considered as an
interesting compromise between computation time and memory storage.

In addition, Figure 3.9 shows that the consumed time for encryption or decryption

59

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

Figure 3.9 - IBE encryption and decryption duration (in ms)

increases, independently from the choice of the encryption algorithm, when we increase the
level of security. The latter is recurrent concept in cryptography. It permits to evaluate the
hardness of breaking an encryption or a signature algorithm. That is, the longer the level of
security is, the harder the cryptanalysis of the algorithm becomes. For more details about
the security level definition for ID-based encryption algorithms, please refer to Paterson et
al.’s work [GPS08].

The definition of several IBC–PE depending on different security level represents an
interesting extension to our proposal. Indeed, the client relies on different IBC–PE with
respect to the sensitiveness of the data that he intends to share on the cloud. That is, for
important data, the client chooses IBC–PE with a higher security level (e.g. 128 bits).

The selected security level must be tightly adapted to the required security level for
mitigating performance lowering. As such, the client can apply several IBC-PE and select
one of them according to the sensitivity of his data. That is, for critical data, the client
can choose IBC-PE with a higher security level (e.g. 128 bits). Consequently, the client’s
data encryption and decryption will last longer because the elliptic curve keys used for
encryption and decryption will be around 256 bits long.

3.7 Conclusion

The growing need for secure cloud storage services and the attractive properties of
ID-based cryptography lead us to combine them, thus, defining an innovative solution to
the data outsourcing security issue.

Our first contribution is based on a specific usage of IBC [KBL13]. First, the cloud
storage clients are assigned the IBC–PKG function. So, they can issue their own public
elements, and can keep their resulting IBC secret confidential. Second, a per data key
which is derived from a data identifier is used to encipher data.

60

3.7. Conclusion

Thanks to IBC properties, this contribution is shown to support data privacy and
confidentiality, as it employs an original ID-based client side encryption approach. It is
also shown to be resistant to unauthorized access to data and to any data disclosure during
the sharing process, while considering two realistic threat models, namely an honest but
curious server and a malicious user adversary.
In addition, due to the lightweight ID-based public key computation process and contrary
to the existing classical sharing schemes, our proposal does not require for the depositor
to be connected, when the recipients want to retrieve the shared data.
Besides, some experiments are provided, in order to evaluate the computation cost of ID-
based encryption schemes on end users’ real hardware. For instance, IBE schemes still
remain slower than the classical AES encryption algorithm. Otherwise, we believe that
IBC should be considered as an interesting compromise between computation cost and
memory storage.

Finally, a general discussion is presented, while introducing two possible refinements
to our ID-based contribution. The first approach consists on the distribution of the PKG
role partly to the cloud server and to the client, in order to alleviate the computation com-
plexity at the client side. The second one introduces a client-side deduplication scheme
for cloud applications [KL14]. That is, deduplication is a challenging concern for cloud
providers, allowing them to better use their storage capacities. The convergent encryption
is a content hash keying approach that ensures the content deduplication. This crypto-
graphic mechanism is adapted to cloud storage environments by our second contribution
CloudaSec, in order to handle secure data sharing among a group of users.

61

CHAPT 3. ID-BASED CRYPTOGRAPHY FOR SECURE CLOUD DATA STORAGE

62

Chapter 4

CloudaSec: A Public

Key based Framework to handle Data

Sharing Security in Clouds

But the heaviest things, I think, are
the secrets. They can drown you if you
let them

Don’t Judge a Girl by Her Cover

A. Carter - 2009

Contents
4.1 Introduction . 64

4.2 Problem Statement . 65

4.3 CloudaSec Framework . 66

4.3.1 CloudaSec Overview . 66
4.3.2 Cryptographic Background . 68

4.3.2.1 Preliminaries . 68
4.3.2.2 Group Key Distribution (GKD) 69

4.3.3 CloudaSec Procedures in Data Plane 69
4.3.3.1 CloudaSec One to One Sharing Scenario 70
4.3.3.2 CloudaSec One to Many Sharing Scenario 72

4.3.4 CloudaSec Management Layer Procedures 73
4.3.4.1 User Subscription . 75
4.3.4.2 User Revocation . 75

4.4 Security Analysis . 76

4.4.1 Threat Model . 76
4.4.2 Data Confidentiality . 76
4.4.3 Access Control . 79

4.5 Performance Evaluation . 81

4.5.1 Context . 82

63

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

4.5.2 Computation Cost Evaluation 82
4.5.3 Communication Cost Evaluation 84
4.5.4 Storage Cost Evaluation . 87

4.6 Synthesis . 87

4.7 Conclusion . 88

4.1 Introduction

D
ata security and privacy are among top concerns for the public cloud environ-
ments. Towards these security challenges, we present, in this chapter, CloudaSec

framework for securely sharing outsourced data via the public cloud [KLEB14], for one
or many recipients. CloudaSec, a public key based solution, ensures the confidentiality of
content in public cloud environments with flexible access control policies for subscribers
and efficient revocation mechanisms.
CloudaSec proposes the separation of subscription-based key management and confiden-
tiality oriented asymmetric encryption policies. Consequently, our proposal enables flexible
and scalable deployment of the solution as well as strong security for outsourced data in
cloud servers.

CloudaSec provides several cryptographic tools for data owners, based on a novel
content hash keying system. In fact, CloudaSec applies the convergent encryption con-
cept [WQPW10] on the data file, as detailed in Section 4.3.3. That is, the data owner
uploads enciphered content to the cloud, relying on a symmetric encryption algorithm.
Then, he enciphers the decrypting key using CloudaSec key encryption procedures, before
integrating the encrypted deciphering key in metadata. CloudaSec key encryption proce-
dures are based on the hardness of computational problems in elliptic curve groups. This
dual encryption on data then on decrypting keys permits data confidentiality preservation,
as well as flexible access control policies.

In addition, CloudaSec integrates a conference key distribution scheme, based on paral-
lel Diffie Hellman exchanges, proposed in [BD05], in order to derive a shared group secret.
The key distribution algorithm is extended to support two user scenarios, for backward
and forward secrecy purposes. That is, only authorized users can access metadata and
decipher the decrypting keys. As such, user revocation is achieved without updating the
private keys of the remaining users.
Beyond these security properties, a deduplication mechanism is deployed ensuring that
only one copy of content is stored in cloud servers. This feature enables the efficient usage
of storage capacities and achieves fast data distribution.

The remainder of this chapter is organized as follows. Section 4.2 presents security
considerations and design goals. Then, Section 4.3 describes the system model, details the
framework design, and describes the prototype and its different procedures. In Section 4.4,
rigorous security discussions are given with proofs of correctness and implementation results
are discussed in Section 4.5. Finally, we present a comparison between our contributions
and some cryptographic mechanisms ensuring data confidentiality in clouds in Section 4.6,
before concluding in Section 4.7.

64

4.2. Problem Statement

4.2 Problem Statement

The design of CloudaSec is motivated by providing the support of both robustness and
efficiency, while considering the limited storage and processing capacities of user devices.
It has to fulfill the following requirements:

• Data confidentiality – our scheme has to protect the secrecy of outsourced data
contents against both curious providers and malicious users.

• Flexible access control – CloudaSec should ensure flexible security policies among
users with different granted privileges, belonging to different groups. These access
control policies should guarantee backward and forward secrecy of outsourced data
contents.

• Efficient user revocation – the revocation of a group member should not affect the
remaining users. That is, contrary to traditional fine-grained access control schemes,
the challenge is to define a smooth group revocation which does not require updating
the secret keys of the non-revoked members.

• Low computation overhead – on one hand, for scalability reasons, the amount
of computation at the cloud storage server should be minimized, as the server may
be involved in concurrent interactions. On the other hand, the proposed algorithms
should also have low processing complexity, at the client side.

• Low communication overhead – CloudaSec should minimize the usage of band-
width, relying on low communication cost.

• Low storage cost – the limited storage capacities of the user devices has a critical
importance in designing our solution. So, low storage cost at the client side is highly
recommended.

Several security solutions have been recently developed, in order to provide data con-
fidentiality in cloud storage environments [XZY+12,ZYG11,YWRL10a,ZVH11,LZWY13,
Fug12], while considering access control challenges and user revocation concerns.
In [YWRL10a], Yu et al. proposed an attribute based access control policy to securely
outsource sensitive client data to cloud servers. In this approach, data are encrypted using
a symmetric encryption algorithm, while the enciphering key is protected by a KP-ABE
scheme [GPea06]. To manage dynamic groups, they delegate the key re-encryption pro-
cedures to the cloud, without revealing the content of outsourced data. As such, the
membership revocation mechanism brings additional computation overhead. CloudaSec
defines a new revocation system based on [BD05], without updating the secret keys of the
remaining group members, in order to minimize the complexity of key management. That
is, our design conveys performance advantages for large scale sharing groups.

Several storage systems are based on the proxy re-encryption algorithms, in order to
achieve fine grained access control [XZY+12, GPea06, AFGH]. When a recipient wants
to retrieve outsourced data from the depositor, he has first to ask the cloud server to
re-encrypt data file using its public key and the public master key, while considering the

65

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

granted privileges. Ateniese et al. [AFGH] propose a bi-directional proxy re-encryption
scheme to secure distributed storage systems and achieve efficient access control. However,
a collision attack between the untrusted storage server and a revoked group member can be
launched, which enables to learn the decryption keys of all encrypted blocks. In [XZY+12],
the authors design an end-to-end content confidentiality protection mechanism for large
scale data storage and distribution. They include many cryptographic mechanisms, namely
the proxy re-encryption and broadcast revocation. Unfortunately, the subscription of a new
user or the revocation of a group member requires the update of the entire group with new
parameters and secret keys. That is, the complexity of user participation and revocation
in their approach is linearly increasing with the number of data owners and the number of
revoked users, respectively.

Recently, in order to achieve efficient membership revocation system, [LZWY13] adopts
a group signature mechanism. They propose a multi-owner data sharing scheme, MONA,
for dynamic groups in the cloud, while preserving identity privacy from untrusted servers.
Nevertheless, MONA brings an extra storage overhead at both the cloud and the group
manager side, for each outsourced data file.
In [SNDB13], Seo et al. propose an improved mediated certificateless approach, in order
to secure data sharing in cloud servers. In fact, the basic concept of mediated cryptogra-
phy is the usage of a security mediator (SEM) which can control security capabilities for
the participating entities. Once the SEM is notified that a group member is revoked, it
can immediately stop the user scenario. Unfortunately, this approach involves a trusted
third party, in order to generate the partially decrypting keys. That is, it requires ad-
ditional storage capacities and computation cost overhead, while considering flexible user
management mechanisms.

4.3 CloudaSec Framework

To secure data sharing among a group of users, CloudaSec architecture introduces the
role of a group manager, denoted as GM. The group manager takes charge of construction
of a group, system parameters generation, user registration and user revocation. Figure 4.1
illustrates a descriptive network architecture for CloudaSec framework.
Next, we refer to these authorized user(s) as the recipient(s) and to the data owner as

the depositor. We must note that CloudaSec does not require from the recipients to be
connected during the sharing process. Indeed, recipients’ access rights are granted by the
data owner and managed by the CSP. That is, the CSP is in charge of verifying each
recipient access permissions before sending him a redirected access key element.

4.3.1 CloudaSec Overview

To protect outsourced data in public cloud servers from unauthorized entities, CloudaSec
provides several cryptographic tools for the data owner in order to guarantee the secrecy
of his outsourced data and to ensure that only authorized users are able to obtain the
decrypting data keys.

66

4.3. CloudaSec Framework

Figure 4.1 - CloudaSec architecture

Our framework relies on the convergent encryption [WQPW10] which is a content hash
keying cryptographic system. That is, it presents two encryption levels: data encryption
level and key encryption level as follows.

• symmetric data encryption level – before outsourcing data to cloud servers, the
depositor encrypts file contents, using a symmetric algorithm. That is, the enci-
phering data key is derived, from the file plaintext, using a one way hash function.
Hence, the choice of the convergent encryption is multifold. First, storage capacity is
preserved as the same data encrypted by several users produce the same encrypted
data that need to be stored once. As such, the number of redundant copies is min-
imized in order to preserve the efficiency of the storage service. Second, convergent
encryption leads to a per-data enciphering key thus mitigating the usual key sharing
problem when content sharing is needed. Third, the generation of the deciphering
data key is possible only if the plaintext is known.

• asymmetric key encryption level – the depositor enciphers the decrypting data
key k, based on an asymmetric algorithm, using the public key of the recipient. Then,
he includes this resulted encrypted key in user metadata, ensuring flexible access
policies. Indeed, any authorized recipient may access to user metadata, in order to
decipher the encrypted data key, using his private key. Then, he can decrypt the
enciphered contents.

This dual encryption scheme on data then on the decrypting keys provides data confiden-
tiality, as well as flexible access control policies.
CloudaSec procedures involve two joint layers: data layer and management layer. In the
data layer, we introduce the operations on data and the related enciphering keys, namely
GenerateParameters, EncryptData, DecryptData,
EncryptKeyOneToOne, EncryptKeyOneToMany and ShrinKey procedures. In the manage-
ment layer, CloudaSec introduces procedures of user revocation, when a group member
leaves or is revoked from the group, and user subscription, when a new user joins the
group.

67

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

CloudaSec supports flexible access to encrypted contents, by dynamically sharing a group
secret key within the group. That is, when the group state is modified due to a user
subscription or revocation, the GM broadcasts the new group arrangement to authorized
members in order to generate the new secret group key, based on the published public
elements, without updating the private keys of the remaining users, as presented in Sec-
tion 4.3.4.
CloudaSec distinguishes two different data sharing scenarios. First, the data sharing one
to one, presented in Section 4.3.3.1, where a data owner stores for one CloudaSec user.
Second, the data sharing one to many, described in Section 4.3.3.2, where a data owner
shares data among a group of authorized users. These scenarios encompass two different
data key encryption algorithms EncryptKeyOneToOne and EncryptKeyOneToMany.

The different notations used in CloudaSec are listed in Table 4.1.

Table 4.1 - CloudaSec Notations
Notation Description

f file content
k data key
idi identity of a CloudaSec user Ui

ski private key of a CloudaSec user Ui

pki public key of a CloudaSec user Ui

skc private key of the CSP
pkc public key of the CSP
d group secret key

4.3.2 Cryptographic Background

This section reviews a straightforward cryptographic background, used in the design of our
CloudaSec framework. We first define the used cryptographic functions, namely bilinear
maps and collision resistant hash functions, which are involved in the derivation of the
data encrypting keys. Then, we present the group key distribution scheme, adopted by
CloudaSec in order to ensure the generation of group keys.

4.3.2.1 Preliminaries

CloudaSec essentially relies on the use of one way functions and bilinear maps, defined
as follows.

Collision resistant hash functions [BB06] – Let H : {0, 1}∗ → {0, 1}n be a
hash function. H is a collision resistant function if no efficient algorithm can find a pair
M 6= M ′ ∈ {0, 1}∗, such that H(M) = H(M ′).

68

4.3. CloudaSec Framework

Bilinear maps { [Ken], [RRP04]} – as exposed in Section 2.3.1.1, an admissible
symmetric pairing function ê from G1 × G1 in G2 has to be bilinear, non degenerate and
efficiently computable. G1 is an additive subgroup of the group of points of an Elliptic
Curve (EC). However, G2 is a multiplicative subgroup of a finite field. G1 and G2 have the
same order q. In addition, G1 and G2 are generated by P and the g = ê(P, P), respectively.

4.3.2.2 Group Key Distribution (GKD)

Burmester and Desmedt propose an unauthorized key exchange protocol [BD05]. It is a
two round protocol that extends the concept of the Diffie Hellman assumption, as defined
in Chapter 2, Section 2.4.1.
Let G = {U1, ...Um}, be a group of m users arranged into a cycle. To generate a group
key k, each member Ui, where i ∈ [1,m]N, first selects a random secret bi. Then, he
broadcasts zi = gbi , where g is a nonzero generator of a multiplicative group Gp

∗. Af-
terwards, each member Ui publishes Xi = (zi+1

zi−1
)bi . We must note that the number of

exponentiations per user is constant and each user Ui computes the group secret key k, as
k ≡ gb1b2+b2b3+···+bi−1bi+bibi+1+···+bmb1 mod(p).

4.3.3 CloudaSec Procedures in Data Plane

This section describes the different CloudaSec data layer procedures. CloudaSec, first,
requires a system setup procedure, ensured by the execution of the GenerateParameters
algorithm, before performing the sharing scenarios.
This CloudaSec GenerateParameters algorithm is executed only once, to initialize the sys-
tem. It generates the public parameters params, according to a required security parameter
ξ, as presented in Algorithm 1.
After the specification of the groups, CloudaSec GenerateParameters procedure defines a
secure one way hash function H : E→ {0, 1}l, with respect to the required security level,
where E represents the finite data domain and l is the length of the content encrypting key.
In addition, it derives an application F to bind an element belonging to the multiplicative
group G

∗
2 to a binary sequence of length l.

The groups G1 and G2, the pairing ê, the point P , the hash function H() and the appli-
cation F form the public parameters params as follows:

params = {G1,G2, n, ê, g, P,H(), F}.

We must note that each user has to derive a pair of public and private keys, with respect
to the published authentic public parameters params and the required security level ξ.
As such, a CloudaSec user Ut is characterized by his identity idt and the derived pair of
keys: his private key skt, where skt is a random secret st ∈R Zn and his public key as
pkt = st · P .

Ut(idt, pkt, skt)

We must also note that the CSP has a pair of private and public keys as < skc, pkc >,
where skc = sc ∈R Zn presents the provider private key and pkc = sc ·P ∈ G

∗
1 is his related

public key. The CSP public key is derived based on the hardness of the ECDLP. In the

69

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

Algorithm 1 GenerateParameters
1: Input: Security parameter ξ
2: Output: System parameters params = {G1,G2, ê, P, g,H, F, n}
3: Choose an elliptic curve EC over an additive subgroup G1 of a prime order n, where

BitLength (n) > ξ and ECDLP is hard in G1;
4: Select P a generator of EC;
5: Choose a multiplicative subgroup G2 of a prime order n, where BitLength (n) > ξ and

CDH is hard in G2;
6: Select g a generator of G2;
7: Generate ê from G1 ×G1 in G2 an admissible pairing map;
8: Generate a one way hash function H : E→ ({0, 1}l)∗, where E is the data space and l

is the length of the encrypting key;
9: Generate F : G∗2 → {0, 1}l an application to bind an element of G∗2 to a binary sequence

of length l
10: return params = {G1,G2, ê, P, g,H, F, n}

following, we denote by · the scalar point multiplication in an additive group and by ⋆ two
elements multiplication belonging to a multiplicative group.
We consider a data sharing process, where the client outsources his data to the cloud
and authorizes a group of users to access the data. This group may be a duo group or a
multi-user group.

4.3.3.1 CloudaSec One to One Sharing Scenario

The one to one sharing scenario is defined when a data owner Ui wants to share data
with only one recipient user Uj . The depositor Ui first enciphers the data file f , as pre-
sented in Algorithm 2, based on a symmetric encryption scheme SymEnc, using a data
enciphering key k. Based on a convergent cryptographic solution, the data key k is derived
from the application of a one way hash function over the original data file f . Subsequently,

Algorithm 2 EncryptData
1: Input: {f,H, SymEnc}, where f is the data file, H is a one way hash function and

SymEnc is a symmetric encryption algorithm
2: Output: < Cf , k >

3: k = H(f);
4: Cf = SymEnc(f, k);
5: return < Cf , k >

Ui stores the encrypted content Cf for the recipient user Uj , in remote servers. In order to
assign the access rights to the recipient, the depositor enciphers the data decrypting key k
using the public key of the recipient pkj , as described in CloudaSec EncryptKeyOneToOne

procedure (cf. Algorithm 3). That is, CloudaSec introduces a novel asymmetric key encod-
ing, to ensure flexible sharing of outsourced data. For instance, the resulting enciphered
key involves a couple of elements < C1, C2 >. C1 is included in the user metadata, by the

70

4.3. CloudaSec Framework

depositor Ui. However, C2 is sent to the CSP, in order to grant additional access verifica-
tions on the outsourced data and to generate a redirected access key element. We assume

Algorithm 3 EncryptKeyOneToOne

1: Input: {params, k, ski, pki, pkj , pkc}
2: Output: < C1, C2 >

3: Generate r ∈R Zn;
4: C1 = k ⊕ F (ê(pki, pkj)

r);
5: C2 = ê(pkc, r · P)ski ;
6: return < C1, C2 >

in our approach that all key elements belong to a finite domain space D. We denote each
key element by key.elt as defined in Equation 4.1, where D can be either a user metadata
element space or a CSP metadata element space.

key.elti∈{1,2,3} = {Ci, D(Ci)}i∈{1,2,3} (4.1)

When the CSP receives the second key element C2, he runs the ShrinKey algorithm
in order to derive a redirected key element C3, as presented in Algorithm 4. This latter
encodes C2, using his secret key skc and generates the corresponding C3.

Algorithm 4 ShrinKey
1: Input: {C2, skc}
2: Output: C3

3: C3 = (C2)
1

skc ;
4: return C3

Figure 4.2 depicts a schematic diagram which presents the relation between key en-
cryption procedures of CloudaSec one to one sharing scenario.

Afterwards, when the CloudaSec recipient Uj wants to recover the outsourced data
file, he has to retrieve the encrypted data key < C1, C3 >. As such, the recipient user Uj

starts a data backup scenario. In fact, after successfully authenticating with the CSP, Uj

requests the redirected key element C3. Then, based on the outsourced user metadata,
the authorized recipient Uj extracts the C1 key element, which was enciphered, using his
public key pkj by the depositor Ui. In the sequel, relying on his local secret key skj ,
the recipient Uj performs the DecryptKeyOneToOne procedure, in order to decipher the
encrypted data key k, as presented in Algorithm 5. Finally, the recipient retrieves the

Algorithm 5 DecryptKeyOneToOne

1: Input: {params,< C1, C3 >, skj}
2: Output: Decrypting key k

3: C1 ⊕ F ((C3)
skj);

4: return k

71

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

Figure 4.2 - Schematic diagram of CloudaSec one to one sharing proce-
dures

data file content. That is, he locally runs the CloudaSec DecryptData procedure, based on
the derived deciphering key k, using a symmetric algorithm over encrypted data Cf (cf.
Algorithm 6).

Algorithm 6 DecryptData
1: Input: {Cf , k, SymEnc}
2: Output: f

3: f = SymEnc(Cf , k) ;
4: return f

4.3.3.2 CloudaSec One to Many Sharing Scenario

When a depositor Ui intends to share data with a multi-user group, he has to encipher
the data decrypting key based on his public key pki and a secret shared group key d. The
secret shared key is a private key, only known to the authorized group members. It is
derived by performing the key agreement algorithm (Section 4.3.2.2), based on parallel
Diffie Hellman instantiations [BD05], as explained in Section 4.3.4.
The depositor executes the EncryptKeyOneToMany procedure (cf. Algorithm 7), in order to
encrypt the deciphering data key. The resulting encrypted key includes a couple of elements
< C1, C2 >, where C1 is integrated in user metadata by the depositor, and C2 is sent to
the cloud provider, in order to generate an accessing key C3 element (cf. Algorithm 4).
When an authorized group member wants to retrieve the data decrypting key, he has first
to send a request to the cloud provider to access to the outsourced data. The CSP verifies
the granted privileges of the requesting user. Once accepted, the requesting group member
receives the redirected key element C3 obtained by performing the ShrinKey procedure, as
shown in Section 4.3.3.1. Then, he runs the CloudaSec DecryptKeyOneToMany procedure

72

4.3. CloudaSec Framework

Algorithm 7 EncryptKeyOneToMany

1: Input: {params, k, pki, ski, d, pkc}
2: Output: < C1, C2 >

3: Use a deterministic secure pseudo random number generator (SPRNG) with a random
secret seed to generate r ∈R Zn;

4: C1 = k ⊕ F (ê(pki, r · P)d);
5: C2 = ê(pkc, r · P)ski ;
6: return < C1, C2 >

(cf. Algorithm 8) using the secret shared group key d, in order to derive the deciphering
data key k.

Algorithm 8 DecryptKeyOneToMany

1: Input: {params,< C1, C3 >, d}
2: Output: Decrypting key k

3: C1 ⊕ F ((C3)
d);

4: return k

4.3.4 CloudaSec Management Layer Procedures

Efficient data sharing between authorized cloud users, among dynamic groups remains a
challenging concern. That is, it increases the computation complexity and the bandwidth
consumption, due to the sharing of group secret keys. In addition, the heavy overhead and
the large size of outsourced data may reduce the advantages of remote sharing services to
resource-constrained devices.
In order to tackle this challenging issue, CloudaSec introduces the role of a group manager
(GM). This latter is responsible for elementary procedures, namely the initialization of
the group parameters and the organization among authorized registered group members.
Then, the GM makes the group parameters available by migrating them to the cloud. Such
a design can significantly reduce the computation overhead, at the CloudaSec user side.
Let us consider Gr = {{U0, id0}, ..., {UN−1, idN−1}} a dynamic group of N users. These
group members want to generate a common secret d ∈ Zn. In the following, we denote by
pubeltsi the public elements of a CloudaSec registered group member Ui as described in
Equation 4.2.

pubeltsi =< idi, pki > (4.2)

where i ∈ {1, ..., N − 1} and N is the number of group users including the manager. As
such, we note that the couple < id0, pk0 > presents the public group elements of the
Group Manager (GM). First, the GM runs a GenerateGroup procedure, in order to derive
a multiplicative group and makes public the output of this algorithm, which is used to
generate the secret group key d (cf. Algorithm 9). We must note that the order of the
multiplicative group is strongly associated to the security level ξ of the cryptographic
algorithms.

73

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

Then, with respect to the published multiplicative group G, each group user Ui chooses a

Algorithm 9 GenerateGroup
1: Input: n, p, ξ
2: Output: < G, h >

3: Choose a multiplicative subgroup G of a prime order n, where BitLength (n) > ξ;
4: Select h a generator of G, where hn ≡ 1 mod p;
5: return < G, h >

random bi and locally runs the CloudaSec UserKeyShareElt procedure in order to get his
first key share element hi, as presented in Algorithm 10.
The GM receives the public elements pubeltsi of each group member Ui. Then, he updates

Algorithm 10 UserKeyShareElt
1: Input: idi, bi, h
2: Output: < idi, hi >

3: hi = hbi ∈ G
∗;

4: return < idi, hi >

a list of non revoked users LNR, which contains the public elements of all non revoked
group users. This list sets the authorized group members arranged into a cycle. As such,
each user can easily identify his predecessor Ui−1 and his successor Ui+1. Thus, using the
CloudaSec GenerateGroup and UserKeyShareElt procedures, Ui computes his group key
share (hi, Xi), as depicted in Equation 4.3.

(hi, Xi) = (hbi , (
hi+1

hi−1
)bi) (4.3)

Once computed, each user Ui sends his group key share to the GM. This latter publishes
the received key shares of the non revoked users, as presented in Table 4.2. Afterwards,
as presented in Section 4.3.2.2, each user should derive the secret group key d, using the
published elements in the LNR list, while respecting the ring construction of the group
members [BD05].

Table 4.2 - List of Non Revoked users LNR

Group id User Pubelts User Key Share

U0(id0, pk0) (h0, X0)
idGr U1(id1, pk1) (h1, X1)

...
...

UN−1(idN−1, pkN−1) (hN−1, XN−1)

74

4.3. CloudaSec Framework

4.3.4.1 User Subscription

When a new user {UN , idN} joins the group Gr = {{U0, id0}, ..., {UN−1, idN−1}}, he
first runs the UserKeyShareElt algorithm in order to get his public key share element
< idN , hN >. Then, the new group member computes and sends his key share (hN , XN)
to the group manager. Hence, The GM sends a notification message to the remaining
group members and updates the list of non revoked users LNR.
Afterwards, each group user computes the new secret key dN , due to the group state mod-
ification. Since the derivation of the group secret key depends on members’ identifiers,
the computation of key shares (hi, Xi) may be restricted to the solicited members. Conse-
quently, CloudaSec significantly saves the processing time and storage cost at CloudaSec
user side.
The user subscription operation prevents new users from accessing to protected content,
before joining the group. As such, CloudaSec ensures the forward security. In order to
grant access privileges to new subscribers to outsourced data, the sharing of a secrets’ list
LS is required. Indeed, the group manager updates a list of previously used secrets LS by
including the new group secret key. Then, he sends it to the CSP in an encrypted format
by using symmetric encryption algorithm and the derived secret group key d. In the sequel,
any authorized group member authenticates with the CSP and uploads the encrypted list.
So that, he can obtain LS using the derived secret group key and the symmetric decryption
algorithm.

4.3.4.2 User Revocation

When a member Uj leaves or is revoked from the group Gr = {id0, id1, id2, ..., idN},
where j ∈ {0, 1, ..., N}, the group manager first updates the list of non revoked users LNR.
That is, he removes the public elements < idj , pkj > and the key share (hj , Xj) of the
revoked member from the LNR list. Then, he sends a notification message to other group
users and sends the updated list to the CSP. Each group user computes a new secret key
dN by running the GroupKey algorithm.
We note that the number of the revoked users RU has to be strictly less than (N − 1), in
order to keep the one to many sharing scenario. In fact, we consider two cases.

1. Case 1 – There are RU revoked users, where 1 ≤ RU ≤ N − 2. The group manager
revokes RU users, and updates the LNR list. That is, he withdraws the revoked
users’ identities and reorganizes the indexing system of the list. The group manager
optimizes the changes of the group list, in order to save the computation capacities
of resource constrained devices. As such, a non solicited group member is requested
to only compute the resulting group key, using the published public group elements.

2. Case 2 – There are RU revoked users, where RU ≥ N − 1. In this case, the group
manager is released from his role. As such, the multi-user group becomes a duo group
that shares data following the one to one sharing process.

75

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

4.4 Security Analysis

In the following security analysis, we discuss the resistance of CloudaSec against two ad-
versaries, based on a realistic threat model. We briefly present the security of our proposed
framework in terms of access control and data file confidentiality.

4.4.1 Threat Model

For designing the most suitable security solutions for CloudaSec, we considered two threat
models. That is, we point out two adversaries: malicious cloud user and honest but curious
cloud server, as follows:

• Malicious user adversary – an attacker can be either a revoked user with valid data
decryption keys, an unauthorized group member or a group member with limited
access rights. As such, he targets to get access to the outsourced shared data. The
objective of a malicious user is to convince the cloud server that he is a legitimate
data owner. That is, we suppose that the adversary successes to gain knowledge of
an arbitrary part of the decrypting key.

• honest but curious cloud server adversary – this storage server honestly performs the
operations defined by our proposed scheme, but it may actively attempt to gain the
knowledge of the outsourced sensitive data.

CloudaSec must provide the capabilities to the clients and the service provider to thwart
the two threats mentioned above. To this end, our proposed framework must enforce a
mutual verification of the actions conducted by a CloudaSec client and the storage server.

4.4.2 Data Confidentiality

In our model, data files are stored encrypted in cloud servers using a symmetric en-
cryption algorithm, and the secret key is protected relying on an asymmetric scheme, in
order to ensure efficient access control. As such, the data confidentiality preservation is
tightly related to security of the used symmetric algorithm and the secrecy of the data key.

Theorem 4.4.1 data confidentiality preservation

The proposed framework supports data confidentiality preservation.

76

4.4. Security Analysis

Proof.
The confidentiality of data contents is twofold. First, it depends on the security level of
the encryption algorithm. This latter is a recurrent concept in cryptography. It permits
to evaluate the hardness of breaking an encryption or a signature algorithm. That is, the
harder the level of security is, the harder the cryptanalysis of the algorithm becomes. Our
employed encryption algorithm inherits the unforgeable property from the selected scheme.
Therefore, CloudaSec ensures the confidentiality of encrypted content exposed in public
cloud servers.
Second, the confidentiality of data relies also on the secrecy of the deciphering key hosted
in cloud servers. The demonstration of this state is derived from the following two lemmas.
�

Lemma 4.4.2 Unauthorized users cannot decrypt the deciphering data keys.

Proof.
The proof of this lemma is equivalent to the security of the key encryption algorithms and
the correctness of the key decryption algorithms.
Let us suppose that an unauthorized user can be a revoked group member or a malicious
cloud user. Thus, a brief security analysis can be done based on the three following cases.

• Case A – a revoked group member UR should not be able to decrypt new data
contents, using the old group secret key d. This latter knows the public elements of
the non revoked users published in LNR and the previous organization of the group
arranged into a cycle. Moreover, he can merely guess the solicited members after
his revocation. As such, taking advantage from published information, UR tries to
deduce the new group secret key dN or to extract a data key after his revocation
from the group. In this case, we may consider two different sessions (α) and (β),
where the same data owner Ui shares two different data files fα and fβ , after the
revocation of UR. In the sequel, two key elements are defined as follows:

C
(α)
1 = kα ⊕ F (ê(pki, rα · P)dN) (4.4)

C
(β)
1 = kβ ⊕ F (ê(pki, rβ · P)dN) (4.5)

On one side, knowing the public key of the depositor pki, we state that the deduction
of the new group secret dN from C

(α)
1 cannot hold. Obviously, this is due to the usage

of a random value rα. We also state that our scheme inherits the unforgeablility
property from the Burmester key distribution algorithm [BD05]. On the other side,

UR cannot deduce secret information from C
(α)
1 ⊕C

(β)
1 , mainly due to the exclusive-or

function.
As such, a revoked group member UR has no advantage to guess the new secret
group, based on the old group key d and the previously published public elements.
However, we must note that CloudaSec does not prevent a revoked member from
decrypting previously shared contents.

• Case B – the main advantage of a malicious cloud user is to deduce information
from an unbounded number of sessions, where the same data owner shares different

77

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

contents with legitimate group members. As such, two different cases are exposed as
follows.
On one hand, in a one to many sharing scenario, let us suppose that a user Ui shares
two data files f1 and f2, respectively enciphered based on two different keys k1 and
k2, using the same random r. That is, based on Equation 4.6 and Equation 4.7, an
attacker obtains indistinguishable data key elements key.elt1, as follows.

C
(f1)
1 = k1 ⊕ F (ê(pki, r · P)d) (4.6)

C
(f2)
1 = k2 ⊕ F (ê(pki, r · P)d) (4.7)

Hence, we notice that there is no Probabilistic Polynomial Time (PPT) algorithm
that can deduce secret information from Equation 4.6⊕Equation 4.7 = k1 ⊕ k2,
thanks to the usage of the exclusive-or function. As such, the secrecy disclosure of
the deciphering keys remains infeasible.
On the other hand, in a one to one sharing scenario, we suppose that a depositor
Ui shares data with one recipient Uj , using the same random secret r, in order to
encipher different data decrypting keys. Thus, based on two successive sessions (α)
and (β), the malicious cloud user gets the following key elements key.elt1:

C
(α)
1 = k1 ⊕ F (ê(pki, pkj)

r(α)
) (4.8)

C
(β)
1 = k2 ⊕ F (ê(pki, pkj)

r(β)) (4.9)

Therefore, the deduction from the enciphered contents is protected, due to the us-
age of different data encryption keys. In addition, the security of metadata takes
advantages from the properties of the exclusive-or function which ensure the indis-
tinguishability of encryptions.

• Case C– let us suppose that a depositor Ui belongs to two different groups GA and
GB. Ui wants to share the same data file f to these two groups.
GA and GB have two secrets dA and dB, respectively. As such, we have two different
key elements key.elt1, as follows:

C
(A)
1 = k ⊕ F (ê(pki, rA · P)dA) (4.10)

C
(B)
1 = k ⊕ F (ê(pki, rB · P)dB) (4.11)

We suppose that there a malicious group member UM that belongs to the group of
users GA. UM tries to deduce the group secret key dB of the group GB.
From Equation 4.10, the recipient UM extracts the data deciphering key k. In the
sequel, from C

(B)
1 , UM computes Equation 4.12 as follows:

C
(B)
1 ⊕ k = k ⊕ F (ê(pki, rB · P)dB)⊕ k (4.12)

= F (ê(pki, rB · P)dB) (4.13)

From Equation 4.11 and Equation 4.12, the malicious recipient UM calculates ê(pki, rA·
P)dA ⋆ [1/(ê(pki, rB · P)dB)]. So that, UM executes the following steps:

ê(ski · P, rA · P)dA ⋆ [
1

ê(ski · P, rB · P)dB
] =

grAdA

grBdB

78

4.4. Security Analysis

Knowing the group secret dA and the two quantities grAdA and grBdB , UM cannot
extract the group secret dB. Obviously, this contradicts the hardness of the CDH
assumption.
Finally, as data may be shared by different depositors or groups, and these depositors
may belong to several groups, our framework strongly ensures the confidentiality of
outsourced contents, based on the hardness of the CDH assumption.

�

Lemma 4.4.3 The CSP is unable to learn the content of outsourced data files in his public
servers, based on the CDH assumption.

Proof.
A curious CSP tries to access to the stored data contents. His main problem is that
outsourced data files are encrypted. However, the CSP tries to gain knowledge of an
arbitrary part of secret information.
That is, after each storage of data content, the CSP receives the second key element
key.elt2, from the depositor Ui as C2 = ê(pkc, r ·P)ski , where ski ∈ Zn is the secret element
of the depositor Ui and pkc = skc · P ∈ G

∗
1 is the public key of the storage provider. As

such, in order to extract secret information, the CSP computes ê(pki, P) = gski . This
deduction cannot hold. Clearly, this contradicts the CDH assumption.

Given the redirected key element C3 = C
1
c

2 = (ê(pkc, r · P)ski)
1
c , the CSP computes C3 =

(ê(pki, r · P)skc)
1
c = ê(pki, r · P). Then, he executes Equation 4.14 and Equation 4.15 as

follows:

C2 ⋆ [
1

ê(pkc, pki)
] =

gskiskcr

gskiskc
= gr (4.14)

C3 ⋆ [
1

ê(pki, pki)
] =

gskir

gski
2 =

gr

gski
(4.15)

From Equation 4.14 and Equation 4.15, this curious storage server cannot extract the
secret key of the depositor ski or the used random value r. As such, the storage server
cannot learn the content of the outsourced data files or deduce extra-information, based
on the hardness of the CDH assumption. �

4.4.3 Access Control

CloudaSec is designed to ensure forward and backward secrecy. When a new user joins
the group or a group member is revoked, a notification message is sent to CSP and to the
remaining members, in order to adjust the access control lists.
On one side, when a new user UN joins the group, he has to generate his own group public
elements pubeltsN . These elements will be later used to derive the new group key dN . On
the other side, when a user UR leaves the group, the GM updates the sharing lists, in order
to generate the new decrypting key. Consequently, a new user cannot decrypt the old data
files, using the new derived key, and a revoked user cannot decrypt new files, with the old
deciphering key.
The access control preservation is ensured, based on the following two lemmas.

79

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

Lemma 4.4.4 Key Decryption Correctness Unrevoked users are able to access the
cloud.

Proof.
The proof of this lemma is equivalent to the correctness of the key decryption algorithms,
on the basis of the two sharing scenarios, as follows.

• One To One sharing scenario – the decryption holds if, and only of the decrypting
key k∗ is equal to C1 ⊕ F ((C3)

skj).
This verification holds as follows. On one side, the authorized recipient Uj computes
the data key element included in user metadata as follows:

C1 = k ⊕ F (ê(pki, pkj)
r)

= k ⊕ F (ê(ski · P, skj · P)r)

= k ⊕ F (ê(si · P, sj · P)r)

On the other side, the cloud provider sends the redirected key element C3 to the
CloudaSec recipient, which is computed as follows.

C3 = (C2)
1

skc

= (ê(pkc, r · P)ski)
1
sc

= (ê(skc · P, r · P)si)
1
sc

= (ê(sc
1

sc
· P, r · P)si)

= (ê(P, r · P)si)

In the sequel, given the non singularity property of the bilinear functions, the verifi-
cation holds if, and only if k∗ = C1 ⊕ F ((C3)

skj), where C1 ⊕ F ((C3)
skj) is denoted

by (E).

(E) = k ⊕ F (ê(ski · P, skj · P)r)⊕ F (ê(P, r · P)skiskj)

= k ⊕ F (ê(si · P, sj · P)r)⊕ F (ê(si · P, r · P)sj)

= k ⊕ F (ê(si · P, sj · P)r)⊕ F (ê(si · P, sj · P)r)

= k

• One To Many sharing scenario – the decryption holds if, and only of the data key
k∗ = C1 ⊕ F ((C3)

d). This verification holds as follows.
On one hand, the authorized group member Uj computes the data key element C1

included in user metadata as follows:

C1 = k ⊕ F (ê(pki, r · P)d)

= k ⊕ F (ê(ski · P, r · P)d)

80

4.5. Performance Evaluation

On the other hand, the CSP executes the following operations on key.elt2, in order
to get the redirected element C3

C3 = (C2)
1

skc

= (ê(pkc, r · P)ski)
1
sc

= (ê(skc · P, r · P)si)
1
sc

= (ê(sc
1

sc
· P, r · P)si)

= (ê(P, r · P)si)

As presented in the One To One sharing scenario, given the non singularity property
of the bilinear functions, the verification holds if, and only if k∗ = C1 ⊕ F ((C3)

d),
where C1 ⊕ F ((C3)

d) is denoted by (F).

(F) = k ⊕ F (ê(ski · P, r · P)d)⊕ F (ê(P, r · P)skid)

= k ⊕ F (ê(si · P, r · P)d)⊕ F (ê(si · P, r · P)d)

= k

We state that the authorized CloudaSec users are able to decipher the decrypting data
key, thanks to the correctness of the key decryption algorithms. �

Lemma 4.4.5 Unauthorized entities are unable to access the cloud.

Proof.
The proof of this lemma is twofold.
On one side, after each group member UR revocation, the group manager updates the list
LNR and sends a notification message to the authorized registered group members. Then,
he communicates this list to the cloud provider. This latter sends LNR to the remaining
group members after a mutual authentication, in order to verify the updated organization
of the group.Then, the remaining group members compute the new secret group key dN
by performing the GroupKey algorithm. Therefore, the new data keys are encrypted by
using EncryptKeyOneToMany algorithm.
As discussed in Lemma 4.4.2 and Lemma 4.4.4, only authorized recipients, knowing the
new key dN , are able to decrypt the enciphered data. However, the CSP and the revoked
users cannot extract the key dN , based on the previously published public elements and
the list of authorized members LNR. This is mainly due to the computation of the group
secret which requires the private secret key ski of each deriving group member Ui.
On the other side, when a group user wants to access the cloud, the CSP has to verify
the access control list. That is, the cloud provider gives or rejects access to data contents,
based on the granted privileges of the requesting recipient. �

4.5 Performance Evaluation

In this section, we first present the context of CloudaSec implementation with Open-
Stack Object Storage, and then evaluate the system performances, in terms of computation,
communication and storage costs.

81

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

4.5.1 Context

In order to evaluate the performances of our proposal, we build a simulated CloudaSec
framework, based on OpenStack Storage system (Swift) [chac]. Swift is a cloud based
storage system, which stores data and allows write, read, and delete operations on them.
To achieve security enhancement of Swift, we extend its functionalities with algorithms
and protocols designed in CloudaSec.
We have designed a simplified CloudaSec architecture, based on Swift. Indeed, our ar-
chitecture consists in dividing the machine drive into four physical volumes. Then, each
volume is divided into four logical volumes. In total, we obtain sixteen partitions, each
one represents one logical storage zone.
The simulation consists of two components: the client side and the cloud side. We im-
plement data layer cryptographic algorithms based on cryptographic functions from the
Open-SSL library [The03], the GMP library [ea02] and the Pairing Based Cryptography
(PBC) library [Ben07], with independent native processes. We choose Advanced Encryp-
tion Standard (AES) as our symmetric encryption algorithm and implement the CBC mode
of AES. We have conducted a number of experiments to evaluate CloudaSec in the sys-
tem and cloud levels. We study the client efficiency of the cryptographic algorithms with
different pairing types and the user management costs for communication and storage.

In order to include the security procedures at Swift client side, we first implement
CloudaSec key encryption procedures. Then, we append encryption functions to the up-
load and download swift commands, to support encrypted data key in user metadata. As
an example, when a Swift client wants to store data for one recipient, he has to apply the
following command:

swift -A http://ip:port/auth/v1.0 -U account:login -K password upload container ob-
ject -I CloudaSec_Encrypt.

The upload command attribute leads to the execution of CloudaSec_Encrypt proce-
dure. For instance, the CloudaSec_Encrypt includes EncryptData and EncryptKeyOneToOne

algorithms which are processed at the client side, before outsourcing the data file (object)
to the remote server. We must note that object is hashed using SHA-256 and the result is
stored in the file object.AESkey. Then, the data file, denoted by object, is encrypted using
the symmetric algorithm AES-256-CBC and the key object.AESkey.

4.5.2 Computation Cost Evaluation

In order to evaluate the performances at the client side, we conduct data encryption
and decryption tests locally. For our tests, we used 1000 samples in order to get our aver-
age durations. In addition, we conducted our experiments on an Intel core 2 duo, started
on single mode, where each core relies on 800 MHz clock frequency (CPU).
Figure 4.3 shows the computation overhead of data encryption and decryption at the client
side, with different sizes of data contents. We can notice that the data encryption takes
less than 12 ms, in order to encrypt 1MB data file. We note that this computation cost

82

4.5. Performance Evaluation

Figure 4.3 - Computation overhead of data encryption and decryption
at the client side with different data size (from 105 to 106 bytes) (ms)

remains attractive, as it provides better security to outsourced data and does not deserve
the client resources.
Then, we perform the encryption of the deciphering data key k. That is, as our proposed
framework relies on the use of bilinear maps, we choose two symmetric pairing functions
from the PBC library [Ben07], including type E pairing e.param and type A a.param. Thus,
we examine the impact of different bilinear functions on the performances of CloudaSec,
while considering three different security levels (cf. Figure 4.4).
In cryptography, the security level of a symmetric encryption algorithm is defined as the
number of operations needed to break the algorithm when a k-bit key length is used. The
security level in our proposal depends on the security level of the bilinear function ê in use,
which is related to the hardness of solving the ECDLP in G1. As such, it is closely related
to the groups being selected. As shown in Figure 4.4, the encryption time increases along
with the security level, while there is a tiny difference between the two symmetric pairing
functions. As such, the type of the pairing function should be taken into account, while
implementing CloudaSec data layer procedures. We must note that the type of the pairing
function is bound to the choice of the elliptic curve, where the bilinear map is computed.
Finally, we investigate the impact of the cryptographic operations, at CloudaSec client

side. We compare the encryption duration against OpenStack upload and download dura-
tion, as depicted in Figure 4.5. In fact, we examine the encryption operations compared to
the Swift upload procedure and the decryption operations compared to the Swift download
procedure. We must note that the computation times include the key generation and the
data encryption with AES-256-CBC mode. We notice that the cryptographic operations,
at the client side are acceptable compared to the upload operations and do not carry ex-
haustive computation capacities. For example, a 8 ∗ 105 bytes data size requires only 0.1
seconds to be enciphered, compared to 10 second be uploaded. Therefore, the encryption
procedures involve 1% from the OpenStack upload overhead. As such, CloudaSec does
not deserve the client resources, and presents an interesting processing cost for resource
constrained devices.

83

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

Figure 4.4 - Computation duration of Type A vs Type E pairing func-
tions (ms)

Figure 4.5 - Impact of cryptographic operations on CloudaSec at the
client side (log10(ms))

4.5.3 Communication Cost Evaluation

We investigate the communication overhead, when a client outsources a data file to
remote cloud servers and then when he retrieves the outsourced content. As such, we con-
duct some experiments with different data sizes and we evaluate the upload and download
times of encrypted contents, as shown in Figure 4.6.

Our approach consists at first, to generate a random data file of a fixed size. Then, we
encrypt the data file based on the AES-CBC algorithm. The length of the used enciphering
key is 256 bits (AES-256-CBC). Afterwards, we upload the encrypted file and we download
it from the cloud.
As such, we conducted some tests by choosing different files of different sizes. Each time,

we compute the average time for uploading and downloading the encrypted file using the
AES-256-CBC algorithm. Next, we present the results of average time computation to

84

4.5. Performance Evaluation

Figure 4.6 - OpenStack upload and download overhead with different
data size (ms)

upload and download data files in cloud servers.

Table 4.3 - Average time to upload/download an encrypted data file of
size varying from 10 to 104 bytes

Average Time (in s) Standard Deviation σ

data size (in Bytes) upload download upload download
10 0.338 0.193 0.231 0.067
102 0.329 0.192 0.210 0.060
103 0.339 0.189 0.233 0.027
104 0.326 0.194 0.191 0.080

From Table 4.3, we notice that the average communication times are merely stable,
with small data sizes, for the storage and backup scenarios. However, this overhead gradu-
ally increases, when the client intends to store large data contents. In addition, we deduce,
from Figure 4.6, that the time needed to upload an encrypted data file in Swift cloud
servers is greater than the time consumed to download the file from these remote servers.
Besides, for data size less than 5 × 104 bits, the time needed to upload the file in remote
servers (respectively download encrypted contents from the cloud servers) is almost con-
stant and does not depend on data sizes. However, for a given data size greater than 5×104
bits, the time needed to upload/download the encrypted data file in the cloud increases
proportionally with the data size.

85

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

Table 4.4 - Average time to upload/download an encrypted data file of
size varying from 103 to 9× 103 bytes

Average Time (in s) Standard Deviation σ

data size (in Bytes) upload download upload download
1×103 0.340 0.190 0.230 0.021
2×103 0.328 0.190 0.202 0.035
3×103 0.340 0.189 0.260 0.018
4×103 0.333 0.191 0.235 0.059
5×103 0.333 0.193 0.260 0.127
6×103 0.324 0.188 0.200 0.020
7×103 0.337 0.188 0.241 0.026
8×103 0.325 0.191 0.176 0.026
9×103 0.328 0.192 0.194 0.025

Table 4.5 - Average time to upload/download an encrypted data file of
size varying from 106 to 9× 107 bytes

Average Time (in s) Standard Deviation σ

data size (in Bytes) upload download upload download
1×106 1.464 1.272 0.226 0.086
2×106 2.524 2.340 0.248 0.080
3×106 3.552 3.376 0.246 0.120
4×106 4.540 4.383 0.260 0.150
5×106 5.512 5.339 0.260 0.125
6×106 6.490 6.272 0.292 0.124
7×106 7.437 7.196 0.358 0.130
8×106 8.398 8.121 0.308 0.159
9×106 9.400 9.034 0.328 0.153
107 10.32 10.58 0.291 0.253

We also analyze the communication cost, due to a group update, namely when a new
user wants to join the group. In our tests, we are based on pre-computed tables, in
order to optimize the computation cost to resource-constrained devices. Thus, we consider
that the group includes 10 members at the beginning. Then, 10 users join the group
simultaneously, until reaching 100 members. We recall that the computation complexity
of the group update increases with respect to the number of new subscribers, as presented
in Section 4.3.2.
As depicted in Figure 6.4, the derivation of the new secret group key takes less than 6
ms for 100 users. This computation cost remains interestingly attractive, along with our
broadcasting approach.

86

4.6. Synthesis

Figure 4.7 - Computation complexity of a group update (ms)

4.5.4 Storage Cost Evaluation

We investigate the storage cost for the key management operations at the client side. In
order to maintain a group membership, a registered user has only to keep the secret group
key. Let suppose that the security parameter ξ = 80 bits. We denoted by E(Fn) the elliptic
curve defined over the finite prime field Fn. Meanwhile, we denote ê : G1×G1 −→ G2 the
bilinear function. G1 corresponds to the q-torsion subgroups of E(Fn) and E(Fnk) where
k is the embedding degree of the curve E. G2 is a multiplicative subgroup of Fnk of order
q.
For example, according to the security parameter ξ = 80, we set q = 160 bits and n = 512
bits length, while the embedding degree is equal to 2. As such, G2 is a subgroup of Fn2

which has a order 1024 bits order. Therefore, a client has to locally keep a secret d, where
|d| = 160. As such, CloudaSec introduces an attractive storage cost, especially for limited
storage capacities.

4.6 Synthesis

To end this first part, we have established a comparison between our contributions,
and several commonly used encryption mechanisms in a cloud environment, based on the
security requirements, presented in section 4.2.

From Table 4.6, we notice that our first contribution, relying on the usage of ID-
based cryptography does not depend on a trusted entity, unlike all the other mechanisms,
including CloudaSec. However, [KBL13] introduces a heavy data enciphering cost, due to
the usage of an asymmetric encryption mechanism, comparing with CloudaSec [KLEB14].
Furthermore, CloudaSec presents a low data encryption overhead for a large amount of
data due to symmetric encryption scheme usage.
In addition, CloudaSec enables partial update of the group secret key. That is, user
revocation and subscription procedures are achieved without updating the private keys of
the remaining group members. CloudaSec also guarantees the deduplication that many
schemes do not ensure, such as IBC.

87

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

Table 4.6 - Comparison between Our Contributions and Different Cryp-
tographic mechanisms in Clouds

Scheme ABC IBC Proxy re-
encryption

Hybrid
Encryp-
tion

ID-based
proposal
[KBL13]

CloudaSec
[KLEB14]

Data En-
cryption
Cost

Heavy Heavy Heavy Light Heavy Light

Dynamic
Group
Manage-
ment

Part Whole Whole Whole Whole Part

Scalability Yes No No No No Yes

Trusted
Entity

Yes Yes Yes Yes No Yes

Forward
Secrecy

– No Yes –

Backward
Secrecy

– No No – Extra
Computa-
tion

Yes

De-
duplication

No No No Yes { Con-
vergent
Encryp-
tion }

No Yes

4.7 Conclusion

In this chapter, we presented our second contribution [KLEB14], called CloudaSec.
CloudaSec is a secure data sharing scheme for dynamic groups in untrusted cloud storage
environments. Our approach ensures the confidentiality of outsourced data in public un-
trusted cloud servers, while introducing two encryption levels: symmetric data encryption
level and asymmetric key encryption level.
Contrary to several proposed schemes, CloudaSec defines an efficient revocation mecha-
nism, with no need to update the secret keys of the remaining group members. That
is, flexible access control policies are enforced among users belonging to separate groups
with different privileges. Thus, our design conveys performance advantages for large scale
sharing groups.

CloudaSec is proved secure under a curious provider security model and a malicious
adversary, such as a revoked user. That is, we considered different threat use cases, and
we detailed the resistance of CloudaSec to malicious access and confidentiality disclosure

88

4.7. Conclusion

attempts, while providing the correctness’ proofs of the proposed algorithms and proce-
dures.
Under a simulated CloudaSec framework based on Openstack Swift service, experimental
results showed the efficiency of CloudaSec in scalable data sharing, while considering the
impact of the cryptographic operations at the client side.

89

CHAPT 4. CLOUDASEC: A PUBLIC KEY BASED FRAMEWORK TO HANDLE
DATA SHARING SECURITY IN CLOUDS

90

Part II

Cloud Data Storage Integrity

91

Table of Contents

5 Remote Data Checking in Clouds 97
5.1 Introduction . 97
5.2 PDP and PoR Review . 99

5.2.1 Naive Approach . 99
5.2.2 Introduction to Remote Data Checking Schemes 100

5.3 Security Requirements . 100
5.3.1 Public Verifiability . 101
5.3.2 Efficiency . 102
5.3.3 Dynamic Data Support . 102

5.4 Summary . 103
5.5 Conclusion . 106

6 A Zero-Knowledge Scheme for proof of Data Possession in Cloud Stor-
age Applications 109
6.1 Introduction . 110
6.2 Zero-Knowledge Proofs . 111
6.3 Model Description . 112

6.3.1 System Model . 112
6.3.2 Security Model . 113
6.3.3 Assumptions . 114

6.4 A New-Zero Knowledge PDP Protocol . 114
6.4.1 Private Data Possession Scheme . 114
6.4.2 Public Data Possession Scheme . 118

6.5 Security Analysis . 119
6.5.1 Security and Privacy Discussion . 120
6.5.2 Resistance to Attacks . 122

6.6 Performance Evaluation . 123
6.6.1 Theoretical Performance Analysis . 123
6.6.2 Time Performance Discussion . 125

6.7 Conclusion . 127

7 SHoPS: Set Homomorphic Proof of Data Possession Scheme in Cloud
Storage Applications 129
7.1 Introduction . 130

TABLE OF CONTENTS

7.2 Requirement Analysis . 132
7.3 Model Description . 133

7.3.1 SHoPS Overview . 133
7.3.2 Complexity Assumptions . 135

7.4 SHoPS: A New Set Homomorphic PDP Scheme 135
7.4.1 Single Data Block SHoPS . 136
7.4.2 Set-Homomorphic Properties of the proposed Scheme 140
7.4.3 Energy efficiency . 144

7.5 Security Discussion . 145
7.5.1 Threat Model . 146
7.5.2 SHoPS Resistance to Cheap and Lazy Server Adversary 146
7.5.3 SHoPS Resistance to Malicious Verifier Adversary 150

7.6 Experimental Study . 150
7.7 Theoretical Performance Analysis . 152

7.7.1 Computation Cost Evaluation . 153
7.7.2 Bandwidth Cost Evaluation . 153
7.7.3 Storage Cost Evaluation . 154

7.8 Conclusion . 154

8 Conclusion & Perspectives 157

Glossary of Acronyms 161

Author’s Publications 166

Bibliography 166

A French Summary 179
A.1 Définitions . 179
A.2 Problématiques, Objectifs et Contributions 180
A.3 Confidentialité des données stockées dans le Cloud 183

A.3.1 Cryptographie Basée sur l’Identité pour un stockage sécurisé des don-
nées . 184

A.3.2 CloudaSec: Un protocle à clé publiques pour un partage sécurisé de
données . 188

A.4 Intégrité des données dans le cloud . 192
A.4.1 Protocoles de Preuves de Possession des Données 192
A.4.2 Preuve de Possession de Données (PDP), sans apport de connaissance193
A.4.3 SHoPS: Preuve de possession d’ensembles de données homomorphiques196

A.5 Conclusion . 198

94

In the second part of this dissertation, we investigate a second cloud data storage issue,
namely the Proof of Data Possession (PDP) concern. It relieves the description of algo-
rithms allowing a data owner to check data integrity of outsourced files on remote servers.
This challenge is more complex, while considering that clients have no technical means of
verifying that their files are not vulnerable, for instance, to drive-crashes. Therefore, cloud
customers should have an efficient way to perform periodical remote integrity verifications,
without keeping the data locally, following three substantial aspects: security level, public
verifiability, and performance. This concern is magnified by clients’ constrained storage
and computation capabilities and the large size of outsourced data.

In chapter 5, we introduce PDP approaches and we investigate security requirements
for designing remote data checking schemes in cloud storage environments, while presenting
a short review of literature.

In order to fulfill the data integrity verification requirement, we define, in chapter 6, a
new zero-knowledge PDP protocol that provides deterministic integrity verification guaran-
tees, relying on the uniqueness of the Euclidean Division. These guarantees are considered
as interesting, compared to several proposed schemes, presenting probabilistic approaches.

In chapter 7, we propose SHoPS, a Set-Homomorphic Proof of Data Possession scheme,
supporting the 3 levels of data verification. SHoPS allows an implementation of remote
data checking at the three networking interfaces, namely, the client-CSP interface, the
CSP-storing nodes interface and between two CSPs interface. This ensures the flexibility
of SHoPS application and enables fulfilling each verifier request. Indeed, we present the
set homomorphism property, which extends malleability to set operations properties, such
as union, intersection and inclusion. For instance, SHoPS saves energy within the CSP
by distributing the computation over the multiple nodes. Each node provides proofs of
local data block sets. This is to make applicable, a resulting proof over sets of data blocks,
satisfying several needs, such as, proofs aggregation.

95

TABLE OF CONTENTS

96

Chapter 5

Remote Data Checking

in Clouds

The price of light is less than the cost
of darkness

Arthur C. Nielson - 1897–1980

Contents
5.1 Introduction . 97

5.2 PDP and PoR Review . 99

5.2.1 Naive Approach . 99
5.2.2 Introduction to Remote Data Checking Schemes 100

5.3 Security Requirements . 100

5.3.1 Public Verifiability . 101
5.3.2 Efficiency . 102
5.3.3 Dynamic Data Support . 102

5.4 Summary . 103

5.5 Conclusion . 106

5.1 Introduction

C
onsequences of security breaches in cloud storage could be seriously damaging to
both service providers and cloud clients. Without trust from users, service providers

could lose their customers. On the other hand, users whose valuable data lost, or sensitive
information hacked could experience irrecoverable damage.
In fact, loss of data control has a significant influence on designing the cloud business
model. First, the US Patriot Act [Sta02] gives the government unprecedented access to
outsourced data which are either physically hosted in the USA territory or generated by

97

CHAPT 5. REMOTE DATA CHECKING IN CLOUDS

an American actor (i.e; an American enterprise or an enterprise having economic stakes in
USA). This US regulation law threatens the European legislation which has strict privacy
protective laws. As such, it is important for a cloud user to have the possibility to verify
his outsourced data are still hosted in a specific geographic perimeter, supporting the re-
quested legislation.
Second, one of the biggest concerns with cloud data storage is data integrity verification
on untrusted servers. In fact, cloud providers generally claim storing data files with redun-
dancy to protect against data loss. Additionally, they often disperse these data across mul-
tiple storage placements. Such distribution provides resilience against hardware. Nonethe-
less, in order to reduce operating costs and save storage capacities, dishonest providers
might intentionally neglect these replication procedures, resulting in unrecoverable data
errors or even data loss. More seriously, many byzantine attacks may give rise to data
leakage attacks. Hence, a cloud customer should have an efficient way to perform peri-
odical remote integrity verifications, without keeping the data locally. This customer’s
concern is magnified by his constrained storage and computation capabilities and the large
size of outsourced data.

There are three basic requirements for data integrity verification process, namely, effi-
ciency, unbounded use, and self-protected mechanism. Efficiency implies minimal network
bandwidth and client storage capacity which are needed for the verification procedure.
The client does not need to access the entire data for verification purpose. Unbounded use
represents verification process should support unlimited number of queries. Self-protect
mechanism means the process itself should be secure against malicious server that passes
the integrity test without accessing the data. A number of different techniques and meth-
ods have been proposed and designed for cloud data integrity verification process. These
mechanisms are referred to as Provable Data Possession (PDP) and Proof of Retrievabil-
ity (PoR), which originally emerged with a similar concept but different approaches. The
difference between PDP and PoR schemes is that PoR checks the possession and integrity
of data and it can recover data in case of a failure, while PDP only verifies the possession
of outsourced data by the remote servers. Usually, a PDP can be transformed to a PoR by
adding erasure or error correcting codes. Since then, each mechanism had gone through
further development along different directions such as dynamic data support, public verifi-
ability, and privacy against verifiers. Dynamic data support allows clients to dynamically
update their data partially after uploading to cloud servers. Public verifiability enables
an authorized entity, not only data owners, to perform the verification process. Privacy
against verifiers ensures that the verification algorithm does not contain any private infor-
mation of the data owner.

In this chapter, we first introduce PDP and PoR approaches, in Section 5.2. Then,
in Section 5.3, we investigate security requirements for designing remote data checking
schemes in cloud storage environments and we present a short review of literature ex-
plaining improvements of PDP and PoR schemes, with regard to public verifiability and
efficiency. Finally, we lead a discussion while comparing performances of several newly
emerging schemes, in Section 5.4.

98

5.2. PDP and PoR Review

5.2 PDP and PoR Review

In this section, we first introduce the naive approach to perform a remote data checking
and we point out its main drawbacks. Then, we give an overview of several emerging PDP
and PoR schemes.

5.2.1 Naive Approach

The Proof of Data Possession (PDP) is a challenge response protocol enabling a client
to check whether a file data D stored on a remote cloud server is available in its original
form. A PDP scheme consists of four procedures: pre-process, challenge, proof, verification
(cf. Fig 5.1). For building meta-data of a file, the client runs the pre-processing procedure.
In most of the cases, the client keeps the meta-data secret and sends a version of the data
file to the cloud server (e.g., encrypted data, error coding, embedded watermark). To check
the possession of the data file, the client sends a randomized challenge to the server for
a proof of a specified file data. In response, the server generates the proof which requires
the possession of the original data to compute the proof which depends on the received
challenge to avoid the replay attacks. Once received, the client compares the proof with
the locally stored meta-data.

Figure 5.1 - Generic PDP scheme

The simplest solution to design a PDP scheme is based on a hash function H(). That
is, the client pre-calculates k random challenges ci, where i ∈ {1, k} and computes the
corresponding proofs as pi = H(ci||D). During the challenging procedure, the client sends
ci to the server which computes p′i = H(ci||D). If the comparison holds, the client as-
sumes that the cloud provider preserves the correct data file. The biggest disadvantage
of this scheme is the fixed number of challenges that were computed in the pre-processing
procedure. That is, the client can request the server, for integrity checking, only k times.

99

CHAPT 5. REMOTE DATA CHECKING IN CLOUDS

5.2.2 Introduction to Remote Data Checking Schemes

The notion of PDP has first been introduced by Ateniese et al. in [ABC+07]. That is,
the client divides the file data D into blocks and creates a cryptographic tag for each block
bi, as Ti,b = (H(Wi)g

bi)d)modN , where N is an RSA number, g is a public parameter, d
is the secret key of the data owner and H(Wi) is a random value. The proof generation
is performed by aggregating several cryptographic tags, based on the requested data block
indexes.
[ABC+07] is efficient as there is no need to retrieve data blocks for the verification of
data possession. The main drawbacks are computation complexity due large number of
modular exponentiations in both setup phase and verification phase, and the private ver-
ifiability which requires the secret key of the data owner. In [ABC+11], Ateniese et al.
propose a publicly verifiable version, which allows any entity to challenge the cloud server.
However, [ABC+11] is insecure against replay attacks in dynamic scenarios because of the
dependencies of index blocks in proof generation and the loss of homomorphism property
in the verification procedure (cf; Section 2.3.3).

Juels et al. [JK07] introduce a method to detect unauthorized changes of stored data
by randomly adding sentinels in the original data. Their scheme, called Proof of Retriev-
ability (PoR), does not support public verifiability. In addition, only a fixed number of
challenges is allowed.
Recently, Xu et al. [XC12] propose a new concept to prove the server data possession. That
is, the client creates tags as polynomials and considers the file blocks as coefficients to poly-
nomials. The proof procedure is based on polynomial commitment and uses evaluation in
the exponential instead of bilinear maps. This idea has also been adopted by [KK12],
based on Lagrangian interpolation.

5.3 Security Requirements

The design of a remote data checking scheme is motivated by providing support of both
robustness and efficiency, while considering the limited storage and processing resources of
user devices. It has to fulfill the following requirements:

• Public verifiability: the public data possession verification is an important require-
ment, permitting any authorized entity to verify the correctness of outsourced data.
Thus, the data owner can be relieved from the burden of storage and computation.

• Stateless verification: proofs should be generated according to a randomly pro-
duced challenge. Thus, stateless verification requires the use of unpredictable values.

• Low computation overhead: on one hand, for scalability reasons, the amount of
computation at the cloud storage server should be also minimized, as the server may
be involved in concurrent interactions. On the other hand, the proposed algorithms
should also have low processing complexity, at the client side.

100

5.3. Security Requirements

• Low communication overhead: an efficient PDP should minimize the usage of
bandwidth, relying on low communication cost.

• Low storage cost: the limited storage capacities of the user devices has a critical
importance in designing our solution. So that, low storage cost at the client side is
highly recommended.

• Unlimited challenges: the number of challenges should be unlimited. This condi-
tion is considered as important to the efficiency of a PDP scheme.

In the following subsections, we present the developments of PDP and PoR schemes,
in order to improve public verifiability, efficiency, and dynamic data support, respectively.

5.3.1 Public Verifiability

Improving public verifiability has become a popular topic for researchers, since the
introduction of the first original PoR scheme, proposed by Juels et al. On the basis
of [JK07], Shacham et al. [SW08] propose two new PoR schemes. The first mechanism is
privately verifiable and it relies on pseudorandom functions (PRFs). However, the number
of authentication tokens stored on the server is proportional to the number of data blocks,
and the proposed technique does not prevent from data blocks’ leakage. The second scheme
relies on bilinear signatures, proposed by Boneh et al. in [BLS01]. This second method
ensures public data verification and the proofs are reduced to a single authentication value,
thus reduced communication complexity from O(n) to O(1), where n is the number of
data blocks. Unfortunately, this scheme still works on static data only, without support of
dynamic data update.

In 2009, Wang et al. proposed a novel system model, which relies on a Third Party Au-
ditor (TPA) [WWRL10]. Based on a privacy preserving third party auditing protocol, the
TPA is considered as a trusted entity, which manages the stored data in cloud. That is, the
data owner delegates periodical data integrity verifications to the TPA, which takes charge
of monitoring exchanges between the client and the remote cloud server. In [WWRL10],
TPA adopts a public key based homomorphic authenticator to perform public auditing
without keeping a local copy of data for integrity checking. Homomorphic authenticators
are used to verify meta-data generated from individual data blocks while the aggregated
authenticators form a linear combination of data blocks.
Afterwards, Zhu et al. [ZWH+11] propose a construction of a dynamic audit scheme for
untrusted remote storage systems. Their scheme detects abnormal behavior of the prover
by using fragment structure, random sampling, and index-hash table. Even though TPA
based schemes allow public data integrity verification, they have a considerable drawback.
That is, they require an additional component, which is a third party auditor, added to
the existing cloud storage architecture. The implementation of such schemes might be a
burden for service providers because of additional costs.

101

CHAPT 5. REMOTE DATA CHECKING IN CLOUDS

5.3.2 Efficiency

As discussed above, efficiency of remote data checking schemes consists on the opti-
mization of computation complexity, communication overhead and storage cost.
Several research works are devoted to improve efficiency of PDP and PoR schemes. For
instance, in 2008, Curtmola et al. integrate error-correcting codes to the PDP scheme,
proposed by Ateniese et el. in [ABC+07], in order to secure multiple replicas over dis-
tributed system without encoding each separate replica [CKB08]. This technique consid-
erably reduces the computation complexity. In addition, Dodis et al. [DVW09] improve
the Shacham PoR scheme by reducing the challenge size to be linear with respect to the
security parameter, from O(n2) to O(n).

In [ADPMT08], Ateniese et al. propose an improved version of their original PDP
scheme, referred to as scalable PDP scheme. [ADPMT08] adopts symmetric key encryp-
tion instead of public key encryption which reduces the computation overhead. It also
supports updates on outsourced data. However, scalable PDP does not support the public
verifiability requirement, due to the use of the symmetric key cryptography. Besides, all
challenges and verifications have to be pre-computed, and the number of updates is limited
and fixed a priori.
Afterwards, Bowers et al. introduce a distributed cryptographic system, to prove data
retrievability [BJO09]. Their scheme, called HAIL (High Availability and Integrity Layer),
differs from all prior works. In fact, HAIL considers a distributed setting in which a client
must spread a file across multiple servers with redundancy and only stores a small constant
state locally.

5.3.3 Dynamic Data Support

In this section, we give an overview of remote integrity verification schemes that support
dynamic data updates. However, we have to note that we do not consider this design
requirement, in the following chapters.

Supporting dynamic data updates in remote integrity verification schemes is a challeng-
ing concern. In 2008, Ateniese et al. [ADPMT08] introduced the first partially dynamic
PDP scheme, where block insertion was not supported. In 2009, Erway et al. proposed a
Dynamic Provable Data Possession mechanism (DPDP) [EKPT09]. Their scheme supports
full dynamic operations (eg., append, insert, modify, delete), while relying on rank-based
authenticated directories. Nevertheless, [EKPT09] maintains a list of tags and stores root
metadata, at the client side to prevent replay attacks. As such, the computational com-
plexity raises up to O(logn), which remains attractive, due to the support of dynamic
updates. For instance, to generate a proof for 1 GB file, DPDP produces only 415 KB
proof information, with 30 ms computational overhead.
Wang et al. [WWL+] propose a dynamic proof scheme, which relies on the use of homomor-
phic tokens with distributed verification of erasure-coded data. It provides block update,
delete and append operations and does not support the insert function. However, [WWL+]
involves a third party auditor to ensure public verifiability.

102

5.4. Summary

5.4 Summary

Finally, we state that PDP and PoR schemes are considered as promoting approaches
which ensure remote data integrity checking in cloud storage environments. The first PDP
and PoR design algorithms are a bit different, regarding several aspects. For instance,
PoR schemes are considered to be more secure compared to PDP algorithms. That is,
PoR mechanisms require the encryption of the original data and error-correcting codes
have to be applied to recover damaged data. However, PDP schemes are known for higher
efficiency and applicability to large-scale public databases, such as digital libraries.

Table 5.1 summarizes several remote data checking schemes. That is, we lead a compar-
ison between these emerging approaches, while enumerating the advantages and drawbacks
of each mechanism. In addition, we focus on the cryptographic primitives involved in the
generation and verification of data proofs.

103

CHAPT 5. REMOTE DATA CHECKING IN CLOUDS

T
a
b
l
e

5
.1

-
A

pp
ro

ac
he

s
of

D
at

a
In

te
gr

it
y

C
he

ck
in

g
in

th
e

C
lo

ud
St

or
ag

e
E

nv
ir

on
m

en
ts

Sc
he

m
e

A
dv

an
ta

ge
s

D
ra

w
ba

ck
s

P
ri

m
it

iv
es

P
D

P
[A

B
C
+
07

]
-

Su
pp

or
t

of
b
ot

h
en

cr
yp

te
d

an
d

no
n-

en
ci

ph
er

ed
da

ta
fil

es
-

O
nl

y
a

sm
al

l
pa

rt
of

da
ta

is
ne

ed
ed

to
ge

ne
ra

te
th

e
pr

oo
f

-
St

at
ic

da
ta

on
ly

-
P

ro
ba

bi
lis

ti
c

ap
pr

oa
ch

-
H

om
om

or
ph

ic
ha

sh
in

g:
to

co
m

-
p
os

e
m

ul
ti

pl
e

bl
oc

k
in

pu
ts

in
to

a
si

ng
le

va
lu

e
to

re
du

ce
th

e
si

ze
of

pr
oo

fs
.

P
oR

[J
K

07
]

-
A

bi
lit

y
to

re
co

ve
r

fil
e

w
it

h
er

ro
r

co
rr

ec
ti

ng
co

de
.

-
St

at
ic

da
ta

on
ly

.
-

F
ile

ne
ed

s
to

b
e

en
cr

yp
te

d
b
e-

fo
re

up
lo

ad
in

g
to

th
e

se
rv

er
.

-
N

ee
ds

ad
di

ti
on

al
sp

ac
e

to
hi

de
se

n
ti
n
el

s
in

en
co

de
d

da
ta

bl
oc

ks
.

-
E

rr
or

co
rr

ec
ti

ng
co

de
:

to
re

-
co

ve
r

a
pa

rt
ia

lly
co

rr
up

te
d

fil
e.

Sc
al

ab
le

P
D

P
[A

D
P

M
T

08
]

-
N

o
ad

di
ti

on
al

en
cr

yp
ti

on
is

re
-

qu
ir

ed
-

A
llo

w
ou

ts
ou

rc
in

g
dy

na
m

ic
da

ta
in

so
m

e
de

gr
ee

.
-
R

el
y

on
sy

m
m

et
ri

c
ke

y
w

hi
ch

is
m

or
e

effi
ci

en
t
th

an
pu

bl
ic

ke
y

en
-

cr
yp

ti
on

.

-
D

oe
s

no
t

off
er

pu
bl

ic
ve

ri
fia

bi
l-

it
y

-
A

ll
ch

al
le

ng
es

an
d

an
sw

er
s

ar
e

pr
e

co
m

pu
te

d.
-

N
um

b
er

of
up

da
te

s
is

lim
it

ed
an

d
fix

ed
b
ef

or
e.

-
Sy

m
m

et
ri

c
ke

y
cr

yp
to

gr
ap

hy
.

-
M

es
sa

ge
A

ut
he

nt
ic

at
io

n
C

od
e

(M
A

C
)

H
A

IL
[B

JO
09

]
-
A

bi
lit

y
to

ch
ec

k
in

te
gr

it
y

in
di

s-
tr

ib
ut

ed
st

or
ag

e
vi

a
da

ta
re

du
n-

da
nc

y.
-

P
ro

of
is

co
m

pa
ct

in
si

ze
an

d
is

in
de

p
en

de
nt

of
da

ta
si

ze
.

-
St

at
ic

da
ta

on
ly

-
P

se
ud

o-
ra

nd
om

fu
nc

ti
on

s
-

M
es

sa
ge

A
ut

he
nt

ic
at

io
n

co
de

(M
A

C
)

-
U

ni
ve

rs
al

ha
sh

fu
nc

ti
on

s.

104

5.4. Summary

Recently, in [BVDJ+11], Bowers et al. explore new economic security models for cloud
services. They provide a different formulation of the threats that cloud users face. That is,
RAFT proposes an approach confirming data redundancy on storage systems, based on a
time measure function. The main disadvantage of this scheme is the communication cost
which depends on the number of blocks in the challenging request, and the storage cost
prohibitively important. In fact, the authors exposed two verification approaches. First,
they propose a private verification algorithm to check the exactitude of server’s responses
based on a local copy stored by the data owner. While this option may efficiently work for
some scenarios, it is too much restrictive in many other cases as it undermines much of the
benefits of cloud outsourcing. Second, in order to improve storage capacity consumption,
they refer to the Merkle Tree signature. Thus, this technique also requires the use of a
secret for each outsourced data file.
Considering other challenging concerns to provide remote proof verifications, [VDJO+12]
aims to prove correct data encryption at rest by imposing a time basis protocol. An issue
arising in the design of this hourglass protocol is the fact that the client needs an authentic
version of the outsourced data file, to verify responses from the server. However, the
client’s storage needs should be of constant size, otherwise the benefits of data outsourcing
decrease. In order to optimize storage cost at the client side, [VDJO+12] proposes to use
additional MACs or Merkle Tree processes at the client side. This necessitates that the
client retrieves the integrity checks during the challenge response protocol which raises the
bandwidth consumption. In addition, the verifier must keep a secret for each outsourced
data (if MACs are used) or the root of the hash tree.
On the basis of [WS12], Williams and Sion propose SR-ORAM scheme. It allows a client
hiding its data access pattern from an untrusted cloud server in a single round protocol.
However, this scheme requires a poly-logarithmic storage cost and does not support public
sharing verification.

In Table 5.2, we summarize the above reviewed PoR and PDP schemes by a thorough
comparison of their performances, based on security requirements presented in Section 5.3.
In fact, we review the capability to support an unlimited number of challenges, denoted by
the Nb. of chal. metric. In addition, we examine the public verifiability design requirement
and the retrievability feature, denoted by Public Verif. and Integrity, respectively. We must
note that, by retrievability feature, we mean the support of remote data integrity checking.
Besides, we take into consideration the robustness and efficiency of reviewed algorithms,
while analyzing the computation and communication complexity at both the client and
the server side. We also investigate the deployment of a Third Party Auditor, seeking for
a fully delegation of integrity checking operations. Finally, we have to note that schemes
marked by an asterisk (∗) support either partially or fully dynamic data updates.

It is noteworthy that schemes ensuring dynamic data support suffer from higher com-
plexities compared to their counterparts. Future research directions include improvements
on efficiency and fully dynamic data support. To improve efficiency of those schemes,
reducing communication cost and storage overhead are rightful considerations. However,
fully dynamic data support remains a challenging objective, because it increases complexity
while reducing update information at the cloud server side.

105

CHAPT 5. REMOTE DATA CHECKING IN CLOUDS

Table 5.2 - Performances Comparison for Remote Data Verification
Schemes in Cloud Data Storage Environments (n is the number of data
blocks)

Scheme Nb. of
Chal.

Public
Verif.

Integrity CSP
comp.

User
comp.

Comm.
comp.

TPA

[ABC+07] fixed Yes No O(1) O(1) O(1) No

[JK07] ∞ No Yes O(1) O(1) O(n) No

[SW08] ∞ Yes Yes O(n) O(n) O(n) No

[WWRL10]∗ ∞ Yes Yes O(logn) O(logn) O(logn) Yes

[DVW09] ∞ No Yes O(n) O(n) O(1) No

[ADPMT08]∗ fixed No No O(1) O(1) O(1) No

[CKB08] ∞ Yes No O(1) O(1) O(1) No

[EKPT09]∗ ∞ No Yes O(logn) O(logn) O(n) No

5.5 Conclusion

In cloud storage environments, it is important to allow users to efficiently and securely
verify that cloud storage servers store their data correctly. To address this issue, a number
of Proof of Retrievability (PoR) and Proof of Data Possession (PDP) schemes have been
proposed wherein servers must prove to a verifier that data are stored correctly. In this
chapter, we give an overview of remote data verification schemes, while presenting security
requirements for the design of a PDP and a PoR algorithm.

While existing POR and PDP schemes offer decent solutions addressing various prac-
tical issues, they either have non-trivial (linear or quadratic) communication and com-
putational complexity, or only support private verification. Newly emerging remote data
verification schemes aim to provide both practical and unconditional integrity checking for
remote computation. Towards this goal, Setty et al. [SBW11] propose to benefit from early
research results such as interactive proof systems [Gol00]. These mechanisms are referred
to as ideal methods that enable a cloud client to verify a proof’s correctness in a constant
time, while relying on a suitably encoded proof under a negligible chance of false positives.

Following this direction, we present, in next chapters, our contributions for securely
checking outsourced data integrity. Both PDP propositions ensure public verifiability and
stateless verifications, and have following identifiable features :

• lightweight and highly secure PDP scheme with centralized computation done at the
CSP: our third contribution [KEML14] relies on zero knowledge proofs. It benefits
from the lightweight computation cost of the Euclidean Division (ED) and the high
security level of zero knowledge protocols, in order to provide deterministic proofs,
with constant communication overhead. However, our zero-knowledge proposal re-

106

5.5. Conclusion

quires the CSP to centralize the computation of the proof at the gateway central
node after re-assembling the data fragments from the storing nodes.

• distributed proof computation by the CSP: our fourth contribution, referred to as
SHoPS proposes a scalable and modular data integrity verification scheme. SHoPS
is an interesting approach to save energy, since it proposes to distribute the prover
function to many storing nodes, thus providing low computation complexity at the
CSP.

107

CHAPT 5. REMOTE DATA CHECKING IN CLOUDS

108

Chapter 6

A Zero-Knowledge

Scheme for proof of Data Possession in

Cloud Storage Applications

A proof is whatever convinces me

Shimon Even,

answering a student’s question in his
graph-algorithm class - 1987

Contents
6.1 Introduction . 110

6.2 Zero-Knowledge Proofs . 111

6.3 Model Description . 112

6.3.1 System Model . 112
6.3.2 Security Model . 113
6.3.3 Assumptions . 114

6.4 A New-Zero Knowledge PDP Protocol 114

6.4.1 Private Data Possession Scheme 114
6.4.1.1 GenChal . 116
6.4.1.2 ChalProof . 116
6.4.1.3 Verify . 117

6.4.2 Public Data Possession Scheme 118
6.5 Security Analysis . 119

6.5.1 Security and Privacy Discussion 120
6.5.1.1 Soundness of Verification 120
6.5.1.2 Completeness of Verification 121
6.5.1.3 Zero Knowledge Property of Verification 122

6.5.2 Resistance to Attacks . 122
6.5.2.1 Resistance to Replay Attacks 122
6.5.2.2 Resistance to DLAs 122

109

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

6.6 Performance Evaluation . 123

6.6.1 Theoretical Performance Analysis 123
6.6.1.1 Computation Cost Evaluation 124
6.6.1.2 Bandwidth Cost Evaluation 124
6.6.1.3 Storage Cost Evaluation 125

6.6.2 Time Performance Discussion 125
6.6.2.1 Context . 125
6.6.2.2 Implementation Results 126

6.7 Conclusion . 127

6.1 Introduction

S
everal Proof of Data Possession (PDP) schemes are proposed to ensure integrity
verifications of stored data on untrusted remote servers, and are designed to guarantee

several requirements, namely lightweight and robust verification, computation efficiency
and constant communication cost, based on different security assumptions. As presented
above, these PDP techniques are widely analyzed into two categories, according to the role
of the verifier in the model: private verifiability, where only the data owner can verify the
server’s data possession, and public verifiability, where any authorized entity can perform
the verification procedure. On one hand, the private verifiability achieves higher efficiency,
as the private information needed for verification is kept with the data owner. On the
other hand, the public verifiability, allowing any entity to challenge the server for the proof
of data possession, ensures higher scalability. That is, clients are able to delegate the
verification task to another party, without devoting of their computation resources.

Even though existing PDP schemes have addressed various security properties, we still
need a careful consideration of potential attacks, namely data leakage attacks, that may
cause potential risks for privacy preservation. To design an effective security model, it
is important to analyze the PDP scheme under the framework of Zero-Knowledge Proof
scheme (ZKP), while considering an Interactive Proof System (IPS) between the client and
the cloud server in a requested geographic perimeter [Gol00].

As such, in the key role of public verifiability and the privacy preservation support,
this chapter presents our third contribution [KEML14]. It addresses the issue of provable
data possession in cloud storage environments, following three substantial requirements:
security level, public verifiability, and performance. [KEML14] proposes an efficient ver-
ification framework based on a fundamental arithmetic Euclidean Division, adapted to
limited storage capacities. The framework is demonstrated to be resistant against data
privacy leakage within a ZKPS. Introduction of a probabilistic method helps to reduce its
computation and communication overheads.

The remainder of this chapter is organized as follows. First, Section 6.2 describes
Zero-Knowledge proofs, introducing the general concept of these schemes and highlighting
the essential characteristics of an Interactive Proof System (IPS). Then, Section 6.3 pro-
vides an overview of our system and security models, while considering realistic use cases.
Section 6.4 presents our contribution and Section 6.5 gives a security analysis. Finally, a
performance evaluation of the proposed scheme is given before concluding in Section 6.7.

110

6.2. Zero-Knowledge Proofs

6.2 Zero-Knowledge Proofs

The fundamental notion of zero-knowledge was introduced by Goldwasser et al. in [GMR85].
They considered a setting where a powerful prover is proving a theorem to a probabilistic
polynomial-time verifier. The main idea is that the prover wants to convince a verifier
that a statement is true, without revealing any of his secret. So that, these two entities
mutually engage in an interactive protocol, where the verifier does not learn anything from
his interaction with the prover.

Definition 6.2.1 Interactive Proof Systems(IPS) [Gol00] An interactive proof system for
a set S is a two-party game between a computationally unrestricted prover P and a proba-
bilistic polynomial-time verifier V, such that on input x, which is available to both parties,
it satisfies:

• Completeness – For every x ∈ S, the verifier always accepts after interacting with
the prover, on common input x.

∀x ∈ S, Pr[(V ⇔ P)(x)accepts] = 1 (6.1)

• Soundness – For every x /∈ S and every potential prover P∗, the verifier rejects with
probability at least 1

2 after interacting with P∗, on common input x.

∀x /∈ S, ∀P∗, P r[(V ⇔ P∗)(x)accepts] ≤ 1

2
(6.2)

In other words, a proof is complete if a honest verifier is always convinced of a true
statement, computed and sent by a honest prover. Whereas, a proof is considered to be
sound if a cheating prover can convince an honest verifier that a false statement is true
with a negligible probability.
A Zero-Knowledge Interactive Proof System (ZKIPS) is a special kind of interactive proof
mechanisms. In fact, there is an additional condition, namely, when x ∈ S, the verifier does
not learn anything other than being convinced that the x is indeed in S. In an IPS, the
soundness condition protects the verifier from accepting an incorrect claim. In a ZKIPS,
the new condition protects the prover from having to reveal any information (other than
the correctness of the claim). When the prover follows the protocol for an input x ∈ S,
the verifier will learn nothing beyond the fact that x ∈ S.

Figure 6.1 presents a famous example, that explains the zero knowledge protocol. It is
the example of a mysterious cave, the cave of Ali BABA, which was introduced by Jean-
Jacques Quisquater et al. in [QQQ+89] and widely adopted by several research works,
later.
After the entrance, the cave splits into two paths, that lead to different sides of a magic
door. This secret door only opens by saying the correct password. Alice knows this
password, and wants to convince Bob of this. However, she only wants to convince Bob,
not anyone else, because she does not want to reveal to others that she can open the
famous magic door. Alice and Bob proceed as follows. Alice enters the cave and walks
through path A or B to the magic door, leaving her at the A-side or the B-side of the

111

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

Figure 6.1 - Magical Cave [QQQ+89]

magic door respectively. After Alice entered the cave, Bob walks through the entrance to
the intersections (not knowing which way Alice chose) and flips a coin. He will shout exit

A in case of heads, and exit B in case of tails. Alice can hear this and will exit the cave
through this path.
If she is on the A-side of the door and has to exit through A, she can simply walk out. If
she is on the A-side but has to exit B, she must pass the secret door, using her password.
In the same way, if Alice chose B and has to exit B, she just walks out, and if she chose B
and must exit A, she will go through the door.

Bob will only see Alice exiting through the correct path, but he does not know whether
Alice went through the magic door or not. However, when doing this repeatedly, Bob will
be convinced that Alice is able to pass the secret door, because otherwise she would fail to
exit through the correct path in half of the cases.

6.3 Model Description

Taking advantage from the properties of zero knowledge interactive proof systems, we
present a novel PDP model based on the well-known GPS scheme proposed by Girault
et al. in [GPS06]. GPS is a public-key-based zero knowledge protocol that was adapted
to resource-constrained devices. Hence, we extend the GPS scheme to the verification of
the authenticity of files stored on untrusted servers in cloud platforms. In this section, we
describe the components of our PDP system and security models.

6.3.1 System Model

We consider three participating entities: the client (C), the user (U) and the cloud
service provider (CSP). The client has a collection of data files stored on cloud servers
after the pre-processing procedure. The user who shares the stored data with the client
may challenge the cloud storage server to provide a proof of possession. The private
verification of our proposal contains five probabilistic algorithms, defined as follows:

112

6.3. Model Description

• KeyGen – given a selected security parameter λ, this algorithm outputs the data
owner public and secret keys (pk, sk), where pk is a public elliptic curve point.

• Setup – given a data file D ∈ {0, 1}∗ and the public key pk, the setup algorithm
generates the data file identifier IDF and the corresponding public elements (σ1, σ2).

• GenChal – this algorithm generates a randomized challenge c.

• ChalProof – given the challenge c, and the original version of the file data D, the
ChalProof algorithm produces a proof P = (y1, y2). Note that y1 and y2 are two
elliptic curve points.

• Verify – given the proof P , the public elements and the private key of the data owner,
Verify checks the data possession and outputs a result as either accept or reject.

Our idea makes use of Zero Knowledge Proofs (ZKP) to provide a data possession
verification. That is, our approach is closely based on techniques related to the GPS
scheme [GPS06], which is a public key verification protocol. Furthermore, we propose
two variants of proof of possession, supporting public and private verifiability. The private
verification makes use of a secret stored locally in the client’s device, while the public proof
check is based on pairing functions.

The choice for adopting the elliptic curve variant of GPS scheme is motivated by several
reasons. First, ZKP joins randomness into exchanged messages. As such, for each veri-
fication session, the prover and the verifier generate new pseudo random values and new
composition of the considered file data, thus making messages personalized for each session.
Consequently, the randomness involved in the server’s responses allows resistance to data
leakage attacks and preservation of data privacy. Second, the GPS scheme is adapted to
the required limited storage capacities on tags. From this perspective, with the prevalence
of wireless communication, the mobile devices start sharing the benefits of on demand
cloud storage services. Due to the resource-constrained devices, our scheme is based on
only one secret which is needed for the verification of all outsourced data. In addition, the
main advantage of our approach is the public verifiability, preserving the privacy of the
outsourced data. That is, an authorized verifier makes only use of public elements and
does not request the data owner for extra-computation procedures.

6.3.2 Security Model

For our technique to be efficient in cloud storage applications, we have to consider
realistic threat models. We first point out the case where an untrusted cloud provider has
a malicious behaviour. In such cases, the storage server claims that it possesses the data file,
even if the file is totally or partially corrupted. To model this situation, our scheme is based
on two important requirements proposed by Shacham [SW08]. On one hand, there exists
no polynomial-time algorithm that can roof the verifier with non-negligible probability. On
the other hand, there exists no polynomial-time algorithm that can recover the original
data files by carrying out multiple challenge response exchanges.

113

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

Second, we consider the case of a malicious verifier that intends to get information
about the outsourced data of the data owner. The fact that the verification process can be
performed using public elements (thanks to the zero-knowledge property of our scheme)
makes it possible for malicious clients to gain information about files stored on the un-
trusted remote servers.

The proposed protocol must provide the capabilities to the verifier and the service
provider to thwart the two threats mentioned above. To this end, the PDP scheme must
enforce a mutual verification of the actions conducted by the client and the storage server.

6.3.3 Assumptions

Our zero knowledge PDP proposal is based on the Elliptic Curve Cryptography (ECC)
[HMV03]. To support the public verification, the client must first define a set of public
verification elements (PVE). The client generates the groups G1, G2 and GT and the
pairing function ê from G1 × G2 in GT . G1 and G2 are additive subgroups of the group
of points of an Elliptic Curve (EC). However, GT is a multiplicative subgroup of a finite
field. G1, G2 and GT have the same order q. In addition, G1, G2 and GT are generated by
P , Q and the generator g = ê(P,Q), respectively. The bilinear function ê is derived from
the Weil or Tate pairing [BSSC05].

Moreover, we have to note that our PDP scheme makes use of two cryptographic
assumptions, namely the Elliptic Curve Discrete Logarithm Problem (ECDLP) and the
Computational Diffie Hellman Problem (CDH) (i.e; Section 2.4.1).

6.4 A New-Zero Knowledge PDP Protocol

In this section, we propose two new PDP schemes for cloud storage application. The
first scheme applies when the verification is performed using public credentials while the
second scheme restricts the verification process to the owner of the verified data. Both of
our schemes rely on zero-knowledge challenge-response protocols. Therefore, they do not
add any storage overhead at the client side, which is an important feature for applications
where the access to mobile resource-impoverished devices is possible.
We provide mathematical proofs of the correctness (i.e., the PDP scheme returns a positive
feedback if, and only if the file exists on the server and has not been altered) of the proposed
schemes based on the properties of the Euclidean Division (ED) and the bilinear functions.

6.4.1 Private Data Possession Scheme

In our scheme, we define an elliptic curve EC over an additive subgroup G1 of a prime
order q. Let P be a generator of G1.

When a client wants to store a file data D on the cloud, he first decomposes D into two
blocks s and n. n represents the quotient and s is the remainder applying the Euclidean
Division (ED) on the file D with the divisor b. Note that b is kept secret by the client

114

6.4. A New-Zero Knowledge PDP Protocol

and is used in the decomposition of several outsourced file data. That is, b represents
the unique secret information that the client should preserve for all its requests for proof
of data possession verification. We must note that b is tightly related to the security of
our remote verification scheme. As such, the definition of several data divisors can extend
our proposition. That is, the data owner may rely on different secrets with respect to the
sensitiveness of the data that he intends to share on the cloud.

Then, with regards to the ECDLP, the published elements are bP, nP, sP , denoted by
pk, σ1, and σ2, respectively. pk is referred to as the public key of the data owner, while σ1
and σ2 are the public elements of the file D.
In the following, we use R,B and K that satisfy the requirements fulfilled in [GPS06]. We
also denote by · the scalar point multiplication in an additive group and by ⋆ two elements
multiplication belonging to a multiplicative group.

Figure 6.2 shows the general concept of our private data possession scheme. This
scheme consists in two phases. During the first phase, the KeyGen and Setup procedures
are executed. This phase is performed only when the file is uploaded on cloud servers.
The second phase occurs when the client wants to verify the authenticity of the outsourced
data file. To this purpose, it generates a new challenge chal in order to obtain a proof of
data possession from the cloud server. This latter runs the ChalProof algorithm which is
a 3 way procedure. In the following, we provide a detailed description of the steps that are
conducted in each of the two aforementioned phases.

Preprocessing: D = nb+ s

Public Parameters: (EC, +) an elliptic curve
P a generator of EC
{pk, σ1, σ2}
R, B and K three integers such that R≫ BK

Secret key: sk = b where b ∈ [0, R[

Client (C) Storage Server (CSP)

choose b′ ∈R [0, R[
Request(b′,IDD)

−→ calculate D1 = mb′ + z, choose (r, t) ∈R [0, B[2

x1,x2←− calculate (r · P, t · P) = (x1, x2)

generate c ∈R [0, K[
c
−→ calculate ((r + cz) · P, (t+ cm) · P) = (γ1 · P, γ2 · P) = (y1, y2)

y1,y2←−

Check y1 − x1 − c · σ1 = c.sk · σ2 − b′ · (y2 − x2)

Figure 6.2 - General Framework of Private Data Possession Scheme

Phase I consists on the two following procedures:

• KeyGen – the client public and private key are generated by invoking the KeyGen(1λ)
procedure (cf. Algorithm 11).

• Setup– when the client wants to store a file data D in the cloud, he runs the Setup
algorithm, in order to generate the corresponding public elements (σ1, σ2) of the data

115

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

file D (cf. Algorithm 12).

Algorithm 11 KeyGen Procedure (Private Data Possession)

1: Input: System security parameter (λ)
2: Output: public key pk and master secret key sk

3: Choose an elliptic curve EC over an additive subgroup G1 of a prime order n, where
BitLength (n) > ξ and ECDLP is hard in G1;

4: Select P a generator of EC;
5: Use a deterministic secure pseudo random number generator (SPRNG) with a random

secret seed to generate b ∈R [0, R[;
6: sk ← b;
7: pk ← b · P ;
8: return (pk, sk)

Algorithm 12 Setup Procedure (at the data owner side)

1: Input: File data (D), pair of secret and public keys (pk, sk) and the point generator
P

2: Output: File identifier IDD and the file public elements (σ1, σ2)

3: Generate the file identifier IDD;
4: ED(D, sk) = (s, n); ED: Euclidean Division;
5: σ1 ← n · P ;
6: σ2 ← s · P ;
7: return (IDD, σ1, σ2)

Phase II consists in a challenge-response protocol conducted between the verifier and
the storage server. The underlying steps are detailed below.

6.4.1.1 GenChal

The GenChal procedure is executed by the client and yields a challenge for the cloud
storage server. The client chooses at random a challenge divisor b′ ∈R [0, R[. In response,
the server has to provide a valid new file decomposition using the random divisor b′ sent
by the client. It is worth noticing that the client does not store any additional information
for the proof verification. That is, the verification procedure makes only use of the secret
key of the client sk.

6.4.1.2 ChalProof

The ChalProof, executed by the server, has to generate a valid proof of data possession
of D. In our construction, the ChalProof is a 3 way procedure between the client and
the server with common inputs (b′, P). For the sake of consistency, we suppose that the
server possesses a version of the file which is potentially altered. Hereafter, this version is
denoted by D1. The objective of the following steps is to verify whether D1 = D or not.

116

6.4. A New-Zero Knowledge PDP Protocol

• Commitment (CSP → C) : the storage server calculates the ED of the file using the
challenging divisor b′ sent by the data owner as:

D1 = mb′ + z

Then, he chooses at random two integers (r, t) ∈R [0, B[2 and sends their commit-
ments to the client as (x1, x2) = (r · P, t · P).

• Challenge (C → CSP) : the client chooses a random challenge c ∈R [0, K[and
sends it to the server storage, in order to provide the proof. Thereby, the client gets
fresh instances indistinguishable from the past results.

• Response (CSP → C) : the server calculates two integers γ1 and γ2 based on the
generated randoms (r, t), and the computed remainder and quotient (m, z) as follows:

(γ1, γ2) = (r + cz, t+ cm)

Then, the CSP performs two scalar point multiplications to generate the proof
(y1, y2), where y1 = γ1 · P and y2 = γ2 · P . Afterwards, the storage server sends
(y1, y2) for integrity verification.

6.4.1.3 Verify

The client verifies the correctness of the server response. He checks the following
equality, using on the secret sk, the divisor b′, the challenge c, and the responses (x1, x2)
and (y1, y2) got from the server.

y1 − x1 − c · σ1 = c.sk · σ2 − b′ · (y2 − x2). (6.3)

If the equality holds, the verifier has a proof that the file D exists on the server and that
it has not been altered.

Lemma 6.4.1 Private Verification Correctness The verification procedure of Equa-
tion 6.3 holds if, and only if the file D1 = D.

Proof.
Having received (y1, y2), the client calculates y1 − x1 = γ1 · P − x1 = cz · P and b′ · (y2 −
x2) = b′ · (γ2 · P − x2) = cmb′ · P . Given that D = D1 = nb + s = mb′ + z, we have
cnb− cmb′ = cz − cs. Taking into consideration that sk = b, this writes to the following.

c.sk · σ1 − b′ · (y2 − x2) = (y1 − x1)− c · σ2. (6.4)

This proves the correctness of the verification step (i.e., D = D1). The uniqueness of the
quotient and remainder of the ED allows to state that Equation 6.3 is true if, and only if
D = D1. �

117

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

6.4.2 Public Data Possession Scheme

An authorized user, different than the client that initially uploaded the file on the stor-
age server, could also verify the authenticity of this file. However, the protocol proposed,
in the foregoing subsection 6.4.1, cannot be used to this purpose since it supposes that
the verifier has the private key of the client, which is not the case of the user. In the
following, we demonstrate that the public parameters of the client can also be used in
order to implement a PDP scheme between a user, different from the owner of the file, and
the storage server. Thus, procedures presented in Section 6.4.1 cannot apply to the public
data possession scenario, as the client uses his secret sk to verify the proof.

Preprocessing: D = nb+ s

Public Parameters: (EC, +) an elliptic curve
P a generator of EC
PV E = {G1,G2, P, g, ê}
{b · P, n · P, s · P} = {pk, σ1, σ2}
R, B and K three integers such that R≫ B.K

Secret key: b ∈ [0, S[

User (U) Storage Server (CSP)

choose b′ ∈R [0, R[
Request(b′,IDD)

−→ calculate D1 = mb′ + z, choose (r, t) ∈R [0, B[2

x1,x2←− calculate (r · P, t · P) = (x1, x2)

generate c ∈R [0, K[
c
−→ calculate γ1 = r + cz, γ2 = t+ cm, compute y = (γ1 + b′γ2) · P

y
←−

Check ê(c · σ1, pk) ⋆ ê(c · σ2, P) = ê(y, P) ⋆ ê(x1 + b′x2, P)−1

Figure 6.3 - General Framework of Public Data Possession Scheme

As illustrated in Figure 6.3, the client publishes a set of public verification elements
(PVE). As described in Section 6.3.3, these elements are returned by the KeyGen procedure
as PV E = {G1,G2, P, g, ê}. Note that, for ease of exposition, we used a symmetric pairing
function ê. In addition, the client maintains the same public elements, used for the private
verification (pk, σ1, σ2). The verification condition to state that the file exists on the server
and has not been altered is expressed in the following Equation:

ê(c · σ1, pk) ⋆ ê(c · σ2, P) = ê(y, P) ⋆ ê(x1 + b′x2, P)−1. (6.5)

Lemma 6.4.2 Public Verification Correctness The verification condition of Equation
6.5 holds if, and only if the file D1 = D.

Proof.
For checking the correctness of the received proof, the authorized user has to verify the

118

6.5. Security Analysis

equality between the two Equation 6.5 sides. That is, he has to compare ê(c ·σ1, pk) ⋆ ê(c ·
σ2, P) to ê(y, P) ⋆ ê(x1 + b′x2, P)−1.

On one hand, given the public elements PV E and the generated challenge c, the verifier
first computes ê(c · σ1, pk) and ê(c · σ2, P) as follows:

ê(c · σ1, pk) = ê(cn · P, b · P) = ê(P, P)cnb = gcnb (6.6)

ê(c · σ2, P) = ê(cs · P, P) = ê(P, P)cs = gcs (6.7)

Then, the authorized user multiplies the obtained results as follows:

ê(c · σ1, pk) ⋆ ê(c · σ2, P) = gcnb ⋆ gcs = gc(nb+s) = gcD (6.8)

We must note that the second side of Equation 6.5 may be written as follows (cf. Equa-
tion 6.9).

ê(y, P) ⋆ ê(x1 + b′ · x2, P)−1 = ê(y, P) ⋆ ê(−(x1 + b′ · x2), P) (6.9)

On the other hand, the verifier relies on the received responses (x1, x2) and y, to
compute ê(y, P) and ê(x1+b′·x2, P). That is, he first calculates x1+b′·x2, while performing
one scalar point multiplication and one point addition. Afterwards, he computes the pairing
functions to get the following two group elements:

ê(y, P) = ê((γ1+b′γ2)·P, P) = ê([(r+cz)+b′(t+cm)]·P, P) = ê([r+b′t+cD1]·P, P) = gr+b′t+cD1

(6.10)
ê(−[x1 + b′ · x2], P) = ê(−r · P − b′ · (t · P), P) = ê(−(r + b′t) · P, P) = g−(r+b′t) (6.11)

The authorized user computes the second side of Equation 6.5, as follows:

ê(y, P) ⋆ ê(−[x1 + b′ · x2], P) = gr+b′t+cD1 ⋆ g−(r+b′t) = gr+b′t+cD1−r−b′t = gcD1 (6.12)

The condition of Equation 6.5 is equivalent to the equality between Equation6.8 and
Equation 6.12. Given the uniqueness of the quotient and remainder of ED and the non-
singularity of the pairing function, this condition holds if, and only if D = D1. �

6.5 Security Analysis

In this security analysis, the cloud service provider is not considered to perform preser-
vation of computation resources by reusing the same pair (x1, x2) = (r · P, t · P) from one
possession proof session to another. The server is assumed to renew the pair of random
numbers r and t and to calculate the elliptic points x1 = r ·P and x2 = t ·P for each data
integrity checking session.

In Section 6.5.1, we describe the security of our PDP protocol using a game that
captures the data possession property. In fact, this game consists in a fraudulent storage

119

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

server, as an adversary, that attempts to construct a valid proof without possessing the
original data file. As the proof generation depends on the variant of the remote data
checking protocol, we denote by p the proof computed and sent by the cloud storage server
to the verifier, in the last message. That is, p corresponds to (y1, y2), for a private data
verification, and to y, for a public verification.

When the verifier wants to check the server’s possession of data file, he sends a random
query bg to the adversary.

• ForgeCommit – without the possession of the data file, the server tries to generate two
randoms m∗ and z∗, using an iterated hash function. Then, he chooses two integers
(r, t) ∈R [0, B[2 and sends their commitments to the client as (x1, x2) = (r ·P, t ·P).

• Challenge – the verifier requests the adversary to provide a valid proof of the re-
quested file, determined by a random challenge cg.

• ForgeProof – the adversary computes a proof p∗ using his random generation (m∗, z∗)
and the challenge cg.

The adversary wins the data possession game, if the verify procedure returns accept.

In Section 6.5.2, we discuss the resistance of our proposed scheme against a malicious
verifier. The verifier attempts to get knowledge about the outsourced data, based on the
available public elements PV E and multiple previous exchanges resulting in successful
verification sessions with the legitimate storage server.

6.5.1 Security and Privacy Discussion

According to the standard definition of an interactive proof system proposed in [Gol00],
our protocol has to guarantee three security requirements: completeness and soundness of
verification, and the zero-knowledge property.

6.5.1.1 Soundness of Verification

Recall that the soundness means that it is infeasible to confound the verifier to accept
false proofs p∗. That is, even if a collusion is attempted, the CSP cannot prove its posses-
sion.
The soundness of our proposition is relatively close to the Data Possession Game. Hence,
the soundness meets the correctness of verification (Equation 6.3 and Equation 6.5), while
considering the uniqueness of the quotient and remainders of the Euclidean Division (ED).
This property prevents from forging the soundness of verification of our protocol.

For the nonexistence of a fraudulent server prover, we assume that there is a knowledge
extractor algorithm Ψ [Gol00], which gets the public elements as input, and then attempts
to break the Elliptic Curve Discrete Logarithm Problem (ECDLP) in G. We state, in
Section 2.4.1, that ECDLP holds in G, if there does not exist a Probabilistic Polynomial

120

6.5. Security Analysis

Time (PPT) algorithm, with non negligible probability ǫ, that may solve the ECDLP
problem.

The Ψ algorithm interacts as follows:

Learning 1– the first learning only relies on the data owner public key pk = b · P as
input. Ψ tries to get knowledge of the client secret key sk. That is, the extractor algorithm
Ψ picks at random ri ∈R [0, R[, where i ∈ Zp and computes riP . For each ri, Ψ checks
whether the comparison holds between pk and (ri ·P). Based on our assumption, Ψ cannot
extract the secret key of the client with noticeable probability.

Learning 2– the input of the second learning is the tuple (pk, σ1, σ2, PV E). The
algorithm attempts to extract the secret data divisor sk = b by performing following steps:

1. ê(pk, σ1) = ê(b · P, n · P) = gnb

2. ê(pk, P) = ê(b · P, P) = gb

3. ê(n · P, P) = gn

This learning cannot hold, because of the DDH assumption. In [Bon98], Boneh demon-
strates that the DDH assumption is much stronger than the CDH.

6.5.1.2 Completeness of Verification

In our scheme, the completeness property implies public verifiability property, which
allows any entity, not just the client (data owner), to challenge the cloud server for data
possession or data integrity without the need for any secret information. That is, public
verification elements, needed in the verification process are publicly known. Thereby, any
authorized user may challenge the server storage and efficiently verifies the proof of data
possession. Hence, our proposal is a public verifiable protocol.

Lemma 6.5.1 Completeness of verification Given the tuple of public elements (pk, σ1, σ2, PV E)
and D = D1, the completeness of verification condition implies that Equation 6.5 holds in
G2.

Proof.
Based on Equation6.9 and Equation 6.12, the completeness of our protocol is performed
as follows:

ê(y, P) ⋆ ê(−(x1 + b′ · x2), P) = gr+b′t+cD1 ⋆ g−(r+b′t)

= gr+b′t+cD1−r−b′t

= gcD1

= gcD

= gc(nb+s)

= ê(P, P)cnb ⋆ ê(P, P)cs

= ê(cn · P, b · P) ⋆ ê(cs · P, P)

= ê(c · σ1, pk) ⋆ ê(c · σ2, P)

121

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

There exists a trivial solution when g = 1. In this case, the above verification could
not determine whether the processed file is available, because the equality remains true.
Hence, the completeness of our construction holds, if and only if when g 6= 1, giving the
uniqueness of the quotient and the non singularity property of the pairing function ê.
�

6.5.1.3 Zero Knowledge Property of Verification

Compared to the original zero-knowledge GPS scheme [GPS06], the prover represents
the data storage server and the verifier represents any authorized user. As such, our scheme
inherits the zero-knowledge feature from the GPS scheme.

The zero knowledge property ensures the efficiency of a cloud server against malicious
attempts to gain knowledge from the outsourced data files. For our construction, this
property is achieved thanks to personalized verification sessions. That is, randomness is
required in cloud server’s responses, in order to resist to Data Leakage Attacks (DLA) and
to preserve the confidentiality of data (cf. Section 6.5.2.2).

6.5.2 Resistance to Attacks

In the following analysis, we discuss the resistance of our proposed scheme to classical
attacks, when only considering the vulnerabilities over the data file. As such, we suppose
a malicious verifier. This latter attempts to gain knowledge about the outsourced data,
based on the public elements of the data owner and multiple interactions with the legitimate
storage server.

6.5.2.1 Resistance to Replay Attacks

For each verification session, the server storage and the verifier generate new pseudo
random values r and t. As presented in [GPS06], the probability of impersonation is 1/K l,
where l is the number of the protocol rounds, and it depends on the challenge c. That is,
a secure pseudo random generator can mitigate to replay attacks. In addition, the public
proof of data possession variant of our protocol is secure against MIM attacks. [GPS06]
demonstrates that an attacker cannot retrieve the secret key from the exchanged messages
between the prover and the verifier.

6.5.2.2 Resistance to DLAs

We suppose that the goal of the fraudulent verifier is to obtain information about the
outsourced data file. That is, the malicious verifier requests different decomposition of the
same outsourced data file. As such, using two different sessions ((α), (β)), the attacker
receives two different responses from the honest storage server, such that, [y(α), (x1, x2)(α)]
and [y(β), (x1, x2)

(β)].
From the session (α), the verifier receives y(α) = (γ1

(α) + b′(α)γ2
(α)) · P . In the sequel, the

122

6.6. Performance Evaluation

verifier calculates the following equation:

y(α) − x1
(α) − b′

(α)
x2

(α) = c(α) · [(mb′)(α) · P + z(α) · P] (6.13)

Knowing the challenge c, the malicious verifier may compute c−1[y(α) − x1
(α) − b′(α)x2

(α)]
to deduce (mb′)(α) · P + z(α) · P . Similarly, the attacker deduces, from session (β), the
combination (mb′)(β) · P + z(β) · P .

The main idea of the Pollard’s Rho attack is to find distinct pairs (c1, d1) and (c2, d2)
of integers modulo p, such that c1 · P + d1 ·Q = c2 · P + d2 ·Q, where p is the prime order
of P and Q =< P >. This algorithm looks for a collision that validates such equation.
In our case, the verifier only deduces the results (mb′)(α)·P+z(α)·P and (mb′)(β)·P+z(β)·P ,
with no idea about the internal decomposition of the data file. Therefore, he has to execute
the Pollard’s Rho algorithm that resolves the Elliptic Curve Discrete Logarithm Problem,
under O(√p) steps, while looking for a collision with the specific point (mb′)(α) ·P+z(α) ·P .
This condition raises the complexity of the attack scenario and reduces the probability of
finding the file decomposition. Besides, the output of the Pollard’s Rho algorithm is a
modulo p result. As such, it is likely impossible to deduce the correct decomposition of
the outsourced data file.

Knowing the challenge b′, the attacker cannot reconstruct the file data, based on the
ECDLP assumption. In fact, the prover sends only the tuple (x1, x2, y) to the verifier. As
such, it is likely impossible to extract the data file D from the server response. Thus, the
randomness property is also necessary for the non triviality of the proof system.

6.6 Performance Evaluation

In this section, we present a performance evaluation, based on the public verification
variant of our construction, in terms of bandwidth, computation and storage costs. In
addition, we conduct a number of experiments to evaluate our system performances. As
such, we demonstrate that the adopted proof mechanism brings acceptable computation
costs.

6.6.1 Theoretical Performance Analysis

To evaluate the objectives given in Section 5.3, we compare, in Table 6.1, our proposed
protocol with some existing techniques. On the basis of the requirements of a data pos-
session proof system, we choose four different PDP schemes ([ABC+07, DVW09, SW08,
EKPT09]), that are most closely-related to our context.

Table 6.1 shows that none of the presented schemes ([ABC+07,DVW09,SW08,EKPT09])
does cover the totality of the fixed requirements, in Section 5.3. In addition, we must notice
that these schemes studied the security aspects in a theoretical framework and overlook
the issues related to constrained resources user devices.

123

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

Table 6.1 - Complexity comparison between different PDP techniques
(n is the number of data blocks)

Metrics [ABC+07] [DVW09] [SW08] [EKPT09] prop.
Nb. of chall. fixed ∞ ∞ ∞ ∞
Public verif Yes No Yes No Yes
CSP cmp. cost O(1) O(n) O(n) O(logn) O(logn)
User cmp. cost O(1) O(n) O(n) O(logn) O(logn)
Band. cost O(1) O(1) O(n) O(n) O(1)
Storage cost O(1) O(1) O(1) O(1) O(1)

6.6.1.1 Computation Cost Evaluation

As presented in Section 6.3, our scheme is composed of 5 algorithms: KeyGen, Setup,
GenChal, Chal Proof and Verify. Among these algorithms, KeyGen and Setup are per-
formed by the data owner. To generate his public key, the client performs one scalar point
multiplication in an additive group G. In the Setup procedure, this latter implements two
scalar point multiplication (n · P, s · P) and an Euclidean Division (ED) of the file data,
which remains linearly dependent on the data size. Note that, this Setup algorithm is
one-time cost for the data owner and can be performed apart the other procedures.
For each proof generation, the server applies the ED of the file data, and performs two
scalar multiplication (γ1 · P, γ2 · P). Upon receiving the server proof, the verifier conducts
4 pairing computations.

Table 6.1 states the computation cost comparison between our scheme and previous
works, at both client and server side.
On the server side, our construction introduces one point addition and two scalar point
multiplications, regardless the number of data blocks. Therefore, contrary to the other
approaches, our scheme achieves a O(logn) server computation complexity.
On the verifier side, we brought additional computation cost, in order to perform a public
verifiability. That is, the public verification procedure can also be performed by authorized
challengers without the participation of the data owner. As such, this concern can be han-
dled in practical scenarios, compared to private verification schemes ([DVW09,EKPT09])
which have to centralize all verification tasks to the data owner. In our scheme, the au-
thorized verifier has to generate two random scalars b′ ∈ [0, R[and c ∈ [0,K[, in order to
conduct his challenge request. Then, he checks the received proof from the cloud server,
while performing four pairing computations and two elements multiplications in a multi-
plicative group. Thus, the public verifiability introduces a O(logn) processing cost at the
verifier side.

6.6.1.2 Bandwidth Cost Evaluation

In our proposed scheme, the bandwidth cost comes from the generated challenge mes-
sage GenChal algorithm and the proof response in each verification request. We neglect
the computation cost of algebraic operations because they run fast enough [BGHS07],

124

6.6. Performance Evaluation

compared with operations in elliptic curve groups and multiplicative groups.

On one hand, the exchanging challenge algorithm consists in transmitting one random
element c, where c ∈R [0, K[and two elliptic curves points (x1, x2). For a recommended
security, we consider a security parameter λ = 80 bits, thus, the total cost of the challenge
message is the double size of a group element of an additive group G.

On the other hand, the proof response consists only in one elliptic curve element y =
γ1 + b′γ2 · P . Therefore, the total bandwidth cost becomes constant and the bandwidth
complexity of our scheme is O(1).

As shown in Table 6.1, [DVW09] and [SW08] present O(n) bandwidth complexity,
where n is the number of encoded data blocks. As a consequence, the bandwidth cost of
these algorithms is linear to n. Considering the number of permitted challenges, [ABC+07]
suffers from the problem of pre-fixed number of challenges, which is considered as an
important requirement to the design of our construction. Nevertheless, their scheme
presents a constant bandwidth cost, just like our proposed protocol. Based on a private
proof, [EKPT09] also performs a low bandwidth cost. However, this algorithm supports
only private verification. Therefore, along with a public verification, our proposed scheme,
allows each verifier to indefinitely challenge the server storage with a constant bandwidth
cost.

6.6.1.3 Storage Cost Evaluation

At the client side, our scheme only requires the data owner to keep secret his private
key sk, which is a random element b ∈R [0, R[, and to store three public elements. These
public elements consist in three elliptic curve points {pk, σ1, σ2}. Thus, the storage size of
each client is 3|P |. We must note that |P | is the size of a group element, which is dependent
on the security parameter λ. This storage overhead remains acceptable and attractive for
resource constrained devices mainly as it not dependent on the number of data blocks and
the size of data contents.

6.6.2 Time Performance Discussion

In this section, we first present the context of the implementation of our proposed
scheme. Then, we discuss the computation performances.

6.6.2.1 Context

In an effort to evaluate the performances of our proposal, we build a simulated proof
of data possession based on Open Stack Storage system (Swift) [chac].

In order to discuss the communication cost and the computation complexity at the client
side, we implement several cryptographic operations at the client side of our simulated
cloud environment. First, our scheme essentially relies on the Euclidean Division (ED) of
the data file and the multiplication of the remainder and the quotient by an elliptic curve

125

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

point. As such, the effort to evaluate the performance of our solution leads us to study the
time performance of scalar and point multiplication operation, at the swift client machine
and the computation cost of different symmetric pairing functions. Our tests are conducted
in order to understand the execution cost of our proposal on real hardware. That is, on
one side, we evaluated the scalar point multiplication durations, of different scalar size of
random data for each multiplication. On the other side, we studied the processing cost,
due to the computation of bilinear functions, relying on different security levels.
Second, we extend the functions of swift, in order to support our security requirements.
That is, we set the security parameter at λ = 80, and we discuss the communication cost of
our proposal, for different content size. For our tests, we use the GNU Multiple arithmetic
Precision (GMP) library [ea02]. We used 1000 samples in order to get our average durations
of scalar point multiplication operations, at the swift client machine.

6.6.2.2 Implementation Results

Four different scalar sizes, the scalar and point multiplication elementary operation
is evaluated, in order to present the execution cost of this elementary operation on real
hardware. The obtained results are summarized in Table 6.2.

Table 6.2 - Mathematical operations cost (in ms).
❤
❤

❤
❤
❤
❤
❤
❤
❤
❤
❤

❤
❤

❤
❤
❤
❤

Scalar size (bits)
Sec. level (λ)

80 112 128

10 0.105 4.980 7.123
100 1.813 12.516 28.475
1000 14.522 41.009 79.868
10000 98.001 257.9 677.012

Table 6.2 shows that the computation time increases with the scalar size. We must
note that the selected scalar presents either the remainder or the quotient, while applying
the ED on the outsourced file data.
We also notice that the processing time with large integers is still reasonable. In order to
increase the computation performances when larger scalars are needed, our scheme can take
advantage of pre-computation tables, by expressing this scalar as a linear decomposition
of precomputed scalars used in this table. Therefore, the execution cost of the scalar
multiplication becomes much more easier. In addition, Table 6.2 shows that the consumed
time for multiplication increases, independently from the choice of the scalar size, when
we increase the level of security.

In order to show the performances of the public verify procedure, we examine the
computation duration cost of pairing functions, at the swift client side. That is, for our
comparison, we give references to performance analysis presented in chapter 4, section 4.5.2.
In fact, we have used two symmetric pairing functions from the PBC library [Ben07],
including type E pairing e.param and type A a.param, to examine the impact of different
bilinear functions, based on three different security levels. We noticed that the type of

126

6.7. Conclusion

pairing function should be taken into account, while implementing the proposed procedures.

We also investigate the communication overhead of the GenChal and the ChalProof
procedures. For a security parameter λ set to 80, we measure the consumed bandwidth
for varying data content size from 1000 bits to 8000 bits (cf. Figure 6.4).
Figure 6.4 shows that our proposal performs an acceptable bandwidth communication,

Figure 6.4 - Communication cost (bytes)

which remains constant at about 500 bytes for different data sizes.

6.7 Conclusion

In this chapter, we present our third contribution [KEML14], proposing a new zero-
knowledge PDP protocol that provides deterministic integrity verification guarantees, re-
lying on the uniqueness of the Euclidean Division. These guarantees are considered as
interesting, compared to several proposed schemes, presenting probabilistic approaches.
Our proposal benefits from the elliptic curve variant of the GPS scheme advantages, namely
high security level and low processing complexity. Hence, we extend the GPS scheme to
the verification of the authenticity of files stored on untrusted servers. That is, the pro-
posed solution can be performed on any connected terminal. As shown above, resource
constrained devices like smartphones take reasonable time for executing the private vari-
ant of our scheme, for an acceptable security level. Moreover, for the public variant, we
are optimistic that progress done in pairing functions, like Beuchat et al. running in less
than 1 ms, will lead to better performances at the client side. Anyway, there is still the
alternative that the client delegates to a powerful external entity the task of verifying the
integrity of outsourced data.

Based on a data possession game, our scheme is shown to resist to data leakage attacks,
while considering either a fraudulent prover or a cheating verifier.
Additionally, our proposal is deliberately designed to support public verifiability and con-
stant communication and storage cost. Thus, we implemented a proof of concept based on
the Openstack swift service to demonstrate the feasibility of our proposal and give support
to our previous theoretical performance measurements.

Finally, we should state that zero-knowledge PDP schemes present a valuable way to

127

CHAPT 6. A ZERO-KNOWLEDGE SCHEME FOR PROOF OF DATA POSSESSION
IN CLOUD STORAGE APPLICATIONS

reveal the abstract security assurances devoted to cloud based outsourcing issues.

128

Chapter 7

SHoPS: Set

Homomorphic Proof of Data Possession

Scheme in Cloud Storage Applications

The unseen enemy is always the most
fearsome

George R.R. Martin - 1979

Contents
7.1 Introduction . 130

7.2 Requirement Analysis . 132

7.3 Model Description . 133

7.3.1 SHoPS Overview . 133
7.3.2 Complexity Assumptions . 135

7.4 SHoPS: A New Set Homomorphic PDP Scheme 135

7.4.1 Single Data Block SHoPS . 136
7.4.1.1 clg procedure . 137
7.4.1.2 prf procedure . 137
7.4.1.3 vrf procedure . 137

7.4.2 Set-Homomorphic Properties of the proposed Scheme 140
7.4.2.1 Set-Union Operator 140
7.4.2.2 Set-Inclusion Operator 143
7.4.2.3 Set-Intersection Operator 144

7.4.3 Energy efficiency . 144
7.5 Security Discussion . 145

7.5.1 Threat Model . 146
7.5.2 SHoPS Resistance to Cheap and Lazy Server Adversary 146
7.5.3 SHoPS Resistance to Malicious Verifier Adversary 150

7.6 Experimental Study . 150

129

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

7.7 Theoretical Performance Analysis . 152

7.7.1 Computation Cost Evaluation 153
7.7.2 Bandwidth Cost Evaluation . 153
7.7.3 Storage Cost Evaluation . 154

7.8 Conclusion . 154

7.1 Introduction

T
he CSA reports that data breaches and data losses are top critical threats to cloud
security [httb]. That is, due to the abstract nature of cloud infrastructures, cloud

users have no mean to verify how things are maintained. The CSA introduced the Cloud
Transparency (CT) concept, where cloud users ask for and receive information about the
elements of transparency as applied to cloud service providers. Assured of such evidence,
cloud users become interested to outsource more sensitive and valuable business functions
to the cloud, and reap even larger payoffs. For instance, cloud users are provided a way
to find out important pieces of information concerning the compliance, security, privacy,
integrity, and operational security history of service elements being performed in the cloud.

To this perspective, and with massive cloud storage failures that have come to light, it
is important to consider remote testing of data correctness as an essential complement to
contractual assurance and service-level specifications.

This concern is particularly important with rarely accessed data. For example, Face-
book stores more than 240 billion photos, with users uploading an additional 350 million
new photos every single day. However, as reported by the US IDC, outsourced data are
generally less accessed after 91 days. In addition, these data are also rarely modified after
4 months [hSIHA]. Several approaches may be adopted by providers, to reduce storage
cost while preserving their reputation.

On one side, the tierced storage is a strategy that organizes stored data into categories
based on their priority – typically hot, warm and cold storage – and then assigns the data
to different types of storage capacities to reduce costs. Rarely-used data are generally
shifted to cheaper hardware, a move that saves money, such as in Amazon’s glacier cold
storage [htta] and Facebook Prineville data center [hbndcfcs]. Additionally, as cold data
are rarely accessed, many providers may intentionally neglect replication procedures in
order to save storage cost. As such, it would be important to conceive robust algorithms
to effectively verify data integrity.

On the other side, to provide a low cost, scalable, location-independent platform for
managing clients’ data, current cloud storage systems adopt several new distributed file
systems, such as Apache Hadoop Distribution File System (HDFS), Google File System
(GFS), Amazon S3 File System, CloudStore, etc. These file systems share some similar
features: a single metadata server provides centralized management by a global names-
pace; files are split into blocks or chunks and stored on block servers; and the systems are
comprised of interconnected clusters of block servers. Those features enable cloud service
providers to store and process large amounts of data. However, it is crucial to offer an
efficient verification on the integrity and availability of stored data for detecting faults and

130

7.1. Introduction

automatic recovery. Moreover, this verification is necessary to provide reliability by au-
tomatically maintaining multiple copies of data and automatically redeploying processing
logic in the event of failures. Although existing schemes ensure the correctness of out-
sourced data without downloading these data from untrusted stores, several algorithms
are inefficient in a distributed cloud storage environment. This is due to the lack of homo-
morphism properties of interactive proofs where clients need to know the exact position of
each file block in a multi-cloud environment. Consequently, the verification process leads
to high communication overheads and computation costs at client sides as well.

Therefore, it is of utmost necessary to design an efficient PDP model to reduce the
storage and network overheads and enhance the transparency of verification activities in
scalable cloud storage systems. There is an implementation of remote data checking at the
three following levels:

• Between a client and a CSP – a cloud customer should have an efficient way to
perform periodical remote integrity verifications, without keeping the data locally.
Additionally, the client should also detect SLA violation, with respect to the stor-
age policy. This customer’s concern is magnified by his constrained storage and
computation capabilities and the large size of outsourced data.

• Within a CSP – for the CSP to check the integrity of data blocks stored across
multiple storage nodes, in order to mitigate byzantine failures and drive-crashes.

• Between two CSPs – in the case of the cloud of clouds scenarios, where data are
divided on different cloud infrastructures. Therefore, a CSP, through its cloud gate,
should periodically verify the authenticity of data blocks hosted by another cloud
platform.

For instance, stored across multiple storage nodes, the proof of data possession becomes
more absorbing. In fact, taking advantage of the computation and storage capabilities of
the storage nodes, each node has to provide proofs of local data block sets. Then, the
cloud gate is responsible for performing operations on received proofs, while preserving the
authenticity of the resulting proof. These operations include the detection of hardware
failures based on redundant data, the extraction of proof of subset of data blocks and the
aggregation of proofs. These operations can effectively save energy at the verifier side.
That is, the verifier executes one verification for a single complex operation, involving
several data blocks.

Nevertheless, most of the proposed schemes aggregate messages through the application
of addition, multiplication, or polynomial functions on the original data blocks. They do
not apply to the cases where only subsets of the original messages have to be tested during
the aggregation process in order to minimize redundancy or to preserve anonymity. This
flexible property is important, as it is required for these remote checking schemes, in order
to perform efficient aggregation operations [JMXSW02].

This chapter introduces our fourth contribution. That is, we present SHoPS, a novel
Set-Homomorphic Proof of data possession Scheme, supporting the 3 levels of data verifi-
cation. SHoPS enables a verifier not only to obtain a proof of possession from the remote

131

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

server, but also to verify that a given data file is distributed across multiple storage devices
to achieve a certain desired level of fault tolerance. Indeed, we introduce the set homo-
morphism property, which extends malleability to set operations properties, such as union,
intersection and inclusion.

Our set-homomorphic proof scheme allows verifying sets in a way that any authorized
verifier can check the union of two proof sets, while considering the whole data file, or the
intersection between two data blocks, while checking integrity proofs over different versions
of logging files, as conversations on social networks.

Based on the Pairing based cryptography, SHoPS supports the application of basic set
operations, on received proof sets without affecting the verification procedure. In addition,
in the key role of public verifiability and the privacy preservation support, our proposed
scheme addresses the issue of provable data possession in cloud storage environments,
following three substantial aspects: security level, public verifiability, and performance.

The remainder of this chapter is organized as follows. First, Section 7.2 highlights se-
curity challenges of PDP schemes. Then, Section 7.3 gives a SHoPS overview and provides
the security assumptions needed to ensure a secure, scalable and dynamic PDP scheme
with public verifiability. Section 7.4 presents our contribution and Section 7.5 gives a
security analysis. Finally, experimental and theoretical performance evaluations of the
proposed scheme are given in Section 7.6 and Section 7.7 respectively, before concluding
in Section 7.8.

7.2 Requirement Analysis

As presented above, the simplest solution to design a PDP scheme is based on a hash
function H(). That is, the client pre-calculates k random challenges ci, i ∈ {1, k} and
computes the corresponding proofs, pi = H(ci||D). This solution is concretely impracti-
cal because the client can verify the authenticity of the files on the server only k times.
Additionally, stored across multiple storage nodes, each node has to compute the related
possession proof, based on a received challenge. As such, the aggregation process results in
the removal of some redundant proofs transmitted from different nodes, in order to min-
imize the communication latency. Generally, the processing overhead at the client side is
also reduced, but the new proof is longer than the original generated proofs. To illustrate
the need for set-homomorphic proof schemes, we consider two storage nodes s1 and s2,
possessing each one data block {Bi}i∈{1,2}. The data blocks, considered as subblock sets,
are represented as follows: Bi = {π1,1, · · ·πi,q}, where i ∈ {1, 2}, and q is the number of
data subblocks. s1 and s2 generate respectively data possession proofs p1 and p2. Having
removed the redundancy from these sets, the gateway is supposed to send p1∪p2. To guar-
antee the authenticity of the resulting proof while avoiding the shortcuts of the classical
forwarding, we propose a new aggregate proof scheme, using set-homomorphic properties.

The design of our protocol is motivated by providing support of both robustness and
efficiency. SHoPS has to fulfill the requirements, introduced in Section 5.3.

132

7.3. Model Description

7.3 Model Description

This section introduces SHoPS, a set-homomorphic proof of data possession scheme,
and it highlights the cryptographic assumptions that should be fulfilled by our proposed
protocol.

7.3.1 SHoPS Overview

SHoPS introduces three participating entities: the client, the authorized user and the
cloud service provider. The client has a collection of data files stored on cloud servers after
the pre-processing procedure. The user, sharing the stored data file with the client, may
request the cloud storage server to provide a proof of possession.
To tolerate drive failures, each data file is stored with redundancy, based on n-block erasure
coding algorithm. It is, then, placed across l disks. Hence, each outsourced data file is
divided into blocks, and each block B into q subblocks, where q is a system parameter. Each
subblock is represented by a single element of the multiplicative group G2. Our single data
block proof scheme is made up of five randomized algorithms, on the basis of two phases.
During the first phase, the system initialization procedures are executed. This phase is
performed once when the file is uploaded on the cloud.

• gen : {1}λ → Kpub
2 × Kpr × G2

2q−1 – given a selected security parameter λ, this
algorithm outputs the data owner public and secret keys (pk, p̂k, sk), and a set of
public credentials, with respect to the Diffie-Hellman Exponent assumption.

• stp : 2M × G2
q → G2 – given a data block Bi ∈ {0, 1}∗ and the public key pk,

the setup algorithm generates the data block identifier IDBi
and the corresponding

accumulator {Bi, ̟i}, where i ∈ {1, · · · , n}, and n is the number of blocks of a given
data file.

The second phase occurs when the client wants to verify the authenticity of the file.

• clg : Zp
∗ × Zp

∗ → C – this stateless and probabilistic algorithm is computed by
the client and takes as input the number of data blocks q. It generates a challenge
c ∈ C consisting on a random block index and the public key element p̂k hidden with
a random nonce η as c = (i, p̂k

η
). The aim of clg is to verify the correctness of

outsourced data.

• prf : Kpub × 2M × C → P – the prf algorithm computes the server’s response
P = (σ1, σ2) to a challenge, using the encoded file blocks stored on the server disks.

In the following, we denote the algorithm that calculates the second element of the
proof σ2, by prf2. That is, we have P = prf(pk,B, c) = {σ1, prf2(B, c)}, where B
is the related data block and c represents the challenge.

• vrf : P × Kpub
2 → {0, 1} – a verification function for the cloud server’s response P ,

where 1 denotes accept, i.e., the client has successfully verified correct storage by the
server. Conversely, 0 denotes reject.

133

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

A slight difference between SHoPS and traditional proof schemes is that the generation
of the possession proof operates on sets of data blocks in 2M, instead of operating in data
blocks inM. Our choice is mainly motivated by proofs’ authenticity, malleability concerns
and energy efficiency while applying proof aggregation, as described in Section 7.2.

For instance, taking advantage of the storage and processing capabilities of the storing
nodes, SHoPS saves energy within the CSP by distributing the computation over the
multiple nodes. In fact, each node provides proofs of local data block sets. This is to
make applicable, a resulting proof over sets of data blocks, satisfying several needs, such
as proofs aggregation.

Supporting the public verifiability, SHoPS allows an implementation of remote data
checking at the three networking interfaces, namely, the client-CSP interface, the CSP-
storing nodes interface and between two CSPs interface. This ensures the flexibility of
SHoPS application and enables fulfilling each verifier request. This verifier can be:

• a data owner, or an authorized verifier, challenging his service provider for a data
possession proof. The proof aggregation, presented by the union of several data
blocks proofs, is an interesting feature, as it allows a unique verification per file and
ensures energy efficiency at the client side.

• a CSP gate challenging the storing nodes. As the operations on proof’ sets are not
limited to the aggregation of proofs, the intersection is important to detect byzantine
failures at the storing nodes.

• a CSP challenging another CSP, in the case of interleaved clouds. The CSP may
ask the hosting cloud to provide an aggregated proof or the intersection between
two history log files of complex trade systems. In addition, the subset operator may
interest the CSP verifier to check the correctness of replicated data hosted on remote
servers. For example, suppose that a CSP outsourced a directory A composed of two
data files F1 and F2, while preserving a copy of F2 in its local storing nodes. This
CSP may check the correctness of A \ F2.

In the following, we refer to the proof aggregation, every set-operation over multiple
proofs, namely, the union, the intersection and the inclusion operator. Therefore, we pro-
pose to develop an implementation of aggregate proofs using set-homomorphic properties.

Definition 7.3.1 Set-Homomorphic based Proof
We consider a message space M, a proof space P, a private key space Kpr and a public
key space Kpub. A set homomorphic based proof scheme is defined as follows. There exist
two operations such as: ⊙ : P × P → P and ⊚ : Kpub × Kpub → Kpub, that satisfy the
homomorphism and the correctness properties, for a set operation • for any messages Bi

and Bj in 2M.

• Homomorphism

prf2(Bi •Bj , c) = prf2(Bi, c)⊙ prf2(Bj , c) (7.1)

134

7.4. SHoPS: A New Set Homomorphic PDP Scheme

• Correctness
vrf(prf(Bi •Bj , c), pk, p̂k) =

vrf(prf(Bi, c), pk, p̂k) ∧ vrf(prf(Bj , c), pk, p̂k) (7.2)

We define SHoPS = {gen, stp, clg, prf, vrf, agg}, where the algorithm agg : P ×P →
P returns an aggregate proof. it is represented as follows:

agg(prf2(Bi, c); prf2(Bj , c)) = prf2(Bi, c)⊙ prf2(Bj , c) (7.3)

7.3.2 Complexity Assumptions

In this subsection, we present the complexity assumptions for the design of SHoPS,
namely the Computational Diffie Hellman Assumption (CDH), introduced in Section 2.4.1,
and the q-Diffie Hellman Exponent Problem (q-DHE), as follows:

Definition 7.3.2 q-Diffie Hellman Exponent Problem (q-DHE)
Let G be a group of a prime order p, and g is a generator of G. The q-DHE problem
is, given a tuple of elements (g, g1, · · · , gq, gq+2, · · · , g2q), such that gi = gα

i
, where i ∈

{1, · · · , q, q + 2, · · · , 2q} and α
R←− Zp, there is no efficient probabilistic algorithm AqDHE

that can compute the missing group element gq+1 = gα
q+1

.

Let G1 and G2 be two cyclic multiplicative groups of the same prime order p. An
admissible symmetric pairing function ê from G1 × G1 in G2 has to be bilinear, non
degenerate and efficiently computable (i.e; Section 2.4.1). In the following, we denote
by ⋆ two elements multiplication belonging to a multiplicative group.

7.4 SHoPS: A New Set Homomorphic PDP Scheme

In this section, we propose SHoPS a novel set-homomorphic PDP scheme for cloud
storage applications. SHoPS is based on techniques closely related to the well-known Ped-
erson commitment scheme [Ped92]. That is, we extend the Pederson scheme to obtain a
kind of a generalized commitment, in a subblock-index manner, providing fault-tolerance
stateless verification. As such, for each verification session, the verifier generates a new
pseudo random value and new index challenge position of the considered data file block,
thus making messages personalized for each session. Relying on challenge-response pro-
tocols, we propose two verification processes. The first scheme restricts the verification
to the data owner using only his private key. The second applies when the verification is
performed using public credentials. This is inspired by the Boneh-Gentry-Waters (BGW)
broadcast encryption system [BGW05]. The public key consists on a sequence of group
elements (g, g1, · · · , gq, gq+2, · · · , g2q), where gi = gα

i
, defined upon the bilinear Diffie-

Hellman exponent assumption. We provide mathematical proofs of the correctness (i.e.,
the PDP scheme returns a positive feedback if, and only if the file exists on the server and
has not been altered) and the homomorphism properties of the proposed schemes.

135

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

7.4.1 Single Data Block SHoPS

The single data block proof is a PDP scheme restricted to a single block. The proofs
correspond to all subblocks of a data block. This scheme consists in two phases. During the
first phase, the gen and stp procedures are executed. Recall that this phase is performed
only when the file is uploaded on the cloud. The second phase occurs when the client
wants to verify the authenticity of the file. To this purpose, it generates a new challenge
c in order to obtain a proof of data possession from the cloud server. This latter runs the
challenge algorithm which is a three way procedure. In the following, we provide a detailed
description of the steps, introduced in Section 7.3, that are conducted in each of the two
aforementioned phases.

Algorithm 13 gen procedure
1: Input: System security parameter (ξ)
2: Output: Public keys (pk, p̂k), master secret key pr and public parameters param =
{gi}1≤i≤2q;i 6=q+1

3: Choose a multiplicative group G1 of a prime order q, where BitLength (q) > ξ and
DLP is hard in G1;

4: Select g a generator of G1;

5: α
R←− Zp

∗;
6: param = {g}
7: for all j ∈ [1 . . . 2q] do
8: param← param ∪ {gαj};
9: end for

10: Use a deterministic secure pseudo random number generator (SPRNG) with a random

secret seed to generate s
R←− Zp;

11: pr ← s;
12: pk ← gs;
13: p̂k ← gsq+1;

14: return (pk, p̂k, pr, {gi}1≤i≤2q;i 6=q+1)

The stp algorithm is presented by Algorithm 14. That is, each set of subblocks πi,j of
Bi is presented by an accumulator ̟i =

∏q
j=1 g

πi,j

q+1−j
pr

.

Algorithm 14 stp procedure
1: Input: File data block (Bi), the private key pr, and the public parameters param
2: Output: Block identifier IDBi

and the data block accumulator ̟

3: Generate the data block identifier IDBi
;

4: ̟i = 1;
5: for all j ∈ [1 . . . q] do
6: ̟i ← ̟i ∗ gπi,j

q+1−j
pr

;
7: end for
8: return (IDBi

, ̟i)

Phase II consists in a challenge-response protocol conducted between the verifier and

136

7.4. SHoPS: A New Set Homomorphic PDP Scheme

the storage server. The underlying steps are detailed below.

7.4.1.1 clg procedure

The clg procedure is executed by the client and generates a challenge for the cloud
storage server. The client chooses at random a subblock position k ∈ {1, q} and a nonce
η. The challenge c ∈ C consists of a random block index and the public key element p̂k
hidden with a random nonce η as c = (k, p̂k

η
).

7.4.1.2 prf procedure

The prf, executed by the server, has to generate a valid proof of data possession
of a given data block Bi. That is, in his response, the server has to provide a new valid
accumulator using the random η sent by the client. In our construction, the prf is presented
by Algorithm 15. For the sake of consistency, we suppose that the server possesses a version
of the data block file which is potentially altered. Hereafter, this version is denoted by B̂i.
The objective of the following steps is to verify whether B̂i = Bi.

Algorithm 15 prf procedure

1: Input: File data block (Bi), public keys of the data owner (pk, p̂k), the public param-
eters param and the challenge c = (k, p̂k

η
)

2: Output: Proof P = (σ1, σ2)

3: σ1 ← (p̂k
η
)πi,k ;

4: ˆ̟i = 1;
5: for all j ∈ [1 . . . q] do
6: if j 6= k then
7: ˆ̟i ← ˆ̟i ∗ gπi,j

q+1−j+k;
8: end if
9: end for

10: σ2 ← ˆ̟i;
11: return (σ1, σ2)

7.4.1.3 vrf procedure

In this section, we first present the public verification correctness. Then, we introduce
the private verification process, which restricts the verification to the data owner

• Public Single Data Block Verification

An authorized verifier checks the correctness of the server response, based on public pa-
rameters. It is worth noticing that the client does not store any additional information
for the proof verification. That is, the verification procedure makes only use of the public

137

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

param. The verifier checks the following equality, using the random secret η, the challenge
c, and the response P = (σ1, σ2) got from the server, as presented in Equation 7.4.

[ê(gk, ̟i)ê(pk, σ2)
−1]η ê(g, σ1)

−1 = 1 (7.4)

If the equality holds, the verifier has a proof that the data block file Bi exists on the server
and that it has not been altered.

Lemma 7.4.1 Public Single Data Block Verification Correctness The verification
procedure of Equation 7.4 holds if, and only if the data block file B̂i = Bi.

Proof.
Having received (σ1, σ2) from the cloud, the verifier first calculates ê(pk, σ2), using the
public key of the data owner pk. Then, taking into consideration that gk = gα

k
, he

computes ê(gk, ̟i).
Hereafter, based on the random nonce η, the verifier checks that [ê(gk, ̟i)ê(pk, σ2)

−1]η is
equal to ê(g, σ1).

As such, this writes to the following steps.

[ê(gk, ̟i)ê(pk, σ2)
−1]η

= [ê(gα
k
,
∏q

j=1 g
πi,j

q+1−j
s
) ⋆ ê(gs,

∏q
j=1;j 6=k g

πi,j

q+1−j+k)
−1

]η

= [ê(gα
k
, g

q∑

j=1
πi,j∗α

q+1−j
s

) ⋆ ê(gs, g
∑q

j=1;j 6=k
πi,j∗α

q+1−j+k

)
−1

]η

= [ê(gα
k
,g

q∑

j=1
πi,j∗α

q+1−j
s

)

ê(gs,g
∑q

j=1;j 6=k
πi,j∗α

q+1−j+k

)
]η

= [ê(g,g
s∗

q∑

j=1
πi,j∗α

q+1−j+k

)

ê(g,g
s∗

∑q
j=1;j 6=k

πi,j∗α
q+1−j+k

)
]η

= [
ê(g,gq+1

s∗πi,k⋆g

s∗
q∑

j=1,j 6=k
πi,j∗α

q+1−j+k

)

ê(g,g
s∗

∑q
j=1;j 6=k

πi,j∗α
q+1−j+k

)
]η

= [
ê(g,g

s∗
q∑

j=1,j 6=k
πi,j∗α

q+1−j+k

)ê(g,gq+1
s∗πi,k)

ê(g,g
s∗

∑q
j=1;j 6=k

πi,j∗α
q+1−j+k

)
]η

= ê(g, gq+1
s∗πi,k)η

= ê(g, gq+1
s∗η∗πi,k)

= ê(g, σ1)

This proves the correctness of the verification step (i.e., B̂i = Bi). The non-singularity of
the pairing function allows to state that Equation 7.4 is true if, and only if B̂i = Bi. �

• Private Single Data Block Verification

138

7.4. SHoPS: A New Set Homomorphic PDP Scheme

In order to improve the energy efficiency, while reducing the processing complexity at
the client side, we propose a lightweight private verification variant of SHoPS, relying
on the private key of the data owner. For this purpose, we squeeze the proposed check-
ing algorithm, presented in Equation 7.4, in order to support only two pairing functions
computation. As such the private verification of a single data block Bi is as follows.

ê(gk
η, ̟i) ⋆ ê(g, σ1σ2

sη)−1 = 1 (7.5)

Lemma 7.4.2 Private Single Data Block Verification Correctness The verification
procedure of Equation 7.5 holds if, and only if the data block file B̂i = Bi.

Lemma 7.4.3 Private Single Data Block Verification Correctness – The verifi-
cation procedure of Equation 7.5 holds if, and only if the data block file B̂i = Bi.

Proof.
Having received (σ1, σ2) from the cloud server, the data owner first calculates ê(g, σ1σ2sη),
using his secret key pr = s and the random nonce η.
Then, based on the public accumulator ̟i, the client checks that ê(g, σ1σ2

sη) is equal to
ê(gk

η, ̟i) as:

ê(g, σ1σ2
sη) = ê(g, (p̂k

η
)πi,k ⋆ [

q∏

j=1;j 6=k

g
πi,j

q+1−j+k]
sη)

= ê(g, (ˆgq+1
sη)πi,k ⋆ [

q∏

j=1;j 6=k

g
πi,j

q+1−j+k]
sη)

= ê(g, [

q∏

j=1

g
πi,j

q+1−j+k]
sη)

= ê(g, g
sη∗

q∑

j=1
πi,j∗α

q+1−j+k

)

= ê(g, [g
s∗

q∑

j=1
πi,j∗α

q+1−j

]ηα
k

)

= ê(gηα
k

, g
s∗

q∑

j=1
πi,j∗α

q+1−j

)

= ê(gk
η, ̟i) (7.6)

This proves the correctness of the verification step (i.e., B̂i = Bi). The non-singularity of
the pairing function allows to state that Equation 7.5 is true if, and only if B̂i = Bi. �

In this section, we presented the procedures introduced by SHoPS, for a single data
block proof verification. Indeed, according to the standard definition of proof systems,
SHoPS has to fulfill the completeness and soundness of verification [Gol00]. These two
properties are detailed in Section 7.5.2.

139

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

Additionally, We have shown the sequence of operations performed by the storage node,
in order to generate a proof of data possession for a given data file block Bi ∈ 2M, and
the sequence of operations performed by the verifier in order to check the correctness of
the received proof P .
Next, we extend the verification of a single data block, to support several blocks, relying
on set homomorphic properties.

7.4.2 Set-Homomorphic Properties of the proposed Scheme

In this section, we extend the design of the data block elementary checking, in order to
support subsets of data blocks. That is, the verifier requests the cloud for a fault tolerance
and data correctness proofs, while considering a sequence of set-homomorphism properties.
For ease of presentation, we prove the different properties, using two different data blocks
Bi and Bj . Our operations can be extended easily to support multiple data blocks checking.
In the following, we denote by σ1,Bi•Bj

the first proof element of Bi • Bj and by σ2,Bi•Bj

the second proof element, where • is the set operator.

7.4.2.1 Set-Union Operator

In order to prove that our scheme is set-homomorphic with regard to the union op-
erator, we use the received proofs prf(c, Bi) and prf(c, Bj) corresponding to Bi and Bj ,
respectively, to express prf(c, Bi ∪Bj), based on the same challenge c.

Lemma 7.4.4 For every data block Bi and Bj, the union operator is defined as: Bi∪Bj =
Bi +Bj −Bi ∩Bj

To this purpose, we first express ̟Bi∪Bj
, using ̟Bi

and ̟Bj
, as follows.

Lemma 7.4.5 For every data blocks Bi = {πi,1, · · · , πi,q} and Bj = {πj,1, · · · , πj,q}, where
πi,k ∈ 2M and 1 ≤ k ≤ q; and given the accumulators ̟ presented in Algorithm 15:, the
union accumulator is such that,

̟Bi∪Bj
= lcm(̟Bi

, ̟Bj
) (7.7)

Proof.
The computation of ̟Bi∪Bj

, is performed as follows:

̟Bi∪Bj
=

∏

πk,l∈Bi∪Bj ;l∈[1,q];k∈{i,j}

g
πk,l

q+1−l

pr

= lcm(
∏

πi,l∈Bi;l∈[1,q]

g
pr∗πi,l

q+1−l ,
∏

πj,l∈Bj ;l∈[1,q]

g
pr∗πj,l

q+1−l)

= lcm(̟Bi
, ̟Bj

)

To compute the least common multiple of Bi and Bj , we use the relation between gcd
and lcm, as follows.

gcd(̟Bi
, ̟Bj

) ∗ lcm(̟Bi
, ̟Bj

) = ̟Bi
̟Bj

140

7.4. SHoPS: A New Set Homomorphic PDP Scheme

In the sequel, we have:

̟Bi∪Bj
= lcm(̟Bi

, ̟Bj
) =

̟Bi
⋆ ̟Bj

gcd(̟Bi
, ̟Bj

)
(7.8)

For instance, using the Bézout’s lemma, there exist unique integers a and b, such that:

a̟Bi
+ b̟Bj

= gcd(̟Bi
, ̟Bj

) (7.9)

As such, using the Equation 7.8 and Equation 7.9, we find the lcm of the two data
blocks Bi and Bj as follows:

̟Bi∪Bj
= lcm(̟Bi

, ̟Bj
) =

̟Bi
⋆ ̟Bj

a̟Bi
+ b̟Bj

(7.10)

Therefore, we obtain the proof of the lemma 7.4.5. �

We use Lemma 7.4.5 to prove the set homomorphism property of SHoPS, with respect to
the union operator.

Theorem 7.4.6 Set-Homomorphism Property – Union Operator SHoPS considers
the algorithms clg, prf and vrf defined above. Let agg be the algorithm, presented in
Equation 7.1, such that • is the set union operator, as follows.

prf2(Bi •Bj , c) = prf2(Bi, c)⊙ prf2(Bj , c) =

prf2(Bi, c) ⋆ prf2(Bj , c)(a ∗ prf2(Bi, c) + b ∗ prf2(Bj , c))
−1 (7.11)

where a and b satisfy : aprf2(Bi, c) + bprf2(Bj , c) = gcd(prf2(Bi, c), prf2(Bj , c))

Proof.
We prove that SHoPS fulfills the homomorphism and correctness properties.

• Proof of Homomorphism – We know that aprf2(Bi, c) + bprf2(Bj , c) = a ˆ̟Bi
+

b ˆ̟Bj
. Thus, we can write: b ˆ̟−1Bi

+ a ˆ̟−1Bj
= ˆ̟−1Bi∪Bj

.

Consequently, using Equation 7.10, we can write that:

a ˆ̟Bi
+ b ˆ̟Bj

=
(a ˆ̟Bi

+ b ˆ̟Bj
) ⋆ ˆ̟−1Bi

ˆ̟−1Bj

ˆ̟−1Bi
ˆ̟−1Bj

=
a ˆ̟Bi

ˆ̟−1Bi
ˆ̟−1Bj

+ b ˆ̟Bj
ˆ̟−1Bi

ˆ̟−1Bj

ˆ̟−1Bi
ˆ̟−1Bj

=
a ˆ̟−1Bj

+ b ˆ̟−1Bi

ˆ̟−1Bi
ˆ̟−1Bj

= ˆ̟−1Bi∪Bj
⋆ ˆ̟Bi

⋆ ˆ̟Bj

As such, we demonstrate that ˆ̟−1Bi∪Bj
=

a ˆ̟Bi
+b ˆ̟Bj

ˆ̟Bi
⋆ ˆ̟Bj

.

This proves that our framework fulfills the homomorphism property.

141

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

• Proof of Correctness – We show that an authorized challenger may check the
correctness of two different data blocks Bi and Bj , using an aggregate proof prf2(Bi∪
Bj , c), based on a challenge c = (k, p̂k

η
).

We suppose that πi,k 6= πj,k. That is, as presented in Equation 7.2, the correctness
of SHoPs is that vrf(prf(pk,Bi ∪Bj), pk, p̂k) = 1.
We have:

ê(gk, ̟Bi∪Bj
)ê(pk, σ2,Bi∪Bj

)−1 =
ê(gα

k
, ̟Bi∪Bj

)

ê(gpr, ˆ̟Bi∪Bj
)

=
ê(gα

k
,

̟Bi
̟Bj

gcd(̟Bi
,̟Bj

)
)

ê(gs,
ˆ̟Bi

ˆ̟Bj
gcd(ˆ̟Bi

, ˆ̟Bj
)
)

=

ê(g,

∏q
l=1

g
πi,l
q+1−l+k

s∏q
l=1

g
πj,l
q+1−l+k

s

gcd(̟Bi
,̟Bj

)α
k)

ê(g,

∏q
l=1;l 6=k

g
sπi,l
q+1−l+k

∏q
l=1;l 6=k

g
sπj,l
q+1−l+k

gcd(ˆ̟Bi
, ˆ̟Bj

)s
)

=

ê(g,
gq+1

sπi,k ∏q
l=1;l 6=k

g
sπi,l
q+1−l+k

gq+1
sπi,k ∏q

l=1;l 6=k
g
sπj,l
q+1−l+k

gcd(̟Bi
,̟Bj

)α
k)

ê(g,

∏q
l=1;l 6=k

g
sπi,l
q+1−l+k

∏q
l=1;l 6=k

g
sπj,l
q+1−l+k

gcd(ˆ̟Bi
, ˆ̟Bj

)s
)

=

ê(g,
ˆ̟ s
Bi

ˆ̟ s
Bi

gcd(̟Bi
,̟Bj

)α
k)ê(g,gq+1

sπi,kgq+1
sπj,k)

ê(g,
ˆ̟ s
Bi

ˆ̟ s
Bi

gcd(ˆ̟Bi
, ˆ̟Bj

)s
)

= ê(g, gq+1
sπi,kgq+1

sπj,k)

As such, based on the random challenge η, we can write [ê(gk, ̟Bi∪Bj
)ê(pk, σ2,Bi∪Bj

)−1]η

as follows:

= [ê(g, gq+1
sπi,kgq+1

sπj,k)]η

= ê(g, gq+1
sπi,kηgq+1

sπj,kη)

= ê(g, σ1,Bi
⋆ σ1,Bj

)

= ê(g, σ1,Bi∪Bj
)

Therefore, we prove the correctness of SHoPS with respect to the set-union operator
and the compliance to Equation 7.4.

�

The set-homomorphic property proved in Theorem 7.4.6, is useful in practice to generate
an aggregate proof for a set of data blocks, with no need for private keys of the storing
nodes. That is, SHoPS guarantees the privacy of these storing nodes. For sake of efficiency
and granularity, we investigate the case where the cloud gateway generates a proof of a
subset of data blocks.

142

7.4. SHoPS: A New Set Homomorphic PDP Scheme

7.4.2.2 Set-Inclusion Operator

In this section, we prove that SHoPS is homomorphic with respect to the set-inclusion
operator.

Theorem 7.4.7 Set-Homomorphism Property – Subset Operator SHoPS consid-
ers the algorithms clg, prf and vrf defined above. Let agg be the algorithm, presented in
Equation 7.1, such that • is the set inclusion operator, as follows.

prf2(Bi •Bj , c) = prf2(Bi, c)⊙ prf2(Bj , c) =

prf2(Bj , c) ⋆ prf2(Bi, c)
−1 (7.12)

where Bi and Bj are two data blocks of ∈ 2M, and Bi ⊂ Bj.

We prove the homomorphism and the correctness of SHoPS with respect to the set inclusion
operator.

Proof.
Let Bi and Bj be two data blocks, where Bi ⊂ Bj , and k is the index challenge sent by
the verifier.

• Proof of Homomorphism – We have prf2(Bj , c) = ˆ̟Bj
. This can write, where

l 6= k:

ˆ̟Bj
=

∏

πj,l∈Bj ,l∈[1,q]

g
sπj,l

q+1−l+k

=
∏

πj,l∈Bj\Bi,l∈[1,q]

g
sπj,l

q+1−l+k

∏

πi,l∈Bi,l∈[1,q]

g
sπi,l

q+1−l+k

As such, we show that
∏

πj,l∈Bj\Bi,l∈[1,q];l 6=k g
sπj,l

q+1−l+k

=
∏

πj,l∈Bj ,l∈[1,q];l 6=k

g
sπj,l

q+1−l+k ⋆
∏

πi,l∈Bi,l∈[1,q];l 6=k

g
−sπi,l

l−q−1−k (7.13)

Using Equation 7.13, we demonstrate that SHoPS is homomorphic with respect to
the set-inclusion operator:

prf2(Bj \Bi, c) =
∏

πj,l∈Bj\Bi,l∈[1,q];l 6=k

g
πj,l

q+1−l+k

= ˆ̟Bj
⋆ ˆ̟−1Bi

= prf2(Bj , c) ⋆ prf2(Bi, c)
−1

143

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

• Proof of Correctness – The correctness of SHoPS is that vrf(pk, p̂k, prf2(Bj \
Bi, c)) = 1, where Bi ⊂ Bj .

[
ê(gk, ̟Bj\Bi

)

ê(pk, σ2,Bj\Bi
)
]η = [

ê(gα
k
, ̟−1Bi

⋆ ̟Bj
)

ê(gpr, ˆ̟−1Bi
⋆ ˆ̟Bj

)
]η

= [
ê(g, σ1,Bi

η−1
σ1,Bj

η−1
ˆ̟−sBi

⋆ ˆ̟ s
Bj
)

ê(g, ˆ̟−sBi
⋆ ˆ̟ s

Bj
)

]η

= [
ê(g, σ1,Bi

η−1
σ1,Bj

η−1
)ê(g, ˆ̟−sBi

⋆ ˆ̟ s
Bj
)

ê(g, ˆ̟−sBi
⋆ ˆ̟ s

Bj
)

]η

= ê(g, σ1,Bi

η−1
σ1,Bj

η−1
)η

= ê(g, σ1,Bj\Bi
)

Therefore, we obtain the proof of correctness of Theorem 7.4.7. �

While expanding the subset feature to support multiple data blocks, the homomorphism
property with respect to the set-inclusion operator becomes interesting. That is, it allows
a verifier to check the correctness of a directory, while excluding a big file.

7.4.2.3 Set-Intersection Operator

We have proved that SHoPS allows the generation of aggregate proofs with respect
to the subset and the union operators. That is, we extend our discussion, using the
relations between these two set operators. For instance, based on Theorem 7.4.6 and
Theorem 7.4.7, we demonstrate that our scheme is set-homomorphic with respect to the
intersection operator.

Lemma 7.4.8 For every data blocks Bi = {πi,1, · · · , πi,q} and Bj = {πj,1, · · · , πj,q}, where
πi,k ∈ 2M and 1 ≤ k ≤ q, the intersection operation may be expressed in terms of the union
and the set difference operators as follows.

Bi ∩Bj = (((Bi ∪Bj) \ (Bi \Bj)) \ (Bj \Bi)) (7.14)

This corollary is specifically interesting, when applied at the CSP-storing nodes interface.
Thus, the CSP checks the correctness of sets of data blocks, on the storing nodes, in order
to mitigate to byzantine failures and unintentionally drive-crashes.

7.4.3 Energy efficiency

The design of SHoPs is motivated by the improvement of the energy-efficiency concern,
while providing aggregate fault-tolerance verifications. As such, we show that the verifica-
tion complexity of two separate block-proofs is more costly than the aggregate processing
overhead of ⊙.

144

7.5. Security Discussion

In order to evaluate the energy efficiency, we compare SHoPS with respect to the
union operator. That is, we show that SHoPS supports lightweight mechanisms allowing
resource constrained devices to dynamic challenging contexts. To this purpose, we denote
by M the cost of a multiplication of two elements in a multiplicative group Gq, by E the
exponentiation of an element of a multiplicative group by a scalar belonging to Z

∗, by A
the addition of two multiplicative elements and by m the multiplication of a multiplicative
elements by a scalar. We suppose that a classical cloud gate (CC) computes a new proof
for the aggregated data blocks. If two data blocks Bi and Bj are stored on two different
storing nodes Ni and Nj , the cloud gateway has to retrieve Bi and Bj . Then, he has to
perform the aggregated proof of these blocks, before sending the response to the verifier.
For instance, the computation complexity of the union of two sets is about O(q2) [NF07].
On the other side, SHoPS requires the computation of the integers a and b satisfying
a̟i + b̟j = gcd(̟i, ̟j). For this purpose, SHoPS executes the Euclidean algorithm
involving δlog(q) operations. Table 7.1, presents a comparison between the different costs
of aggregated proofs with respect to SHoPS and a classical CSP (CC), where i presents
the number of storing nodes.

Table 7.1 - Comparison between SHoPS and a classical Cloud Service
Provider (CC)

Classical CSP (CC) SHoPS
Gate Storing Nodes Ni

O(q2)+ i(M +A+m)−
q(E +M)−M A+M + δlog(q) q(E +M)−M

Table 7.1 shows that SHoPS reduces the communication overhead and the computation
complexity at the cloud gate side. For instance, the processing overhead is distributed over
multiple storing nodes. As such, Lemma 7.4.9 evaluates the processing overhead at the
cloud gate of SHoPS compared to a classical CSP, to generate an aggregated proof of two
data blocks, by using SHoPS.

Lemma 7.4.9 Let Bi and Bj two data blocks. The computation complexity difference
between a classical CSP (CC) and SHoPS is as follows.

PCC − PSHoPS = q(E +M)− 4M − 2m−A+O(q2) (7.15)

Similarly, we show that the processing overhead at the verifier side is also optimized
while checking an aggregated proof.

7.5 Security Discussion

In this section, we present a security analysis of SHoPS, based on two different threat
models.

145

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

7.5.1 Threat Model

Two threat models have been considered. We first considered the case of a cheap and
lazy cloud service provider. As such, the storage server wants to reduce its resources
consumption. That is, it stores fewer redundant data. In addition, this lazy server claims
doing the requested computations to provide responses to the challenger. Second, we
pointed out the case of a malicious verifier that intends to get extra-information about the
outsourced data of the data owner.

SHoPS must provide the capabilities to the verifier and the service provider to thwart
the two threats mentioned above. We prove the security of SHoPS, assuming that the q-
Diffie Hellman Exponent Problem (q-DHE) and the Computational Diffie Hellman (CDH)
are hard in G2.

7.5.2 SHoPS Resistance to Cheap and Lazy Server Adversary

In order to save computation resources, the lazy cloud provider attempts to provide
valid proofs without processing the outsourced data. SHoPS should be secure against
Forgery and Replay attacks, defined as follows:

• Forgery Attack – the cloud server attempts to forge a valid accumulator on any block
to deceive a verifier.

• Replay Attack – the server may use some previous proofs and other public information
to generate a valid proof without accessing the challenged data.

To capture the malicious behaviour of the prover, we describe the security of SHoPS,
using a security game, referred to as SS-Game. This game is an interactive algorithm
between a lazy storage server adversary and an honest verifier. The adversary attempts
to construct a valid proof without processing the original data block. That is, we define
an adversary A which can query the data owner for getting data bock public parameters.
We also define a challenger C which is responsible for simulating the system procedures to
interact with the adversary. SS-Game includes two different phases, Phase I and Phase II,
which are independently executed. We must note that, in Phase I, the challenger always
presents the data owner. In Phase II, the challenger may be the data owner in a private
verification scenario or an authorized verifier in a public verification scenario.

SS-Game is formally defined as follows:

• Phase I – the challenger C runs the first phase algorithms and gives the public
parameters to the adversary A:

– Setup – the challenger C runs the first phase algorithms, in order to get the public
elements {pk, p̂k, {gi}1≤i≤2q;i 6=q+1, (IDBi

, ̟i)i∈{1,n}} and his master private key
pr.

– Query – the adversary A gets from the challenger the public parameters.

146

7.5. Security Discussion

• Phase II – the challenger C interacts with the adversary A, to execute an interactive
proof system:

– Challenge – the challenger C requests the adversary to provide a valid proof of
the requested data block, determined by a random challenge cg.

– ForgeProof – without processing on the original data file, the adversary A tries
to compute a valid proof (σ∗1, σ

∗
2), the challenge cg, and the public credentials

params = {gi}1≤i≤2q;i 6=q+1.

The adversary A wins SS-Game, if the vrf procedure returns accept.

Definition 7.5.1 SHoPS = {gen, stp, clg, prf, vrf, agg} guarantees the integrity of out-
sourced data blocks, if for any probabilistic polynomial adversary A, the probability that A
wins SS-Game on a set of data blocks is negligibly close to the probability that the challenger
C can extract those data blocks, based on a knowledge extractor Ψ.

Proof.
Concretely, the challenger C interacts with the adversary A following the security game.
The adversary A attempts to provide a valid proof (σ∗1, σ

∗
2), without accessing data. The

generated proof (σ∗1, σ
∗
2) has to successfully verify Equation 7.4 in a public verification

scenario, and Equation 7.5 in a private verification scenario.
Following a Forge Attack based on SS-Game, A tries to use only the public parameters,
the accumulator ̟i of the requested data block Bi and the received challenge cg. Thus,
we have two cases, such that: (1) A sets σ∗1 and attempts to deduce a valid σ∗2 and (2) A
sets σ∗2 and tries to derive a valid σ∗1.

For the public data block verification, the challenger C is based on Equation 7.4 to check
the correctness of the received proof. The adversary A chooses to replace σ∗2 by the public
accumulator ̟i of the requested data block Bi. While considering that the correctness
of verification requires the equality between [ê(gk, ̟i)ê(pk, σ2)

−1]η and ê(g, σ1), the first
side of Equation 7.4 becomes equal to [ê(gk, ̟i)ê(pk, σ

∗
2)
−1]η. As such, the adversary has

to compute the appropriate σ∗1, to be able to mislead the challenger, without accessing
outsourced data.

In fact, based on σ∗2, the first side of the verification equation is as follows:

[ê(gk, ̟i)ê(pk, σ
∗
2)
−1]η = [ê(gk, ̟i)ê(pk,̟i)

−1]η

= [ê(gα
k

, ̟i)ê(g
−s, ̟i)]

η

= ê(gα
k

g−s, ̟i)
η

= ê(g(α
k−s)η, ̟i)

= ê(g,̟i
(αk−s)η) (7.16)

From Equation 7.16 and Equation 7.4, we state that the adversary has to generate σ∗1
as ̟i

(αk−s)η, in order to get a valid proof. Knowing pr = gs, gk, p̂k
η

and ̟i, the adversary
A has to break the CDH or the q-DHE problems, in order to derive a persuasive response.

147

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

This is obviously in contradiction with our security assumptions. Similarly, we prove the
resistance of SHoPS to a fraudulent prover, in a private data block verification scenario,
while considering a data owner challenger.

After leading several valid proof interactions with a legitimate and honest verifier, the
adversary A may attempts a Replay Attack. Thus, the adversary locally kept a set of chal-
lenges and the related proof responses as {{c(1), (σ1, σ2)(1)}, {c(2), (σ1, σ2)(2)}, · · · , {c(n), (σ1, σ2)(n)}}.
Then, based on SS-Game, A tries to deduce a valid proof, while relying on previous ses-
sions’ proofs.

For a public verification scenario, we suppose that the challenger C generates a new
challenge cg = (kg, p̂k

ηg
), where kg is a previously requested index and p̂k

ηg
is a new

generated element, due to the usage of a random nonce ηg, derived by a pseudo random
generator. In this setting, the adversary A may deduce a valid σ2

∗ = ˆ̟i, since the
computation of ˆ̟i depends only on the requested index k. However, A has to provide a
correct σ1

∗ to deceive the challenger. A valid σ1
∗ is equal to (p̂k

η
)πi,k . It is clear that the

adversary cannot extract a correct σ1∗, while only relying on previous interactions without
accessing to data, thanks to the usage of the CDH assumption.
In addition, if we suppose, by inconsistency, that the adversary A chooses to perform a
Replay Attack, while accessing to data, to provide a correct σ1

∗. This setting requires,
for the attacker A, to store q group elements per data block and, nevertheless, to access
data in order to retrieve the related πi,kg . In the sequel, the Replay Attack does not cost
effective and beneficial to the provider, because it still require the access to correct data
block and adds an important storage overhead.

Additionally, in order to prove SHoPS resistance to a fraudulent server prover, we
assume that there is a knowledge extractor algorithm Ψ [Gol00], which gets the public
parameters as input, and then attempts to break the CDH assumption in G2. The Ψ
algorithm interacts as follows:
Learning 1– the first learning only relies on the data owner public key pk = gpr as input.
Ψ tries to get knowledge of the client secret key pr. That is, the extractor algorithm Ψ
picks at random ri ∈R [0, R[, where i ∈ Zp and computes gri . For each ri, Ψ checks
whether the comparison holds between pk and gri . Based on our assumption, Ψ cannot
extract the secret key of the client with noticeable probability.
Learning 2– the input of the second learning is the tuple (pk, p̂k, g). The algorithm
attempts to extract the secret key pr = s by performing following steps:

1. ê(pk, p̂k) = ê(gs, gq+1
s) = gq+1

s2

2. ê(g, pk) = ê(g, gs) = gs

3. ê(g, gq+1
s) = gq+1

s

This learning cannot hold, because of the DDH assumption. In [Bon98], Boneh demon-
strates that the DDH assumption is far stronger than the CDH. �

In the following, we denote by S the set of the correct inputs of the vrf procedures.
These inputs are needed to provide a valid proof. As introduced in Section 7.4.1.3, SHoPS
has to fulfill two security requirements: completeness and soundness of verification.

148

7.5. Security Discussion

• Soundness of Verification – the soundness means that for every input x /∈ S and
every potential prover A, the challenger C rejects with probability at least 1

2 after
interacting with A, on common input x.

∀x /∈ S, ∀A, P r[(C ⇔ A)(x)accepts] ≤ 1

2
(7.17)

As such, the soundness implies that it is infeasible to confound the verifier to accept
false proofs (σ∗1, σ

∗
2). That is, even if a collusion is attempted, the attacker A cannot

prove the integrity of outsourced data. The soundness of SHoPS is relatively close
to the security game SS-Game.

• Completeness of Verification – the completeness means that for every x ∈ S,
a legitimate verifier V always accepts after interacting with a honest prover V , on
common input x.

∀x ∈ S, Pr[(V ⇔ P)(x)accepts] = 1 (7.18)

Hence, the completeness meets the correctness of verification (Equation 7.4 and Equa-
tion 7.5), while considering the non singularity of the pairing functions.

For the public data block verification, the completeness property implies the public
verifiability property, which allows any entity, not just the client (data owner), to
challenge the cloud server for data possession or data integrity without the need for
any secret information. That is, public verification elements, needed in the verifi-
cation process are publicly known. Thereby, any authorized user may challenge the
server storage and efficiently verifies the proof of data possession. Hence, SHoPS is
a public verifiable protocol.

Lemma 7.5.2 Completeness of Public Verification – Given the tuple of pub-
lic elements (pk, p̂k, σ1, σ2, params) and Bi = B̂i, the completeness of verification
condition implies that Equation 7.4 holds in G2.

For the private data block verification, the completeness requirement is presented by
Lemma 7.5.3 as follows:

Lemma 7.5.3 Completeness of Private Verification – Given the tuple of public
elements (pk, p̂k, pr, σ1, σ2, params) and Bi = B̂i, the completeness of verification
condition implies that Equation 7.5 holds in G2.

In addition, in order to mitigate a cheap and lazy cloud service provider, we extend
SHoPS to support a time-based function [BVDJ+11]. That is, we suppose that the cloud
server claims storing n redundant copies of the same data block, while enforcing less redun-
dancy than promised, or using fewer storing nodes than needed. For instance, the verifier
has to send n simultaneous challenges to the cloud gate. Thus, based on the time taken
for responding, the verifier may detect a malicious behavior of the cloud. That is, if the
cloud takes t seconds to respond a challenge of one data block proof possession, he must
take only t + θ, where θ presents the bandwidth latency due to the transmission of the
different n data block proofs.

149

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

7.5.3 SHoPS Resistance to Malicious Verifier Adversary

In the following analysis, we discuss the resistance of SHoPS to malicious verifier ad-
versary, when only considering the vulnerabilities over the data file. As such, we suppose
the existence of a public verifier adversary A. He attempts to gain knowledge about the
outsourced data, based on the public elements of the data owner and multiple interactions
with the legitimate storage server. The adversary keeps a list of previous queries, including
challenges, the proof verification queries, and the responses to those queries.
We suppose that the adversary A is not considered to perform preservation of computa-
tion resources by reusing the same random challenge η from one possession proof session
to another. The verifier is assumed to renew the random scalar η to calculate the challenge
p̂k

η
for each session.

We suppose that the goal of the fraudulent verifier is to obtain information about the out-
sourced data file. That is, the attacker may request the same position index challenge k.
As such, using two different sessions ((α), (β)), the attacker computes Equation7.19 and
Equation 7.20 as follows:

σ1
(α) ⋆ σ1

(β) = p̂k
πi,kη(α)

⋆ p̂k
πi,kη(β)

= p̂k
πi,k(η(α)+η(β)) (7.19)

σ1
(α) ⋆ σ1

(β)−1 = p̂k
πi,kη(α)

⋆ p̂k
−πi,kη(β)

= p̂k
πi,k(η(α)−η(β)) (7.20)

Knowing the challenge k, the attacker cannot reconstruct pieces of the file data, based on
the CDH assumption. The prover sends only the pair (σ1, σ2) to the verifier. Hence, it is
likely impossible to extract information {πi,j}j∈[1,q] from the server response. Thus, the
randomness property is also necessary for the non triviality of the proof.

7.6 Experimental Study

In this section, we first present the context of the implementation of our proposed
scheme. Then, we discuss the computation performances. In an effort to evaluate the
performances of SHoPS, we implement several cryptographic operations at the client side.
Our tests are conducted in order to understand the execution cost of SHoPS on real hard-
ware. That is, on one hand, we evaluated some mathematical operations durations, such
as exponentiation and multiplication in a multiplicative group G. On the other hand,
we study the processing cost of our randomized single data block procedures, relying on
different security levels.

As presented in Section 7.3, our single data block proof is made up 5 randomized
algorithms: gen, stp, clg, prf and vrf. Among these algorithms, gen and stp are per-
formed by the data owner. To generate the public parameters, the client performs 2q + 1
exponentiations in G. In the stp procedure, this latter executes q exponentiations and
multiplications in order to generate the accumulator ̟, which remains linearly dependent
on the data size. Note that, this gen and stp algorithms are one-time cost for the data
owner and can be performed apart the other procedures.

150

7.6. Experimental Study

Figure 7.1 - Computation cost of the gen procedure (s)

Figure 7.2 - Computation cost of the stp procedure (s)

Figure 7.1 and Figure 7.2 present the computation cost at the client side. Both pro-
cedures increase while increasing the security level parameter. Indeed, for a security level
set to 80, the gen algorithm takes only 2.89 seconds to generate all the public elements
and the private key of the data owner. This overhead remains interesting especially for
resource-constrained devices. In addition, we study the behavior of the stp procedure,
while increasing the size of each data block. We deduce from Figure 7.2 that it is impor-
tant to take into consideration the size of data blocks, as the computation cost increases
with respect to the size of data blocks. As an example, we recommend using 100 bits
data block length, for 80 security level. That is, the stp algorithm generates the public
accumulator, in only 2.52 seconds.

For each proof generation, the server computes the related accumulator of the related
data block with respect to the position index k, and performs q exponentiations and mul-
tiplications in order to generate the couple (σ1, σ2). Upon receiving the server proof, the
verifier conducts 3 pairing computations.

151

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

As the number of operations in a multiplicative group is important criterion to evaluate
the system performance, Table 7.2 summarizes the computation costs of some mathemat-
ical operations in a multiplicative group.

Table 7.2 - Mathematical operations costs in a multiplicative group Gq

(in ms)
Security Level 80 112 128

Exponentiation 0.624 2.389 5.022

Multiplication 5.18 21.187 66.813

Figure 7.3 depicts the computation cost of the different interactive procedures of
SHoPS: clg, prf and vrf. That is, clg and vrf algorithms are executed at the client
side, while the prf procedure is performed at the server side. For our tests, we used an
Intel core 2 duo, to evaluate the three procedures, for a security parameter set to 80.

Figure 7.3 - Computation cost of {clg, prf and vrf} procedures (s)

It is worth noticing that prf is the slowest procedure, compared to the two other
algorithms. That is, this algorithm performs q exponentiations and multiplications in a
multiplicative group, for each proof generation. By definition, the cloud server is assumed
to have a lot of processing capabilities and storage capacities. Thus, the proof generation
will have no considerable effect on its natural function. Additionally, we notice, from
Figure 7.3, that the computation complexity, at the client side is around one second for a
proof verification, for 100 bits data block length.

7.7 Theoretical Performance Analysis

In this section, we present a theoretical performance analysis, while taking into consid-
eration computation, communication and storage costs.

152

7.7. Theoretical Performance Analysis

7.7.1 Computation Cost Evaluation

To evaluate the objectives given in Section 5.3, we compare, in Table 7.3, SHoPS with
some existing techniques. On the basis of the requirements of a data possession proof
system, we choose four different PDP schemes ([ABC+07,DVW09,SW08,EKPT09]), that
are most closely-related to our context.

Table 7.3 - Complexity comparison between different PDP techniques
(n is the number of data blocks)

Metrics [ABC+07] [DVW09] [SW08] [EKPT09] SHoPS
Nb. of chall. fixed ∞ ∞ ∞ ∞
Public verif Yes No Yes No Yes
CSP cmp. cost O(1) O(n) O(n) O(logn) O(logn)
User cmp. cost O(1) O(n) O(n) O(logn) O(logn)
Band. cost O(1) O(1) O(n) O(n) O(n)
Storage cost O(1) O(1) O(1) O(1) O(1)

Table 7.3 states the computation cost comparison between our scheme and previous
works, at both client and server side.
On the server side, SHoPS distributes the processing overhead over the multiple storing
nodes. The cloud gate computes only i multiplications, where i is the number of the
requested nodes, in an aggregated proof. Therefore, contrary to the other approaches,
SHoPS achieves a O(logn) server computation complexity.
On the verifier side, we brought additional computation cost, in order to perform a public
verifiability. That is, the public verification procedure can also be performed by authorized
challengers without the participation of the data owner. As such, this concern can be
handled in practical scenarios, compared to private schemes ([DVW09,EKPT09]) which
have to centralize all verification tasks to the data owner. In our scheme, the authorized
verifier has to generate two random scalars c ∈]0, R[and k ∈ [1, q], in order to conduct
his challenge request. Then, he checks the received proof from the cloud server, while
performing three pairing computations, regardless the number of data blocks. Thus, the
public verifiability introduces a O(nlogn) processing cost at the verifier side.

7.7.2 Bandwidth Cost Evaluation

In our proposed scheme, the bandwidth cost comes from the generated challenge mes-
sage clg algorithm and the proof response in each verification request. On one hand,
the exchanging challenge algorithm consists in transmitting one random position index k,
where k ∈R Zq and one element p̂k

η
. For a recommended security, we consider a security

parameter λ = 80 bits, thus, the total cost of the challenge message is the double size of a
group element of a multiplicative G.

On the other hand, the proof response consists only in two elements (σ1, σ2) ∈ G
2.

Therefore, the total bandwidth cost becomes constant and the bandwidth complexity of

153

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

our scheme is O(1).
As shown in Table 7.3, [DVW09] and [SW08] present O(n) bandwidth complexity,

where n is the number of encoded data blocks. As a consequence, the bandwidth cost of
these algorithms is linear to n. Considering the number of permitted challenges, [ABC+07]
suffers from the problem of pre-fixed number of challenges, which is considered as an
important requirement to the design of our construction. Nevertheless, their scheme
presents a constant bandwidth cost, just like our proposed protocol. Based on a private
proof, [EKPT09] also performs a low bandwidth cost. However, this algorithm supports
only private verification. Therefore, along with a public verification, our proposed scheme,
allows each verifier to indefinitely challenge the server storage with a constant bandwidth
cost.

7.7.3 Storage Cost Evaluation

On the client side, SHoPS only requires the data owner to keep secret his private key
sk. The public elements of a data file consist in the different accumulators of each data
block ̟i{i ∈ [1, n]}, where n is the number of data blocks. Thus, the storage size of each
client is |sk|. We must note that |sk| is the size of the secret key of a SHoPS client, which
is dependent on the security parameter λ. This storage overhead remains acceptable and
attractive for resource constrained devices, mainly as it not dependent on the number of
data blocks and the size of data.

7.8 Conclusion

In this chapter, we presented SHoPS, a Set-Homomorphic Proof of Data Possession
scheme, supporting the 3 levels of data verification. SHoPS enables a verifier not only to
obtain a proof of possession from the remote server, but also to verify that a given data
file is distributed across multiple storage devices to achieve a certain desired level of fault
tolerance. Indeed, we presented the set homomorphism property, which extends malleabil-
ity to set operations properties, such as union, intersection and inclusion.

Additionally, our proposal is deliberately designed to support public verifiability and
constant communication and storage cost. That is, SHoPS allows an implementation of
remote data checking at the three networking interfaces, namely, the client-CSP inter-
face, the CSP-storing nodes interface and between two CSPs interface. This ensures the
flexibility of SHoPS application and enables fulfilling each verifier request.

Besides, SHoPS has be proven resistant to data leakage attacks, while considering either
a fraudulent prover or a cheating verifier, on the basis of a Data Possession game.
SHoPS presents high security level and low processing complexity. For instance, SHoPS
saves energy within the CSP by distributing the computation over the multiple nodes.
In fact, each node provides proofs of local data block sets. This is to make applicable, a
resulting proof over sets of data blocks, satisfying several needs, such as, proofs aggregation.

154

7.8. Conclusion

Finally, an experimental study shows the feasibility of our proposal and gives support to
theoretical performance measurements. That is, SHoPS provides acceptable computation
overhead, mainly at the server side, while delegating the verification process to several
storing nodes.

155

CHAPT 7. SHOPS: SET HOMOMORPHIC PROOF OF DATA POSSESSION
SCHEME IN CLOUD STORAGE APPLICATIONS

156

Chapter 8

Conclusion &

Perspectives

The open mind never acts: when we
have done our utmost to arrive at a
reasonable conclusion, we still - must
close our minds for the moment with a
snap, and act dogmatically on our
conclusions.

George Bernard Shaw - 1856-1950

I
n conclusion, we summarize how each of the research topics presented in the first
chapter has been pursued, and the contributions which have resulted. Next, we reflect

on how we can improve our contributions and provide new research directions.
Throughout this thesis, our main objective was to propose efficient cryptographic mecha-
nisms, in order to ensure data security in cloud data storage environments. We build upon
the fact that cloud service providers are not totally trusted by their customers.

Objective A consists of defining new methods to improve data confidentiality in cloud
applications, while enhancing dynamic sharing between users. In response to this objective,
we proposed two different approaches, based on the usage of ID-Based Cryptography (IBC)
and the convergent cryptography, respectively.

In chapter 3, we introduced our first contribution based on a specific usage of Identity
Based Cryptography [KBL13], in order to fulfill Objective A. In [KBL13], cloud storage
clients are assigned the IBC–PKG function, where a per data key is derived locally from a
data identifier and the data identity. Thanks to IBC properties, this contribution is shown
to support data privacy and confidentiality, as it employs an original ID-based client side
encryption approach. It is also shown to be resistant to unauthorized access to data and
to any data disclosure during the sharing process, while considering two realistic threat
models, namely an honest but curious server and a malicious user adversary.

157

CHAPT 8. CONCLUSION & PERSPECTIVES

In addition, due to the lightweight ID-based public key computation process and contrary
to the existing classical sharing schemes, [KBL13] does not require for the depositor to be
connected, when the recipients want to retrieve the shared data.
Two possible refinements were proposed. The first approach consists on the distribution
of the PKG role partly to the cloud server and to the client, in order to alleviate the com-
putation complexity at the client side. The second one introduces our second contribution
which details a client-side deduplication scheme for cloud applications [KL14].

Second, we presented, in chapter 4, CloudaSec framework for securely sharing out-
sourced data via the public cloud [KLEB14]. CloudaSec, a public key based solution,
ensures the confidentiality of content in the public cloud environments with flexible ac-
cess control policies for subscribers and efficient revocation mechanisms. For instance,
CloudaSec proposes the separation of subscription-based key management and confidentiality-
oriented asymmetric encryption policies which enables flexible and scalable deployment of
the solution as well as strong security for outsourced data in cloud servers. Our proposed
public key framework applies the convergent encryption concept on data contents. That
is, the data owner uploads encrypted content to the cloud and seamlessly integrates the
deciphering key encrypted into the metadata to ensure data confidentiality. In addition,
CloudaSec integrates a conference key distribution scheme, based on parallel Diffie Hellman
exchanges, in order to guarantee backward and forward secrecy. That is, only authorized
users can access metadata and decipher the decrypting data keys. As such, user revocation
is achieved without updating the private keys of the remaining users.

In order to fulfill Objective C which consists of implementing the proposed techniques
in order to validate their feasibility and impact on real hardware, experimental results have
shown the efficiency of our ID-based solution and CloudaSec, while considering the impact
of the cryptographic operations at the client side. Several experiments, under a simulated
Openstack Swift environment, are conducted to evaluate the computation cost of some well
known ID-based encryption schemes, in response to Objective C. Thus, our ID-based propo-
sition presented an interesting compromise between computation cost and memory storage.

Objective B consists of addressing provable data possession in cloud storage environ-
ments for data integrity verification support. Considering three design requirements: secu-
rity level, public verifiability and performances, and the limited storage capacities of user
devices, we proposed two public verification schemes, as described below.

In chapter 6, we presented our third contribution [KEML14], proposing a new zero-
knowledge Proof of Data Possession protocol that provides deterministic integrity verifica-
tion guarantees, relying on the uniqueness of the Euclidean Division. These guarantees are
considered as interesting, compared to several proposed schemes, presenting probabilistic
approaches. Our proposal benefits from the elliptic curve variant of the GPS scheme ad-
vantages, namely high security level and low processing complexity. Hence, we extended
the GPS scheme to the verification of the authenticity of files stored on untrusted servers.
That is, the proposed solution can be performed on any connected terminal. In addition,
in response to Objective C, our proposal is deliberately designed to support public verifi-
ability and constant communication and storage cost. Thus, we implemented a proof of
concept based on the Openstack swift service to demonstrate the feasibility of our proposal

158

and give support to our previous theoretical performance measurements.

In chapter 7, we introduced SHoPS, a Set-Homomorphic Proof of Data Possession
scheme, supporting the 3 levels of data verification, in response to Objective B. SHoPS al-
lows an implementation of remote data checking at the three networking interfaces, namely,
the client-CSP interface, the CSP-storing nodes interface and between two CSPs interface.
This ensures the flexibility of SHoPS application and enables fulfilling each verifier request.
SHoPS enables a verifier not only to obtain a proof of possession from the remote server,
but also to verify that a given data file is distributed across multiple storage devices to
achieve a certain desired level of fault tolerance. Indeed, we presented the set homomor-
phism property, which extends malleability to set operations properties, such as union,
intersection and inclusion. Thus, SHoPS has been shown as a promising solution, provid-
ing an interesting compromise between computation cost and energy efficiency. SHoPS
saves energy within the CSP by distributing the computation over the multiple nodes. In
fact, each node provides proofs of local data block sets. This is to make applicable, a re-
sulting proof over sets of data blocks, satisfying several needs, such as, proofs aggregation.
Thus, in response to Objective C, SHoPS has proven to provide acceptable computation
overhead, mainly at the server side, while delegating the verification process to several
storing nodes.

Objective D consists of providing mathematical proofs of soundness and correctness of
the proposed mechanisms. In order to fulfill this fourth objective, we evaluated the correct-
ness of each proposed mechanism, throughout this dissertation. First, we demonstrated
the correctness of CloudaSec key decryption procedures, for one to one and one to many
sharing scenarios. Second, we showed the correctness of public and private verification of
our zero-knowledge schemes, and SHoPS.
In addition, based on a data possession game, our zero knowledge PDP scheme, as well as
SHoPS, are shown to resist to data leakage attacks, while considering either a fraudulent
prover or a cheating verifier. Proofs are presented, relying on multiple interactions between
a cloud service provider and a public verifier. The soundness and completeness of the pro-
posed methods are evaluated, upon the hardness of several computational algorithms, and
have shown that it is likely impossible to deduce the extra-information from the outsourced
data file.

Perspectives

Regarding the performance and the security of the proposed schemes in order to ensure
data confidentiality and data integrity, several security issues are still being analyzed, under
untrusted cloud providers assumption. This security issues may also support an economic
security model, where cloud providers try to minimize their costs and neglect implementing
the needed security mechanisms. Therefore, it would be important to motivate commercial
providers to properly protect client data. As such, future perspectives of interest include:

• investigate the ID based solution adaptability for asymmetric key encryption pro-
cedures, defined by the CloudaSec Framework. That is, our ID-based contribution
ensures secrecy of outsourced data and a controlled access to data, relying on per-

159

CHAPT 8. CONCLUSION & PERSPECTIVES

sonalized keys. However, it presents a heavy data encryption cost. As such, it may
be a good alternative to restrict ID-based to enciphering of the data deciphering key.

• validation and evaluation of CloudaSec and SHoPS mathematically using provable
security and the random oracle model. That is, it would be interesting to prove our
protocols’ security against specific adversaries, such as chosen plaintext and chosen
ciphertext adversaries. The advantage of provable security is that it gives a mathe-
matical boundary to the probability of performing these kinds of attacks successfully.

• with the prevalence of wireless communication, the mobile devices (i.e; smart phones,
tablets, · · ·) are emerging and start sharing the benefits of on demand cloud data
storage services. Due to their constrained storage and computation capacities, it
would be interesting to study lightweight data security mechanisms. Indeed, our
zero knowledge proof of data possession protocol deserves to be implemented on real
mobile hardware to evaluate the computation overhead. These tests will also serve
to predict the power efficiency of mobile devices, while implementing the proposed
cryptographic functions of our zero-knowledge protocol.

• evaluation of CloudaSec communication cost, while varying the parameters affecting
the bandwidth consumption, such as the locations of end users, and the locations
of storage capacities. As such, we may store data contents in different cloud data
centers. As an example, we store data files in two Amazon S3 data centers: North
California, USA and Paris, France. We use a customized client to continuously
request files, in order to evaluate the impact of cloud users location at CloudaSec
sharing scenarios.

• implementation and performance evaluation of SHoPS in a cloud of clouds environ-
ment. We have shown the effectiveness of SHoPS within the same provider. Con-
sequently, it would be interesting to evaluate its performances, while storing data
contents with other providers. As such, SHoPS would be an interesting alternative
for many providers which prefer storing data on other sites.

• taking into consideration latest data confidentiality disclosure attacks, it is important
to investigate, in depth, authentication mechanisms under a zero knowledge interac-
tive proof framework. That is, zero knowledge proofs join randomness into exchanged
messages. As such, for each authentication session, the cloud server and the client
generate new random values, thus making messages personalized. For instance, the
randomness provided by the storage server’s response ensures preservation of data
privacy.

To conclude, this research has been an opportunity to investigate a wide variety of
concepts, models and technologies in the information and network security fields. Our
objective was to investigate cloud data security concerns, while focusing on data confiden-
tiality and remote data integrity verification challenges. We provided novel cryptographic
approaches in response to the aforementioned issues, and we have shown that our proposed
work is an efficient and encouraging research field.
Finally, we believe that cloud data storage security is still full of challenges and of paramount
importance, and many research problems remain to be identified and investigated.

160

Glossary of Acronyms

ABC Attribute Based Cryptography

ABE Attribute Based Encryption

API Application Programming Interface

AES Advanced Encryption Standard

BDH Bilinear Diffie-Hellman

BGW Boneh-Gentry-Waters

CA Certification Authority

CCA Chosen Ciphertext Attack

CapEx Capital Expenditure

CPA Chosen Plaintext Attack

CDH Computational Diffie Hellman

CDMI Cloud Data Management Interface

CP-ABE Ciphertext Policy Attribute Based Encryption

CSP Cloud Service Provider

DDH Decisional Diffie Hellman

DES Data Encryption Standard

DH Diffie Hellman

DHE Diffie-Hellman Exponent

DHP Diffie Hellman Problem

DLA Data Leakage Attack

DLP Discrete Logarithm Problem

DOS Denial Of Service

DPDP Dynamic Provable Data Possession

EC Elliptic Curve

EC2 Amazon Elastic Compute Cloud

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

161

GLOSSARY OF ACRONYMS

ED Euclidean Division

EHR Electronic Health Record

FHE Fully Homomorphic Encryption

GDPR General Data Protection Regulation

GKD Group Key Distribution

GM Group Manager

GPS Girault, Poupard, and Stern

HIPAA Health Insurance Portability and Accountability Act

HAIL High Availability and Integrity Layer

IaaS Infrastructure as a Service

IBC Identity Based Cryptography

IBC-PE ID-Based Cryptography Public Elements

IBE Identity Based Encryption

IDC International Data Corporation

IND Indistinguishability

IND-CCA IND-Chosen Ciphertext Attack

IND-CPA IND-Chosen Plaintext Attack

IPS Interactive Proof System

IT Information Technology

KEA Key Escrow Attack

KP-ABE Key Policy-Attribute Based Encryption

MAC Message Authentication Code

MD Meta Data

MIM Man In the Middle

MT Merkle-based Tree

NIST National Institute of Standards and Technology

NSA National Security Agency

OpEx Operational Expenditure

OS Operating System

PaaS Platform as a Service

PBC Pairing Based Cryptography

PC Portable Computer

PDP Proof of Data Possession

PKC Private Key Cryptography

PKG Private Key Generator

PKI Public Key Infrastructure

PoR Proof of data Retrievability

PoW Proof of Ownership

PPT Probabilistic Polynomial Time

162

GLOSSARY OF ACRONYMS

PRF Pseudorandom Function

PRISM Planning tool for Resource Integration, Synchronization, and Manage-
ment

PVE Public Verification Elements

PwC PriceWaterhouseCoopers

q-DHE q-Diffie-Hellman Exponent Problem

RAFT Remote Assessment of Fault Tolerance

RBAC Role Based Access Control

RSA Rivest, Shamir and Adelman

S3 Amazon Simple Storage Service

SaaS Software as a Service

SecaaS Security as a Service

SHoPS Set-Homomorphic Proof of Data Possession Scheme

SLA Service Level Agreement

SPRNG Secure Pseudo Random Number Generator

SR-ORAM Single Round Oblivious Random Access Memory

TLS Transport Layer Security protocol

TPA Third Party Auditor

URI Uniform Resource Identifier

VM Virtual Machine

ZKIPS Zero-Knowledge Interactive Proof System

ZKP Zero-Knowledge Proof

163

PUBLICATIONS

164

Publications

• Nesrine Kaaniche, Aymen Boudguiga, Maryline Laurent, ID-Based Cryptography
for Secure Cloud Data Storage, IEEE International Conference on Cloud Computing
(IEEE Cloud 2013), Santa Clara, Juin 2013.

• Nesrine Kaaniche, Ethmane El Moustaine, Maryline Laurent, A Novel Zero-Knowledge
Scheme for Proof of Data Possession in Cloud Storage Applications, 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2014),
Chicago, May 2014.

• Nesrine Kaaniche, Maryline Laurent, A Secure Client Side Deduplication Scheme
in Cloud Storage Environments, 6th International Conference on New Technologies,
Mobility and Security (NTMS 2014), Dubai, UAE, Mars 30 – April 2, 2014.

• Nesrine Kaaniche, Maryline Laurent, Mohammed El Barbori, CloudaSec: A Novel
Public-Key based Framework to handle Data Storage Security in Cloud, 11th Interna-
tional Conference on Security and Cryptography (SECRYPT 2014), Vienna, August
2014, Best Paper Award.

• Nesrine Kaaniche, Maryline Laurent, SHoPS: Set Homomorphic Proof of Data
Possession Scheme in Cloud Storage Applications, {under submission}

165

CHAPT 8. CONCLUSION & PERSPECTIVES

166

Bibliography

[ABC+07] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and
D. Song. Provable data possession at untrusted stores. In Proceedings of the
14th ACM conference on Computer and communications security, CCS ’07,
New York, NY, USA, 2007. ACM.

[ABC+11] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Pe-
terson, and D. Song. Remote data checking using provable data possession.
ACM Trans. Inf. Syst. Secur., 14(1):12:1–12:34, June 2011.

[ADPMT08] G. Ateniese, R. Di Pietro, L.V. Mancini, and G. Tsudik. Scalable and efficient
provable data possession. In Proceedings of the 4th International Conference
on Security and Privacy in Communication Netowrks, SecureComm ’08, New
York, NY, USA, 2008.

[AF12] D. Abts and B. Felderman. A guided tour through data-center networking.
Queue, 10(5):10:10–10:23, May 2012.

[AFGH] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. ACM
Trans. Inf. Syst. Secur., 9:1–30.

[AGJ+08] R. Attebury, J. George, C. Judd, B. Marcum, and N. Montgomery. Google
docs: a review. Against the Grain, 20(2):14–17, 2008.

[AHFG10] A. Aviram, S. Hu, B. Ford, and R. Gummadi. Determinating timing channels
in compute clouds. In Proceedings of the 2010 ACM Workshop on Cloud
Computing Security Workshop, CCSW ’10, pages 103–108, New York, NY,
USA, 2010. ACM.

[Ama] Amazon. Amazon simple storage service (amazon s3).

[BB04] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption
without random oracles, 2004.

[BB06] D. Boneh and X. Boyen. On the impossibility of efficiently combining collision
resistant hash functions. In In Proc. Crypto ’06, pages 570–583, 2006.

167

BIBLIOGRAPHY

[BD05] M. Burmester and Y. Desmedt. A secure and scalable group key exchange
system. Inf. Process. Lett., 94(3), May 2005.

[Ben07] L. Ben. On the implementation of pairing-based cryptosystems, 2007.

[BF01] D. Boneh and m. Franklin. Identity-based encryption from the weil pairing.
In Proceedings of the 21st Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’01, pages 213–229, London, UK, UK,
2001. Springer-Verlag.

[BGDM+10] J.L. Beuchat, J.E. González-Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-
Henríquez, and T. Teruya. High-speed software implementation of the opti-
mal ate pairing over barreto-naehrig curves. In Proceedings of the 4th inter-
national conference on Pairing-based cryptography, Pairing’10, pages 21–39,
Berlin, Heidelberg, 2010. Springer-Verlag.

[BGHS07] P.S. Barreto, S.D. Galbraith, C. Héigeartaigh, and M. Scott. Efficient pairing
computation on supersingular abelian varieties. Des. Codes Cryptography,
42(3), March 2007.

[BGN05] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts.
In Proceedings of the Second international conference on Theory of Cryptog-
raphy, TCC’05, pages 325–341, Berlin, Heidelberg, 2005. Springer-Verlag.

[BGW05] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In Proceedings of the 25th
Annual International Conference on Advances in Cryptology, CRYPTO’05,
pages 258–275, Berlin, Heidelberg, 2005. Springer-Verlag.

[BJO09] K.D. Bowers, A. Juels, and A. Oprea. Hail: A high-availability and integrity
layer for cloud storage. In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, CCS ’09, New York, NY, USA, 2009.

[BLS01] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pair-
ing. In Proceedings of the 7th International Conference on the Theory and
Application of Cryptology and Information Security: Advances in Cryptology,
ASIACRYPT ’01, pages 514–532, London, UK, UK, 2001. Springer-Verlag.

[Bon98] D. Boneh. The decision diffie-hellman problem. In Proceedings of the Third
International Symposium on Algorithmic Number Theory, ANTS-III, pages
48–63, London, UK, UK, 1998. Springer-Verlag.

[BSPN04] F. Bunn, N. Simpson, R. Peglar, and G. Nagle. SNIA Technical Tutorial:
Storage Virtualization. Storage Networking Industry Association (SNIA),
2004.

[BSSC05] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in Ellip-
tic Curve Cryptography (London Mathematical Society Lecture Note Series).
Cambridge University Press, New York, NY, USA, 2005.

168

BIBLIOGRAPHY

[BSW07] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based
encryption. In Proceedings of the 2007 IEEE Symposium on Security and Pri-
vacy, SP ’07, pages 321–334, Washington, DC, USA, 2007. IEEE Computer
Society.

[BVDJ+11] D. Bowers, M. Van Dijk, A. Juels, A. Oprea, and Ronald L. Rivest. How to
tell if your cloud files are vulnerable to drive crashes. In Proceedings of the
18th ACM conference on Computer and communications security, CCS ’11,
New York, NY, USA, 2011.

[CA10] M. Cafaro and G. Aloisio. Grids, Clouds and Virtualization. Springer Pub-
lishing Company, Incorporated, 1st edition, 2010.

[CC09] Melissa Chase and Sherman S.M. Chow. Improving privacy and security in
multi-authority attribute-based encryption. In Proceedings of the 16th ACM
conference on Computer and communications security, CCS ’09, pages 121–
130, New York, NY, USA, 2009. ACM.

[CCMLS06] L. Chen, Z. Cheng, J. Malone-Lee, and N. Smart. Efficient id-kem based on
the sakai-kasahara key construction, 2006.

[CGJ+09] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and
J. Molina. Controlling data in the cloud: outsourcing computation without
outsourcing control. In Proceedings of the 2009 ACM workshop on Cloud
computing security, pages 85–90. ACM, 2009.

[chaa] http://blog.skyhighnetworks.com/only-1-in-100-cloud-providers-meet-
proposed-eu-data-protection-requirements/.

[chab] http://europa.eu/rapid/press-release_memo-14-186_fr.htm.

[chac] https://github.com/openstack/swift.

[chad] https://www.dropbox.com/.

[chae] http://www.keylength.com/en/4/.

[chaf] http://www.salesforce.com/.

[Cha10] D. Chappell. Introducing the Windows azure platform. October, 30(Octo-
ber):2010, 2010.

[CKB08] R. Curtmola, O. Khan, and R. Burns. Robust remote data checking. In
Proceedings of the 4th ACM International Workshop on Storage Security and
Survivability, StorageSS ’08, pages 63–68, New York, NY, USA, 2008. ACM.

[Cla05] T. Clark. Storage Virtualization: Technologies for Simplifying Data Storage
and Management. Addison-Wesley Professional, 2005.

169

BIBLIOGRAPHY

[CM05] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on
remote encrypted data. In Proceedings of the Third international conference
on Applied Cryptography and Network Security, ACNS’05, Berlin, Heidelberg,
2005. Springer-Verlag.

[Coh00] P.M. Cohn. Introduction to Ring Theory. Springer Undergraduate Mathe-
matics Series. Springer, 2000.

[DH76] W. Diffie and M. Hellman. New directions in cryptography, 1976.

[DPS12] R. Di Pietro and A. Sorniotti. Boosting efficiency and security in proof of
ownership for deduplication. In Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’12, pages
81–82, New York, NY, USA, 2012. ACM.

[DR08] T. Dierks and E. Rescorla. RFC 5246 - The Transport Layer Security (TLS)
Protocol Version 1.2. Technical report, August 2008.

[Dut08] M. Dutch. Understanding data deduplication ratios. SNIA White Paper,
June 2008.

[DVW09] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability via hardness
amplification. In Proceedings of the 6th Theory of Cryptography Conference
on Theory of Cryptography, TCC ’09, pages 109–127, Berlin, Heidelberg,
2009. Springer-Verlag.

[ea02] Torbjorn Granlund et al. GNU multiple precision arithmetic library 4.1.2,
December 2002.

[EKPT09] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable
data possession. In Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, New York, NY, USA, 2009.

[Elg85] T Elgamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. Information Theory, IEEE Transactions on, 31(4):469–472,
1985.

[FIP01] N FIPS. 197: Announcing the advanced encryption standard (aes). . . .
Technology Laboratory, National Institute of Standards . . . , 2009(12):8–12,
2001.

[Fos02] Foster, I. What is the Grid? - a three point checklist. GRIDtoday, 1(6), jul
2002.

[Fos09] Foster, I. and Zhao, Y. and Raicu, I. and Lu, S. Cloud Computing and Grid
Computing 360-Degree Compared. CoRR, abs/0901.0131, 2009.

[Fug12] S. Fugkeaw. Achieving privacy and security in multi-owner data outsourcing.
pages 239–244. IEEE, 2012.

170

BIBLIOGRAPHY

[Gen09] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford,
CA, USA, 2009. AAI3382729.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
pages 270–299, 1984.

[GMR85] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of inter-
active proof-systems. In Proceedings of the Seventeenth Annual ACM Sym-
posium on Theory of Computing, STOC ’85, pages 291–304, New York, NY,
USA, 1985. ACM.

[Gol00] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press, New York, NY, USA, 2000.

[Goo11] Google. Google app engine. Development, 2009(28th April 2010):1–10, 2011.

[GPea06] Vipul Goyal, Omkant Pandey, and et al. Attribute-based encryption for fine-
grained access control of encypted data, 2006.

[GPS06] M. Girault, G. Poupard, and J. Stern. On the fly authentication and signature
schemes based on groups of unknown order. Journal of Cryptology, 19:463–
487, 2006.

[GPS08] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptographers,
2008. Applications of Algebra to Cryptography.

[GR12] J. Gantz and D. Reinsel. The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east. IDC iView, (December):1–16,
2012.

[Grä78] G. Grätzer. General lattice theory, volume 75 of Pure and Applied Mathe-
matics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New
York, 1978.

[hbndcfcs] http://www.datacenterknowledge.com/archives/2013/01/18/facebook-
builds-new-data-centers-for-cold storage/.

[HHPSP11] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of ownership
in remote storage systems. In Proceedings of the 18th ACM conference on
Computer and communications security, CCS ’11, pages 491–500, New York,
NY, USA, 2011. ACM.

[HMV03] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryp-
tography. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[HPSP10] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud services:
Deduplication in cloud storage. IEEE Security And Privacy, 8(6):40–47, 2010.

[hSIHA] http://www.storiant.com/resources/Cold Storage-Is-Hot-Again.pdf.

[htta] http://aws.amazon.com/glacier/.

171

BIBLIOGRAPHY

[httb] https://downloads.cloudsecurityalliance.org/initiatives/.

[IAP09] L. Ibraimi, M. Asim, and M. Petkovic. Secure management of personal health
records by applying attribute-based encryption, July 2009.

[Inc08] Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2). Amazon Inc.,
http://aws.amazon.com/ec2/#pricing, 2008.

[IPN+09] L. Ibraimi, M. Petkovic, S. Nikova, P. Hartel, and W. Jonker. Ciphertext-
policy attribute-based threshold decryption with flexible delegation and re-
vocation of user attributes (extended version), April 2009.

[ISO89] ISO/IEC. Iso 7498-2:1989, information processing systems - open systems
interconnection - basic reference model - part 2: Security architecture. Infor-
mation Processing Systems – Open Systems Interconnection – Basic Reference
Model, 1989.

[JK07] A. Juels and B. Kaliski. Pors: proofs of retrievability for large files. In In
CCS ’07: Proceedings of the 14th ACM conference on Computer and commu-
nications security, pages 584–597. ACM, 2007.

[JMXSW02] D. Johnson, D. Molnar, D. Xiaodong Song, and D. Wagner. Homomorphic
signature schemes. In CT-RSA, pages 244–262, 2002.

[KBL13] N. Kaaniche, A. Boudguiga, and M. Laurent. ID based cryptography for
cloud data storage. In 2013 IEEE Sixth International Conference on Cloud
Computing, Santa Clara, CA, USA, June 28 - July 3, 2013, pages 375–382,
2013.

[KEML14] N. Kaaniche, E. El Moustaine, and M. Laurent. A novel zero-knowledge
scheme for proof of data possession in cloud storage applications. In 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, Chicago, IL, USA, May 26-29, 2014, pages 522–531, 2014.

[Ken] W.R. Kenneth. Minimum-complexity pairing functions.

[KK12] L. Krzywiecki and M. Kutylowski. Proof of possession for cloud storage via la-
grangian interpolation techniques. In Proceedings of the 6th international con-
ference on Network and System Security, NSS’12, Berlin, Heidelberg, 2012.
Springer-Verlag.

[KL10] S. Kamara and K. Lauter. Cryptographic cloud storage. In Proceedings of
the 14th international conference on Financial cryptograpy and data security,
FC’10, Berlin, Heidelberg, 2010. Springer-Verlag.

[KL14] N. Kaaniche and M. Laurent. A secure client side deduplication scheme in
cloud storage environments. In 6th International Conference on New Tech-
nologies, Mobility and Security, NTMS 2014, Dubai, United Arab Emirates,
March 30 - April 2, 2014, pages 1–7, 2014.

172

BIBLIOGRAPHY

[KLEB14] N. Kaaniche, M. Laurent, and M. El Barbori. Cloudasec: A novel public-
key based framework to handle data sharing security in clouds. In ICETE
– 11th International Conference on Security and Cryptography, August 28 -
30, 2014.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, January 1987.

[LCH13] C. Lee, P. Chung, and M. Hwang. A survey on attribute-based encryption
schemes of access control in cloud environments. I. J. Network Security,
15(4):231–240, 2013.

[LDTY09] Hongwei Li, Yuanshun Dai, Ling Tian, and Haomiao Yang. Identity-based
authentication for cloud computing. In Proceedings of the 1st International
Conference on Cloud Computing, CloudCom ’09, pages 157–166, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[LP11] Hoon Wei Lim and Kenneth G. Paterson. Identity-based cryptography for
grid security. Int. J. Inf. Secur., 10(1):15–32, February 2011.

[LR04] H W Lim and M J B Robshaw. On identity-based cryptography and grid
computing. Lecture Notes in Computer Science, pages 474–477, 2004.

[LR05] H W Lim and M J B Robshaw. A dynamic key infrastructure for grid. In
Proceedings of the 2005 European conference on Advances in Grid Computing,
EGC’05, pages 255–264, Berlin, Heidelberg, 2005. Springer-Verlag.

[LZWY13] X. Liu, Y. Zhang, B. Wang, and J. Yan. Mona: Secure multi-owner data
sharing for dynamic groups in the cloud. IEEE Trans. Parallel Distrib. Syst.,
24(6), June 2013.

[MD11] D. McEwen and H. Dumpel. Hipaa—the health insurance portability and
accountability act. National Nurse (NATL NURSE), (July/August):20–27,
2011.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology, CRYPTO ’87, pages 369–378, Lon-
don, UK, UK, 1988. Springer-Verlag.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology, CRYPTO ’85, pages 417–426, London, UK, UK, 1986. Springer-
Verlag.

[MR14] Kurra Mallaiah and S. Ramachandram. Article: Applicability of homomor-
phic encryption and cryptdb in social and business applications: Securing
data stored on the third party servers while processing through applications.
International Journal of Computer Applications, 100(1):5–19, August 2014.
Full text available.

173

BIBLIOGRAPHY

[MRS88] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic
cryptosystems. SIAM J. Comput., 17(2):412–426, April 1988.

[MRSP12] V. Moreno, E. Roberts, S. Sane, and M. Portolani. Data Center Networking
for Cloud Computing Environments. WebEx Communications, 1st edition,
2012.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook
of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition,
1996.

[NF07] Hanne Riis Nielson and Gilberto Filé, editors. Static Analysis, 14th In-
ternational Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-
24, 2007, Proceedings, volume 4634 of Lecture Notes in Computer Science.
Springer, 2007.

[NIS99] National Bureau Of Standards NIST. Data encryption standard (des). Tech-
nology, 46-3(46):1–26, 1999.

[NLV11] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryp-
tion be practical? In Proceedings of the 3rd ACM Workshop on Cloud Com-
puting Security Workshop, CCSW ’11, New York, NY, USA, 2011. ACM.

[nsaa] http://www.darkreading.com/cloud-security/nsa-surveillance-first-prism-
now-muscled-out-of-cloud/d/d-id/1112686.

[nsab] http://www.zdnet.com/nsa-spying-poisons-the-cloud-market-survey-
7000022964/.

[NWZ12] W.K. Ng, Y. Wen, and H. Zhu. Private data deduplication protocols in cloud
storage. In Proceedings of the 27th Annual ACM Symposium on Applied
Computing, SAC ’12, pages 441–446, New York, NY, USA, 2012. ACM.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proceedings of the 17th international conference on Theory and
application of cryptographic techniques, EUROCRYPT’99, pages 223–238,
Berlin, Heidelberg, 1999. Springer-Verlag.

[Ped92] T.P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Proceedings of the 11th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’91, pages 129–140, Lon-
don, UK, UK, 1992. Springer-Verlag.

[PT09] M. Peter and G. Tim. The NIST Definition of Cloud Computing. National
Institute of Standards and Technology, 53(6):50, 2009.

[QQQ+89] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël
Quisquater, Louis C. Guillou, Marie Annick Guillou, Gaïd Guillou, Anna
Guillou, Gwenolé Guillou, Soazig Guillou, and Thomas A. Berson. How to

174

BIBLIOGRAPHY

explain zero-knowledge protocols to your children. In Advances in Cryptol-
ogy - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of
Lecture Notes in Computer Science, pages 628–631. Springer, 1989.

[RAD78] R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations on Secure Computation, Academia Press,
pages 169–179, 1978.

[RRP04] D. Ratna, B. Rana, and S. Palash. Pairing-based cryptographic protocols :
A survey. 2004. http://eprint.iacr.org/.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[RTSS09] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of
my cloud: Exploring information leakage in third-party compute clouds. In
Proceedings of the 16th ACM Conference on Computer and Communications
Security, CCS ’09, pages 199–212, New York, NY, USA, 2009. ACM.

[SBW11] S. Setty, A.J. Blumberg, and M. Walfish. Toward practical and unconditional
verification of remote computations. In Proceedings of the 13th USENIX
Conference on Hot Topics in Operating Systems, HotOS’13, Berkeley, CA,
USA, 2011. USENIX Association.

[SDJ+10] C. Schridde, T. Dörnemann, E. Juhnke, M. Smith, and B. Freisleben. An
identity-based security infrastructure for cloud environments. In Proc. of
IEEE International Conference on Wireless Communications, Networking
and Information Security (WCNIS2010), 2010.

[SGLM08] M. Storer, K. Greenan, D.D.E. Long, and E.L. Miller. Secure data dedupli-
cation. In Proceedings of the 4th ACM International Workshop on Storage
Security and Survivability, StorageSS ’08, pages 1–10, New York, NY, USA,
2008. ACM.

[Sha49] Claude E. Shannon. Communication Theory of Secrecy Systems. Bell Systems
Technical Journal, 28:656–715, 1949.

[Sha85] A. Shamir. Identity-based cryptosystems and signature schemes. In Proceed-
ings of CRYPTO 84 on Advances in cryptology, pages 47–53, New York, NY,
USA, 1985. Springer-Verlag New York, Inc.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In Pro-
ceedings of the 16th Annual International Conference on Theory and Applica-
tion of Cryptographic Techniques, EUROCRYPT’97, pages 256–266, Berlin,
Heidelberg, 1997. Springer-Verlag.

[SK03] R. Sakai and M. Kasahara. Id based cryptosystems with pairing on elliptic
curve. Cryptology ePrint Archive, Report 2003/054, 2003.

175

BIBLIOGRAPHY

[SNDB13] S.H. Seo, M. Nabeel, X. Ding, and E. Bertino. An efficient certificateless
encryption for secure data sharing in public clouds. IEEE Transactions on
Knowledge and Data Engineering, 99:1, 2013.

[Sni10] The Snia. Cloud data management interface. Representations, pages 1–173,
2010.

[Sta02] United States. A report to Congress in accordance with [section] 326(b) of the
Uniting and Strengthening America by Providing Appropriate Tools Required
to Intercept and Obstruct Terrorism Act of 2001 (USA PATRIOT ACT) [elec-
tronic resource] / submitted by the Department of the Treasury. Dept. of the
Treasury [Washington, D.C.], 2002.

[SV10] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In Proceedings of the 13th International
Conference on Practice and Theory in Public Key Cryptography, PKC’10,
pages 420–443, Berlin, Heidelberg, 2010. Springer-Verlag.

[SW05] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Proceedings
of the 24th Annual International Conference on Theory and Applications of
Cryptographic Techniques, EUROCRYPT’05, pages 457–473, Berlin, Heidel-
berg, 2005. Springer-Verlag.

[SW08] H. Shacham and B. Waters. Compact proofs of retrievability. In Proceedings
of the 14th International Conference on the Theory and Application of Cryp-
tology and Information Security: Advances in Cryptology, ASIACRYPT ’08,
Berlin, Heidelberg, 2008. Springer-Verlag.

[The03] The OpenSSL Project. April 2003.

[VDHV10] C. Van Dijk, M.and Gentry, S. Halevi, and V. Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In Proceedings of the 29th Annual
International Conference on Theory and Applications of Cryptographic Tech-
niques, EUROCRYPT’10, pages 24–43, Berlin, Heidelberg, 2010. Springer-
Verlag.

[VDJO+12] M. Van Dijk, A. Juels, A. Oprea, Ronald L. Rivest, E. Stefanov, and N. Trian-
dopoulos. Hourglass schemes: how to prove that cloud files are encrypted. In
Proceedings of the 2012 ACM conference on Computer and communications
security, CCS ’12, New York, NY, USA, 2012.

[Ver19] G S Vernam. Secret signaling system, 1919.

[WQPW10] C. Wang, Z. Qin, J. Peng, and J. Wang. A novel encryption scheme for data
deduplication system. pages 265–269, 2010.

[WRW11] C. Wang, K. Ren, and J. Wang. Secure and practical outsourcing of linear
programming in cloud computing. In INFOCOM, 2011 Proceedings IEEE,
pages 820–828, April 2011.

176

BIBLIOGRAPHY

[WS12] P. Williams and R. Sion. Single round access privacy on outsourced storage.
In Proceedings of the 2012 ACM conference on Computer and communica-
tions security, CCS ’12, pages 293–304, New York, NY, USA, 2012. ACM.

[WWL+] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifia-
bility and data dynamics for storage security in cloud computing. In Pro-
ceedings of the 14th European Conference on Research in Computer Security,
ESORICS’09, Berlin, Heidelberg. Springer-Verlag.

[WWRL10] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing
for data storage security in cloud computing. In Proceedings of the 29th
Conference on Information Communications, INFOCOM’10, pages 525–533,
Piscataway, NJ, USA, 2010. IEEE Press.

[XC12] J. Xu and E. Chang. Towards efficient proofs of retrievability. In Proceedings
of the 7th ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’12, New York, NY, USA, 2012.

[XCZ13] J. Xu, E. Chang, and J. Zhou. Weak leakage-resilient client-side deduplication
of encrypted data in cloud storage. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security, ASIA
CCS ’13, pages 195–206, New York, NY, USA, 2013. ACM.

[XX12] Z. Xiao and Y. Xiao. Security and privacy in cloud computing. Communi-
cations Surveys Tutorials, IEEE, PP(99):1 –17, 2012.

[XZY+12] H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen. Towards end-to-end secure
content storage and delivery with public cloud. CODASPY ’12, pages 257–
266. ACM, 2012.

[YPX05] A. Yaar, A Perrig, and D. Xiaodong. Fit: fast internet traceback. In IN-
FOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies, 13-17 March 2005, Miami, FL, USA, pages 1395–
1406. IEEE, 2005.

[YWRL10a] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving secure, scal-
able, and fine-grained data access control in cloud computing. In Proceedings
of the 29th conference on Information communications, INFOCOM’10, pages
534–542, Piscataway, NJ, USA, 2010. IEEE Press.

[YWRL10b] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Attribute based data
sharing with attribute revocation. In Proceedings of the 5th ACM Sympo-
sium on Information, Computer and Communications Security, ASIACCS
’10, pages 261–270, New York, NY, USA, 2010. ACM.

[Zun12] K. Zunnurhain. Fapa: a model to prevent flooding attacks in clouds. In
Proceedings of the 50th Annual Southeast Regional Conference, ACM-SE ’12,
pages 395–396, New York, NY, USA, 2012. ACM.

177

BIBLIOGRAPHY

[ZVH11] L. Zhou, V. Varadharajan, and M. Hitchens. Enforcing role-based access
control for secure data storage in the cloud. Comput. J., 54, October 2011.

[ZWH+11] Y. Zhu, H. Wang, Z. Hu, G. Ahn, H. Hu, and S.S. Yau. Dynamic audit
services for integrity verification of outsourced storages in clouds. In Pro-
ceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, New
York, NY, USA, 2011.

[ZYG11] S. Zarandioon, D. Yao, and V. Ganapathy. K2c: Cryptographic cloud storage
with lazy revocation and anonymous access. In SecureComm, volume 96,
pages 59–76. Springer, 2011.

178

Appendix A

French Summary

Au cours de la dernière décennie, avec la standardisation d’Internet, le développement
des réseaux à haut débit, le paiement à l’usage et la quête sociétale de la mobilité, le monde
informatique a vu se populariser un nouveau paradigme, le Cloud. Le recours au cloud est
de plus en plus remarquable compte tenu de plusieurs facteurs, notamment ses architectures
rentables, prenant en charge la transmission, le stockage et le calcul intensif de données.
Cependant, ces services de stockage prometteurs soulèvent la question de la protection des
données et de la conformité aux réglementations, qui sous tend le problème de la perte
de maîtrise et de gouvernance. Cette dissertation vise à surmonter ce dilemme, tout en
tenant compte de deux préoccupations de sécurité des données, à savoir la confidentialité
des données et l’intégrité des données.

A.1 Définitions

Le cloud, appelé aussi informatique en nuage, décrit des ressources évolutives fournies
sous forme d’un service externe via Internet, mesuré et facturé à l’usage. Le cloud peut
être défini comme étant un modèle de calcul distribué, qui est configuré dynamiquement
et fourni à la demande. Ce nouveau paradigme, massivement évolutif, est différent des
réseaux traditionnels. Trois niveaux de services sont offerts via le cloud:

• Infrastructure as a Service (IaaS) – pour ce modèle de service, les ressources sont
gérées, agrégées et livrées aux utilisateurs, comme étant des capacités de stockage (par
exemple, service Amazon Simple Storage (S3) [Ama]), des ressources de réseau, ou
des capacités de calcul (par exemple, Amazon Elastic Compute Cloud (EC2) [Inc08]).
L’utilisateur peut alors exécuter le système d’exploitation de son choix, et des logiciels
qui répondent au mieux à ses besoins, sans être en mesure de gérer ou contrôler
l’infrastructure cloud sous-jacente.

• Plateform as a Service (PaaS) – ce modèle de service offre un environnement ou
une plate-forme de développement, sur laquelle les utilisateurs exécutent leurs appli-

179

CHAPT A. FRENCH SUMMARY

cations. Autrement dit, le fournisseur de service met à disposition des utilisateurs
une plateforme spécifique leur permettant d’exécuter des applications propriétaires.
Ils ont aussi un contrôle total sur leurs applications déployées et la configuration
associée.

• Software as a Service (SaaS) – l’utilisateur contrôle partiellement des configurations
d’applications fonctionnant sur une infrastructure de Cloud, comme Google Apps.
Ces applications sont accessibles à travers un grand nombre de périphériques client
(téléphone portable, ordinateur, etc.) par le biais d’une interface Web.

Pour mieux comprendre les concepts de base et les technologies associés au cloud, nous
extrayons du document de définition de NIST [PT09] cinq attributs, soient;

• Des services à la demande – l’utilisateur peut réserver sans aucune interaction hu-
maine avec le fournisseur des capacités de traitement et de stockage selon ses besoins.

• Un large accès réseau – les différents services d’un fournisseur de cloud ainsi que les
ressources réservées par un utilisateur sont disponibles et accessibles par le biais d’un
large éventail de périphériques pouvant se connecter au réseau.

• Des ressources partagées – le fournisseur met en commun les ressources informatiques
(stockages, mémoire, CPU, bande passante, machine virtuelle, etc.) afin de satisfaire
plusieurs utilisateurs par le biais de ressources physiques et virtuelles pouvant être
affectées et réaffectées en fonction de la demande des utilisateurs. Ceci induit pour
les utilisateurs une méconnaissance de la localisation exacte des ressources qu’ils
utilisent.

• Un dimensionnement rapide – les ressources peuvent être dimensionnées rapidement
à la hausse ou à la baisse selon la demande de l’utilisateur.

• Un service mesuré et facturé à l’usage – le cloud mesure automatiquement l’utilisation
des ressources (CPU, stockage, bande passante, temps d’utilisation d’une machine
virtuelle, etc.) faite par un utilisateur afin de permettre de lui calculer automatique-
ment sa facture.

La définition du NIST révèle plusieurs contraintes de sécurité, dues aux technologies et aux
caractéristiques de cet environnement abstrait. En effet, au vu de ces services taillés sur
mesure, le portefeuille des services cloud est enrichi en permanence. La prolifération de ces
services relèvent de nouveaux besoins de sécurité. Selon [XX12], il existe trois principaux
défis qui sont étroitement liés aux caractéristiques du cloud, à savoir l’externalisation, la
co-résidence des données et des processus, et le calcul massif des données.

A.2 Problématiques, Objectifs et Contributions

Les services de stockage de données cloud révèlent de nombreux problèmes de concep-
tion complexes, principalement dus à la perte du contrôle physique. Ces défis ont des

180

A.2. Problématiques, Objectifs et Contributions

conséquences significatives sur la sécurité des données et les performances des systèmes de
cloud.

D’un côté, la préservation de la confidentialité des données, dans des environ-
nements multi-tenants, devient plus difficile et conflictuelle. Ceci est largement dû au fait
que les utilisateurs stockent leurs données à des serveurs distants contrôlés par des four-
nisseurs de service (CSP) non fiables. Il est communément admis que le chiffrement des
données, du côté client, est une bonne solution garantissant la confidentialité des don-
nées [KL10,CGJ+09]. Ainsi, le client conserve les clés de déchiffrement, loin de la portée
du fournisseur de cloud. Néanmoins, cette approche suscite plusieurs problèmes de ges-
tion de clés, tels que, le stockage et le maintien de la disponibilité des clés. En outre,
la préservation de la confidentialité devient plus compliquée avec un partage de données
dynamique entre un groupe d’utilisateurs. Premièrement, il faut un partage efficace des
clés de déchiffrement entre les différents utilisateurs autorisés. Le défi consiste à définir un
mécansime efficace permettant la révocation d’un membre sans avoir besoin de mettre à
jour tous les secrets des autres membres. Deuxièmement, les politiques de contrôle d’accès
doivent être souples et permettent de distinguer des privilèges différents selon les utilisa-
teurs pour accéder aux données. En effet, les données peuvent être partagées par différents
utilisateurs ou groupes, et les utilisateurs peuvent appartenir à des différents groupes.

D’un autre côté, l’intégrité des données est considérée comme une préoccupation
majeure, dans des environnements cloud. Afin de renforcer la résilience, les fournisseurs de
service ont généralement recours à la distribution des fragments de données selon des poli-
tiques de réplication. Néanmoins, afin de réduire les coûts d’exploitation et de libérer des
capacités de stockage, les fournisseurs malhonnêtes pourraient volontairement négliger ces
procédures de réplication, entraînant des erreurs irréversibles ou même des pertes de don-
nées. Même lorsque les fournisseurs de cloud mettent en œuvre une politique de tolérance
aux pannes, les clients n’ont pas les moyens techniques pour vérifier que leurs données ne
sont pas vulnérables. Il pourrait y avoir des implémentations de vérification, à distance de
l’intégrité et la possession des données externalisées, selon trois niveaux, comme suit:

• Entre un client et un CSP – un client devrait avoir un moyen efficace, lui permettant
d’effectuer des vérifications périodiques d’intégrité à distance, sans garder les données
en local. En outre, le client doit également détecter la violation du SLA, par rapport à
la politique de stockage. La préoccupation de ce client est accentuée par ses capacités
de stockage et de calcul limitées, et de la grande taille des données externalisées.

• Au sein du CSP – il est important pour un fournisseur de cloud de vérifier l’intégrité
des blocs de données stockés sur plusieurs nœuds de stockage, afin de réduire le risque
de perte de données, dû à la défaillance du matériel.

• Entre deux CSPs – dans un environnement des clouds imbriqués, où les données sont
réparties sur de différentes infrastructures de cloud, un CSP, à travers sa passerelle,
doit périodiquement vérifier l’authenticité de blocs de données hébergées par une
autre plate-forme de service.

Ces problèmes de sécurité sont d’autant plus importants, que les règlements européens

181

CHAPT A. FRENCH SUMMARY

à venir prévoient des mesures de protection plus sévères et rigides, y compris de nouvelles
dérogations pour protéger efficacement les données à caractère personnel qui sont exter-
nalisées sur des serveurs distants. Le réglement européen sur la protection des données
(GDPR) devrait être adoptée cette année et prendre effet début 2015 [chab].

Pour relever les besoins de sécurité mentionnés ci-dessus, nous avons fixé les objectifs
suivants:

• Objectif A – améliorer la confidentialité des données, tout en considérant un partage
dynamique des données entre les utilisateurs.

• Objectif B – s’attaquer au problème de la preuve de possession des données dans les
environnements de stockage en nuage. cette preuve vient en soutien au problème de
la vérification de l’intégrité des données, et intègre les trois aspects suivants: niveau
de sécurité, vérifiabilité publique, et performances, (compte tenu des capacités de
stockage et de traitement limitées des dispositifs de l’utilisateur).

• Objectif C – mettre en œuvre les techniques proposées à l’aide de normes et de
systèmes largement déployés, et valider leur faisabilité et leur impact sur le matériel
réel.

• Objectif D – fournir des preuves mathématiques de la solidité et de l’exactitude des
schémas proposés.

Lors de la définition des solutions garantissant la confidentialité et l’intégrité des don-
nées externalisées, nous avons pris en considération les aspects suivants: la facilité du
déploiement, la robustesse, la flexibilité et les performances. Les contributions de cette
thèse se résument à:

• Contribution 1 – proposition d’un schéma cryptographique pour le stockage des don-
nées sur des serveurs cloud, basé sur une utilisation originale de la Cryptographie
Basée sur l’Identité (IBC). Tout d’abord, le schéma proposé assure une meilleure
confidentialité des données. En effet, chaque client agit comme un générateur de clé
privée (PKG), lui permettant de calculer une paire de clés basée sur un identifiant
unique du fichier avant d’envoyer le contenu chiffré au cloud pour le stocker. Par
conséquent, l’accès aux données est géré par le propriétaire des données. En outre,
en utilisant une clé basée sur l’identifiant des données, nous proposons une approche
de partage flexible. En effet, la distribution des clés de déchiffrement entre le client
et les utilisateurs autorisés, ne permet pas d’extraire le secret du client (Objectif A,
Objectif C).

• Contribution 2 – définition de CloudaSec, une solution à clé publique permettant
d’améliorer la confidentialité des données dans les environnements de stockage en
nuage, ainsi que le partage dynamique entre les utilisateurs. CloudaSec applique
le chiffrement convergent sur le contenu des données, et intègre un système de dis-
tribution des clés, basé sur des échanges parallélisés Diffie Hellman [BD05], afin de
garantir la propriété backward and forward secrecy (Objectif A, Objectif C).

182

A.3. Confidentialité des données stockées dans le Cloud

• Contribution 3 – définition d’un nouveau protocole de preuve de possession, sans ap-
port de connaissance, qui fournit des garanties déterministes de vérification d’intégrité,
en s’appuyant sur l’unicité de la division euclidienne. Ces garanties sont consid-
érées comme intéressantes par rapport à plusieurs schémas proposés de la littérature,
présentant des approches probabilistes. Le protocole est adapté aux terminaux ayant
des capacités de stockage limitées (Objectif B, Objectif D).

• Contribution 4 – présentation de SHoPS, un protocole de preuve de possession de
données capable de traiter les trois relations d’ensembles homomorphiques. SHoPS
permet au client non seulement d’obtenir une preuve de la possession des données
du serveur distant, mais aussi de vérifier que le fichier, en question, est bien réparti
sur plusieurs périphériques de stockage permettant d’atteindre un certain niveau de
tolérance aux pannes. En effet, nous présentons l’ensemble des propriétés homomor-
phiques, qui étend la malléabilité du procédé aux propriétés d’union, intersection et
inclusion (Objectif B, Objectif D).

A.3 Confidentialité des données stockées dans le Cloud

En confiant la tâche de stockage de données à une tierce partie, l’assurance de la
confidentialité et la protection de la vie privée deviennent plus difficiles. La protection
de la vie privée est une préoccupation majeure des utilisateurs du cloud, du fait que
leurs données soient stockées dans des serveurs publiques distribués. Par conséquent, il
y a un risque potentiel de divulgation des informations confidentielles (par exemple, les
données financières, dossiers de santé) ou des informations personnelles (par exemple, profil
personnel). Quant à la confidentialité, elle implique que les données des clients doivent être
gardées secrètes et ne doivent pas être divulguées à des personnes non autorisées, à savoir
le fournisseur de service ou d’autres utilisateurs malveillants.

Dans cette section, nous nous concentrons sur la confidentialité des données, un enjeu
important étant donné le besoin d’assurer un partage de données flexible au sein d’un
groupe dynamique d’utilisateurs. Cet enjeu exige, par conséquence, un partage efficace des
clés entre les membres du groupe.
Pour répondre à cette préoccupation, nous avons, d’une part, proposé une nouvelle méthode
reposant sur l’utilisation de la cryptographie basée sur l’identité, où chaque client agit
comme une entité génératrice de clés privées. Ainsi, ce client génère ses propres éléments
publiques et s’en sert pour calculer sa clé privée correspondante. Grâce aux propriétés
d’IBC, cette contribution a démontré sa résistance face aux accès non autorisés aux données
au cours du processus de partage, tout en tenant compte de deux modèles de sécurité, à
savoir un serveur de stockage honnête mais curieux et un utilisateur malveillant.
D’autre part, nous avons introduit CloudaSec, une solution à base de clé publique, qui
propose la séparation de la gestion des clés et les techniques de chiffrement, sur deux
couches. En effet, CloudaSec permet un déploiement flexible d’un scénario de partage
de données ainsi que des garanties de sécurité solides pour les données externalisées sur
les serveurs du cloud. Les résultats expérimentaux, sous OpenStack Swift, ont prouvé
l’efficacité de CloudaSec, compte tenu de l’impact des opérations cryptographiques sur le
terminal du client.

183

CHAPT A. FRENCH SUMMARY

A.3.1 Cryptographie Basée sur l’Identité pour un stockage sécurisé des

données

Dans cette section, nous présentons notre première contribution [KBL13], basée sur
les avantages de la Cryptographie Basée sur l’Identité (IBC) pour un stockage sécurisé de
données dans le cloud [Sha85,BF01].

A.3.1.1 Architecture

Figure A.1 illustre un schéma de l’architecture d’un service de stockage en nuage. Elle
s’appuie sur les entités suivantes, permettant à un client de stocker, récupérer et partager
des données avec plusieurs utilisateurs:

• fournisseur de service Cloud (CSP) – un CSP dispose de ressources importantes pour
contrôler les serveurs de stockage. Il fournit également une infrastructure virtuelle
pour héberger des services d’application. Ces services peuvent être utilisés par le
client pour gérer ses données stockées dans les serveurs cloud.

• Client (C) – un client est le propriétaire de données. Il utilise les ressources du
fournisseur de service pour stocker, récupérer et partager des données avec plusieurs
utilisateurs. Chaque client a une identité unique et authentique, notée IDC .

• utilisateurs (U) – les utilisateurs sont en mesure d’accéder au contenu stocké dans le
nuage, en fonction de leurs droits d’accès s’agissant des autorisations accordées par
le client, comme les droits de lecture et d’écriture. Ces droits d’accès permettent de
déterminer plusieurs groupes d’utilisateurs. Chaque groupe est caractérisé par un
identifiant IDG et un ensemble de droits d’accès.

Figure A.1 - Architecture d’un service de stockage en nuage

Notre idée consiste à utiliser la cryptographie basée sur l’identité, pour générer une paire
de clés pour chaque donnée. En fait, notre proposition bénéficie des avantages d’IBC,
notamment une infrastructure sans certificat, une petite taille des clés utilisées, et une
gestion légère des secrets.

184

A.3. Confidentialité des données stockées dans le Cloud

Dans [KBL13], chaque client prend le rôle d’un générateur de clé privé (PKG) qui génère
ses propres ID-Based Cryptography Public Elements (IBC–PE). Ces IBC–PE sont utilisés
pour générer les clés, permettant ainsi de chiffrer les données avant de les stocker dans le
cloud. Il est à noter que pour chaque donnée, le client calcule les clés publique et privée
correspondantes en s’appuyant sur son secret sC .

Le choix de l’IBC est motivé par plusieurs facteurs. Tout d’abord, nous bénéficions
d’un mécanisme de gestion flexible grâce à une infrastructure sans certificat. En effet,
le calcul des clés publiques, à partir des identifiants uniques de données ne nécessite pas
le déploiement d’une infrastructure à clé publique (PKI) et la distribution de certificats.
D’autre part, IBC permet de déduire les clés publiques sans avoir besoin d’un calcul préal-
able des clés privées correspondantes, contrairement aux schémas de chiffrement classiques.
En effet, les utilisateurs n’ont qu’à générer les clés publiques pour chiffrer les données avant
de les stocker. La génération de la clé privée sera exécutée au moment de la récupération
des données. Troisièmement, IBC permet de générer une clé spécifique pour chaque donnée
à partir d’un identifiant unique. La dérivation d’une clé par donnée est bien adaptée pour
un processus de partage. Dans la section suivante, nous présentons les différents scénarios,
pour le stockage, la récupération et le partage de données.

A.3.1.2 Scénario de stockage de données

Après s’être authentifié avec succès avec le CSP, le client démarre le processus de
stockage. En effet, le client chiffre ses données à l’aide d’une clé publique, notée, PubD

qui est dérivée à partir d’une concaténation de l’identité du client IDC et l’identifiant des
données de IDD, comme suit:

PubD = Hashpub(IDC ||IDD) (A.1)

IDD est générée localement par le client et est dérivée des méta-données (MD) en utilisant
une fonction de hachage H() telle que IDD = H(MD).

Figure A.2 illustre les différents échanges entre le client et son fournisseur de cloud. Le
scénario de stockage se base sur quatre messages:

Figure A.2 - Scénario de stockage de données

185

CHAPT A. FRENCH SUMMARY

• ClientRequestVerif : ce premier message contient l’identifiant de données IDD. Ce
message est une demande de vérification de l’unicité de IDD. Le CSP répond par
un message ResponseVerif pour valider ou rejeter l’identifiant revendiqué. Il est à
noter que le processus de stockage de données doit être arrêté lorsque la vérification
est échouée.

• ResponseVerif : ce message est un accusé de réception, généré par le CSP pour valider
l’identifiant IDD. Lors de la réception de ce message, le client concatène IDC et IDD

pour dériver la clé publique PubD utilisée pour chiffrer ses données.

• ClientRequestStorage: ce message contient les éléments publiques générés par le
client, ainsi que les données chiffrées PubD(D).

• ResponseStorage: ce message est envoyé par le CSP, et est utilisé pour confirmer au
client le succès de son stockage de données.

A.3.1.3 Scénario de récupération des données

La Figure A.3 présente les différents échanges entre un client et son fournisseur de
service, pour récupérer ses données stockées sur des serveurs distants. Ce scénario se base
sur deux messages: ClientRequestBackup envoyé par le client et ResponseBackup, envoyé
par le fournisseur de cloud.

Figure A.3 - Scénario de récupération des données

A.3.1.4 Scénario de partage des données

Notre proposition distingue deux scénarios de partage de données, selon le nombre de
destinataires. Le premier scénario de partage un à un est défini lorsque le propriétaire de
données (déposant) partage des contenus avec un seul utilisateur (récépteur). Le deuxième
scénario de partage un à plusieurs est défini quand un client partage ses données avec un
groupe d’utilisateurs. La figure A.4 présente les différents échanges entre un déposant et
son récepteur, lors d’un scénario de partage de données un à un. Ce scénario s’établit en
deux phases: une phase de dépot des données, exécutée par le propriétaire de données,

186

A.3. Confidentialité des données stockées dans le Cloud

et une phase de récupération des données stockées par le récépteur. Il est à noter que les
deux phases peuvent s’effectuer séparement.

Figure A.4 - Scénario de partage de données entre un déposant et un
récépteur

La Figure A.5 présente les différents échanges entre un déposant et un groupe des
récepteurs, lors d’un scénario de partage de données un à plusieurs.

Figure A.5 - Scénario de partage de données entre un déposant et
plusieurs récepteurs

A.3.1.5 Conclusion

La montée de la demande des services de stockage sécurisés corrélée aux spécificités
de la cryptographie basée sur l’identité nous ont permis de définir une solution innovante
pour assurer la confidentialité des données stockées sur des serveurs distants.

Cette première contribution [KBL13] est basée sur une application d’IBC, permettant
ainsi une meilleure protection de la vie privée et confidentialité des données. La solution
proposée a fait preuve de résistance face aux accès non autorisés aux données et à toute
divulgation de données au cours du processus de partage, tout en tenant compte de deux
modèles de menaces réalistes, à savoir un serveur honnête mais curieux et un utilisateur

187

CHAPT A. FRENCH SUMMARY

malveillant.
En outre, grâce au processus de calcul avantageux de l’IBC et contrairement aux schémas
de chiffrement existants, notre proposition n’exige pas du déposant d’être connecté, lorsque
les destinataires veulent récupérer les données partagées.
En outre, plusieurs expérimentations ont été réalisées, afin d’évaluer le coût de calcul de
certains schémas de chiffrement basés sur l’identité du côté du client. Nous avons conclu
que les algorithmes de chiffrement basés sur l’identité restent encore plus lents que les
algorithmes de chiffrement symétriques tels que AES. En outre, nous affirmons que IBC
doit être considéré comme un compromis intéressant entre les coûts de calcul et de mémoire.

Enfin, une discussion générale est présentée, tout en introduisant deux améliorations
possibles à notre contribution. La première approche consiste à partager le rôle du PKG
entre le serveur cloud et le client, afin d’alléger la complexité de calcul du côté du client.
La seconde présente notre deuxième contribution qui détaille un système de déduplication
pour les applications du cloud computing [KL14].

A.3.2 CloudaSec: Un protocle à clé publiques pour un partage sécurisé
de données

Cette section présente notre troisième contribution, CloudaSec [KLEB14]. CloudaSec
est un protocole à clé publique permettant un partage sécurisé des données.

A.3.2.1 Présentation de CloudaSec

Pour sécuriser le partage de données au sein d’un groupe d’utilisateurs, l’architecture
CloudaSec introduit le rôle d’un chef de groupe, désigné par GM. Le chef de groupe
prend en charge la constitution d’un groupe, la génération des paramètres publiques,
l’enregistrement d’un nouveau utilisateur et la révocation d’un membre. La Figure A.6
illustre l’architecture de CloudaSec.
Ensuite, nous nous référons aux utilisateur(s) autorisé(s) comme récépteur(s) et au pro-
priétaire des données comme déposant. Il est à noter que CloudaSec n’exige pas des
destinataires d’être connectés au cours du processus de partage. En effet, les droits d’accès
des bénéficiaires se sont accordés par le propriétaire des données et gérés par le CSP.

Pour protéger les données stockées sur des serveurs publiques de cloud, CloudaSec met
à disposition du propriétaire des données plusieurs outils cryptographiques lui permettant
de s’assurer que seuls les utilisateurs autorisés sont en mesure d’obtenir les clés de déchiffre-
ment de données.
Notre protocole repose sur le chiffrement convergent [WQPW10], un mécanisme de chiffre-
ment qui dépend du contenu des données. En effet, il présente deux niveaux: le chiffrement
symétrique des données et le chiffrement asymétrique de la clé:

• chiffrement symétrique des données – avant de stocker les données sur les
serveurs du cloud, le déposant chiffre le contenu des fichiers, en utilisant un algo-
rithme symétrique. En effet, la clé de chiffrement de données est dérivée à partir du
contenu du fichier en clair, en utilisant une fonction de hachage. Par conséquent,

188

A.3. Confidentialité des données stockées dans le Cloud

Figure A.6 - Architecture de CloudaSec

les capacité de stockage sont conservées puisque le même contenu sera chiffré de la
même manière, produisant le même contenu.

• chiffrement asymétrique de la clé – le déposant chiffre la clé de déchiffrement k,
en se basant sur un algorithme asymétrique, tout en utilisant la clé publique du des-
tinataire. Puis, il intégre la clé cryptée dans les métadonnées du fichier, garantissant
ainsi des politiques d’accès flexibles. En effet, n’importe quel destinataire autorisé
peut accéder aux métadonnées du fichier, afin de déchiffrer la clé de données chiffrées
à l’aide de sa clé privée.

Les procédures de CloudaSec définissent deux couches conjointement liées: une couche
de données et une couche de gestion. Dans la couche de données, nous introduisons les
opérations appliquées sur les données et les clés de chiffrement correspodantes, à savoir les
procédures GenerateParameters, EncryptData, DecryptData, EncryptKeyOneToOne,
EncryptKeyOneToMany et ShrinKey. Dans la couche de gestion, CloudaSec introduit des
procédures de user revocation, quand un ancien membre quitte le groupe ou est révoqué
du groupe, et user subscription, lorsqu’un nouvel utilisateur rejoint le groupe.
CloudaSec permet un accès souple aux contenus chiffrés, en partageant de manière dy-
namique une clé secrète au sein du groupe. En effet, lorsque l’état du groupe est modifié
en raison d’un nouveau abonnement ou d’une révocation, le GM diffuse la nouvelle consti-
tution du groupe aux membres autorisés afin de générer la nouvelle clé secrète du groupe.
La dérivation de cette clé secrète se base sur les éléments publiques publiés, sans mettre à
jour les clés privées des autres utilisateurs.
CloudaSec distingue deux scénarios de partage de données différents. Premièrement, les
données partagées un à un, où un propriétaire de données partage des contenus avec
un seul utilisateur. Deuxièmement, les données partagées un à plusieurs, où un pro-
priétaire de données partage des données au sein d’un groupe d’utilisateurs autorisés.
Ces scénarios englobent deux algorithmes de chiffrement de clé différents, respectivement
EncryptKeyOneToOne et EncryptKeyOneToMany.

189

CHAPT A. FRENCH SUMMARY

A.3.2.2 Procédures de CloudaSec sur le plan de données

CloudaSec définit deux scénarios de partage de données, à savoir le partage de données
entre un déposant et un récépteur (partage un à un), et le partage au sein d’un groupe
d’utilisateurs (partage un à plusieurs).

Le scénario de partage de données un à un, est défini, quand un propriétaire de données
Ui partage des contenus avec un seul récepteur Uj . D’abord, le déposant Ui chiffre le fichier
f , comme présenté dans l’algorithme 16, en se basant sur un algorithme de chiffrement
symétrique SymEnc, et la clé de chiffrement k. Rappelons que k est généré à partir du
contenu du fichier, en appliquant une fonction de hachage H().

Algorithm 16 La procédure EncryptData
1: Input: {f,H, SymEnc}, w
2: Output: < Cf , k >

3: k = H(f);
4: Cf = SymEnc(f, k);
5: return < Cf , k >

Ensuite, Ui envoie le contenu chiffré Cf à son fournisseur de service afin de le stocker
pour son correspondant Uj . Au vue d’accorder des droits d’accès au récépteur Uj , le
propriétaire de données chiffre la clé de déchiffrement avec la clé publique du destinataire
pkj , comme présenté dans l’algorithme EncryptKeyOneToOne (cf. Algorithm 17). En effet,
CloudaSec introduit un nouveau mécanisme de chiffrement de la clé, permettant d’assurer
un contrôle d’accès plus flexible, dans les environements cloud.
La clé de déchiffrement de données est encodée en deux éléments < C1, C2 >. C1 est
introduite par le déposant Ui, dans les méta-données. Par ailleurs, C2 est envoyé au
fournisseur de service, afin d’ajouter une couche de vérification d’accès supplémentaire et
de permettre la génération de la clé re-dirigée.

Algorithm 17 La procédure EncryptKeyOneToOne

1: Input: {params, k, ski, pki, pkj , pkc}
2: Output: < C1, C2 >

3: r ∈R Zn;
4: C1 = k ⊕ F (ê(pki, pkj)

r);
5: C2 = ê(pkc, r · P)ski ;
6: return < C1, C2 >

Nous supposons que le fournisseur de service détient une paire de clés publique et privée
< skc, pkc >, telque skc = sc ∈R Zn présente la clé privée, tandis que pkc = sc · P ∈ G

∗
1

est la clé publique. Après la réceptiondu deuxième élement C2, le fournisseur de service
exécute l’algorithme ShrinKey pour générer la clé re-dirigée C3, comme présenté dans
l’algorithme 18. Ce dernier chiffre C2, à l’aide de sa clé secrète skc et génère C3.

La Figure A.7 présente un schéma représentatif des relations entre les différentes procé-
duces CloudaSec du scénario de partage un à un.

190

A.3. Confidentialité des données stockées dans le Cloud

Algorithm 18 La procédure ShrinKey
1: Input: {C2, skc}
2: Output: C3

3: C3 = (C2)
1

skc ;
4: return C3

Figure A.7 - Schéma représentatif des relations entre les différentes
procéduces CloudaSec du scénario de partage entre un déposant et un
récépteur

Afin de récupérer les données stockées par le déposant Ui, le récépteur Uj , où j 6= i,
doit tout d’abord retrouver la paire de clés < C1, C3 >. Par conséquent, Uj commence
ainsi un scénario de récupération de données. En effet, après être authentifié, Uj demande
C3, à son fournisseur de service. Ensuite, en se basant sur les métadonnées du fichier,
cet utilisateur autorisé Uj récupère l’élement C1, chiffré à l’aide de sa clé publique pkj
par son correspondant Ui. Puis, le récépteur Uj utilise sa clé secrète skj pour exécuter
la procédure DecryptKeyOneToOne lui permettant de retrouver la clé de déchiffrement du
contenu, comme présenté dans l’algorithme 19. Enfin, le récépteur peut retrouver les

Algorithm 19 La procédure DecryptKeyOneToOne

1: Input: {params,< C1, C3 >, skj}
2: Output: k

3: C1 ⊕ F ((C3)
skj);

4: return k

données qui lui ont été stockées par le déposant, en exécutant l’algorithme DecryptData à
l’aide de la clé de déchiffrement k (cf. Algorithm 20).

191

CHAPT A. FRENCH SUMMARY

Algorithm 20 La procédure DecryptData
1: Input: {Cf , k, SymEnc}
2: Output: f

3: f = SymEnc(Cf , k) ;
4: return f

A.4 Intégrité des données dans le cloud

Le traitement des données est un sujet sensible. Les entreprises et particuliers exi-
gent de plus en plus de transparence de la part des fournisseurs de solutions cloud quant
aux moyens déployés pour exécuter leurs prestations. Le recours à des sous-traitants et
le transfert des données à l’étranger peuvent constituer un risque quant à la garantie de
confidentialité et d’intégrité des données.
Dans cette section, nous traitons une seconde préoccupation de sécurité dans les environ-
nements de cloud: la preuve de possession de données. Des algorithmes de vérification
ont été élaborés afin de satisfaire ce besoin de sécurité. Ces algorithmes permettent au
client cloud de vérifier que son fournisseur de service possède les données dans l’état où il
les a envoyées. En tenant compte d’une complexité d’autant plus importante, prenant en
considération que le client ne dispose pas des données localement, il a fallu concevoir de
nouveaux schémas adaptés aux environnements cloud.

A.4.1 Protocoles de Preuves de Possession des Données

La preuve de la possession de données (PDP) est un protocole challenge-response per-
mettant à un client de vérifier si un fichier de données D stocké sur un serveur distant est
disponible sous sa forme originale. Un système PDP se compose de quatre procédures: le
pré-traitement, la requête, la preuve et la vérification (cf. Figure A.8). Pour la généra-
tion des méta-données d’un fichier, le client exécute la procédure du pré-traitement. Dans
la plupart des cas, le client maintient les méta-données et envoie une version du fichier
de données au serveur de stockage (par exemple, des données chiffrées). Pour vérifier
l’authenticité du fichier, le client envoie une requête au serveur contenant un challenge
aléatoire afin d’éviter les attaques par rejeu. Le serveur génère ainsi la preuve requise.
cette preuve doit faire usage du challenge reçu et des données hébergées. De son côté,
après avoir reçu la réponse de son fournisseur de service, le client compare la preuve avec
les méta-données stockées en local.

La méthode naïve pour concevoir un système PDP est basée sur une fonction de hachage
H(). En effet, le client pré-calcule k défis aléatoires ci, tels que i ∈ {1, k} et calcule les
preuves correspondantes: pi = H(ci||D). Dans sa requête, le client envoie ci au serveur
distant qui calcule p′i = H(ci||D). Si la comparaison est exacte, le client suppose que le
fournisseur de cloud héberge le bon fichier de données. Le plus grand inconvénient de ce
système est le nombre pré-fixé des requêtes qui ont été calculées dans la procédure du
pré-traitement. En effet, le client ne peut vérifier l’intégrité de ses données que k fois.

Les algorithms de preuve de possession doivent satisfaire plusieurs exigences, à savoir,

192

A.4. Intégrité des données dans le cloud

Figure A.8 - Schéma représentatif d’un prorocole PDP

le niveau de sécurité des données, la vérification publique, l’efficacité et la robustesse:

• vérification publique: la vérification publique de la possession des données est une
exigence importante, permettant à toute entité autorisée de vérifier l’intégrité des
données stockées sur des serveurs publiques distants. Par conséquent, le propriétaire
des données peut être relevé de la charge du stockage et du calcul.

• vérification sans état: les preuves doivent être générées selon un challenge aléa-
toire. La vérification nécessite ainsi l’utilisation de valeurs imprévisibles.

• coût de calcul faible: d’une part, pour des raisons d’évolutivité, le coût de calcul
sur le serveur de stockage devrait être réduit au minimum, puisque le serveur pourrait
être impliqué dans plusieurs interactions simultanées. D’autre part, les algorithmes
proposés doivent également avoir une faible complexité de traitement, du côté client,
vu ses faibles capacités de calcul.

• coût de communication faible: un PDP efficace devrait réduire au minimum
l’utilisation de la bande passante, en s’appuyant sur un faible coût de communication.

• coût de stockage faible: les capacités de stockage limitées des dispositifs de
l’utilisateur ont une importance cruciale dans la conception de nos solutions. De
ce fait, un faible coût de stockage est fortement recommandé.

• challenges illimités: le nombre de challenges devrait être illimité. Cette condition
est considérée comme importante pour l’efficacité d’un système PDP.

A.4.2 Preuve de Possession de Données (PDP), sans apport de connais-
sance

Dans cette section, nous présentons, notre contribution définissant un nouveau proto-
cole de preuve de possession, basé sur des mécanismes de preuve sans apport de connais-
sance [KEML14].

193

CHAPT A. FRENCH SUMMARY

A.4.2.1 Présentation

Profitant des propriétés des systèmes interactifs de preuve, sans apport de connais-
sance [Gol00], nous présentons un nouvel algorithme PDP, basé sur le protocole GPS, pro-
posé dans [GPS06]. Ainsi, nous étendons ce mécanisme à la vérification de l’authenticité
des fichiers stockés sur des serveurs cloud.

Nous proposons deux variantes de preuve de possession de données, à savoir un schéma
de vérification privée et un algorithme de vérification publique. La vérification privée fait
usage d’un secret stocké en local chez le client, tandis que la preuve publique est basée sur
des fonctions de couplage, permettant ainsi une entité autorisée à vérifier le contenu stocké
par une autre entité.

Le choix d’étendre le protocole GPS est motivé par plusieurs facteurs. En premier
lieu, les preuves, sans apport de connaissance, ajoutent des valeurs aléatoires aux messages
échangés. En effet, pour chaque session de vérification, le prouveur et le vérifieur doivent
générer de nouvelles valeurs aléatoires, ce qui rend chaque session différente des sessions
précédentes. Par conséquent, le caractère aléatoire impliqué dans les réponses du serveur
permet la préservation de la confidentialité des données. En deuxième lieu, le protocole
GPS a été adapté aux capacités de stockage limitées des tags. Avec la prévalence de la
communication sans fil, les appareils mobiles commencent à partager les avantages des
services de stockage dans le cloud. Au vu des ressources limitées de ces appareils, notre
protocole est basé sur un seul secret qui est nécessaire pour la vérification de toutes données
externalisées. En outre, le principal avantage de notre approche est la vérification publique,
permettant au vérifieur de se baser uniquement sur des éléments publiques, sans aucune
intervention du propriétaire des données.

A.4.2.2 Vérification privée de la preuve de possession

Dans notre système, nous définissons une courbe elliptique EC définie sur un sous-
groupe additif G1 d’ordre premier q. Soit P un générateur de G1.

Quand un client veut stocker un fichier de données D, il doit, d’abord, décomposer D
en deux blocs s et n. n représente le quotient et s est le reste de la division euclidienne
appliquée sur le fichier D à l’aide du diviseur b. Il est à noter que b est maintenu secret
par le client et est utilisé dans la décomposition de plusieurs fichiers. Il représente l’unique
information secrète qu’un client doit conserver pour l’ensemble de ses demandes de preuve
de la possession de données. Notons que b est étroitement lié à la sécurité de notre sys-
tème de vérification à distance. En effet, la définition de plusieurs diviseurs de données
peut étendre notre proposition permettant le propriétaire des données de s’appuyer sur
différents secrets, selon le niveau de sensibilité des données.
Ensuite, en se basant sur le ECDLP, les éléments publiés sont bP, nP, SP , notés respec-
tivement pk, σ1 et σ2. pk représente la clé publique du propriétaire de données, tandis que
les σ1 et σ2 sont les éléments publiques du fichier D.

Notre protocole consiste en deux phases. Au cours de la première phase, les algorithmes
KeyGen et Setup sont exécutés. KeyGen est la procédure permettant de générer une paire
de clés publique et privée du propriétaire de données, tandis que Setup applique la division

194

A.4. Intégrité des données dans le cloud

euclidienne sur le fichier concerné afin de générer σ1 et σ2. Cette phase n’est effectuée que
lorsque le fichier est téléchargé sur les serveurs du cloud.
La deuxième phase se produit lorsque le client veut vérifier l’authenticité du fichier de
données. En effet, il génère une nouvelle requête b′ afin d’obtenir une preuve de la possession
de données de son fournisseur de service. b′ représente un diviseur aléatoire choisi par le
propriétaire de données pour avoir une nouvelle décomposition du fichier.

A la réception de ce nouveau diviseur, le fournisseur de service exécute, ainsi, un
algorithme ChalProof qui consiste à échanger trois messages avec le vérifieur, comme suit:

• Commitment (CSP → C) : le serveur de stockage calcule la nouvelle décomposition
en se basant sur b′, telle que:

D = mb′ + z

Ensuite, il choisit deux nombres aléatoires (r, t) ∈R [0, B[2 et envoie les commitments
correspondants au client (x1, x2) = (r · P, t · P).

• Challenge (C → CSP) : le client choisit un nombre aléatoire c ∈R [0, K[qu’il envoie
au prouveur.

• Response (CSP → C) : le serveur calcule γ1 et γ2, en se basant sur (r, t), et le couple
(m, z):

(γ1, γ2) = (r + cz, t+ cm)

Après, le prouveur envoie (y1, y2), telque y1 = γ1 · P et y2 = γ2 · P .

Une fois cette preuve reçue, le fournisseur de service exécute une procédure Verify. Il
vérifie l’intégrité de son fichier stocké sur un serveur distant, en se basant sur l’unicité de
la division euclidienne appliquée sur le même contenu, comme suit:

y1 − x1 − c · σ1 = c.sk · σ2 − b′ · (y2 − x2). (A.2)

A.4.2.3 Vérification publique de la preuve de possession

Un utilisateur autorisé, différent du propriétaire de données, pourrait également vérifier
l’authenticité des données. Toutefois, le protocole proposé, dans le paragraphe précédent,
ne peut pas être utilisé à ce fin, car il suppose que le vérifieur possède la clé privée du
client, ce qui n’est pas le cas de l’utilisateur. Dans ce qui suit, nous démontrons que les
paramètres publiques du client peuvent également être utilisés afin de mettre en œuvre
un système PDP entre un utilisateur, différent du propriétaire du fichier, et le serveur de
stockage, en se basant sur les fonctions de couplage ê.

La vérification publique vérifie l’équation suivante:

ê(c · σ1, pk) ⋆ ê(c · σ2, P) = ê(y, P) ⋆ ê(x1 + b′x2, P)−1. (A.3)

où y = (γ1 + b′γ2) · P .

195

CHAPT A. FRENCH SUMMARY

A.4.3 SHoPS: Preuve de possession d’ensembles de données homomor-
phiques

Dans cette section, nous présentons SHoPS, un protocole de preuve de possession de
données capable de traiter les trois relations d’ensembles homomorphiques. SHoPS permet
ainsi au client non seulement d’obtenir une preuve de la possession du serveur distant, mais
aussi de vérifier que le fichier, en question, est bien réparti sur plusieurs périphériques de
stockage permettant d’atteindre un certain niveau de la tolérance aux pannes. En effet,
nous présentons l’ensemble des propriétés homomorphiques, qui étend la malléabilité du
procédé aux propriétés d’union, intersection et inclusion.

A.4.3.1 Présentation de SHoPS

Pour tolérer les pannes des disques, chaque fichier de données est stocké avec la redon-
dance nécessaire. Ensuite, chaque fichier de données est divisé en blocs, et chaque bloc
B est divisé en q sous-blocs, où q est un paramètre du système. Chaque sous-bloc est
représenté par un seul élément d’un groupe multiplicatif G2. Notre protocole de preuve
de possession de données, appliqué à un seul bloc de données, est constitué de cinq algo-
rithmes aléatoires, sur la base de deux phases. Pendant la première phase, les procédures
d’initialisation du système sont exécutées. Cette phase est effectuée une seule fois lorsque
le fichier est stocké sur les serveurs cloud:

• gen : {1}λ → Kpub
2 ×Kpr ×G2

2q−1 – soit λ le paramètre de sécurité, cet algorithme
génère une paire de clés publique et privée du propriétaire des données (pk, p̂k, sk),
et un ensemble d’éléments publiques, basé sur le problème Diffie-Hellman Expo-
nent [DH76].

• stp : 2M×G2
q → G2 – Soient un bloc de données Bi ∈ {0, 1}∗ et la clé publique pk,

l’algorithme stp génère un identifiant du bloc Bi, noté IDBi
et son accumulateur

{Bi, ̟i}, tels que i ∈ {1, · · · , n} et n est le nombre de blocs.

La deuxième phase est exécutée, quand un propriétaire de données, veut vérifier l’authenticité
d’un bloc de données:

• clg : Zp
∗ × Zp

∗ → C – cet algorithme probabiliste est exécuté par le client. Il prend
comme entrée le nombre de blocs de données q. Il génère ainsi un challenge c ∈ C
qui consiste à un index d’un sous-bloc choisi aléatoirement et un élément de la clé
publique p̂k caché par un nonce η telque c = (i, p̂k

η
).

• prf : Kpub×2M×C → P – l’algorithme prf calcule la réponse du serveur P = (σ1, σ2)
suite au challenge reçu par le client, en utilisant les blocs de données stockés dans
ses serveurs.

• vrf : P ×Kpub
2 → {0, 1} – il s’agit d’une fonction de vérification des réponses reçues

P du serveur de stockage, où 1 signifie succès (i.e., le client a vérifié avec succès
l’intégrité de ses données stockées sur le serveur cloud). Par ailleurs, 0 signifie un
rejet.

196

A.4. Intégrité des données dans le cloud

A.4.3.2 Vérification publique d’un bloc de données SHoPS

La preuve de possession de données, présentée dans cette section, est limitée à un seul
bloc. Comme présenté ci-dessus, une première phase traitant les procédures d’initialisation
du système est exécutée. Elle comporte deux procédures, à savoir l’algorithme gen (cf,
Algorithm 21) et l’algorithme stp (cf, Algorithm 22).

Algorithm 21 La procédure gen de SHoPS
1: Input: paramètre de sécurité (ξ)
2: Output: (pk, p̂k), pr, param = {gi}1≤i≤2q;i 6=q+1

3: Choisir un groupe multiplicatif G1 d’ordre premier q;
4: Choisir un générateur g du groupe G1;

5: α
R←− Zp

∗;
6: param = {g}
7: for all j ∈ [1 . . . 2q] do
8: param← param ∪ {gαj}
9: end for

10: Générer s
R←− Zp;

11: pr ← s;
12: pk ← gs;
13: p̂k ← gsq+1;

14: return (pk, p̂k, pr, {gi}1≤i≤2q;i 6=q+1)

Algorithm 22 La Procédure stp de SHoPS
1: Input: (Bi), pr, param
2: Output: IDBi

, ̟

3: Générer un identifiant du bloc IDBi
;

4: ̟i = 1;
5: for all j ∈ [1 . . . q] do
6: ̟i ← ̟i ∗ gπi,j

q+1−j
pr

;
7: end for
8: return (IDBi

, ̟i)

La deuxième phase est un protocole challenge-response entre un vérifieur autorisé et le
fournisseur de service.

D’abord, la procédure clg est exécutée par le vérifieur pour générer un challenge qu’il
envoie au serveur de stockage. Le client choisit, aléatoirement, un index k ∈ {1, q} qui
représente une position d’un sous bloc de données et un nonce η. Le challenge c ∈ C
consiste ainsi en un index d’un sous bloc et un élément publique p̂k, caché à l’aide d’un
nonce η telque c = (k, p̂k

η
).

A la réception du challenge, le serveur de stockage exécute une procédure prf pour
générer la preuve requise. En effet, le prouveur doit fournir un nouveau accumulateur, en
utilisant le nonce η envoyé par le client. Dans notre construction, la procédure prf est

197

CHAPT A. FRENCH SUMMARY

définie par l’algorithm 23. Par souci de consistence, nous supposons que le serveur possède
une version du du bloc de données qui est potentiellement altérée. Au-delà, cette version
est désignée par B̂i. Le but des étapes suivantes est de vérifier si B̂i = Bi.

Algorithm 23 La procédure prf de SHoPS

1: Input: (Bi), (pk, p̂k), param and the challenge c = (k, p̂k
η
)

2: Output: P = (σ1, σ2)

3: σ1 ← (p̂k
η
)πi,k ;

4: ˆ̟i = 1;
5: for all j ∈ [1 . . . q] do
6: if j 6= k then
7: ˆ̟i ← ˆ̟i ∗ gπi,j

q+1−j+k;
8: end if
9: end for

10: σ2 ← ˆ̟i;
11: return (σ1, σ2)

Une fois la preuve (σ1, σ2) reçue, le vérifieur publique exécute une procédure vrf, en
se basant sur les paramètres publiques param. Le vérifieur valide l’authenticité du bloc
de données, en vérifiant l’égalité suivante, en se basant sur le nonce η, le challenge c, et la
réponse P = (σ1, σ2) reçue du fournisseur de service, comme suit:.

[ê(gk, ̟i)ê(pk, σ2)
−1]η ê(g, σ1)

−1 = 1 (A.4)

A.5 Conclusion

Nous avons présenté dans ce travail quatre contributions, pour pallier à deux besoins
de sécurité dans des environnements de stockage en nuage, à savoir la confidentialité des
données et l’intégrité des données.

Notre Objectif A consiste à définir de nouvelles méthodes pour améliorer la confiden-
tialité des données dans des applications cloud, tout en améliorant le partage dynamique
entre les utilisateurs. En réponse à cet objectif, nous avons proposé deux approches dif-
férentes, basées sur l’utilisation de la cryptographie basée sur l’identité et la cryptographie
convergente, respectivement.

Afin de remplir l’Objectif C qui consiste à implémenter les techniques proposés pour
valider leur faisabilité et leur impact sur les performances des équipements, des expérimen-
tations ont été menées dans le cadre d’un testbed OpenStack. Les résultats de l’implémentation
de nos solutions, notamment CloudaSec et les schémas basés sur l’identité, ont affirmé que
ces propositions représentent des alternatives intéressantes, particulièrement pour des dis-
positifs, ayant des capacités de calcul et de stockage limitées.

les résultats expérimentaux ont montré l’efficacité de notre solution basée sur l’ID et
de CloudaSec, compte tenu de l’impact de l’exécution des opérations cryptographiques du
côté du client. Des expérimentations ont été menées dans un .

198

A.5. Conclusion

L’Objectif B consiste à aborder la preuve de possession des données stockées sur des
serveurs distants dans les environnements de stockage en nuage. Considérant trois exigences
de conception: niveau de sécurité, vérifiabilité publique, performances et des capacités de
stockage limitées des dispositifs de l’utilisateur, nous avons proposé deux systèmes de
vérification publiques. Le premier algorithme se base sur des mécanismes de preuve sans
apport de connaissance et consiste à générer à chaque session une composition différente du
fichier. Le deuxième algorithme, désigné SHoPS, permet de vérifier l’intégrité d’un fichier
de données, ainsi que sa répartition sur plusieurs périphériques de stockage permettant
d’atteindre un certain niveau de tolérance aux pannes.

L’Objectif D consiste à fournir des preuves mathématiques de l’exactitude des mé-
canismes proposés. D’un côté, afin de s’acquitter de ce quatrième objectif, nous avons
démontré l’exactitude des procédures de CloudaSec, à savoir les procédures de chiffrement
et de déchiffrement de la clé, pour les deux scénarios de partage. En outre, nous avons
également montré l’exactitude de la vérification publique et privée de SHoPS et de notre
protocole à base de preuves sans apport de connaissance.
D’un autre côté, basé sur un jeu de possession de données, nous avons montré que nos
algorithmes PDP, sans apport de connaissance, ainsi que SHoPS, étaient résistants aux
attaques de divulgation de données.

Nos perspectives de recherche comprennent:

• une évaluation de la sécurité de CloudaSec et de SHoPS, à l’aide de la sécurité prouvée
et le modèle de l’oracle aléatoire.

• avec la tendance forte des appareils mobiles (c’est à dire, les smartphones, les tablettes,
cdots) à faire appel aux services de stockage de données en nuage, il serait intéres-
sant d’étudier les mécanismes de sécurité des données de faible coût. En effet, notre
protocole de preuve de possession de données, à apport nul de connaissance, mérite
d’être mis en œuvre sur un matériel mobile réel pour évaluer les coûts de calcul. Ces
tests serviraient également à prédire l’efficacité énergétique des appareils mobiles,
tout en appliquant les fonctions cryptographiques proposées par notre protocole.

• une évaluation des coûts de communication de CloudaSec, en faisant varier les
paramètres influant sur la consommation de la bande passante, telles que la localisa-
tion des utilisateurs finaux, et la localisation des capacités de stockage.

• une évaluation de SHoPS dans un environnement des clouds imbriqués. Nous avons
montré l’efficacité de SHoPS, au sein du même CSP. Par conséquent, il serait in-
téressant d’évaluer ses performances, quand ce stockage de données est distribué sur
plusieurs sites. En tant que tel, SHoPS serait une alternative intéressante pour de
nombreux fournisseurs qui préfèrent stocker des données sur différents sites.

Pour conclure, ce mémoire a été l’occasion d’examiner un large éventail de concepts,
de modèles et de technologies dans les domaines de la sécurité de l’information et des
réseaux. Notre objectif était d’étudier les problèmes de sécurité des données stockées
en nuage, tout en se concentrant sur la confidentialité des données et les problèmes de
vérification de l’intégrité des données à distance. Nous avons fourni de nouvelles approches

199

CHAPT A. FRENCH SUMMARY

cryptographiques en réponse à quatre objectifs, et nous avons montré que notre travail
proposé rejoint une thématique de recherche riche et encourageante.
Enfin, nous affirmons que la sécurité de stockage de données en nuage est toujours pleine
de défis et d’une importance majeure, et de nombreux problèmes de recherche restent à
identifier et à étudier.

200

A.5. Conclusion

201

	Abstract
	Résumé
	Acknowledgement
	Introduction
	Cloud Storage Basics & Challenges
	Problem Statement and Objectives
	Contributions
	Thesis Organization

	I Cloud Data Storage Confidentiality
	Cryptography in Cloud Data Storage Environments
	Introduction
	Fundamentals on Cryptography
	Symmetric Cryptography
	Public Key Cryptography
	Diffie Hellman Algorithms
	Elliptic Curve Cryptography (ECC)
	Limits of Traditional Cryptographic Systems in Clouds

	Cryptographic Mechanisms in Clouds
	Identity Based Cryptography
	Prerequisites on Pairing Functions
	ID-Based Key Construction
	Examples of ID-Based Encryption Schemes
	IBC in Cloud Data Storage Security

	Attribute Based Cryptography
	Homomorphic Cryptography
	General Concept
	Homomorphic Cryptosystems in Cloud Storage Environments

	Formal Security Models
	Computational Security
	Provable Security

	Conclusion

	ID-Based Cryptography for Secure Cloud Data Storage
	Introduction
	Architecture and Security Requirements
	Architecture
	Security Requirements

	ID-Based Cryptography for Securing Cloud Applications
	Prerequisites
	Secure Data Storage
	Secure Data Backup
	Secure Data Sharing
	Scenario E1: Secure Data Sharing One To One
	Scenario E2: Secure Data Sharing One To Many

	Security Analysis
	Limitations and Possible Improvements
	Computation Complexity
	Deduplication Concern

	Implementation Results
	Conclusion

	CloudaSec: A Public Key based Framework to handle Data Sharing Security in Clouds
	Introduction
	Problem Statement
	CloudaSec Framework
	CloudaSec Overview
	Cryptographic Background
	Preliminaries
	Group Key Distribution (GKD)

	CloudaSec Procedures in Data Plane
	CloudaSec One to One Sharing Scenario
	CloudaSec One to Many Sharing Scenario

	CloudaSec Management Layer Procedures
	User Subscription
	User Revocation

	Security Analysis
	Threat Model
	Data Confidentiality
	Access Control

	Performance Evaluation
	Context
	Computation Cost Evaluation
	Communication Cost Evaluation
	Storage Cost Evaluation

	Synthesis
	Conclusion

	II Cloud Data Storage Integrity
	Remote Data Checking in Clouds
	Introduction
	PDP and PoR Review
	Naive Approach
	Introduction to Remote Data Checking Schemes

	Security Requirements
	Public Verifiability
	Efficiency
	Dynamic Data Support

	Summary
	Conclusion

	A Zero-Knowledge Scheme for proof of Data Possession in Cloud Storage Applications
	Introduction
	Zero-Knowledge Proofs
	Model Description
	System Model
	Security Model
	Assumptions

	A New-Zero Knowledge PDP Protocol
	Private Data Possession Scheme
	GenChal
	ChalProof
	Verify

	Public Data Possession Scheme

	Security Analysis
	Security and Privacy Discussion
	Soundness of Verification
	Completeness of Verification
	Zero Knowledge Property of Verification

	Resistance to Attacks
	Resistance to Replay Attacks
	Resistance to DLAs

	Performance Evaluation
	Theoretical Performance Analysis
	Computation Cost Evaluation
	Bandwidth Cost Evaluation
	Storage Cost Evaluation

	Time Performance Discussion
	Context
	Implementation Results

	Conclusion

	SHoPS: Set Homomorphic Proof of Data Possession Scheme in Cloud Storage Applications
	Introduction
	Requirement Analysis
	Model Description
	SHoPS Overview
	Complexity Assumptions

	SHoPS: A New Set Homomorphic PDP Scheme
	Single Data Block SHoPS
	clg procedure
	prf procedure
	vrf procedure

	Set-Homomorphic Properties of the proposed Scheme
	Set-Union Operator
	Set-Inclusion Operator
	Set-Intersection Operator

	Energy efficiency

	Security Discussion
	Threat Model
	SHoPS Resistance to Cheap and Lazy Server Adversary
	SHoPS Resistance to Malicious Verifier Adversary

	Experimental Study
	Theoretical Performance Analysis
	Computation Cost Evaluation
	Bandwidth Cost Evaluation
	Storage Cost Evaluation

	Conclusion

	Conclusion & Perspectives
	Glossary of Acronyms
	Author's Publications
	Bibliography
	French Summary
	Définitions
	Problématiques, Objectifs et Contributions
	Confidentialité des données stockées dans le Cloud
	Cryptographie Basée sur l'Identité pour un stockage sécurisé des données
	Architecture
	Scénario de stockage de données
	Scénario de récupération des données
	Scénario de partage des données
	Conclusion

	CloudaSec: Un protocle à clé publiques pour un partage sécurisé de données
	Présentation de CloudaSec
	Procédures de CloudaSec sur le plan de données

	Intégrité des données dans le cloud
	Protocoles de Preuves de Possession des Données
	Preuve de Possession de Données (PDP), sans apport de connaissance
	Présentation
	Vérification privée de la preuve de possession
	Vérification publique de la preuve de possession

	SHoPS: Preuve de possession d'ensembles de données homomorphiques
	Présentation de SHoPS
	Vérification publique d'un bloc de données SHoPS

	Conclusion

