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Abstract. Cloud detection is important for providing nec-

essary information such as cloud cover in many applica-

tions. Existing cloud detection methods include red-to-blue

ratio thresholding and other classification-based techniques.

In this paper, we propose to perform cloud detection us-

ing supervised learning techniques with multi-resolution fea-

tures. One of the major contributions of this work is that the

features are extracted from local image patches with different

sizes to include local structure and multi-resolution informa-

tion. The cloud models are learned through the training pro-

cess. We consider classifiers including random forest, sup-

port vector machine, and Bayesian classifier. To take advan-

tage of the clues provided by multiple classifiers and various

levels of patch sizes, we employ a voting scheme to com-

bine the results to further increase the detection accuracy. In

the experiments, we have shown that the proposed method

can distinguish cloud and non-cloud pixels more accurately

compared with existing works.

1 Introduction

With the trend of sustainable and green energy, there is a

growing demand for solar energy technology. To utilize so-

lar energy effectively, integrated and large-scale photovoltaic

systems need to overcome the unstable nature of solar re-

source (Gueymard, 2004; Heinemann et al., 2006; Lorenz et

al., 2009). The ability to forecast surface solar irradiance is

helpful for planning and deployment of electricity generated

by different units. Numerical weather prediction information

or satellite images are popular materials used for wide-range

prediction (Marquez and Coimbra, 2011; Perez et al., 2002,

2010; Remund et al., 2008). However, the resolution of pre-

diction with respect to space and time obtained by weather

prediction information or satellite cloud images is relatively

coarse compared to the resolution desired for photovoltaic

grid operators. For more refined spatial and temporal resolu-

tion of irradiance prediction, research that analyzes images

obtained from devices capturing skies has emerged. Ground-

based sky camera systems have been proposed to capture

the images of the sky (Sabburg and Wong, 1999), allowing

researchers to study the relationship between the sun and

clouds and the effect of clouds. Devices developed to moni-

tor the sky presented in some of the pioneering works include

whole sky imager (Kassianov et al., 2005; Li et al., 2004),

whole sky camera (Long et al., 2006), all-sky imager (Kub-

ota et al., 2003), and total sky imager (Pfister et al., 2003).

More recent commercial products include all-sky cameras by

Eko Instruments, Oculus, and SBIG. These devices are use-

ful to make up the deficiency of satellite cloud observations

in terms of spatial and temporal resolutions.

Cloud coverage, configurations, and types are critical fac-

tors that influence the solar irradiance. A category of research

works are devoted to detecting (Long et al., 2006), classify-

ing (Calbo and Sabburg, 2008; Heinle et al., 2010; Isosalo et

al., 2007; Liu et al., 2011; Martínez-Chico et al., 2011; Zhuo

et al., 2014), and tracking clouds (Marquez and Coimbra,

2013; Tapakis and Charalambides, 2013; Wood-Bradley et

al., 2012). The relationships between cloud coverage and sur-

face solar irradiance have been explored (Feister and Shields,

2005; Fu and Cheng, 2013; Pfister et al., 2003). It has been

shown that cloud fraction and surface irradiance are nega-
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tively correlated under most conditions. In addition to pro-

viding cloud coverage information, accurate cloud detection

result could further improve the cloud type classification ac-

curacy (Cheng and Yu, 2015b). It has been established that

employing cloud type information in the process of short-

term irradiance prediction could yield more accurate predic-

tion results (Cheng and Yu, 2015a).

Cloud detection in all-sky image decides if a pixel be-

longs to a cloud. Traditionally, red-to-blue ratio (RBR) of

each pixel is used to indicate whether the dominant source

of the pixel is from clear sky or clouds (Chow et al., 2011;

Johnson et al., 1989, 1991; Long et al., 2006; Shields et al.,

2007, 2009). Then, a threshold is applied to RBR to deter-

mine cloud pixels in a sky image. The pixels whose RBRs

are lower than the threshold are classified as clear sky and

the pixels whose RBRs are higher the threshold are labeled

as clouds. Selecting a good threshold is very important for

RBR method. The work by Long et al. (2006) suggested that

different thresholds should be selected depending on the rel-

ative position of the pixel being classified in contrast to the

positions of sun and horizon. In addition to pure color char-

acteristics, Roy et al. (2001) tried a neural network approach

with a wider range of variables for cloud segmentation. West

et al. (2014) also used a neural network to classify pixels. The

features they used are colors and the distance of the pixel to

the sun. Under lower-visibility conditions, aerosol and thin

clouds tend to cause errors in cloud determination. To im-

prove the accuracy of the single threshold method, Huo and

Lu proposed an integrated method for cloud determination

under low-visibility conditions (Huo and Lu, 2009). The inte-

grated cloud-determination algorithm uses fast Fourier trans-

form, symmetrical image features, and self-adaptive thresh-

olds. Li et al. (2011) proposed a hybrid thresholding algo-

rithm (HYTA) for cloud detection on ground-based color im-

ages, aiming at complementing fixed thresholding and adap-

tive thresholding algorithms. HYTA identifies the ratio image

as either unimodal or bimodal according to its standard de-

viation. Then, the unimodal and bimodal images are handled

by fixed and minimum cross entropy (MCE) thresholding al-

gorithms, respectively. Kazantzidis et al. (2012) tuned multi-

ple heuristic thresholds on RGB (red, green, blue) color com-

ponents to detect clouds. The abovementioned works mostly

consider the features extracted from each single pixel but not

the local image patch and structure around the pixel. Ber-

necker et al. (2013) used color and texture as features. After

applying deep belief networks to learn the structure of the

features, a random forest classifier is used to classify image

patches into three classes: sky, cloud, and thick cloud. Ber-

necker et al. (2013) proposed to utilize information of im-

age patch. However, they used fixed-size patches for training

and classification without considering multi-resolution infor-

mation. Patches with sizes that are too large would include

features from both sky and clouds. In contrast, patches with

sizes that are too small might not include enough information

to represent the appearance of the clouds.

In this paper, we propose to perform cloud detection via

extracting features from local image patches with various

sizes. Patches of different sizes extract information at dif-

ferent levels of resolution. For classification, we utilize mul-

tiple supervised learning techniques. We regard the cloud

detection problem as a two-class classification problem. In

other words, we classify each pixel in the image as cloud or

non-cloud. The cloud models are learned through the train-

ing process. We consider classifiers including support vec-

tor machine (SVM), random forest, and Bayesian classifier.

To extract features from each pixel, we calculate the RBR

as well as the color components of various color models in-

cluding RGB, HSV (hue, saturation, value), and YCbCr. To

take advantage of the clues provided by multiple classifiers

and multi-level resolution, we employ a scheme to combine

multiple classification results to further increase the cloud

detection accuracy. The methodology, including the features

and the classifiers, is elaborated in Sect. 2. In Sect. 3, the

proposed system framework is validated using a set of exper-

imental images with manually labeled ground truth. The ex-

perimental results using different classifiers are demonstrated

and discussed. Finally, conclusions are made in Sect. 4.

2 Methodology

The proposed system framework is illustrated in Fig. 1. For

each all-sky image, Hough line transform is performed first

to detect the vertical line of the sun, which is caused by the

CCD device when capturing all-sky images. The pixels on

this line often has bright intensities and could be confused as

cloud pixels. After detecting and eliminating the vertical line

of the sun, the rest of the pixels in the image are classified

as cloud or non-cloud. The input images are RGB color im-

ages. For each all-sky image, the color components in various

color space are computed. The color models considered in

this work include RGB, HSV, and YCbCr. In addition to the

abovementioned color components, the RBR of each pixel is

also calculated and considered as a feature. To perform pixel-

wise classification, all the color components and the RBR of

the local image patches around a pixel are collected and con-

catenated as a feature vector for the pixel. Training samples

are obtained from manually labeled ground truth images.

2.1 Hough line transform and sun position detection

Hough transform (Shapiro and George, 2001) is used to de-

tect the vertical line of sun in an all-sky image. The procedure

of detecting lines can be regarded as finding the coefficients

of the line equations using a voting mechanism. The proce-

dure of detecting lines via voting in the parameter space can

be achieved by dividing the parameter space into grids. Be-

cause all the pixels satisfying a certain line equation would

vote to the same grid, a high vote would appear in the cor-

responding grid in the parameter space. Hough transform
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Figure 1. System framework.

re-parameterizes the line equation as x cosθ + y sinθ = ρ

to avoid using the slope parameter for line equation y =

mx + b. Because possible values for the slope parameter m

range from minus infinity to infinity, it would be infeasi-

ble to find the slope parameter m via grid search. After re-

parameterizing the line equation, the range of the parameter

ρ can be set according to the width and height of the im-

age. The range of the parameter θ is from −180◦ to 180◦.

Figure 2 displays an example of Hough line detection on an

image. After detecting the vertical line, the sun position is de-

termined by accumulating the intensities of the pixels along x

direction in a window with width w1. The position with the

highest accumulated intensity is the center of the sun. The

pixels in the line window with a fixed width w2 are elimi-

nated from the image. The pixels within the sun position and

the line window with width w2 are determined as non-cloud

pixels and do not have to go through the subsequent classi-

fication steps. The values of w1 and w2 are determined de-

pending on the size of the all-sky images. In our experiments,

we set w1 and w2 as 60 and 12 pixels, respectively.

2.2 Color models

RGB is a very common color model, being used in most

computer systems. It is an additive color model based on tri-

chromatic theory. RGB is easy to implement. However, it is

nonlinear with visual perception, and the specification of col-

ors is semi-intuitive. HSV is a color model that describes col-

ors in terms of hue, saturation, and value components (Gon-

zalez and Woods, 2002). Hue is expressed as a number from

0 to 360◦. The hue component of red starts at 0, green starts

at 120, and blue starts at 240. Saturation is the amount of gray

in the color. And the value component describes the bright-

ness or intensity of the color. YCbCr is a color space used in

video and digital photography systems. Y is the luminance

component, and Cb and Cr are the blue-difference and red-

difference chroma components. HSV and YCbCr color com-

ponents can be obtained from RGB color components using

color model transformation equations (Gonzalez and Woods,

2002; Poynton, 2003). Although the color models are not

independent and including color components from different

color models may introduce redundancy in the feature vector,

considering various color models still provides the classifier

more information that is beneficial to performing classifica-

tion.

2.3 Feature vector construction for local image patches

of various sizes

For each pixel, local image patches with various sizes are

used to extract features. The size of the image patch at level

i is Li × Li , i = 1· · ·ℓ, where ℓ denotes the total number of

levels. For each local image patch, the color components and

the RBR of all the pixels in the patch are concatenated to

form a feature vector. Consequently, the dimension of each

feature vector is Li × Li × 10. There are ℓ feature vectors

constructed for each pixel.

2.4 Dimension reduction

We apply principal component analysis (PCA) (Duda et al.,

2001) on the feature vectors to reduce their dimensions.

Based on the assumption that the importance of the features

lies in the variability of the data, PCA chooses principal com-

ponents along the directions with the largest variance of the

data distribution first. The principal components are a set of

new orthogonal bases that can be used to re-express the data

in order to reduce the correlation among different variables.

Suppose that the original dataset has NSamples samples and

each sample has D1 variables. The data matrix X is estab-

lished with each sample as a column vector. Therefore the

data matrix X has NSamples columns and D1 rows. If we

would like to reduce the feature dimension to D2, then we

need to select D2 principal components. PCA constructs a

matrix XT X, which is a matrix proportional to the sample

covariance matrix of the dataset X. The first D2 eigenvec-

tors of XT X whose corresponding eigenvalues are largest are

chosen as principal components. To determine the desired

number of dimensionality D2, we check the eigenvalue ratio

Reigenvlaue:

Reigenvalue =

D2
∑

k=1

|λk|

D1
∑

k=1

|λk|

. (1)

In Eq. (1), λk denotes the kth eigenvalue of XT X. The first

D2 eigenvectors are preserved so that Reigenvalue is larger than

a threshold ThrPCA. The selection of ThrPCA is discussed in

the experiments in Sect. 3.
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Figure 2. Hough line transform and sun position detection.

2.5 Classifiers

2.5.1 Random forest

Classification and Regression Tree (CART) is a systematic

procedure that learns decision trees proposed by Breiman et

al. (1984). The splitting rules of the tree include an attribute

value test at each node of the tree. Starting from the root

node, all training data are used to split the root node. The tree

is then built recursively. Considering all the possible splitting

rules, CART would construct the tree by selecting the split-

ting rule that can maximize the impurity drop when a node is

added. The impurity measures the condition of mixed class

labels at each node. The goal is to make the class labels at

each node as “pure” as possible. The splitting process stops

when all the samples in a node have the same class label or

when the measure of purity at the child nodes cannot be im-

proved compared with its parent node. After a decision tree

is built, it might need to be pruned using a cross-validation

procedure. The reason for pruning is that some branches of

the tree might overfit the training data. In our experiment, we

use 10-fold cross validation. Instead of growing a single de-

cision tree, random forest grows an ensemble of trees and lets

them vote for the most popular class label. In this work, we

adopt random split selection (Dietterich, 2000) to build the

ensemble of trees. At each node, the split is selected at ran-

dom from the K best splits. The features for the split rules

are randomly selected. It reduces the correlation between the

trees and improves the efficiency of training.

2.5.2 Support vector machine

The SVM learns a set of hyperplanes that maximize the mar-

gins between the hyperplanes and the training samples in or-

der to lower the classification error of unknown testing sam-

ples. The motivation of SVM is that an ideal decision bound-

ary should have the largest distance to the nearest training

sample of all the classes. However, it might be infeasible to

separate data samples using linear hyperplanes in practice.

Therefore, soft margins and kernel functions are applied in

the SVM in practice. We apply SVM with radial basis func-

tions as one of the classifiers in this work. For the details

of SVM, please refer to the work by Cristianini and Shawe-

Taylor (2000).

2.5.3 Bayesian classifier

Bayesian classifier aims at minimizing the probability of

misclassification by classifying a sample x to the class ωk

with the largest posterior probability P(ωk|x). Since the pos-

terior probability P(ωk|x) itself is unknown, we need to

transform the problem using the probabilities that can be

obtained via training samples. Bayesian classifier uses the

Bayes’ theorem to re-express the posterior probability using

P(ωk|x) =
P (ωk)P (x|ωk)

P (x)
. (2)

In Eq. (2), P(ωk) denotes the prior probability, which is in-

dependent of the testing sample. In other words, P(ωk) states

how likely a pixel belongs to cloud or non-cloud regardless

of its observed feature vector. It is possible to use meteoro-
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logical conditions and weather forecast report to determine

different prior probabilities P(ωk) for each day. However, we

use the same prior probabilities for both cloud and non-cloud

classes for simplicity, and no meteorological information is

required to be involved as prior knowledge in our decision

process. The class conditional probability P(x|ωk) in Eq. (2)

can be learned from the training samples. We use Gaussian

distributions

P (x|ωk) =
1

(2π)
p
2 |6k|

1
2

e− 1
2 (x−µk)6k(x−µk)

T

(3)

to model the class conditional probability P(x|ωk) for each

class. In Eq. (3), µk denotes the mean vector, 6k denotes the

covariance matrix, and p is the number of dimensionality of

x and µk , i.e., x ∈ ℜp and µk ∈ ℜp. To learn the parameters

of Gaussian functions, training samples from each class are

used to calculate the sample mean vector µk and the sample

covariance matrix 6k for the class. The probability of the

sample P(x) in Eq. (2) does not depend on the class label

and can be neglected in the decision process.

2.6 Combining results of multiple-level neighborhoods

and classifiers

The concept of a multiple expert system is to take advan-

tage of the clues provided by multiple classifiers. Instead of

majority voting, we use a different voting scheme to com-

bine the results of multiple-level patches and classifiers. The

voting is performed in a multi-scale neighborhood, which is

inspired by the works of Lowe (2004) and Bay et al. (2008).

As shown in Fig. 3, considering a 3×3 neighborhood around

a target pixel p at level i, its previous level i − 1 and its

next level i + 1, voting is performed in the scale space of

its 3×3×3 neighborhood. That is, we consider the classifier

results of a target pixel p itself and its eight neighbors in the

3 × 3 region at the current level i, the pixel p and its eight

neighbors in the 3 × 3 region at the previous level i − 1, and

the pixel p and its eight neighbors in the 3 × 3 region at the

next level i+1. For the pixels in level i−1 in Fig. 3a, the size

of the local image patch used for feature vector construction

is Li−1 × Li−1 in Fig. 3b. Similarly, image patches of size

Li×Li and Li+1×Li+1 are used for level i and level i+1, re-

spectively. The voting scheme takes into account the classifi-

cation results from four classifiers: RBR thresholding, SVM,

random forest, and Bayesian classifier. In other words, there

are 27×4 votes for the pixel at each level. Let Vcloud(xLeveli )

denotes the number of votes in the neighborhood classified

as cloud for pixel x at level i. The decision for a pixel at

level i is determined by Vcloud(xLeveli ) > Nv. In other words,

if there are more than Nv votes in the 3×3×3 neighborhood

of a pixel at level i, the pixel is classified as a cloud pixel at

this level. Considering the example illustrated in Fig. 3c, the

numbers represent the votes in the 3×3×3 neighborhood of

pixel p at level i. Summing up the numbers in Fig. 3c, we

obtain Vcloud(xLeveli ) = 61. If the threshold Nv equals to 57,

then pixel p is classified as cloud at level i. For the bound-

ary conditions at level 1 and level ℓ, there is no level i − 1 at

level 1, and there is no level i +1 at level ℓ. There are 18×4

votes for the pixels at these two levels. When performing vot-

ing for pixels at level 1 and ℓ, as long as the votes for a pixel

exceeds threshold Nv, the pixel is still classified as cloud as

that level in our implementation.

To combine the decision at different levels, the probability

P(x ∈ cloud|Num
i=1∼ℓ

(xLeveli ∈ cloud)) is computed. The prob-

ability P(x ∈ cloud|Num
i=1∼ℓ

(xLeveli ∈ cloud)) states the prob-

ability of pixel x belonging to cloud given the number

of levels that the pixel is determined as cloud. Suppose

Num
i=1∼ℓ

(xLeveli ∈ cloud) denotes the number of levels at which

pixel x is determined as cloud among all levels i = 1

toℓ. If Num
i=1∼ℓ

(xLeveli ∈ cloud) is 0, it means that the pixel

is not classified as clouds in any level. If Num
i=1∼ℓ

(xLeveli ∈

cloud) is ℓ, it means the pixel is classified as clouds in

all levels. If P(x ∈ cloud|Num
i=1∼ℓ

(xLeveli ∈ cloud)) is larger

than P(x ∈ noncloud|Num
i=1∼ℓ

(xLeveli ∈ cloud)), the final de-

cision would classify the pixel to be a cloud pixel. The

probabilityP(x ∈ cloud|Num
i=1∼ℓ

(xLeveli ∈ cloud)) can be ex-

pressed as Eq. (4) using Bayesian rules of conditional proba-

bility. In Eq. (4), the term P(Num
i=1∼ℓ

(xLeveli ∈ cloud)) is inde-

pendent of class label and would not affect the decision. The

prior probabilities P(x ∈ cloud) and P(x ∈ noncloud) are as-

sumed to be equal as stated in Sect. 2.5.3. The likelihood

term P(Num
i=1∼ℓ

(xLeveli ∈ cloud)|x ∈ cloud) is learned from the

training dataset by constructing the normalized histogram of

Num
i=1∼ℓ

(xLeveli ∈ cloud) using all ground truth cloud pixels.

P

(

x ∈ cloud|Num
i=1∼ℓ

(

xLeveli ∈ cloud
)

)

=

P(x ∈ cloud)P

(

Num
i=1∼ℓ

(

xLeveli ∈ cloud
)

|x ∈ cloud

)

P

(

Num
i=1∼ℓ

(

xLeveli ∈ cloud
)

) (4)

3 Experimental results

In this work, the device used to capture the all-sky images

is the all-sky camera manufactured by the Santa Barbara In-

strument Group (SBIG). The field of view is 185◦. The focal

length is 1.44 mm. And the focal ratio range is f/1.4–f/16.

The resolution of the bitmap images is 640 × 480. We man-

ually marked the ground truth of cloud pixels in 250 images

for training and testing. These images are collected from Jan-

uary to June 2014 at the National Central University, Taiwan.

With the ground truth labels of the images, we are able to

calculate the detection accuracy at pixel level. We adopt 10-

fold cross validation to calculate the average detection ac-
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Figure 3. Voting in the scale space of a 3 × 3 × 3 neighborhood: (a) structure of the scale space neighborhood; (b) size of the local image

patch at different levels; (c) number of votes in the scale space neighborhood.

curacy, precision, and recall rate. Ten-fold cross validation

means that the dataset is divided into 10 none-overlapping

subsets. Nine subsets are used for training, and the remain-

ing one subset is used for testing. Then the training sub-

sets and testing subsets are rotated for 10 times. The aver-

age classification rate of these 10 experiments is the 10-fold

cross-validated accuracy. The definitions of detection accu-

racy, precision, and recall rate are listed in Eqs. (5) to (7).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

In Eqs. (5) to (7), true positive (TP) is the number of cloud

pixels correctly detected. True negative (TN) is the number

of non-cloud pixels that are correctly classified. False pos-

itive (FP) is the number of non-cloud pixels that are incor-

rectly classified as clouds. False negative (FN) is the number

of cloud pixels that are incorrectly classified as non-cloud.

In this work, the RGB thresholding method proposed by

Long et al. (2006) will be used as the baseline method for

comparison. In Long’s work, an RBR threshold is recom-

mended for the whole sky camera and several thresholds

are suggested to be used for the total sky imager. Since

the desired threshold varies due to different devices and

weather conditions, we perform an experiment to test the

best threshold for our all-sky camera. Also, to avoid false

positive detection at highlighted regions around the sun, we

employ an upper bound threshold. Therefore, two thresh-

olds, Thrupper and Thrlower, are used in the experiments. A

pixel is classified as cloud if its RBR is higher than Thrlower

and lower than Thrupper. We perform experiments on sev-

eral thresholds to select the best thresholds for our dataset.

Figure 4. Cloud detection accuracy using various RBR thresholds.

In Fig. 4, we can observe the trade-off between precision

and recall. As the thresholds become stricter, the precision

increases and the recall drops. Precision rate and recall rate

cannot be used alone to measure the accuracy since precision

does not consider false negatives and recall does not con-

sider false positives. Therefore accuracy defined in Eq. (5)

is used as the conclusive metric to measure the performance.

As shown in Fig. 4, we have observed that Thrlower = 0.8

and Thrupper = 0.9 yield the best detection accuracy for our

dataset. In the rest of the experiments, we use RBR thresh-

olding with Thrlower = 0.8 and Thrupper = 0.9 as a baseline

method for comparison. However, even with the best selected

RBR thresholds, the cloud detection result is not satisfy-

ing. The thresholds Thrlower = 0.8 and Thrupper = 0.9 might

cause some false positives for certain images while caus-

ing some false negatives for other images. Therefore, neither

raising or lowering the threshold could improve the detection

results by thresholding.

To observe classification results of different classifiers,

the detection accuracy of different classifiers based on sin-

gle pixel color information are plotted in Fig. 5. Compared

with other classifiers, RBR thresholding with Thrlower = 0.8

and Thrupper = 0.9 has the lowest detection accuracy. Major-
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Figure 5. Comparisons of detection accuracy using different classi-

fiers with single pixel color information.

ity voting of the four detection methods can yield better ac-

curacy. We also compare with the classification accuracy of

using only single RGB color model as the feature vector to

validate that adding other color models in the feature vector

can yield better classification results. With voting schemes

that combine the information from multiple classifiers, the

accuracy can be enhanced compared with individual single

classifiers. However, utilizing only single pixel color infor-

mation is not sufficient to give satisfying detection accuracy.

Applying features extracted from local image patch is able to

further enhance the detection results.

When applying the proposed cloud detection method, we

use five levels of local image patches with different sizes, i.e.,

ℓ = 5. The size at each level is L1 = 5, L2 = 10, L3 = 15,

L4 = 20, L5 = 25. To observe the effect of parameter ThrPCA

for dimension reduction at each level, we perform an experi-

ment using the feature vector constructed at each single level

with SVM as the classifier for different settings of ThrPCA.

The value of ThrPCA is typically between 90 and 99 % and

is selected empirically. Typically, the accuracy of classifica-

tion would increase as the value of ThrPCA goes from 100 %

(which means no dimensionality reduction at all) to 99 %.

The accuracy of classification would continue increasing un-

til ThrPCA reaches a certain value, which is caused by the

benefit of dimensionality reduction. After that, the accuracy

of classification would start to decrease due to too much in-

formation loss. We plot the cross-validated detection accu-

racy in Fig. 6. From Fig. 6, we can observe that the de-

tection accuracy at single level using SVM is highest for

ThrPCA = 97 % at levels L1 and L2. At levels L3, L4, and L5,

the parameter ThrPCA = 95 % yields better results. There-

fore, for levels L1 and L2, ThrPCA = 97 % is selected; for

levels L3, L4, and L5, ThrPCA = 95 % is selected.

To combine results of multiple-level patches and classi-

fiers, the threshold for voting Nv needs to be determined. The

detection accuracy of combining the results using different

Nv settings is plotted in Fig. 7. As shown in Fig. 7, when Nv

ranges from 50 to 70, the detection accuracy is higher. We

select Nv = 57 for the proposed method.

Figure 6. Detection accuracy with different ThrPCA settings in

Eq. (5) at each level using SVM.

Figure 7. Detection accuracy with different Nv settings.

To test the number of levels required to yield better de-

tection results, we plot the detection accuracy using different

number of levels in Fig. 8. Note that for the sixth level and

seventh level, the size of the local image patch is L6 = 30 and

L7 = 35. We can observe that using four or five levels results

in better detection accuracy. When involved with levels with

image sizes that are too large, the detection accuracy drops.

Selected cloud detection results are shown in Fig. 9b. The

proposed method using features from multi-scale local image

patches can accurately detect clouds in the all-sky images.

The pixels within the vertical line and the solar disk would

not be detected as clouds even though their intensities are

high. The Hough line detection and sun position detection

successfully eliminated those pixels before performing clas-

sification. Compared with detection results of RBR 0.8–0.9

in Fig. 9c, the proposed method can detect cloud pixels with

satisfying accuracy with the proposed multi-level local patch

feature extraction mechanism and combination of multiple

expert decision.

To summarize the detection accuracy, the detection ac-

curacy of various methods are plotted in Fig. 10. We com-

pare the proposed method with ANN (Roy et al., 2001) and

HYTA (Li et al., 2011). ANN utilized a feed-forward back-

propagation neural network to perform detection. HYTA em-
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Figure 8. Detection accuracy using different number of levels.

Figure 9. Selected results: (a) original images; (b) detection results

of the proposed method; (c) detection results of RBR 0.8–0.9.

ploys dynamic thresholding based on MCE when necessary.

The ANN and HYTA methods outperform traditional RBR

thresholding. Nevertheless, the accuracy of ANN and HYTA

still has room for improvement. Using the single pixel color

components described in Sect. 2.2 and utilizing SVM as

the classifier can yield slightly improved accuracy compared

with ANN and HYTA. Incorporating feature vector extracted

from single level 15 × 15 neighborhood patch can further im-

prove the accuracy compared with using only information

from single pixel. The proposed method utilizing features ex-

tracted from multi-level neighborhood yields the best accu-

racy since multiscale information is considered.

4 Conclusions

With the development of all-sky cameras, the cloud condi-

tions in the sky can be monitored and useful information

can be extracted for solar irradiance prediction with refined

spatial and temporal resolutions. Clouds play a critical role

Figure 10. Comparisons of different methods.

in affecting the amount of solar irradiance penetrating the

atmosphere. With more accurate cloud detection schemes,

subsequent prediction modules that forecast solar irradiance

could benefit a lot from the enhanced detection results. In this

work, supervised learning methods are utilized to train var-

ious classifiers that can distinguish cloud pixels from non-

cloud pixels in all-sky images. The classifiers implemented

in this work include RBR thresholding, SVM, random for-

est, and Bayesian classifier. We propose to use features ex-

tracted from multi-level local image patches with different

sizes to include local structure and multi-resolution informa-

tion. Final decision is made according to multi-level classi-

fication results by various classifiers. A challenging dataset

with ground truth labels is used to validate the detection

schemes. Experiments have also shown that the proposed

detection method yields better results than both fixed and

dynamic RBR thresholding. Combining the information of

multiple classifiers using voting can improve the detection

accuracy. It is also validated that using color information in

multi-level local neighborhood instead of only a single pixel

is very helpful to improve the detection accuracy. To apply

the proposed method on different all-sky cameras, images

captured by various cameras can be added into the training

set to enhance the robustness of the detector. For the selec-

tion of parameters ThrPCA and Nv for different devices and

sites, if the number of levels and feature length are fixed, the

desired parameters should not be seriously affected even if

the training samples are changed.

5 Data availability

The data are available at https://drive.google.com/open?id=

0B38yagaBviZYNmxReVBIQkVJYkk (Cheng, 2017).
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