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Abstract. Satellite cloud detection over snow and ice has

been difficult for passive remote sensing instruments due to

the lack of contrast between clouds and cold/bright surfaces;

cloud mask algorithms often heavily rely on shortwave in-

frared (IR) channels over such surfaces. The Earth Polychro-

matic Imaging Camera (EPIC) on board the Deep Space Cli-

mate Observatory (DSCOVR) does not have infrared chan-

nels, which makes cloud detection over snow and ice surfaces

even more challenging. This study investigates the method-

ology of applying EPIC’s two oxygen absorption band pair

ratios in the A band (764, 780 nm) and B band (688, 680 nm)

for cloud detection over the snow and ice surfaces. We de-

velop a novel elevation and zenith-angle-dependent thresh-

old scheme based on radiative transfer model simulations

that achieves significant improvements over the existing al-

gorithm. When compared against a composite cloud mask

based on geosynchronous Earth orbit (GEO) and low Earth

orbit (LEO) sensors, the positive detection rate over snow

and ice surfaces increased from around 36 % to 65 % while

the false detection rate dropped from 50 % to 10 % for ob-

servations of January 2016 and 2017. The improvement in

July is less substantial due to relatively better performance

in the current algorithm. The new algorithm is applicable for

all snow and ice surfaces including Antarctic, sea ice, high-

latitude snow, and high-altitude glacier regions. This method

is less reliable when clouds are optically thin or below 3 km

because the sensitivity is low in oxygen band ratios for these

cases.

1 Introduction

The Earth Polychromatic Imaging Camera (EPIC) on board

the Deep Space Climate Observatory (DSCOVR) was

launched in 2015. The unique orbit of DSCOVR allows the

EPIC instrument to take continuous measurements of the en-

tire sunlit side of the Earth from the nearly backscattering

direction (scattering angles between 168.5 and 175.5◦) from

the first Lagrangian (L1) point of the Earth–Sun orbit, ap-

proximately 1.5 million kilometers away. The EPIC instru-

ment has 10 narrow spectral channels in the ultraviolet (UV)

and visible/near-infrared (Vis/NIR) (317–780 nm) spectral

range that enable retrieval of atmospheric ozone, cloud, and

surface vegetation information. The focal plane of the EPIC

system is a 2048 pixel × 2048 pixel charge-coupled device

(CCD) array that covers the entire disk with a nadir resolu-

tion of 8 km. However, due to the limited transmission ca-

pacity, all channels except the 443 nm channel are reduced

to 1024×1024 arrays through onboard processing and inter-

polated back to full resolution after being downlinked. The

operation of the instrument and the downlink speed limit the

temporal frequency of measurements to be approximately

once every 1.5 and 2.5 h in boreal winter and summer, re-

spectively. Detailed descriptions of the EPIC instrument can

be found in Herman et al. (2018), Marshak et al. (2018), and

Yang et al. (2019).

The EPIC cloud products, including cloud mask (CM),

cloud effective pressure (CEP), cloud effective height (CEH),
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and cloud optical thickness (COT), are developed with fewer

spectral channels compared with many spectroradiometers

currently on board the polar and geostationary satellites

(Yang et al., 2019). For example, the Moderate-resolution

Imaging Spectroradiometer (MODIS) cloud algorithm uses

simultaneous two-channel retrievals of COT and cloud effec-

tive radius (CER) separately for water and ice clouds, with

the cloud phase predetermined by more spectral tests. Since

EPIC does not have a particle-size-sensitive channel, and has

limited capability to determine the cloud phase, the EPIC

COT retrieval uses a single channel and derives two sets of

COT, one for assumed ice phase and one for assumed liquid

phase, each with fixed CER (Yang et al., 2019; Meyer et al.,

2016). CEP is derived based on two oxygen (O2) band pairs,

each consisting of an absorption and a reference channel. The

A-band absorption channel is centered at 764 nm with a full

width at half maximum (FWHM) of 1.02 nm, and its refer-

ence channel is centered at 780 nm with a FWHM of 1.8 nm.

The B band’s absorption channel is centered at 688 nm with

a FWHM of 0.84 nm, and its reference channel is centered at

680 nm with a FWHM of 1.6 nm (Marshak et al., 2018). The

O2 absorption bands are sensitive to cloud height because

the presence of clouds, especially thick clouds, reduces the

absorbing air mass that light travels through; hence, the ratio

of the absorbing and reference bidirectional reflectance func-

tions (BRFs) becomes larger. Since O2 absorption at 764 nm

is stronger than at 688 nm, the A-band ratio has higher sensi-

tivity than the B-band ratio (Yang et al., 2013).

Satellite cloud detections are usually based on the contrast

between clouds and the underlying Earth surface. Clouds

are generally higher in reflectance and lower in temperature

than the surface, which makes simple threshold approaches

in the visible and infrared window channels effective in cloud

detection (e.g., Saunders and Kriebel, 1988; Rossow and

Garder, 1993; Yang et al., 2007; Ackerman et al., 2010).

However, there are many situations when simple visible and

infrared threshold tests are not able to separate clouds from

surface or from heavy atmospheric aerosols such as dust and

smoke. The contrasts between clouds and surface are weak in

the visible channels when the surface is bright and weak in

the IR channels when the surface temperature is very low or

the cloud is very low in height. Additionally, partially cloudy

pixels due to small-scale cumulus or cloud edges also in-

crease the detection difficulty. The official MODIS CM al-

gorithm uses more than 20 spectral channels to detect clouds

in various situations. In particular, it heavily relies on short-

wave infrared channels at 1.38, 1.6, and 2.1 µm and thermal

channels at 11 and 13.6 µm for cloud detection over snow and

ice (Frey et al., 2008; Ackerman et al., 2010)

The lack of infrared and near-infrared channels in EPIC

makes cloud detection very challenging, especially over

snow and ice surfaces. The current EPIC CM algorithm

adopts a general threshold method, which uses two sets of

spectral tests for each of the three scene types: ocean, land,

and ice/snow (Yang et al., 2019). Over ocean, the 680 and

780 nm channels are used for cloud detection, because clouds

and the sea surface contrast well in both channels. Over land,

because of large variations in surface reflectivity at 680 and

780 nm, these two channels can no longer be used alone for

cloud detection. Instead, the algorithm uses the 388 nm chan-

nel and the A-band reflectivity ratio, i.e., R764/R780 for cloud

detection. The 388 nm channel is used because of its low re-

flectivity over land surfaces. The A-band ratio is used based

on the same mechanism as the cloud height retrieval because

clouds reduce O2 band absorption by increasing the height

of the effective reflective layer. Thus, the A-band ratio of

a cloudy pixel is expected to be higher than that of a clear

pixel in an otherwise identical situation. The A-band ratio

is selected for use over the land surface because it has higher

sensitivity than the B-band ratio. Over snow- and ice-covered

regions, the O2 A- and B-band ratios are used for cloud de-

tection since the contrast between surface and clouds is small

in the visible and UV channels. Evaluations using the collo-

cated cloud retrievals from other sensors show that the EPIC

CM performs very well in general. The EPIC CM has an

overall 80.2 % accuracy rate and 85.7 % correct cloud de-

tection rate (accuracy and correct cloud detection rate are de-

fined in Sect. 5), but a large discrepancy is found over the

snow- or ice-covered surfaces where the EPIC algorithm sig-

nificantly underestimates cloud fraction, especially over ice-

and snow-covered Antarctica (Yang et al., 2019). One of the

reasons is that the current algorithm uses empirically derived

fixed A-band and B-band ratio thresholds without consider-

ing the photon path changes due to Sun/sensor geometry and

surface elevation.

The current work aims to improve EPIC cloud masking

through a better understanding of the variability of the O2

band ratios under various clear and cloudy conditions over

snow and ice surfaces. Radiative transfer model simulations

and observed reflectance will be examined to derive dynamic

thresholds for the O2 band ratios so that the new algorithm

is applicable to all snow and ice surfaces, i.e., Antarctica,

Greenland, snow in high latitude, and glaciers over high

mountains.

To compute radiation fluxes from EPIC and NISTAR in-

struments on board the DSCOVR satellite (Su et al., 2018,

2020), the Clouds and the Earth’s Radiant Energy System

(CERES) team at the NASA Langley Research Center cre-

ated a composite cloud product from geosynchronous Earth

orbit (GEO) and low Earth orbit (LEO) satellites by project-

ing the GEO/LEO retrievals to the EPIC grid at each EPIC

observing time (Khlopenkov et al., 2017). The procedure

ensures that every EPIC image/pixel has a corresponding

GEO/LEO composite image/pixel with approximately the

same size and observation time. The LEO satellites include

NASA Terra and Aqua MODIS and NOAA AVHRR, while

geosynchronous satellite imagers include the Geostationary

Operational Environmental Satellites (GOES) operated by

NOAA, Meteosat satellites by EUMETSAT, and Multifunc-

tional Transport Satellites (MTSAT) and Himawari-8 satel-
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lites operated by the Japan Meteorological Agency (JMA).

Compared to EPIC, the GEO/LEO sensors are usually bet-

ter equipped for cloud detection over snow and ice. For this

study, the GEO/LEO cloud mask is used as a reference for

EPIC threshold finding and result comparison purposes. The

time differences between the GEO/LEO and the EPIC ob-

servations are included in the product files. To limit uncer-

tainties, we only use pixels where the GEO/LEO and EPIC

observations are within 5 min of each other.

The remainder of the paper is organized as follows: Sect. 2

provides an analytical discussion on the relationship between

the O2 band ratios with the relative air mass and surface el-

evation. Section 3 conducts sensitivity studies through radia-

tive transfer modeling and describes the threshold derivation

procedure using the model simulations. Section 4 describes

the new cloud mask algorithm for the EPIC instrument over

snow and ice. Section 5 reports on the new algorithm vali-

dation. Finally, Sect. 6 provides a brief summary and discus-

sion.

2 An analytical guide with monochromatic radiative

transfer

Oxygen absorption has been applied to remote sensing of

cloud and aerosol extensively (e.g., Grechko et al., 1973; Fis-

cher and Grassl, 1991; Min et al., 2004; Stammes et al., 2008;

Wang et al., 2008; Vasilkov et al., 2008; Ferlay et al., 2010;

Koelemeijer et al., 2001; Yang et al., 2013; Ding et al., 2016;

Richardson et al., 2019). The underlying physics is based

on the well-known gaseous absorption of well-mixed atmo-

spheric O2. Changes in observed radiance in the O2 band

are expected to contain information on how clouds or at-

mospheric aerosols interrupt the normal absorption photon

path and/or provide additional scattering at different verti-

cal levels. The cloud detection using the O2 absorption band

ratios is based on the fact that clouds decrease the photon

path length within the atmosphere. Clouds reduce the oxy-

gen absorption optical thickness while their impact on the

nearby reference channels is negligible. As a result, holding

everything else equal, the BRF ratios between the absorp-

tion and the reference channels are expected to be larger for

cloudy skies than clear skies. In reality, photon paths can be

very complicated: Yang et al. (2013) listed six pathways for

a photon to reach the sensor. To simplify the discussion, we

focus only on completely clear or cloudy cases. To determine

a threshold for separating clear sky and cloudy sky, the first

step is to understand factors that affect the clear-sky O2 band

ratios. The second step is to understand how O2 band ratios

change with the presence of different kinds of clouds. This

step helps determine where thresholds can be drawn between

clear skies and cloudy skies and what kind of sensitivity or

uncertainty can be expected with this method.

The radiances entering the sensor consist of many com-

ponents, including sunlight directly reflected by clouds,

aerosols, and surfaces, as well as Rayleigh scattering through

single- and multiple-scattering processes. Rayleigh optical

thicknesses at the oxygen A- and B-band regions are about

0.02 and 0.04, respectively. Hence, for a clear sky over a

bright surface, we can neglect the contribution of single and

multiple scattering. Thus, the monochromatic BRF at the top

of atmosphere can be related to the column optical depth via

Beer’s law as

Rabs = T dn
abs × αabs × T

up
abs = αabse

−(τ(z)+τray(z))
(

1
µ

+
1

µ0

)

, (1)

Rref = T dn
ref × αref × T

up
ref = αrefe

−τray(z)
(

1
µ

+
1

µ0

)

, (2)

m =
1

µ
+

1

µ0
=

1

cosθ
+

1

cosθ0
, (3)

where Rabs and Rref are the BRFs for the oxygen band and

its reference band, respectively. The BRF at the top of the

atmosphere is a product of downward transmittance (T dn),

spectral surface reflection albedo α, and upward transmit-

tance (T up). τ and τray are optical thickness values due to O2

absorption and Rayleigh scattering at nadir, respectively, and

are functions of surface elevation Z. m is the total air mass

accounting for the slant path for both incoming (T dn) and

reflected light (T up). The absorption channels are subject to

both absorption and Rayleigh scattering, while the reference

channels only incur Rayleigh scattering. The ratio of Rabs

and Rref led to the cancellation of Rayleigh scattering and

surface albedo since the two channels are very close, such

that

Rabs

Rref
= e

−τ(z)
(

1
µ

+
1

µ0

)

= e−τ(z)×m. (4)

The absorption optical thickness at a given location decreases

exponentially with surface elevation following the approxi-

mate relationship in Eq. (5) (Petty, 2006):

τ (z) = Kaw1ρ0H exp

(

−
Z

H

)

= c × exp

(

−
Z

H

)

. (5)

Here H is the scale height; and Ka, w1, and ρ0 are the mass

absorption coefficient, mixing ratio of oxygen, and density

of air at sea level, respectively. c = Kaw1ρ0H and can be as-

sumed constant for our problem. To relate the O2 band ratios

directly to surface elevation and zenith angles in two separate

terms, we take a double logarithm on both sides of Eq. (4)

and substitute τ with Eq. (5), which leads to

ln

(

Rabs

Rref

)

= −c × exp

(

−
Z

H

)

× m. (6)

Define

db ln

(

Rabs

Rref

)

= ln

{

− ln

(

Rabs

Rref

)}

. (7)

We have

db ln

(

Rabs

Rref

)

= lnc −
Z

H
+ lnm. (8)
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Here db ln refers to the double logarithm, and the minus sign

before the second logarithm function is added to avoid neg-

ative values. Equation (8) decouples the effect of elevation

and zenith angles in db ln
(

Rabs
Rref

)

, which allows estimation of

coefficients in Eq. (8) with simple multivariate linear regres-

sion using two independent terms, Z and ln m:

db ln

(

Rabs

Rref

)

≈ c0 + c1Z + c2 lnm. (9)

Here c0, c1, and c2 will be regression coefficients and can be

used to predict the expected db ln
(

Rabs
Rref

)

. Once db ln
(

Rabs
Rref

)

is solved, the O2 band ratios can be derived with Eq. (10):

Rabs

Rref
= exp

(

−exp

(

db ln

(

Rabs

Rref

)))

. (10)

The above derivation shows that the clear-sky O2 band ra-

tios can be analytically predicted using surface elevation and

zenith angles. Of course, many approximations have been

used, such as the cancellation of Rayleigh extinction and

surface BRF for the pair channels and constant absorption

scale height. Due to large surface albedo, contributions of

Rayleigh scattering are also neglected. The contribution of

Rayleigh scattering in the reflectance is about 0.01–0.02, and

this may cause an uncertainty of 1 % to 2 % in the band ratio

for bright surfaces. In cases of dark surfaces such as oceans,

the surface albedo is so small (∼ 0.05) that the Rayleigh

scattering starts to dominate the observed reflectance, and

the simple equations derived here will result in a large bias.

However, with relatively large albedos (around 0.8), our sen-

sitivity studies find the ratios relatively stable, even though

the single-channel reflectances change in proportion to the

surface albedo. The coefficients in Eq. (9) can be derived

from either radiative transfer model simulations or real ob-

servational data from EPIC using multivariate least squares

fitting. The advantage of the former is the exact knowledge

of the model’s atmosphere and clear or cloudy conditions.

Conversely, its disadvantage is a limited number of atmo-

spheric profiles and sometimes simplistic or even unrealistic

cloud input to the model. The advantage of using observa-

tional data is the abundant radiance measurements that could

be used as a training dataset, while the disadvantage is the

limited knowledge of atmospheric profiles and uncertainties

in clear-pixel identification. A common practice for develop-

ing a cloud mask algorithm is to use retrievals of simultane-

ous measurements from other better-equipped instruments or

ground observations as the truth. Exact same-time overpass

is quite rare even with the vast data volume from the polar-

orbiting satellites such as Terra and Aqua, and cloud detec-

tion over snow and ice from instruments such as MODIS is

itself subject to large uncertainty. This could lead to some

false cloud/clear identification in the training dataset and bias

the results. Based on the above reasoning, we first derive the

O2 band ratio thresholds with both model simulations and

observations and then determine which set of coefficients is

better suited for the EPIC cloud mask algorithm.

3 Radiative transfer simulations

3.1 Model setup

We used a radiative transfer simulator for EPIC (Gao et al.,

2019) to generate the A-band and B-band reflectances over

snow and ice surfaces. The EPIC simulator is built upon a

radiative transfer model (Zhai et al., 2009, 2010) that solves

multiple scattering of monochromatic light in the atmosphere

and surface systems. Gas absorptions due to ozone, oxygen,

water vapor, nitrogen dioxide, methane, and carbon diox-

ide are incorporated in all EPIC bands. The gas absorp-

tion cross sections are computed from the HITRAN line

database (Rothman et al., 2013) using the Atmospheric Ra-

diative Transfer Simulator (ARTS) (Buehler et al., 2011).

Line broadening caused by pressure and line absorption pa-

rameters’ dependences on temperature are considered. In the

O2 A and B bands, radiances from line-by-line radiative

transfer simulations are convolved with EPIC filter transmis-

sion functions. The model atmosphere assumes a one-layer

cloud with a molecular layer both above and beneath. The O2

absorption within clouds is considered by assuming a fixed

O2 molecule vertical profile (US standard or other specified

atmospheres).

For clear-sky simulations, four atmospheric vertical pro-

files distributed with FASCODE (Chetwynd et al., 1994),

originally from the Intercomparison of Radiation Codes in

Climate Models (ICRCCM) project (Barker et al., 2003),

are used: 1976 US standard atmosphere, midlatitude winter,

subarctic summer, and subarctic winter atmospheres. Surface

albedo values used in the simulations are 0.6, 0.8, and 1.0 to

represent snow or ice surface. The snow albedo varies from

0.5 to 0.9 depending on snow age, grain size, purity, and Sun

angle (Warren, 1982), while ice albedo varies between 0.5

and 0.7. The daily mean snow albedo over Antarctica is gen-

erally over 0.8 (Pirazzini, 2004).

For cloudy-sky cases, simulations for both water and ice

clouds are conducted since both phases are found over the

polar regions (e.g., Cesana et al., 2012; Zhao and Wang,

2010). For water clouds, a gamma size distribution with ef-

fective radius of 10 µm and an effective variance of 0.1 is

assumed; for ice clouds, a fixed particle size (30 µm) with a

particle shape of the severely roughened aggregate of hexag-

onal columns is assumed (Yang et al., 2013). The cloud layer

has varied optical thickness ranging from 0.2 to 30 and cloud

top height (CTOP) from 1.0 to 15 km above the ground. The

cloud geometrical thickness (CGT) varies from 0.5 to 4 km.

The model simulates a variety of cases with 17 solar zenith

angles (SZAs) ranging from 0 to 80◦, 18 view zenith an-

gles (VZAs) from 0 to 85◦, and 37 relative azimuth angles

(RAZMs) from 0 to 180◦, all with an increment of 5◦. In
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Table 1. Parameter setup in radiative transfer model simulations.

Clear-sky simulations Atmospheric profiles Standard US 1976; midlatitude winter; subarctic

summer; subarctic winter

Solar zenith angles 0–80◦, every 5◦

View zenith angles 0–75◦, every 5◦

Relative azimuth angles 0–180◦, every 5◦

Surface elevation 0.0, 2.5, 5.0, 7.5 km

Surface albedo 0.8, 0.6, 1.0

Cloudy-sky simulations Atmospheric profiles Standard US 1976

Solar zenith angles 0–80◦, every 5◦ (30, 60◦ for surface elevation

= 2.5 km and surface albedo = 0.6)

View zenith angles 0–75◦, every 5◦

Relative azimuth angles 0–180◦, every 5◦

Surface elevation 0, 2.5 km

Cloud top height 1.00, 3.00, 5.00, 7.50, 10.00, 12.50, 15.00 km

Cloud geometric thickness 0.50, 1.00, 2.00, 4.00 km

Cloud optical thickness 0.22, 0.82, 1.72, 3.06, 5.05, 8.03, 12.46, 19.09, 28.96

Surface albedo 0.8, 0.6

Table 2. Regression coefficients for Eq. (9) and multiple correlation coefficients (Rmulti) derived from model-simulated data and observa-

tions, respectively.

A band B band

c0 c1 c2 Rmulti c0 c1 c2 Rmulti

Simulations −0.3100 −0.1341 0.5202 0.998 −1.0201 −0.1361 0.4888 0.999

Observations −0.1764 −0.1152 0.4542 0.958 −0.8672 −0.1185 0.3995 0.934

addition to the varying Sun-sensor geometry, the reflecting

surface elevation is set from 0 to 7.5 km with a 2.5 km incre-

ment for the clear-sky sensitivity tests, while the cloudy-sky

simulations are performed at sea level and 2.5 km above sea

level. See Table 1 for a complete list of the model parameters.

3.2 Clear-sky simulations

We first examine whether the clear-sky radiative transfer sim-

ulations are consistent with the simplified relationship be-

tween the O2 band ratios and surface elevation and total

air mass at typical surface albedo of 0.8 as discussed above

(Eq. 9). A direct inspection of O2 band ratios at a fixed view

zenith angle and relative azimuth angles with surface eleva-

tion indicates a nearly linear relationship between the two

(Fig. 1a, b). The relationship depends on the solar zenith an-

gle. At a higher solar zenith angle, not only are the ratios

lower at all surface elevations but also the rate of change with

height ( ∂r
∂Z

) is larger. However, the same relationship can be

expressed as a quasi-linear relationship between Z and the

double logarithm of O2 band ratios at fixed zenith angles as

indicated by Eq. (9) (Fig. 1c, d).

The variation of O2 band ratios with solar zenith angles

has been discussed in previous works (Fischer and Grassl,

1991; Wang et al., 2008; Yang et al., 2013; Gao et al., 2019).

Here we show a more quantitative dependence of O2 band

ratios as a function of the total relative air mass (m) de-

fined in Eq. (3) at fixed surface elevation (sea level in this

case, Fig. 1e, f). The inverse relationship of O2 band ratios

with m is evident. Although EPIC is positioned close to the

backscattering direction, there is a small difference in θs and

θv , generally smaller than 6◦. The red dots show the simula-

tions when the difference between θs and θv is smaller than

6◦ to mimic the EPIC Sun–view geometry. The relationship

derived from samples with restricted view zenith angles is

not much different from that of all samples. Figure 1g–h fur-

ther project this relationship as the logarithm of m versus

double logarithm of O2 band ratios as shown in Eq. (9). We

notice that the linear relationship holds very well except for

very large relative air mass (ln (m) > 2.5, which corresponds

to zenith angles > 80◦).

To account for both elevation and zenith angle effect,

a multivariate least squares regression is applied in which

Z and ln (m) are taken as two independent terms and

db ln
(

Rabs
Rref

)

is the dependent variable for the simulations, as

suggested in Eq. (9), with the sample restricted to a zenith

angle difference of below 6◦. The results indicate high confi-

dence of the fitting, with multicorrelation coefficients reach-

ing 0.998 for both A-band and B-band simulations (Fig. 1i,

j). The coefficients c0, c1, and c2 are listed in Table 2. The

www.atmos-meas-tech.net/13/1575/2020/ Atmos. Meas. Tech., 13, 1575–1591, 2020
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Figure 1. Relationships between model simulations of clear-sky A-

band (left column) and B-band (right column) ratios with surface

elevation and relative air mass. (a, b) O2 band ratios as a function of

surface elevation; (c, d) double logarithm of O2 band ratios versus

surface elevation; (e, f) O2 band ratios as a function of total relative

air mass; (g, h) double logarithm of O2 band ratios versus logarithm

of total relative air mass; (i, j) scatter plot of fitted thresholds and

O2 band ratios. The red points in panels (e)–(j) show the simulations

when the difference between θs and θv is smaller than 6◦ to mimic

the EPIC Sun–view geometry. The fitted thresholds are computed

with a multivariable linear regression in which double logarithms

of O2 band ratios are expressed as a function of surface elevation

and logarithm of total relative air mass. The simulations use four at-

mospheric profiles: midlatitude winter, subarctic summer, subarctic

winter, and standard US atmosphere. Surface albedo is set at 0.8 to

represent snow and ice surface.

set of regression coefficients derived from simulations at sur-

face albedo equal to 0.8 also predict very well the A-band

ratios from simulations using different surface albedos (0.6

and 1.0) (Fig. 2a), with obvious divergence occurring only at

large zenith angles (> 80◦) where no retrieval is performed

for EPIC (Fig. 2b).

Table 2 also lists the set of coefficients derived from ob-

servations utilizing information from collocated GEO/LEO

pixels. Details will be discussed in Sect. 4.

Figure 2. Scatter plot of model-simulated A-band ratios (y axis) at

surface albedo = 0.6 (blue), 0.8 (black), and 1.0 (red) versus com-

puted with regression derived with the set of simulations at surface

albedo = 0.8 (x axis) for (a) view zenith angles < 75◦ and (b) all

view zenith angles. Absolute solar zenith angle and view zenith an-

gle differences are smaller than 6◦ for both plots. The results are

from simulations using standard US atmosphere.

3.3 Cloudy-sky simulations

The coefficients in Table 2 can be applied to Eq. (9) to com-

pute expected clear-sky band ratios. In order to test the feasi-

bility of using the derived clear-sky band ratios as the thresh-

olds for clear- and cloudy-pixel separation, we first evaluate

the sensitivity of O2 band ratios to cloud properties. This is

done by adding clouds with different optical thickness, cloud

top height, and geometric thickness in the radiative transfer

simulations and then comparing the O2 band ratios of cloudy

sky with those of clear sky under the same Sun–view geom-

etry. The results from solar and view zenith angles of 30 and

60◦ and relative azimuth angle of 160◦ are shown in Fig. 3,

with the corresponding clear-sky values shown as the filled

and open triangles, respectively. We notice that the O2 band

ratios generally increase with the optical thickness and are

higher for cloudy skies than for clear skies but with cer-

tain exceptions. At low zenith angles (< 30◦), we find very

low sensitivity of O2 band ratios with cloud optical thickness

when cloud top height is 1 km (Fig. 3a, b). Likewise, the sen-

sitivity to cloud top height is very low at low optical thickness

(τ = 1.7) for the A band (Fig. 3c). For the B band, the O2 ra-

tios decrease with cloud top height up to 5 km before increas-

ing again at τ = 1.7 (Fig. 3d). Note that these figures show

that adding a layer of optically thin cloud (COT < 3) actu-

ally decreases the ratio at 30◦ zenith angle. The reason is that

under this circumstance the reflectance of the reference chan-

nel increases more than the absorption channel, which indi-

cates an increase in the photon path. The causes of the photon
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Figure 3. Model-simulated oxygen band ratios as a function of cloud optical thickness (COT) with cloud top height (CTOP) at 1.0 km

(black), 3.0 km (blue) and 5.0 km (red) and solar zenith angles at 30◦ (solid line) and 60◦ (dotted lines), respectively for the (a) A band and

(b) B band. Cloud geometric thickness is 1 km. Oxygen band ratios at solar zenith angle 30◦ as a function of CTOP with CGT of 0.5 km

(black), 1.0 km (blue), and 2.0 km (red) as well as COT of 1.7 (solid) and 5.0 (dotted line) for the (c) A band and (d) B band, respectively.

View zenith angle is the same as the solar zenith angle and relative azimuth angle is 160◦ for all the simulations. The clear-sky simulations

are marked with filled and unfilled triangles for solar and view zenith angles at 30 and 60◦, respectively. Both clear-sky and cloudy-sky

simulations use standard US atmosphere and zero ground elevation. Surface albedo is set at 0.8 to represent snow and ice surface.

path increase include multiple scattering inside the cloud and

surface–cloud interaction. The strong surface–cloud interac-

tion over the bright surface of snow and ice partly contributes

to the low sensitivity of O2 band ratios for the low and thin

clouds compared with relatively darker surfaces (further il-

lustrated in Fig. 4). The sensitivity of O2 band ratios to cloud

optical thickness and height increases with solar and view

zenith angles, as can be seen from the SZA = VZA = 60◦

curves.

As the cloud mask only works when cloudy-sky O2 band

ratios are greater than the clear-sky ratios, the difference be-

tween the two at low zenith angles (VZA = SZA = 30◦) is

shown as a function of two major factors: COT and CTOP

for the A band and B band at surface albedo equal to 0.8,

cloud geometric thickness of 1 km, and sea level conditions

(Fig. 4a, b), along with their sensitivities with altered ge-

ometric thickness (Fig. 4c, d), surface albedo (Fig. 4e, f),

and surface elevation (Fig. 4g, h). If a difference larger

than 0.01 is required to confidently detect cloud, the cases

at the lower left side of each figure, which correspond to

low COT and CTOP, will present difficulty in cloud detec-

tion. Smaller cloud geometric height (Fig. 4c, d) and sur-

face albedo (Fig. 4e, f) tend to increase the sensitivity, while

higher surface elevation (Fig. 4g, h) tends to decrease the

sensitivity as compared to the cases in Fig. 4a and b for the

A band and B band, respectively. These results show that the

O2 band ratios can be used to detect clouds that are thick

and/or high with much confidence over snow and ice sur-

faces. Difficulties still exist in detecting thin clouds or low

clouds at low zenith angles (< 30◦). Note that the A band has

better sensitivity than the B band, as expected. It should be

pointed out that, for most of the cases, the solar zenith angles

are larger than 30◦ since snow and ice are present mainly in

regions of high latitudes.

4 EPIC cloud mask over snow and ice surfaces

The regression results from Eq. (9) can be used as the thresh-

olds for cloud detection. As discussed in Sect. 2, we can de-

rive the thresholds using either radiative transfer simulations

or satellite observations. The previous section discussed the

path of using modeling results; here we attempt to derive the

thresholds based on the real EPIC data.
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Figure 4. The difference of O2 band ratios (cloudy sky – clear

sky) as a function of COT and CTOP at SZA = VZA = 30◦,

RAZM = 160◦ at (a, b) surface albedo (ALB) = 0.8, surface height

(SHT) = 0 km (sea level), and cloud geometric thickness (CGT) =

1 km; the rest are the same as (a, b) but with the change of one

parameter for (c, d) CGT = 0.5 km, (e, f) ALB = 0.6, and (g,

h) SHT = 2.5 km. The right panels are for the A band and the left

panels are for the B band.

For this purpose, the Langley GEO/LEO composite cloud

product (Khlopenkov et al., 2017) and EPIC L1B data from

January and July 2017 are used as the training dataset, and

data from January and July 2016 are used for validation.

The cloud retrievals in the composite data follows Minnis et

al. (2011). Because of EPIC’s large pixel size, one EPIC pixel

corresponds to many GEO/LEO pixels each with its own

cloud mask and optical properties retrievals; hence a com-

posite pixel reports a cloud fraction based on cloud masks

of the GEO/LEO pixels within it. It should be noted that

cloud detections over snow and ice surfaces from instru-

ments on GEO/LEO satellites are difficult as well. For ex-

ample, the AVHRR-based cloud fraction was found to be ba-

sically unbiased over most of the globe except over the po-

lar regions where a considerable underestimation of cloudi-

ness could be seen during the polar winter when compared

with cloud information from the Cloud-Aerosol Lidar with

Orthogonal Polarization (CALIOP) on board the CALIPSO

satellite. The overall probability of detecting clouds in the

polar winter could be as low as 50 % over the highest and

coldest parts of Greenland and Antarctica, with a large frac-

tion of optically thick clouds remaining undetected (Karlsson

et al., 2018). Wang et al. (2016) shows MODIS from Terra

and Aqua misidentifies cloud as clear as high as 20 % over

snow-covered or sea ice regions in Antarctica. They show

that misidentification of clear as cloud also occurs quite fre-

quently in eastern Antarctica during boreal spring and fall.

Over snow-covered high mountains over the Tibetan Plateau,

a recent study by Shang et al. (2018) found the cloud detec-

tion rate to be 73.55 % and 80.15 % for the Advanced Hi-

mawari Imager (AHI) and MODIS, respectively. All these

studies use the CALIOP cloud detection as ground truth and

highlight the large uncertainties in cloud detection from pas-

sive radiometers over snow and ice surfaces and over high

mountain areas.

Keeping these in mind, we use the GEO/LEO composite

cloud product as the training and validation dataset because

of its pole-to-pole coverage and availability. The cloud frac-

tion and surface scene types from the composite dataset are

used to select the clear pixels (100 % clear) over snow and

ice surfaces (when 90 % of the scene type is permanent snow

or ice, seasonal snow, or ice over water). Surface type is re-

ported in the Langley GEO/LEO dataset, which is based on

the IGBP surface type dataset and the Near-real-time Ice and

Snow Extent (NISE) dataset from the National Snow and Ice

Data Center (NSIDC) (Brodzik and Stewart, 2016). To re-

duce the uncertainties, we further restrict the difference be-

tween the GEO/LEO and the EPIC to be within 5 min. We

also restrict the analysis on pixels with view zenith angle

less than 80◦. The surface elevation data are from the Na-

tional Geophysical Data Center (NGDC) TerrainBase global

digital terrain model (DTM), version 1.0 (Row and Hastings,

1994).

The same type of multivariate least squares regression is

performed for the clear-sky pixels using the elevation and

logarithm of total relative air mass as independent variables

and the double logarithm of the O2 band ratios as the depen-

dent variables as suggested by Eq. (9). The derived regression

coefficients (Table 2) are quite close to those derived from

the model simulations with slightly larger scatter (Fig. 5a,

b). One major source of uncertainty may come from the

GEO/LEO cloud identification. As mentioned above, cloud

detection over snow and ice surfaces is very challenging even
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Figure 5. Scatter plot of regression fit versus A-band (a, c) and B-band (b, d) ratios for clear-sky (a, b) and cloudy-sky (c, d) pixels from

EPIC measurements over global snow and ice surfaces in January and July 2017. The regression is derived with clear-sky oxygen band ratio

as a function of surface elevation and air mass. The pixels on the left (b, d) side of black lines could be identified as cloudy (clear) as the

observed ratio is larger (smaller) than the predicted threshold. The dashed lines (increase the predicted ratios by 0.025) provide better division

of clear and cloudy pixels.

Table 3. The logic table for combining the cloud mask results from

the A- and B-band tests. Acronyms: CldHC, cloud with high confi-

dence; CldLC, cloud with low confidence; ClrHC, clear with high

confidence; ClrLC, clear with low confidence.

A-band test

CldHC CldLC ClrLC ClrHC

B-band test CldHC CldHC CldLC CldLC CldLC

CldLC CldLC CldLC CldLC ClrLC

ClrLC CldLC CldLC ClrLC ClrLC

ClrHC CldLC ClrLC ClrLC ClrHC

for GEO/LEO satellites with more spectral channels. Cloud

contaminated pixels might have lower or higher O2 band ra-

tios than the clear-sky values depending on the optical thick-

ness of the cloud and the Sun–view geometry (Fig. 3). Other

sources of uncertainties, such as geolocation, surface eleva-

tion, and atmospheric profile, can also contribute to the larger

scatter in the observational data.

Obviously, the clear-sky thresholds predicted from obser-

vational data must be adjusted to provide a better overall

performance since the regression model is designed to pre-

dict the mean rather than the upper bound of clear-sky band

ratios. The same regression coefficients applied to cloudy-

sky samples indicate many overlapping of O2 band ratios

from clear-sky and cloudy-sky pixels (Fig. 5c, d). A threshold

value that is too high will guarantee the clear-sky identifica-

tion but underestimate cloudy pixels, and a value that is too

low will lead to overestimation of cloudy pixels. To achieve

the best overall clear-sky and cloudy-sky performance, i.e.,

a balanced correct detection rate and false detection rate as

discussed in Sect. 5, we set the threshold value by increasing

the ratios derived from Eq. (10) by 0.025 so that the cloud

mask threshold is close to the upper quantile of the clear-sky

values (dashed red line in Fig. 5c and d).

Results show that using the set of coefficients derived from

the model simulations captures most of the clear-sky sam-

ples without being adjusted (figures not shown). We found

that, even though the thresholds derived from the observa-

tional data perform slightly better when applied back to the

same training dataset, they underperform the model-derived

algorithm when applied to a different data period (January

and July 2016). One likely reason is that the cloud identifi-

cation in the observational training dataset has its own non-

negligible uncertainties. These uncertainties will not affect

the performance in the training dataset but affect the algo-

rithm performance in a different data period. For this pur-

pose, we adopt the algorithm derived from the model simu-

lations for the rest of this paper.

Following the current EPIC cloud mask algorithm, we also

set an upper and a lower threshold that is 0.02 above or below

the model-predicted threshold (RT0). A cloud mask (CM)
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Figure 6. Section of an EPIC granule on 23 December 2017, 17:07 UTC time, with matching GEO/LEO overpass within 5 min of the EPIC

scan over western Antarctica. (a) A-band ratio, (b) B-band ratio, (c) cloud fraction from the GEO/LEO composite, and (d) cloud mask from

the new algorithm.

confidence level is determined for each pair of the O2 band

ratios based on whether the ratios fall between these inter-

vals/thresholds:

CM =















4 Ratio > RT0 + 0.02; CldHC

3 RT0 < Ratio < RT0 + 0.02; CldLC

2 RT0 − 0.02 < Ratio < RT0; ClrLC

1 Ratio < RT0 − 0.02; ClrHC















.

Here, CldHC, CldLC, ClrHC, and ClrLC refer to cloud with

high confidence, cloud with low confidence, clear with high

confidence, and clear with low confidence, respectively. The

final confidence level is determined by combing the two re-

sults from the A- and B-band tests according to Table 3. Note

that we only define high confidence cloud (CldHC) or high

confidence clear (ClrHC) when both tests show cloud or clear

with high confidence.

An illustration of EPIC O2 band ratios and the derived

cloud mask over the Antarctic on 23 December 2017 is

shown in Fig. 6, along with cloud fraction derived from the

GEO/LEO composite. In this figure, the A-band and B-band

ratios show not only the presence of clouds but also the ef-

fect of elevation, as the low values over the Ross Ice Shelf are

clearly influenced by the low elevation in that area. The new

cloud mask detects the majority of the cloud area, but some

portion of clouds over this region is missing. This could be

because the clouds in this scene over the Ross Ice Shelf are

low.

5 Algorithm validation

Using the thresholds from radiative transfer simulations, we

reprocessed the EPIC cloud mask over snow and ice surfaces
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Figure 7. Percentage of pixels in each pixel-by-pixel matchup category between cloud mask from EPIC and GEO/LEO composite cloud

fraction over snow and ice surfaces for January 2016 (a, b), January 2017 (c, d), and July 2017 (e, f). Panels (a, c, e) are from the current EPIC

cloud mask algorithm, and panels (b, d, f) are from the new algorithm. The diagonal squares represent agreement between the GEO/LEO

and EPIC cloud mask, while the off-diagonal squares represent disagreement between the two products. The number of samples, accuracy,

probability of correct detection (POCD), and probability of false detection (POFD) are shown in the white area on top of each figure.
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Figure 8. Cloud fractions derived from (a) composite GEO/LEO retrievals, (b) original EPIC cloud mask, and (c) new EPIC cloud mask

over Antarctica in January 2017.

Figure 9. (a) Number of ice/snow pixels and monthly mean cloud fractions derived from the (b) GEO/LEO composites, (c) original EPIC

cloud mask algorithm, and (d) new algorithm in 1◦ × 1◦ grids for January 2016.

for all the collocated pixels in three months: January 2016,

January 2017, and July 2017.

We divide the GEO/LEO cloud fraction into four cate-

gories to match with the CM in EPIC:

GEO/LEO CM =















4 : cloud fraction ≥ 95%

3 : 50% ≤ cloud fraction < 95%

2 : 5% ≤ cloud fraction < 50%

1 : cloud fraction < 5%















.

Figure 7 shows the 4 × 4 fusion matrixes of the EPIC

cloud mask with the GEO/LEO cloud fraction for the three

months. The diagonal squares represent agreement between

the GEO/LEO and EPIC cloud masks, while the off-diagonal

squares represent disagreement between the two products.

For January 2016 and 2017, we notice that the original al-

gorithm has a high percentage of pixels in the bottom-left

corner (clear–clear) category, but there is a large percent-

age of GEO/LEO cloudy pixels in the > 95 % category miss-

identified by EPIC as clear (cloud mask = 1). There are also

a considerable amount of pixels in the low GEO/LEO cloud

fraction category (< 5 %) being classified as cloudy (CM =

3,4). Improvement is evident for the new algorithm, where

percentages of pixels in clear–clear (< 5 % and CM = 1) and

cloudy–cloudy (> 95 % and CM = 4) are significantly in-
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creased. The changes in July 2017 are less obvious, as the

original algorithm already captures large percentage of pix-

els in clear–clear and cloudy–cloudy categories.

To quantitatively measure the performance of the cloud

masking algorithms, we further define a binary partition

of negative (CM = 1, 2, or cloud fraction < 5 % and 5 %–

50 %) and positive (CM = 3,4, or cloud fraction 50 %–

95 % and > 95 %) cloud identification for both EPIC and

GEO/LEO, which results in four total combinations. Suc-

cessful retrievals consist of TP (true positive) and TN (true

negative) cases, in which both algorithms identify the pixel

as cloudy and clear, respectively, and unsuccessful retrievals

consist of FN (false negative) and FP (false positive) – where

EPIC identifies a pixel as clear and cloudy, respectively, op-

posite to the GEO/LEO cloud mask. Assuming GEO/LEO’s

retrievals are the “truth”, a number of parameters as a mea-

sure of EPIC’s CM accuracy are computed:

Accuracy =
TP + TN

TP + TN + FN + FP
, (11)

POCD =
TP

TP + FN
, (12)

POFD =
FP

TN + FP
. (13)

Here POCD and POFD are the probability of correct detec-

tion and probability of false detection, respectively. For Jan-

uary 2016 and 2017, compared to the current product, the ac-

curacies have been improved considerably from 57 %–60 %

to around 83 %. The POCD is nearly doubled (from 36 %

to 64 %–67 %) with a significant reduction of POFD (a drop

from around 50 % to 10 %). The original algorithm performs

relatively well in July 2017, with a probability of correct de-

tection (POCD) of 77.5 % and a low probability of false de-

tection (POFD) of 16.5 %; hence the improvement for this

month is relatively small.

Figure 8 shows the cloud fraction on a 1◦×1◦ grid for Jan-

uary 2017 over snow- and ice-covered Antarctica. Note that

here we lift the 5 min time difference limitation and use all

available pixels with view zenith angles less than 75◦ from

the GEO/LEO composites (Khlopenkov et al., 2017) in or-

der to have a full coverage of the region. The cloud frac-

tion map from GEO/LEO shows a belt of high cloud frac-

tion originated from the midlatitude storm track reaching the

edge of the continent. Onto the icy plateau of East Antarc-

tica, cloud fraction quickly decreases. High cloud fraction

is found over West Antarctica. The cloud fraction from the

original algorithm shows quite an opposite cloud distribution

pattern between West and East Antarctica. This is likely due

to the fixed threshold that is too low for the high elevation

in East Antarctica and too high for the low elevation in West

Antarctica. By taking the elevation into account, the new al-

gorithm identifies the regional cloud distribution much better.

In addition, the new algorithm also has a better cloud fraction

match around the edge of the Antarctic continent.

To examine the performance of the new algorithm on the

global scale, we plotted the gridded cloud fraction over snow

and ice surfaces for the entire globe in January 2016 (Fig. 9).

The number of snow/ice pixels used for the map is also

shown, because sample numbers affect the quality of the

monthly mean. We notice that the number of snow/ice pix-

els per grid is much higher in January over Antarctica. There

are also considerable amounts of snow/ice pixels in Northern

Hemisphere high-latitude regions and the southern tip of the

Andes. There is no retrieval north of 50◦ N due to no daylight

or view zenith angle too large in January (DSCOVR only has

observations for the daytime Earth). Comparisons show that

the new algorithm improves cloud distributions noticeably.

Figure 10 shows a similar map but for July 2017. Dur-

ing the boreal summer, the cloud mask algorithm has re-

trievals over the entire Northern Hemisphere but not for the

part of Antarctica south of 65◦ S due to the polar night.

The GEO/LEO cloud fraction map indicates cloud fraction

> 80 % over snow and ice surfaces over most of the regions in

July except over Greenland. The original algorithm has sim-

ilar cloud fraction in most areas over snow and ice surfaces,

except over southeast Greenland, where it has significantly

more cloud than the other parts of Greenland. This is likely

due to the original algorithm’s failure to take into consider-

ation the high elevation there. On the other hand, the under-

estimation of cloud fraction at the southern tip of the Andes

could be due to its failure to take into account the large solar

and view zenith angles in summer. The new algorithm detects

a significantly lower amount of cloud fraction in Greenland

and improves the cloud detection in the aforementioned high

mountain areas.

Even though the new cloud mask has improved the accu-

racy and general distribution compared with the GEO/LEO

retrievals, regional differences between the two can still be

quite large. This is partly due to the large uncertainty of cloud

detection from GEO/LEO over snow/ice itself and partly due

to the intrinsic difficulty of using O2 band ratios in detecting

the low cloud and thin cloud as discussed before. In addi-

tion, the time difference between EPIC and GEO/LEO ob-

servations can also impact the comparison between the two.

Stratifying the performance based on difference in the obser-

vation time, we find a larger difference in the observing time

leads to slightly lower POCD, higher POFD, and an overall

decreasing accuracy (Fig. 11).

6 Summary and discussion

Due to limited spectral channels, especially the lack of in-

frared and near-infrared channels in the DSCOVR EPIC in-

strument, cloud detection for EPIC over snow and ice poses

a great challenge. The existing EPIC cloud mask algorithm

employs two oxygen pair ratios in the A band (764, 780 nm)

and B band (688, 680 nm) for cloud detection over the snow

and ice surfaces. This method is based on the mechanism that
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Figure 10. (a) Number of ice/snow pixels and monthly mean cloud fractions derived from (b) GEO/LEO composites, (c) original EPIC cloud

mask algorithm, and (d) new algorithm in 1◦ × 1◦ grids for July 2017.

Figure 11. Performance metrics for January 2017 as a function of

time difference between EPIC and GEO/LEO instrument measure-

ments. POCD: probability of correct detection; POFD: probability

of false detection.

photons reflected by clouds above the surface will travel, on

average, a shorter distance through the atmosphere and so ex-

perience less absorption by O2; hence a threshold can be set

to separate cloudy pixels from clear pixels. However, clear-

sky O2 band ratios depend on a number of factors such as

surface elevation and Sun–view geometry that impact the to-

tal absorption air mass; these factors need to be accounted

for.

In this study, we use both the radiative transfer theory

and model simulations to quantify the relationship between

the O2 band ratios with surface elevation and zenith angles.

Thresholds are derived as a function of surface elevation and

Sun–view geometry based on both model simulation results

and observations. The model-derived algorithm is chosen be-

cause it performs better when applied to the observations

that were not used in the training dataset. The new algo-

rithm increases the accuracy of the EPIC cloud mask over

snow and ice surfaces in winter by more than 20 %. This is

achieved through a significant reduction of the false detection

rate from 50 % to 10 % and through nearly doubling the cor-

rect detection rate (from 36 % to 64 %–67 %). The improve-

ment in July is mild, with the main improvement observed

over Greenland. Of course, these performance metrics are

based on comparison with GEO/LEO cloud mask, which has

quite a large uncertainty over snow and ice surfaces itself. In

addition to significant improvement in cloud detection over

Antarctica, the new algorithm also improves cloud detection

over Greenland and some midlatitude high mountain areas.

Limitations of this method include difficulties in identify-

ing thin clouds with optical thickness less than 3 or low cloud

below 3 km due to the lack of sensitivity in O2 band ratios un-

der these circumstances. Compared with the infrared-based

techniques, one advantage of this oxygen band technique is

that it is relatively insensitive to the surface and atmosphere

temperature. Therefore, the method presented in this work

provides a solution to polar cloud detection when infrared

channels are not available or struggle to distinguish between

cloudy and clear scenes. We anticipate that cloud detection
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using the oxygen band technique will be of great value in

future missions.
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