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Abstract Smart cities evolve rapidly along with the technical advances in wireless

and sensor networks, information science, and human–computer interactions. Urban

computing provides the processing power to enable the integration of such tech-

nologies to improve the living quality of urban citizens, including health care, urban

planning, energy, and other aspects. This chapter uses different computing capabil-

ities, such as cloud computing, mobile computing, and edge computing, to support

smart cities using the urban heat island of the greater Washington DC area as an

example. We discuss the benefits of leveraging cloud, mobile, and edge computing

to address the challenges brought by the spatiotemporal dynamics of the urban heat

island, including elevated emissions of air pollutants and greenhouse gases, compro-

mised human health and comfort, and impaired water quality. Cloud computing
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brings scalability and on-demand computing capacity to urban system simulations

for timely prediction. Mobile computing brings portability and social interactivity for

citizens to report instantaneous information for better knowledge integration. Edge

computing allows data produced by in-situ devices to be processed and analyzed at the

edge of the network, reducing the data traffic to the central repository and processing

engine (data center or cloud). Challenges and future directions are discussed for

integrating the three computing technologies to achieve an overall better computing

infrastructure supporting smart cities. The integration is discussed in aspects of band-

width issue, network access optimization, service quality and convergence, and data

integrity and security.

41.1 Introduction

41.1.1 Why Computing is Important in Smart Cities

Increasing global urbanization generates many problems, such as traffic conges-

tion, energy consumption, industrial waste, and heat islands (Rao and Rao 2012;

González-Gil et al. 2014; Li et al. 2012; Zhong et al. 2017; Rizwan et al. 2008).

These problems produce serious negative impacts on urban residents. For example,

an urban heat island (UHI) in an urban area or metropolitan area is significantly

warmer than its surrounding rural areas due to human activities. UHI contributes

directly to environmental warming, industrial waste, air pollution, and heat-related

mortality (Petkova et al. 2016). In order to alleviate urban problems and achieve

sustainable development, a number of smart-city solutions have been the subject

of experiments in cities over the past two decades. Copenhagen Municipality uses

monitor sensors installed in different trash containers and information systems to

optimize waste handling (State of Green Denmark 2018). Seoul of South Korea has

smart meters installed in residential houses, office areas, and industrial facilities to

report in real time the consumption of electricity, water, and gas (Hwang and Choe

2013). Smart cities are supported by key information and communications technolo-

gies (ICT) including the Internet of things (IoT), computing platforms, big data, arti-

ficial intelligence (AI), geographical information, and others (Graham and Marvin

2002; Morán et al. 2016; Mitchell et al. 2013) (Fig. 41.1). Among them, diverse

sensors, stable communication networks, and sophisticated computing platforms are

three fundamental technologies for smart cities. Sensors are the smart-city’s sensory

organs, to capture and integrate data continuously in real time. Smart sensors, such

as monitoring cameras, smart meters, and wearable devices, are widely employed

to improve urban transportation, utility planning, parking-lot management, pollution

monitoring, and health care. The number of connected devices on the Internet will

exceed 50 billion by 2020 according to Cisco (2017). The communication network

is the smart-city’s transmission system, transmitting data from sensors to computing

platforms. Reliable, scalable, and high-speed networks, including wired and wireless
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Fig. 41.1 Key technologies of smart cities

networks, are fundamental infrastructure for such transmission. Computing platforms

support the management and analyses of relevant city data in a broader context, to

identify city-relevant events that require processing and action. A large quantity of

data is generated continuously from countless smart-city sensors. To store, process,

and analyze the massive heterogeneous data, a stable, scalable, fast computing plat-

form is required. For example, car drivers need a smart navigation system to provide

them with the optimal driving route in real time, updated dynamically with traffic

pattern and congestion changes. Different systems and devices using ICT have been

developed to monitor and forecast UHI in the past years. For example, France devel-

oped a Heat Health Watch Warning System to monitor heat waves that may result

in a large increase of mortality (Casanueva et al. 2019). Greece developed a UHI

modeling system to simulate and forecast heat islands in Athens (Giannaros et al.

2014). Richmond has handmade devices equipped in cars and bikes to map UHI

(Hoffiman 2018).

41.1.2 Major Computing Techniques in Smart City Studies

Washburn et al. (2009) described the smart city as using a collection of smart

computing technologies to manage critical infrastructure components and services.

A centralized cloud-computing architecture has been widely deployed in smart cities

to extend the storage capability and improve the processing velocity with character-

istics of elastically, on-demand, and pay-as-you-go computing resources (Yang and

Huang 2013). Cloud computing maximizes the utilization rate of physical resources
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by adopting a series of technologies including virtualization and network secu-

rity. Virtualization is a core technology supporting cloud computing, and abstracts

actual hardware as virtual computer systems. Virtualization enables multiple oper-

ating systems to run on a computer system simultaneously and optimizes the use of

computing and storage resources. Practically, cloud computing virtualizes computer

resources and manages them in a resource pool to provide computing services over

the network, reducing the idle time of resources including CPU, RAM, network,

and storage. Public clouds (e.g., Amazon AWS, Microsoft Azure) are open to the

public, who pay to use them. On the other hand, a private cloud is delivered via a

secure private network and usually shared among people in a single organization.

Cloud computing provides the smart city with the computing capability to store and

access data and applications outside local computing environment through computer

networks (Kakderi et al. 2016).

The proliferation of IoT enables smart cities to collect a large number of data and

deploy a lot of applications at the edge to utilize these data (Shi et al. 2016). The data

and applications also produce challenges of near-real-time response, privacy, and

massive numbers of data for network transmission. Cloud computing alone is not

sufficient to address such challenges. A new computing paradigm, edge computing,

which shifts the data storage, processing and analyses to the end of the network, as

close as possible to the devices, is deployed (Shi et al. 2016). With the aid of edge

computing, the edges of network become data producers as well as data processors,

addressing the challenge of response time, bandwidth, data safety, and privacy (Shi

et al. 2016). Edge computing offers a number of benefits, including allowing services

to continue to operate when there is no connection to the Internet, and processing

data locally. This significantly reduces the network load with only processing results

(which are normally smaller in volume than raw data) being transmitted across the

network.

The past two decades have witnessed the increasingly use of mobile devices (such

as mobile phones, portable computers, wearable devices, and smart vehicles) and

rapid growth of wireless communication technology (Hashim Raza Bukhari et al.

2018). Data processing is shifted away from centralized computing centers to the

mobile devices of end user. With battery volume and network bandwidth limitations,

computing resources offered by mobile computing are not as reliable as the other

two computing frameworks. Nevertheless, they are portable and able to collect and

process data where cloud computing and edge computing are unavailable.

The three computing paradigms collaboratively provide a comprehensive and

reliable data store and processing framework to overcome the disadvantages of a

single device and enable a suite of applications of smart cities (Table 41.1) including:

transport and traffic management, utilities and energy management, environmental

protection and sustainability, public safety, and smart-city security.

Figure 41.2 illustrates the sensors and computing devices of a smart city and places

them into three types: different sensors collecting different information for different

purposes. The sensors also have embedded computing capabilities; for example,

moving sensors can be used to provide flexible data collection to dynamically cover

different regions with fast situation-aware processing capabilities such as navigation.
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Table 41.1 Application examples of cloud, edge and mobile computing in smart cities

Application

examples

Computing paradigm

Cloud computing Edge computing Mobile computing

Transport and

traffic

management

Using cloud

computing for

smart-city logistics

(Nowicka 2014)

Connected parking

meters (David 2018)

Location-aware mobile

applications (Altman

et al. 2015)

Utilities and

energy

management

Using cloud

computing for smart

grid energy

management (Bera

et al. 2015)

Street lighting (David

2018)

The use of GPRS

technology for electricity

network telecontrol

(Souza et al. 2016)

Environmental

protection and

sustainability

Using cloud

computing for climate

analysis and

simulation (Yang et al.

2017a, b)

Vehicular pollution

system based on IoT

(Rushikesh and

Sivappagari 2015)

Location-aware weather

report applications

(Altman et al. 2015)

Public safety and

smart-city

security

Cloud computing

services in medical

heath care solutions

(Kaushal and Khan

2014)

Smart home (Shi et al.

2016)

Healthcare applications

(Hameed 2003)

Lost child application

(Satyanarayanan 2010)

Fig. 41.2 Urban computing for smart cities include cloud computing (gray), edge computing

(orange), and mobile computing (blue) devices and capabilities
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Edge-computing sensors act as fixed data collectors with various computing powers

depending on tasks assigned; for example, a higher edge-computing capacity enables

handling analytics for a larger area, like a neighborhood. All data and processes can

also be uploaded to the cloud’s centralized computing, for extensive data processing

and knowledge extraction or mining.

Computing serves as an indivisible capability to support effective and efficient

smart-city applications and research, through which massive smart-city data can be

processed in parallel and in a real-time manner. This chapter introduces the three

computing paradigms’ engagement in a smart city using UHI as a case study. A

workflow was proposed to integrate three computing techniques as a seamless inte-

gration for handling UHI problem (one of the severe urban challenges facing us today

especially with climate and global change).

This chapter starts with an introduction to urban computing in 41.1, followed by

the current status and challenges of computing in different smart-city scenarios.

Sections. 41.3, 41.4 and 41.5 introduce, respectively, cloud computing, edge

computing, and mobile computing using UHI as a use case. The last section uses

UHI as an example to integrate the three computing paradigms through collaborative

workflow.

41.2 Computing for Smart Cities

41.2.1 Data and Model in Smart Cities

Smart cities require multiple data sources and reliable models to produce decision-

supporting information. It becomes especially challenging when a massive number

of smart devices and sensors are engaged. This section introduces five typical smart-

city applications, the data engaged, corresponding models, and their requirements

for computing.

41.2.1.1 Transport and Traffic Management

Transportation is one of the most important aspects for urban-living activities. Various

sources of transportation data are related to people’s travel and commuting, which

is a complicated and indispensable part of smart cities. For example, traffic data

are generated and collected by sensors in traffic vehicles (e.g., taxis, buses, metros,

trains, vessels, and planes) or monitors installed along the roads (e.g., loop sensors

and surveillance cameras). Commuting data refer to data that record people’s regular

movement in cities. Geo-tagged social network data collect posts (e.g., blogs, tweets)

through social networks which are tagged with geoinformation. Road network data

represent road segments and intersections, respectively. The transportation network

is modeled as a directed graph which includes transit routes and stop facilities of
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buses and metro networks. Point of interest (POI) data depict related information for

facilities, such as restaurants, shopping malls, parks, airports, schools, and hospitals

in the city, which helps guiding people to find their destinations.

To handle and integrate the complex data from different sources efficiently and to

satisfy various user groups, different models are used for intelligent transportation

systems, such as agent-based traffic management models (Sciences et al. 2011),

cognitive rationality-based decision-making models (Cascetta et al. 2015) and mixed-

ranked logit models (Liu et al. 2017).

41.2.1.2 Utilities and Energy Management

The large volume of data for utilities and energy management is increasingly adding

burden to urban computing systems, especially with the wide adoption of sensors,

wireless transmission, and network communication (Zhou et al. 2017). The input data

of smart-city energy systems include numeric data, text-based data, and audio-visual

data. Numeric data refer to the observations and collections from sensors and meters,

such as power quality, customer usage, and electrical production. Text-based data

sources are mainly internal and external communications, regulatory documents,

legal documents, and linguistic social media records. Audio-visual data are records

and social media data in the form of sound and video (Schuelke-Leech et al. 2015).

The utilities and energy management systems should be green, sustainable, and

with high operational speed and efficiency. Schuelke-Leech et al. (2015) demonstrate

how future sustainable energy systems will be smart and integrated with smart grids,

renewable sources, storage, and energy management and monitoring systems. The

energy and utility systems of cities are complicated because they have to satisfy a

huge number of requirements with comparably limited supply. The computational

systems need not only to integrate intermittent power sources efficiently and effec-

tively, but also to predict equipment failures and power outages, allowing utilities to

optimize their maintenance budgets. For example, Sheikhi et al. (2015) presented an

Energy Hub Model in a future vision of energy systems, which supported real-time

and two-way computational communication between utility companies and smart

energy hubs. Such models also allowed intelligent infrastructures at both ends, since

to manage power consumption necessitates large-scale real-time computing capabil-

ities to handle the communication and the storage of big data. These systems help

managers, employees, and consumers to make informed decisions based on data and

empirical investigation, rather than on intuition or past practice.

41.2.1.3 Environmental Protection and Sustainability

Environmental protection and sustainability also play important roles in smart cities.

The environmental resources refer to minerals, forests and grasslands, wetlands,

rivers, lakes, and the ocean. These natural resources have been exploited unduly, and

the inappropriate management of natural resources has caused severe environmental
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degradation (Song et al. 2017). The data that urban environmental protection and

sustainability management systems are dealing with include hydrogeological data,

environmental surveillance data, ecological statistics, and meteorological data. The

data quantity and dimensions are big according to the characteristics of big data. The

functions of these data are not only to accurately present the current situation of the

environment but also to effectively predict the future and sustainability. Therefore,

powerful computational ability is needed to help governments and individual users

to prevent and settle environmental challenges.

As environmental protection and sustainability are important factors for the devel-

opment of smart cities, data collection and computational models have flourished

in this domain. Take the IoT and its associated computing model as an example:

the informational landscape of smart sustainable cities and big data applications is

augmented to achieve the required level of environmental sustainability (Bibri 2018).

For governments, the combination of 3D GIS and cloud computing is also offering

effective services in the environmental management of smart cities (Lv et al. 2018).

41.2.1.4 Public Safety and Security

Public safety and security are directly related to citizens’ wellbeing and their lives.

With the growth of different kinds of monitoring devices and systems, data from the

IoT, unmanned aerial vehicles (UAV) (Menouar et al. 2017), and social media are

leveraged to make our cities more and more safe and stable. Usually, the safety and

security issues are directly related to people’s life and property, and needs immediate

and accurate response from relevant personnel. Therefore, extremely high perfor-

mance in efficiency and accuracy is needed for safety and security models and

systems. Edge and mobile computing, which can share the burden of the central

cloud and improve processing speed, are ideal for the applications such as finding

a lost child (Shi et al. 2016). Wearable devices and medical sensors can measure

users’ health conditions and send health data to the processing unit for doctors’

further diagnosis.

To address these challenges, safety systems should include the following data

sources and model features: health care and monitoring systems; smart safety systems

for surveillance; smart systems of crisis management to support decision making,

early warning, monitoring and forecasting emergencies; centrally operated units

of police and integrated rescue systems (IRS); safe Internet connection and data

protection; and centers of data processing (Lacinák and Ristvej 2017).

41.2.1.5 Urban Heat Island and Urban Computing

Urban computing utilizes the three computing paradigms to store, process, integrate,

model, and analyze various big data and phenomena, such as real-time data generated

by diverse smart sensors and devices, fundamental urban geographical data, social

media data, data on transportation on flooding, and on UHI. UHI is considered one
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of the major urban challenges and is caused by a set of complex factors, including

urban land use changes, solar radiation, anthropogenic heat sources, climate change,

urban development, and wind speed and direction (Memon et al. 2009). The negative

effects of UHI include: (1) increasing temperature in cities (Voogt and Oke 2003);

(2) contribution to global warming (Van Weverberg et al. 2008; EPA 2016); (3)

air pollution (Sarrat et al 2006; Davies et al. 2008); (4) increasing energy demand

(Santamouris et al. 2001; Santamouris 2015); and (5) heat-related mortality (Guest

et al. 1999; Conti et al. 2005; Haines et al. 2006; Filleul et al. 2006; Hondula, et al.

2014).

To reduce the negative impact of UHI, remotely sensed data, stationary meteo-

rological monitoring data, building data, digital elevation data and other data were

integrated to model, monitor, simulate, and evaluate UHI in more than 100 cities in

the past 50 years. However, UHI studies involve big data storage, processing, and

modeling, which need complicated computing. There is no single efficient computing

architecture for large-scale or long-term UHI studies. This chapter takes UHI as an

example to introduce how the combination of cloud, edge, and mobile computing can

help addressing the smart city challenges in sequence of: (1) what are the computing

challenges of smart cities; (2) how the three computing paradigms can help address

the challenges; and (3) how to integrate the three computing paradigms to address

these challenges using UHI as an example.

41.2.2 Computing Challenges in Smart Cities

41.2.2.1 Big Data Handling

Urban data have been harvested from various sources including (1) remote sensing,

(2) in-situ sensing, (3) social sensing, (4) IoT sensing, and (5) simulation. The

collected data together provide a comprehensive view of the urban system: for

example, the underground water distribution network for water usage management

(Karwot et al. 2016), real-time parking prediction (Vlahogianni et al. 2016), and 3D

city modeling for urban disaster management (Amirebrahimi et al. 2016). However,

the sensing and simulation produce large numbers of data that far exceed the storage

capacity of an individual computer. Taking remote sensing as an example, fine

spatiotemporal resolution imagery grows exponentially with spatial resolution. For

example, the volume of the Earth Observing System and Data Information System

(EOSDIS) data archive was more than 27.5 petabytes (PB) at the end of fiscal year

2018 (NASA Earth Science Data Systems Program Highlights 2018). Efficiently

storing such a large volume of data is a challenging task. Meanwhile, data are

produced in high velocity in a continuous manner with the development of advanced

techniques, such as water meters, which collect water usage data in a fixed interval

(e.g., every 30 s). The velocity of data requires streaming data collection and anal-

ysis methods for near-real-time applications. In addition, the heterogeneous data are

stored in various file formats, such as image, video, text, or audio, and pose grand

challenges to data management.
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41.2.2.2 Compute-Intensive Modeling and Processing

The smart city is becoming a sophisticated ecosystem where massive data are being

collected and innovative solutions are being proposed to deliver smart services

(Anthopoulos 2015). Generally, those solutions rely on complicated data models and

analytics with the aid of the computer. Data models often represent objects or situa-

tions in the real world, and a digital model makes mathematical analysis possible. For

example, a trend in smart cities is to build three-dimensional (3D) models for visual-

ization and analytics such as skyline analysis, underground utility management, and

route selection (Yao et al. 2017; and see Sects. 41.5 and 41.6). Although a 3D model

can represent cities as virtual reality to support real 3D analysis, more computing

resources are needed for effective 3D rendering and analysis. Data analytics is an

important component of the big data paradigm. However, it comes after data collec-

tion, deduplication, completion, aggregation, harmonization, contextualization, and

filtering. These components of the process are essential to enable analytics to derive

useful insights. Different types of computing resources are required for different

components in the data process workflow. For example, moving partial computing

resources to the data collection sites for data cleaning can reduce the volume of data

transferred to the core computing platform, result in a lower bandwidth cost and a

higher analysis speed.

41.2.2.3 Data Security and Privacy

Security and privacy issues are two of the major challenges in smart-city computing

due to the identification information within the data and the security issues located

in the multiple computing layers. Generally, some of the raw data may contain

confidential or sensitive information related to people or governments; such data

processing should be protected against unauthorized usage. Taking cellular data for

example, a phone number in each record represents a real person and makes an indi-

vidual’s daily activities traceable, which may divulge the private affairs of people.

In the water distribution management system, a methodology for synthetic house-

hold water consumption was proposed to reproduce water consumption data due to

privacy constraints (Kofinas et al. 2018). Simultaneously, in smart-city applications,

data move over various computing layers through networks, some of which may be

insecure. In an application, data may be processed with more than one computing

technique including edge computing, mobile computing, and cloud computing. In

most cases, mobile devices and edge computing nodes need to connect via Wi-Fi

to upload data to the cloud-computing platform. Connection to unauthorized Wi-Fi

may bring security risks to the system. Besides network connection, distributed open-

source big data platforms like Hadoop and Elastic search are becoming increasingly

popular for distributed data storage and analytics, However, compared to commercial

solutions, these platforms lack sufficient security guarantees (Sharma and Navdeti

2014).
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41.2.2.4 Efficiency

A trend in smart-city’s applications is to extract information from big data, and

thus, lack of efficiency becomes a bottleneck of most data-analytical applications.

Different applications vary in levels of complexity and require different response

times. Navigation needs immediate optimal route suggestion (e.g., fastest route

option) based on real-time traffic data (Liebig et al. 2017). Predictions of hurricane

intensity help people prepare for severe weather, saving properties, and human lives

(Li et al. 2017). Applications like environmental sustainability are less sensitive to

the response time. Meanwhile, although a series of open-source big data platforms,

such as Apache Hadoop, Spark, HDFS, and MapReduce, have been developed and

adopted in various domains, these platforms are not specifically designed to support

spatiotemporal data. Performance issues are unavoidable when using these platforms

to process spatiotemporal data without any modification. Some research has been

done to customize these tools for domain adoption. Taking array-based raster data

for example, a hierarchical index was proposed to speed up the query process of grid

data stored in the HDFS file system (Hu et al. 2018). The development of an efficient

spatiotemporal computing platform is still in an initial stage; how to utilize and opti-

mize big data computing platforms to implement efficient smart-city applications

remains a challenge.

41.2.3 Generic Computing Architecture for Smart Cities

Cloud, edge, and mobile computing support different functions and applications

in the development of smart cities. To optimize the computation capability and

further overcome the challenges discussed in Sect. 41.3, different types of computing

paradigms should be utilized. Based on the characteristics and advantages of each

type of computing, a computing architecture for a smart-city system is proposed

(Fig. 41.3).

41.2.3.1 General Computing Modules in Smart Cities

The proposed architecture of computing system in smart cities contains the following

five parts:

(1) Application acquisition: The function of the application layer is to collect

requirements from users, then organize, and analyze them into the four aspects as

mentioned in Sect. 41.2.1: Transportation and traffic management, utilities and

energy management, environmental protection and sustainability, and public

and smart-city security.

(2) Visualization: The visualization layer is designed to visualize the applications in

the form of 2D and 3D maps, trajectories, images, charts, histograms, and others
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Fig. 41.3 Generic computing architecture for smart cities

using technologies and software such as 2D mapping, 3D modeling, Jupyter,

and Zeppelin.

(3) High-performance analysis and modeling: As discussed in the former sections,

computing for smart cities is usually encountered with big data issues, and

high-performance computing techniques are essential to maintain a stable and

efficient computation system. This layer implements data analysis, modeling,

and prediction according to the applications.

(4) Data access and query: The system utilizes a data access and query layer to

retrieve and select data sources that satisfy the needs and orders from users.

Methods and techniques such as SQL, No-SQL, R-Tree, Quadtree, and spatial–

temporal indexing will be adopted according to the category of data.

(5) Data storage and infrastructure: This layer provides the hardware and physical

devices, including data storage facilities, as well as the servers and networks. The

smart-cities-related data sources will be stored in different categories according

to the requirements from uses, using database systems such as file storage,

Relational Database Management System (RDMS), No-SQL, array-based, and

linked-data databases.

41.2.3.2 Computing Methods Integration

Computing procedures are embedded in all the layers of the proposed computing

architecture for smart cities, through a series of security controls, encryption, stan-

dardization, authentication, authorization, governance, curation, and network tech-

niques. The core computing methods of smart cities contain central cloud computing,

edge computing, and mobile computing. In the central cloud platform, data centers

provide complex analysis and visualization capabilities, as well as hardware facili-

ties and infrastructure for the cloud. The servers are linked with high-speed networks

to provide services for clients. Normally, data centers are built and located in less

populated places, with a high power-supply stability and a low risk of disaster (Dinh
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et al. 2013). The edge-computing platform is connected with the central cloud by the

Internet. They have dual communication with each other to enable data interactions.

The edge servers can share and reduce the burden of central servers, and as a result

increase the speed of processing and delivering data. The mobile-computing plat-

form is the mobile devices of the end users, which has a certain capability to process

data along with mobility. Mobile devices can also be connected to central clouds by

wireless networks for data transmission. Edge- and mobile-computing platforms are

connected with each other in applications where interactions are needed.

In the architecture, the three computing paradigms are connected and assist each

other, where there are distinctions between them in the collaboration of processing

smart cities’ services and applications. Different from cloud computing requiring

all parts to be connected to the central cloud, where large volumes of data are

processed to find optimization solutions or support decisions, edge computing relo-

cates crucial data processing to the edge of the network, rather than constantly deliv-

ering data back to a central server. Therefore, edge-enabled devices can gather and

process data in real time, allowing them to respond faster and more effectively,

while mobile computing relates to the emergence of new devices and interfaces and

has the data processing capability on the mobile devices. Moreover, the central-

ized cloud could perform extremely complex data processing, storing, and analytics.

Edge computing usually performs less intricate data processing than central clouds,

storing and forwarding. However, some mobile devices can only implement simple

and limited data processing. By integrating the three computing paradigms, the effi-

ciency challenges of intensive big data processing and computing can be remitted.

Direct connection between edges, mobile devices, and the central cloud with a stable

and secure network will guarantee the safety and security of the whole system.

41.3 Cloud Computing for Smart Cities

41.3.1 Methodology

Cloud computing is developed and improved based on the evolution of parallel

computing, distributed computing, and grid computing (Jadeja and Modi 2012;

Yang and Raskin 2009). Parallel computing allows many computation processes

to run simultaneously, which achieves high performance in a divide-and-conquer

fashion (Fu et al. 2015). Distributed computing contains components located on

different networked computers which communicate and cooperate with each other to

achieve a common computing objective (Yang et al. 2008). The inexpensive computer

nodes and high-speed networks make possible the function of distributed computing

systems (Jonas et al. 2017). Grid computing organizes a network of heterogeneous

computer resources to work together and achieves high performance for processing

and executing resource-hungry tasks like those normally allocated to supercomputers

(Wang et al. 2018). Different from the above-mentioned computing modes, cloud
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computing is a model for enabling convenient, on-demand network access to a shared

pool of configurable computing resources (NASA 2010), instead of a local machine

or remote server handling applications.

Cloud computing is capable of scheduling and balancing the distribution of

resources according to real utilization demand, and billing according to the usage.

Using different techniques and according to different budgets, cloud computing

extends subscription-based access to data, platforms, infrastructure, and software,

approaches that are referred to as data as a service (DaaS), platform as a service

(PaaS), infrastructure as a service (IaaS), and software as a service (SaaS) (Subashini

and Kavitha 2011; Yang et al. 2011).

41.3.2 Challenges, Motivations and Opportunities

Past research (Gong et al. 2010; Zhang et al. 2010; Yang and Huang 2013; Mahmood

2011) identified the features and advantages of cloud computing as:

(1) Hyperscale. Some Internet companies have developed large-scale cloud-

computing platforms for business applications, and the practical clouds have

a considerable scale. For example, Google cloud computing (Xiong et al. 2017)

has millions of servers; Amazon, IBM, Microsoft, Saleforce, Ali, and Tencent

(Hashem et al 2015; Rittinghouse and Ransome 2016), and other agencies have

hundreds of thousands of servers in their clouds. Conceptually, a cloud can

provide users with unprecedented computing power.

(2) Virtualization. Cloud-computing supports users to access services at any loca-

tion using a variety of terminals and devices. The requested resources come from

the cloud, which uses virtualization techniques to separate computer resources

and services from underlying fixed physical entities (Gong et al. 2010). The

application runs above in the cloud without specifying a server. Simple network

connection enables users to benefit from super-powerful services via multiple

devices, such as a computer, a PAD, or a mobile phone.

(3) Reliability. Cloud computing uses the capability of fault tolerance and isomor-

phic interchangeability of computing nodes and other strategies to ensure high

reliability and availability (Dai et al. 2009). Compared with traditional in-house

computing infrastructures, cloud computing is more reliable and consistent.

(4) Universality. Cloud computing is not specific to any particular applications. It

can support a variety of applications under the support of a single cloud. The

same cloud infrastructure can be shared by different applications at the same

time (Yang et al. 2016).

(5) Scalability. The capabilities and scales of the cloud can be modified and extended

dynamically to meet the needs of applications and growth (Lehrig et al. 2015).

Scalability allows cost-effective running of workloads that make a very high

demand on servers but only for short periods of time or occasionally.
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(6) On-demand. Users could request and receive access to cloud service offerings,

like the traditional infrastructure utilities of water, electricity, and gas. Based on

a pool of physical and virtual resources in the cloud, operations such as creating,

stopping, and terminating could be conducted at any time without waiting for

delivery and purchasing processes (Etro 2015). Usage monitoring tools of the

cloud can record usage details for billing.

(7) Cost savings. The “pay-as-you-go” characteristic of cloud service enables

personal and business clients to access the cloud from extremely cheap and

price-flexible computing nodes. The automatic system of the cloud reduces

the cost of data center management by deleting the basic maintenance budget.

The lack of physical infrastructure removes the operational expenses of power,

storage, administration and even labor costs.

Considering the advantages listed above, cloud computing can help to address the

following computing challenges of smart cities:

(1) Unity and efficiency. Through the architecture of the IaaS model, cloud

computing integrates various frameworks, hardware brands, and computing

models of servers to the traditional data centers and provides a unified plat-

form of application based on the cloud operating systems (Mitton et al. 2012).

Meanwhile, with the virtualization techniques, cloud computing can be flexibly

and effectively partitioned, allocated, and integrated over a potentially infinite

number of storage and computing resources, and optimize the efficiency ratio

according to application and requirements.

(2) Large-scale infrastructure. Infrastructure management of hardware and soft-

ware is mainly responsible for the monitoring and management of large-scale

foundational computing resources (Jin et al. 2014). Fundamental software

resources include stand-alone operating systems, middleware, databases, and so

on. Fundamental hardware resources include three main devices in the network

environment: computing (server), storage (storage device), and network (switch,

router, and other devices). The advantages of infrastructure management center

are: (1) to manage the assets of the basic software and hardware resources;

(2) to support the status and performance monitoring of the basic hardware;

(3) to trigger alarms for abnormal situations, and remind users to maintain the

abnormal equipment; (4) to carry out long-term statistical analysis of the basic

software and hardware resources; and (5) to provide a decision-making basis

for high-level resource scheduling.

(3) Sustainable and green energy. Facing the burden of large-scale fundamental

software and hardware resources, green and energy-saving operation and main-

tenance management of this basic infrastructure is an inevitable demand for the

supplier of cloud computing (Wibowo et al. 2018).

Presently, users often purchase large amounts of equipment to guarantee peak

business operation demands. But for actual operation processes, the load of the

equipment is generally low (Mastelic and Brandic 2015), especially in the low-

loading period. A long-term low utilization rate will lead to a large waste of

resources and energy.
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A cloud-computing data center supports multi-tenant applications of resources.

The utilization rate of resources can be effectively improved through the histor-

ical statistical information of business, and the coordination of business/resource

scheduling management. In typical applications, a cloud-computing data center

using energy-saving technology can increase the load of resources to a signifi-

cantly higher level (Rong et al. 2016), remove the loss in the process of resources’

scheduling, and double the resources’ payload. During night operations, when

the overall load of the data center decreases, the unused resources can be trans-

ferred to the idle mode, to maximize the green, low-carbon and energy-saving

operation of the data center (Hao et al. 2012).

(4) Privacy and security. In the cloud-computing environment, the centralized and

large-scale management of basic resources shifts the security problems to the

server side in the data center. From the specialization perspective, end users

can achieve business security through the security mechanism of the cloud data

center, without consuming too much resources and power (Jin et al. 2014; Sen

2015). At the same time, cloud-computing centers will be directly responsible

for the security of all users and specifically focus on the main security risks

including data access risk, data storage risk, information management risk, data

isolation risk, legal investigation support risk, as well as sustainable development

and migration risk.

The security control of cloud computing can be integrated by the basic hardware

and software security design. The architecture, strategy, authentication, encryption,

and other aspects of a cloud-computing system ensure the information security of

cloud-computing servers.

Cloud computing reduces the risk of data loss or leakage from individuals by

storing data in a centralized database (Chang and Ramachandran 2015). At the same

time, a cloud-computing center also uses a variety of backup methods in security and

disaster recovery to guarantee that data will not be lost or illegally tampered with.

41.3.3 Urban Heat Island Use Case

Remote-sensing data analysis of a large area is a traditional approach to extract

temperature information of cities for UHI modeling and prediction. Google Earth

Engine (GGE) is a cloud-based platform sharing large numbers of satellite data online

and allowing data analysis and processing on the fly (Gorelick et al. 2017).

Chakraborty and Lee (2019) implemented the SUE algorithm on the Google Earth

Engine platform using MODIS images to calculate the UHI intensity for over 9500

urban clusters using over 15 years of data, making this one of the most comprehensive

characterizations of the surface UHI to date. They designed an interactive, public-

facing Web application to query UHI intensities of almost all urban clusters based on

GGE. Ravanelli et al. (2018a,b) took advantage of GGE and the Climate Engine (CE)

tool to process the huge amount of satellite Earth observation data (6000 Landsat
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images) over the period of 1992–2011 and realized wide spatiotemporal monitoring

of surface UHI and its connection with land cover changes. Yu et al. (2019) utilized

cloud-based computing of spatial and landscape analysis to identify the multi-scale

spatiotemporal patterns and characteristics of regional heat islands.

Cloud-computing techniques enable researchers to calculate geophysical parame-

ters from large numbers of remote-sensing data with high and efficient performance.

The cloud-computing platform, like Google Earth Engine, assists users to store and

manage original raw datasets and provides interactive SaaS for customized algo-

rithms deployment and running for specific UHI-related use cases. These functions

are successful in addressing the computing challenges of big data handling, efficiency,

computing-intensive modeling and processing, and data security.

41.4 Edge Computing for Smart Cities

41.4.1 Methodology

With the development of computation technology and hardware, a large number

of smart devices are integrated with sensors, enabling them to acquire real-time

data and information from the environment. This phenomenon has culminated in the

captivating concept of the IoT in which all smart things, such as smart cars (Morabito

et al. 2018), wearable devices (Chen et al. 2017), sensors and industrial and utility

components (Mehta et al. 2018) are connected via networks and empowered with

data analytics that are significantly changing the way we work, live, and play. In

the past few years, many scientific and industrial organizations have introduced and

implemented the concept of IoT in various fields such as smart homes, smart cities,

smart traffic, and smart environments. Edge computing is a new paradigm in which

extensive computing and storage resources are placed to provide cloud-computing

capabilities at the edge (variously referred to as cloudlets or micro data centers) of the

Internet (Satyanarayanan 2010). Edge computing is a mesh network of micro-data

centers that process or store data locally and push all received data to a centralized

data center or cloud-storage repository (Butler 2017). By implementing computation

closer to the edge of the network, analytics of complex data can be realized in near-

real time. In applications, the forms of edge are various; for example, a gateway at

a smart home is the edge between home devices and the central cloud; a micro-data

center and a cloudlet are the edge between a smartphone and the central cloud.

The main function of edge computing is to ingest, store, filter, and send data

to the central cloud systems (“What Is Edge Computing?|GE Digital” n.d.). At the

heart of a smart city, there is widespread deployment of IoT sensor networks, which

provide a regular flow of data that allows for effective and efficient management of

services and assets. Typical deployment scenarios include a large scope of content:

from bus tracking to traffic light management, street lighting control, air quality, and

pollution monitoring. We envision that edge-computing could have similar impact on
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our society as that of cloud computing. Edge computing provides new possibilities in

IoT applications, particularly for those tasks relying on AI techniques such as object

detection (Ananthanarayanan et al. 2017), face recognition (Hu et al. 2016), language

processing (Lewis et al. 2014), and obstacle avoidance (Zhang and Ye 2016).

41.4.2 Challenges, Motivations, and Opportunities

Nowadays, a smart city relies on the infrastructure of edge computing to leverage

most of the up-to-date data-driven technologies. With edge computing, services can

be ensured to flow continuously through local data processing even when the Web

connection is interrupted (Abbas et al. 2017). For example, driverless cars and other

modern IoT devices are designed to be built with enough processing capability, so that

they can perform some of the computation themselves at the edge, without sending it

to the central cloud. Edge-computing technology provides an attractive and resilient

platform for cities, while at the same time reducing backhaul costs (Tran et al. 2017a,

b), both in terms of the amount of data required and the sharing of connections by

creating a mesh network.

There are challenges both in the big data generated and in creating the neces-

sary network infrastructure to support an increasing number of end devices. Edge

computing offers a solution to many of the challenges described in Sect. 41.2.2, which

opens up many possibilities for smart cities. According to the advantages discussed

above, edge computing can contribute to the following computing challenges of

smart cities:

(1) Latency and efficiency. In a high-efficiency computing system, any device

connected to the Internet has to be responsive in a short period of millisec-

onds. Any lag in the communication between network and devices is termed

latency. Edge computing can eliminate the latency issue as it works on the

principle of a more distributed network. This kind of system has the capability

to guarantee real-time information processing and maintains a more reliable

network (Hu et al. 2015). On the other hand, edge-computing processes the

massive data generated by different types of IoT devices at the edge of network,

instead of transmitting them to the centralized cloud infrastructure. Therefore,

edge computing can provide services with faster response and greater quality

in comparison with cloud computing, which greatly improves the efficiency of

collecting, transferring, processing, and analyzing data generated by arrays of

IoT devices.

(2) Privacy and security. Security concerns are more related to the transfer of data

over a network to the central cloud. In an edge architecture, any outage would be

limited to the edge devices and local applications. Therefore, edge computing

will improve privacy and security by omitting the transmission since the data

are stored and processed in or closer to the edge devices (He et al. 2018).

With the improvement of authentication technology, the privacy and security
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of edge computing can be further guaranteed by the emergence of biometric

authentication such as fingerprint authentication, face authentication, touch-

based, or keystroke-based authentication (Yi et al. 2015; Zhou et al. 2017).

(3) Internet load reduction. According to the Cisco Global Cloud Index (“Cisco

Global Cloud” n.d.), the amount of traffic running through cloud-computing

networks will increase to 14.1 zettabytes per year in 2020. This immersive

amount of traffic can be removed from the central cloud by processing some of

the data closer to the edge. Additionally, moving the processing of data away

from the central cloud can minimize the network burden where the Internet

bandwidth is limited (Lyu et al. 2018).

(4) Sustainability. Edge-computing systems provide the capability of decentralizing

computation power, which support fault tolerance in that when one of the edge

devices fails, other nodes and associated IT assets will still remain operational

(Ning et al. 2019). This concept is similar to the cloud disaster recovery strategy

(“Disaster Recovery Planning Guide|Architectures,” n.d.) by using multiple

available zones and regions to ensure that the data and applications are not

lost in a catastrophic event.

Edge computing introduces a new concept that computing should happen as close

as possible to the data sources. With this architecture, a request could be generated

from the top of the computing paradigm and processed at the edge. By deploying edge

computing, software engineers can create additional applications that utilize edge-

computing platforms to leverage existing technology and benefit the smart cities in

the following ways (“Smarter Cities with Edge Computing” n.d.):

(1) Streetlighting. A number of cities are in the process of upgrading their street-

lights to lower-power LEDs. With the major cost of these upgrades being the

physical fitting, edge appliances can be added to provide lighting controls (Xing

et al. 2018).

(2) Security cameras. Nowadays, CCTV cameras have been a critical tool in modern

policing systems. Edge computing can allow low-cost wireless IP cameras to

be deployed in these systems, which will offer considerably less cost (Yi et al.

2017).

(3) Health emergency and public safety management. For applications that require

real-time prediction and low latency such as health emergencies (Wang et al.

2017) and public safety (Zhang and Ye 2016) management, edge computing is

also an appropriate paradigm since it could save the data transmission time as

well as simplify the network structure. Decisions and diagnosis could be made

and distributed from the edge of the network, which is more efficient compared

with collecting information and making decisions at a central cloud.

(4) Location awareness. For geoinformatics-based applications such as transporta-

tion and utility management, edge computing exceeds cloud computing due to

location awareness (Shi et al. 2016). In edge computing, data could be collected

and processed based on geographic location without being transferred to the

central cloud.
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41.4.3 Urban Heat Island Use Case

Unlike cloud computing, edge devices are commonly decentralized. In order to

monitor UHI from distributed sensors, edge computing offers closer contacts to

each individual sensor, thus reducing energy consumption and response time during

the transfer of observation data (Ngoko et al. 2018). Edge devices are those mounted

directly on the edge for urban sensing of properties such as microclimate, having

better durability compared to wireless devices. Densely distributed buildings in urban

areas work as an ideal candidate for the deployment of edge devices, providing close

proximity to the UHI impact factors such as temperature, humidity, and wind speed.

Due to climate change, heating and cooling consume significant energy in buildings.

These sectors contribute greatly to UHI and can be monitored by smart building

sensors (Seitz et al. 2017). Lightweight tasks like data cleaning and basic decision

support can be performed, and therefore contributes to UHI mitigation. Applications

that support edge computing can benefit the field of UHI in: (1) allowing users to

browse and query the UHI of cities around the world from a gateway; (2) providing

a means to access real-time datasets from the edge without any latency; and (3)

allowing users to search for a city of interest, query cities to generate charts of

seasonal and long-term surface UHI, and download the UHI data.

41.5 Mobile Computing for Smart Cities

41.5.1 Methodology

Mobile computing could be described as a form of human–computer interaction

where the computer is portable and transported during normal usage (Qi and Gani

2012; Akherfi et al. 2018). The fundamental concepts of mobile computing include:

(1) communication, (2) hardware, and (3) software. Specifically, the communication

concept refers to the wireless networks, data traffic, and protocols. The hardware

could be any type of mobile device, which includes: (1) laptops, (2) tablets, (3)

smartphones, (4) carputer, and others. The category boundaries of such devices are

blurry, as more and more portable devices are installed with microchips and wireless

modules, all of which have some computing power and the ability to transfer data

through networks as a part of the mobile-computing hardware (Tong et al. 2016).

The software in mobile computing consists of the applications in mobile device

hardware, such as customized industry software, data collection applications, and

Web browsers.

In the past decade, mobile computing has developed in two ways (Kumar et al.

2013): (1) deployment of sensors, and (2) growth in smartphones. It was also chal-

lenged by the explosion of big data (Laurila et al. 2012). Different from purpose-

oriented IoT, mobile devices are integrated with multi-purpose sensors, such as GPS

receivers, accelerometers, gyroscopes, and microphones. With the growth in both
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smartphone technologies and number of users, mobile devices are transitioning from

specialized and customized platforms to powerful computing interfaces (Al-Turjman

2018). Mobile computing itself is also becoming a computing offloading contrib-

utor. The application layer of mobile computing faces various challenges due to its

features. However, with the fast growth in communication technologies, including

4G and 5G networks and high-speed city Wi-Fi (Tran et al. 2017a, b), and mobile

technologies in general, the number of applications running on mobile devices is

growing at an exponential rate.

41.5.2 Challenges, Motivations, and Opportunities

In addition to most computing architectures in a wired network, mobile computing

is different in the following aspects (Qi and Gani 2012): (1) Mobility: mobile-

computing nodes or devices are expected to be portable and transportable; the

computing power is not physically limited to a certain location and follows the prin-

ciple of bringing computing to the data instead of transferring the data to computing

resources. (2) The diversity of network conditions: the networks that mobile devices

use are often not fixed; communication could be achieved through high-bandwidth or

low-bandwidth networks; and the mobile device may even operate offline. (3) Incon-

sistency: as mobile devices are limited by their battery power and wireless network

conditions, the inconsistency of communication and change of working status are

expected and requires the mobile devices to switch modes to adapt to specific situa-

tions. (4) Asymmetric communication: wireless networks are often set with different

bandwidths for downlink and uplink, which causes asymmetric communications

between backend servers and local devices. (5) Low reliability: wireless commu-

nications are susceptible to interference; the security issues are enlarged in such

networks and affect the reliability of mobile computing (Qi and Gani 2012).

The rapid development of mobile computing and smartphone applications is

enabling integrated growth of smart-city applications. As stated in Sect. 41.2.2,

mobile computing can help to improve the following challenges of smart-cities

computing:

(1) Satisfy the need of users from different areas. Mobile computing supports smart-

city computing in the forms of mobility and flexibility, which could help both

end users and policy makers to meet different computing demands in different

scenarios. Application use cases include services in higher education (Gikas

and Grant 2013), and location-based services in general, which all utilize the

mobility side of smart devices and allow them to act as both a data collector and

data user (Raja et al. 2018). Another application of mobile computing is to utilize

and integrate smart devices in smart spaces (Zheng and Ni 2010). The concept

of the smart city is a big domain with enough space for the expansion and adapt-

ability of mobile computing. Research topics including dynamic offloading for
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mobile devices (Huang et al. 2012) and mobile cloud computing are all inter-

active examples of smart devices in smart spaces. Mobile cloud computing has

been envisioned since 2009 as a combination of cloud computing and mobile

computing, which leverages the mobility side of mobile computing and inte-

grates with the elastic computing power from cloud computing (Tong et al. 2016;

Dinh et al. 2013; Fernando et al. 2013). When integrated with cloud-computing

power, it could also serve as an edge-computing device in the cloud-computing

network.

(2) Computing efficiency and near-real-time analysis and feedback. Smart device

holders are often fed with various information or data through sensors on the

smart devices; with mobile-based computing power, stream-like data flow could

be analyzed locally and uploaded to the centralized databases at the same time.

End users with smart devices on hand could get feedback or results immediately;

routing and mapping services, language translation services, and instant weather

services are all good examples of this (Talukdar 2010). At the same time, public-

security services and danger-awareness services could also be provided through

mobile computing and locally based services (Aubry et al. 2014), such as the

lost child and healthcare applications discussed in Sect. 41.1.2. The challenges

in smart-city implementations bring new motivations and opportunities for the

development of mobile computing and vice versa.

As one of its important components, mobile computing is enhancing the smart-

city experience in the following aspects: (1) Transport and traffic management for

both personal end users and policy makers; (2) Utilities and energy monitoring across

the network, and (3) Improving public safety and smart-city security awareness.

41.5.3 Urban Heat Island Use Case

Mobile computing and mobile-based technologies are integrating innovative

concepts and ideas to increase UHI awareness and aid city design to reduce the

UHI effect. As Wong et al. (2014) mentioned in their reviews, tools have been

developed and implemented to allow users to gather instantaneous energy perfor-

mance feedbacks on their decisions and plans of building designing, such as the

building orientation and thermal performance, through mobile-based applications

(i.e., iPad/smartphone application). At the same time, mobile devices provide volun-

teered geographic information (VGI) to enhance the near-real-time estimation of

UHI. For example, Koukoutsidis (2018) utilized mobile crowdsensing to estimate

the mean area temperature in a linear region that exhibits the UHI effect.
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41.6 Case Study

41.6.1 Urban Heat Island (UHI)

The direct cause of UHI is urbanization, which leads to the loss of more vegetation

and causes more surfaces to be paved or covered with impervious materials such as

cement, asphalt, buildings, and walls. Challenges are revealed due to the complexity

of the composition of UHI impact factors. Major ones are stated by Oke (1982) in

his previous studies and include: (1) the inherent complexity of the city-atmosphere

system; (2) the lack of clear conceptual and theoretical frameworks; and (3) the

expense and difficulty of observation in cities. UHI is a very common challenge to

all urban areas in the world, although in megacities it is serious and less so in small

towns.

UHI is usually measured in three scales: boundary UHI, canopy UHI, and surface

UHI. Boundary UHI is measured from the altitude of the rooftop to the atmosphere. It

is generally used to investigate the UHI effect at mesoscale and is acquired by using,

for example, radiosondes. Canopy UHI is measured at the altitude that ranges from

the ground surface to the rooftop. An assessment of canopy UHI is most suitable for

a microscale study and is generally derived based on weather station data. Surface

UHI is measured at the Earth surface level. Researchers have often used satellite

images (e.g., thermal bands of Landsat TM/ETM/OLI, MODIS, AVHRR) to obtain

the effect of surface UHI (Zhang et al. 2009). Researchers used remotely sensed

data and stationary meteorological monitoring data to analyze the UHI changes and

effects in the long or short term (Earl et al. 2016), as well as the relationship between

UHI and land cover changes (Chen et al. 2006; Charkraborty and Lee 2019). A lot

of research has simulated and evaluated UHI and its effect on the future by using

numerical modeling based on real-time meteorological data (Morris et al. 2015).

41.6.2 UHI Challenges and Opportunities

From the aforementioned scientific challenges, UHI introduces its own computing

challenges, mostly concentrated on handling the aspects of the expense and diffi-

culty of observation in cities. These challenges include: (1) management of hetero-

geneous data sources; (2) integration of a huge volume of remotely sensed data and

real-time meteorological data; and (3) a large amount of computation in modeling,

visualizing, simulating, and predicting. Cloud computing has existed in the long

term for allocating computing resources to enable the auto-scalable modeling and

detecting in many study fields and has proved to be an efficient and economical

solution (Yang et al. 2017a). Google Earth Engine is a cloud-computing platform,

offering intrinsically parallel computational resources, and enabling monitoring and

measurement of changes in the Earth’s environment, at planetary scale, on a large

catalog of Earth observation data (Moore and Hansen 2011). An implementation of
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large-scale correlation between land surface temperature and land cover alteration

research is conducted upon this platform and has illustrated the capability of using

cloud computing for efficient UHI monitoring (Ravanelli et al. 2018a, b).

The emergence of 5G and IoT technologies in the current era is bringing opportuni-

ties to facilitate advances in urban microclimate study with finer spatiotemporal reso-

lution beyond just satellite imagery analysis (Li et al. 2018). Voogt and Oke (2003)

argued that thermal remote sensors have a credible ability to observe the surface

UHI and require consideration of the intervening atmosphere and surface radiative

properties, leading to extra conversions and corrections. With implementing sensor

device networks directly into the environment, urban environmental factors like air

temperature are more accurately measured. These sensor networks can be designed

and implemented for advanced urban microclimate and environment modeling (Jha

et al. 2015). Challenges follow when considering the real-time streaming nature of

IoT, as it requires the capacity of ingesting the large number of data and producing

results with higher speed that is beyond the capability of conventional architec-

tures (Rathore et al. 2018). Santamouris (2015) analyzed heat island magnitude and

characteristics in one hundred cities and regions and indicated that analysis of 43%

station measurements are only based on one station from urban and one from rural.

According to the Gartner, up to 20.4 billion IoT devices will be connected machine-

to-machine by 2020 (Meulen 2017), offering great potential to increase the number

of sensors utilized for UHI research.

Since the first time it was introduced by Howard (1818), in the past 200 years,

numerous studies have been developed to model UHI intensity, simulate, and

predict UHI effects. However, it was proved from analyzing one hundred Asian

and Australian cities and regions, that a systematic analysis like a workflow is still

needed (Santamouris 2015). Coupling with aforementioned computing techniques

(cloud computing, edge computing, and mobile computing), the following introduces

a theoretical integrated workflow to enable the efficient data storage and processing

for handling urban informatics challenges and using UHI as an example. This work-

flow targets the last two scientific challenges of UHI, and the overall architecture is

illustrated in Fig. 41.4, starting from collecting urban observation data with mobile

devices to the centralized cloud-based data analysis, and finishing with generating

intelligent supportive materials for UHI monitoring and managing.

41.6.3 Integrated Workflow

41.6.3.1 Mobile Computing for Local Fast Response

Data in Fig. 41.4 are directly collected by sensors within a large sensor network

deployed in the urban environment. Data streams into the workflow by entering the

first gate: mobile computing. In general, the capacity of mobile devices is low, and due

to the limitations like battery life, only lightweight preprocessing like data cleaning

and reorganizing can be performed at the mobile computing stage. However, in situ
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Fig. 41.4 Overall architecture of computing for UHI

monitoring coupled with light data understanding can reduce time latency for jobs

that do not require extensive computation but only the ability to make simple judg-

ments. For instance, alarms setup on a mobile device with constrained temperature

threshold can be triggered responsively when unexpected heat is detected. Though

the computing capabilities of mobile devices are low, with hundreds and thousands

of contributions from them, appreciable computational resources are preserved for

more intensive works like microscale UHI modeling (Mirzaei 2015).

41.6.3.2 Edge Computing for Data Preprocessing and Direct

Microcontrol

Besides collecting data on the edge and passing the raw data to the cloud like mobile

computing, edge computing offers more capacities for better data preprocessing.

With the increasing data volume, uploading everything raw to the cloud can take a

significant amount of time, and the heavy duty that is loaded to the center cluster

can exceed the limit of the computing resources. To fill the gap between mobile

computing and cloud computing, enhancing the performances regarding response

time, data transform, data safety, and privacy, edge computing is integrated to the

workflow to allow downstream data representing cloud services and upstream data
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representing IoT services (Sun and Ansari 2016; Shi et al 2016; Yannuzzi et al. 2014).

Similarly, works that do not require much computation can be done directly from the

edge and provide feedbacks to the sensors to reduce time lag (Gerla 2012). Data from

the Array of Things (AoT) (University of Chicago 2019; see Sect. 4.7) project at the

University of Chicago monitors local temperatures and other environmental elements

from networks composed of hundreds of sensors, providing observations with the

resolution of seconds. The high-velocity data transfers within the network can cause

traffic congestion due to the limited bandwidth. The Google cloud platform supports

edge computing with AI, enabling potential real-time data analytics (Google 2019).

41.6.3.3 Cloud Computing for Massive Data Processing and Analytics

Like every big data problem, a sensor dataset at fine temporal resolution for

UHI monitoring (e.g., streaming AoT data) introduces a data storage challenge.

Cloud computing as the final layer of UHI data processing and analyzing has been

well studied for enabling heavy computations by transferring big data storing and

processing from a local to a centralized cluster (Yang et al. 2017b). Empowered with

the auto-expandable nature of the virtual storage mechanism, data streamed from

sensors transfer through edges to the center for better management. With the well-

resourced computing capacity, the cloud cannot only process the data that mobile and

edge devices cannot, but also accelerate the processing beyond a standalone server.

IoT networks are massive and can be distributed with different protocols estab-

lished by different management departments. Therefore, UHI-related attributes like

temperature, humidity and wind speed from different networks are potentially

captured with sensors powered by different standards. Data heterogeneity is one

of the major concerns and the massive data cleaning workload requires significant

computational capability. The cloud as a centralized computing resource pool offers

sufficient capacity for such workload (Botta et al. 2014). As mentioned, there are

many factors contributing to UHI study. Changing the composition leads to require-

ments for model parameter adjustments. SaaS as introduced in Sect. 41.3.1 and

provided with cloud computing allows users to duplicate a model directly from a

current version and customize the new one to fit the new environment. Advantages

include reduced model-building time and decreased human error when transferring

the experimental environment.

41.6.3.4 Mobile-Edge-Cloud Integrated Computing for UHI

A weather forecast example provided by a previous study indicated the basic work-

flow when the simulation is decomposed into a process-oriented pipeline (Tsahalis

et al. 2013). Weather research shares conceptual similarities to UHI, and thus, their

example is applied here as a base version of the conventional workflow. Heusinkveld

et al. (2010) carried out an assessment of UHI intensity in Rotterdam using an inno-

vative mobile bio-meteorological measuring platform mounted on a cargo bicycle.
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Physiologically equivalent temperatures were calculated directly from the measure-

ments and the intensity of UHI was evaluated in real time. Coupling with the IoT

and mobile devices empowered a real-time urban microclimate analysis framework

that integrated with the sensor network and cloud computing (Rathore et al. 2018);

our workflow gains the experience from both. This enhanced framework composed

of cloud computing, edge computing, and mobile computing is able to success-

fully address the previously introduced UHI challenges. Starting from measuring the

geographic environmental of ground, air, and water, mobile computing can directly

sense these parameters and give a quick response (e.g., a UHI detection alarming

system) with minor data manipulation before entering the major processing and

modeling procedures. Edge computing offers a higher computational capacity, miti-

gating the heavy workload that is initially carried by the centralized module. Building-

scale UHI (i.e., building energy model) is limited to the study of an isolated building,

requiring less computational resources as it considers less neighborhood environ-

mental impacts (Mirzaei 2015). Therefore, UHI modeling, visualizing, simulating,

and predicting for a smaller UHI study scale (i.e., building scale) can be directly

computed on the edge for more efficiency. There are many tasks that cannot be satis-

fied with the limited resources from mobile computing or edge computing, such as

heterogeneous data integration, and larger scale (e.g., microclimate) UHI modeling.

The cloud as a big centralized resources pool is powered with enormous computing

capabilities. UHI-related observation data like temperature, humidity, and wind-

speed are transferred from sensors to the cloud after a certain effort made by mobile

computing and edge computing for data cleaning and preprocessing. Heterogeneous

data integration on the cloud will be triggered for the massive data coupled with

mixed data types and data standards. Large-scale UHI modeling, simulating, etc.,

are performed within the cloud. Elasticity that is offered as one of the key features of

the cloud dispatches computing resources on demand and surpasses the traditional

method of using a single computer for analysis, saving resources while providing

enough capacity for the heavy tasks. All three computing paradigms work seamlessly

from getting the sensor data to processing, analyzing, and decision support, enabling

an efficient and effective workflow as a whole to handle the UHI challenges.

These three computing components should be leveraged and kept in balance

when applied to UHI monitoring, data analysis, and problem solving. For instance,

deploying edge nodes with higher computing capacity may increase the operational

cost for processing the IoT data streams compared to processing them in the central-

ized cloud (Sun and Ansari 2016). Understanding the tradeoffs among the different

interfacings of the three is crucial for maximizing the workflow efficiency and opti-

mizing the computing architecture design. Many other smart-city applications are

encountering similar problems, and the demonstrated UHI analytical workflow can

be broadly applied when integrating computing components.
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41.7 Summary

This chapter introduced the contribution and recent advances of computing for smart

cities. The general challenges of computing in smart cities were introduced and

include heterogeneous sources of big data, resulting from the unprecedented number

of smart sensors and devices, various needs from users in multiple domains, data

security, sustainability, and efficiency. To address the challenges, cloud computing,

edge computing, and mobile computing were discussed for their advantages and

limitations in smart-city applications. Cloud computing provides a unified and effi-

cient platform, large-scale base infrastructure, sustainable and green software and

hardware development and addresses system security and recovery issues. Edge

computing helps reduce observation latency and increase the efficiency of data collec-

tion, improve data privacy and security, reduce data transmission load on computer

network, and provide a sustainable decentralization of computing needs. Mobile

computing contributes to the smart city with computational mobility and flexibility,

and computing efficiency and near-real-time analysis. The characteristics of different

computing paradigms were exemplified in the case study of urban heat island. With

multiple computing paradigms leveraged, smart-city applications and services can

be provided in a more efficient and effective fashion.

41.7.1 The Future of Urban Computing for Smart Cities

Big data and IoT are labeled as the primary drivers for the cloud, edge, and mobile

computing. The development of mobile computing is increasing at an accelerating

speed. With the fast implementation of 5G networks and closer integration with

cloud computing, the mobile-computing system is merging with the cloud-computing

network and serving as the network edge. The phrase mobile cloud computing has

been frequently referenced in the mobile-computing field (Fernando et al. 2013;

Akherfi et al. 2018). When the mobility of mobile computing interacts with the elastic

computing power from cloud computing, it will push the whole computing network to

a new decentralized computing stage and accelerate the smart-city process. Smarter

devices, faster networks, and longer battery lives are the foreseeable future; the

transformation of mobile computing and interaction with other computing fields will

be the norm.

With the increasing number of mobile devices (phones, drones, cars, etc.), the need

for interaction with nearby edge resources will become apparent. Coupled with better

processing, computing, and power capacity, as well as the decentralized characteristic

of mobile computing, edge computing is expected to provide significantly improved

throughput, better performance, and real-time responses, moving both computing

and data closer to the user and customizing the processing requirements from each

user. Edge computing and mobile computing are both capable of handling localized
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data for fast action for a certain range of area size. However, the increasing urban data

volume and cross-city geo-analysis are also driving centralized cloud computing.

Ever since the infrastructure was developed for cloud computing, the combined

use of private and public clouds is engaged for many more individual and busi-

ness purposes. As a mature platform to integrate powerful computing capabili-

ties, large data storage and on-demand data analysis, cloud computing will lead

cities toward a smart age—an age based on fully connected, interactive decision-

supporting environment. Within the smart city, a variety of devices (e.g., domestic

appliances and semiautomatic vehicles) will connect to the cloud-based Internet

for sensing, recording, sharing, and analyzing numerous human-related activities.

Coupled with the help from artificial intelligence algorithms, cloud computing will

serve companies, governments, and individual residents with smarter solutions.
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