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Abstract—The computing continuum extends the high-performance cloud data centers with
energy-efficient and low-latency devices close to the data sources located at the edge of the
network. However, the heterogeneity of the computing continuum raises multiple challenges
related to application management. These include where to offload an application – from the
cloud to the edge – to meet its computation and communication requirements. To support these
decisions, we provide in this article a detailed performance and carbon footprint analysis of a
selection of use case applications with complementary resource requirements across the
computing continuum over a real-life evaluation testbed.
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1 Introduction
The advent of fog and edge computing

has prompted predictions that they will take
over the traditional cloud for information pro-
cessing and knowledge extraction at a large
scale. Notwithstanding the fact that fog and
edge computing have undoubtedly large po-
tential, these predictions are probably over-
simplified and wrongly portray the relations
between fog, edge and cloud computing.
Concretely, fog and edge computing have
been introduced as an extension of the cloud
services towards the data sources, thus form-
ing the computing continuum.

The computing continuum enables the
creation of a new type of services, span-
ning across distributed infrastructures, for au-

tonomous vehicles, smart cities, and content
delivery, among other applications. These
services have a large spectrum of require-
ments, burdensome to meet with “distant”
cloud data centers. For instance, they may
need low-latency connections for fast deci-
sion making close to the data sources and
substantial computing resources for complex
data analysis. The computing continuum pro-
vides a vast heterogeneity of computational
and communication resources, which have
the potential to meet these demands.

The heterogeneity of the computing con-
tinuum raises multiple application manage-
ment challenges, such as where to offload
an application from the cloud to the fog or
to the edge. These issues primarily concern
the large diversity of the devices, which range
from single-board computers such as Rasp-
berry Pis to powerful multi-processor servers.
This poses the following dilemma of many
practitioners and researchers:

Should we use devices accessi-
ble with low latency and with lim-
ited resource availability, or a high-
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performance cloud at the expense of
high communication delay?

To answer this question it is essential
to characterize the performance of the re-
sources. Existing literature [1], [2], including
the DeFog benchmark suite, addresses this
problem by conducting performance analy-
sis of cloud services and to some extent
of edge infrastructures. Nevertheless, these
approaches (i) consider the edge and the
cloud resources in isolation, (ii) provide only
quantitative analysis of the performance with-
out offloading recommendations, (iii) evaluate
a limited number of devices, and (iv ) do not
consider the environmental impact in terms of
CO2 emissions for executing the applications.

We present in this article a performance
characterization and an analysis of the CO2
emissions of the resources across the com-
puting continuum. Our main goal is to support
the decision process for offloading an appli-
cation to fog or edge resources by consid-
ering the application characteristics. For this
purpose, we deployed a real testbed named
Carinthian Computing Continuum (C3) that
aggregates a large set of heterogeneous
resources. We base the analysis on three
complementary applications widely utilized by
industry and research: video encoding, ma-
chine learning and in-memory data analytics.
We conclude by providing recommendations
on where to compute applications across the
computing continuum.

2 Carinthian Computing Continuum
Figure 1 depicts the top-level view of

the Carinthian Computing Continuum. The
C3 testbed includes a heterogeneous set of
resources, distributed across different con-
trol domains, including public providers such
as Exoscale Cloud1 and Amazon Web Ser-
vices (AWS), and research institutions such
as University of Klagenfurt2. We utilize the
ASKALON cloud application computing en-
vironment [6] with the MAPO resource pro-
visioning algorithm [5] to deploy the appli-
cations across the C3 testbed. Furthermore,

1https://www.exoscale.com
2https://itec.aau.at

Figure 1: The C3 testbed.

we employ a bootstrapping script that au-
tomatically configures the resources in the
testbed 3. Table 1 summarizes the resource
characteristics of the C3 testbed.

We classify the resources in the C3

testbed into three layers: cloud layer, fog layer
and edge layer.

2.1 Cloud layer
The cloud layer is the uppermost layer of

the C3 testbed. It contains high-performance
resources consolidated in vast data-centers,
provisioned on-demand as virtual machine
instances. As the C3 testbed resides in Kla-
genfurt (Austria), we complement it with the

3https://github.com/josefhammer/c3-edge
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Table 1: Description of the resources available in the C3 testbed.
Conceptual layer Device / Instance type Architecture (v)CPU Memory [GiB] Storage [GiB] Network Physical processor Clock [GHz] Operating system

Cloud layer
AWS t2.micro

64-bit x86
1 1

32
Moderate Intel Xeon ≤ 3.1

Ubuntu 18.04AWS c5.large 2 4 ≤ 10 Gbps Intel Xeon Platinum 8000 series ≤ 3.6
AWS m5a.xlarge 4 16 AMD EPYC 7000 series ≤ 2.5

Fog layer

Exoscale Tiny

64-bit x86

1 1

32 ≤ 10 Gbps Intel Xeon ≤ 3.6 Ubuntu 18.04Exoscale Medium 2 4
Exoscale Large 4 8

ITEC Cloud Instance 4 8 Intel Xeon Platinum 8000 ≤ 3.1

Edge layer

Edge Gateway System 64-bit x86 12 32 32 ≤ 10 Gbps AMD Ryzen Threadripper 2920X ≤ 3.5 Ubuntu 18.04
Raspberry Pi 3B

64-bit ARM 4
1

64 ≤ 1 Gbps
Cortex - A53 ≤ 1.4 Pi OS Buster

Raspberry Pi 4 4 Cortex - A72 ≤ 1.5
Jetson Nano 4 Tegra X1 and Cortex - A57 ≤ 1.43 Linux for Tegra R28.2.1

geographically closest European AWS cloud
data center located in Frankfurt (Germany).

We carefully selected three instance types
based on the x86-64 architecture that of-
fer to the C3 testbed a balance of com-
pute, memory, and networking resources for
a broad set of applications: general pur-
pose (t2.micro), and compute-optimized
(c5.large and m5a.xlarge).

2.2 Fog layer
The fog layer comprises computing infras-

tructures consolidated in small data-centers
in close vicinity to the data sources. This layer
comprises resources from two providers in
the C3 testbed [4]: Exoscale and University of
Klagenfurt. We allocate these providers in the
fog layer as a result of the low round-trip com-
munication latency (≤ 7 ms) and high band-
width (≤ 10 Gbps). The Exoscale cloud com-
prises data centers in Vienna and Klagenfurt
(Austria). We selected three computing opti-
mized x86-64 instances from the Exoscale
cloud offering: Tiny, Medium and Large.
University of Klagenfurt provides a private
cloud infrastructure operated by OpenStack
v13.0 and Ceph v12.2 with one computing
optimized instance type described in Table 1.

2.3 Edge layer
This layer encompasses edge resources,

such as single-board computers, directly con-
nected to the IoT devices and sensors. An
Edge Gateway System (EGS) controls the
edge layer, and is the entry point to the
other resources available on this level. The
EGS supports 10 Gbps Ethernet, dual band
PCIe WiFi 5 (802.11ac) and a 150 Mbps LTE
2600 MHz connection. A layer-3 HP Aruba
switch with 48 1 Gbps ports connects the
EGS to the single-board computers with a

latency of 3.8 µs and an aggregate data
transfer rate of 104 Gbps. The edge layer
also contains 35 physical nodes based on
either Raspberry Pi 3B or Pi 4B. Besides, the
testbed contains five Jetson Nano devices,
each equipped with a general purpose GPU.
The edge layer has 1 Gbps Ethernet, Wi-Fi
and LTE network connection interfaces.

3 Benchmark applications
We selected three representative appli-

cation classes with complementary require-
ments to evaluate the computational perfor-
mance and the CO2 emissions of the com-
puting continuum.

3.1 Video encoding
Video encoding allows transmission of

video content with different qualities over
limited and heterogeneous communication
channels. It compresses an original raw video
to reduce its effective bandwidth consump-
tion, while maintaining a subjective high qual-
ity for viewers. Video encoding has wide fields
of applications, including content delivery (live
and on-demand video streams), traffic control
and surveillance. The video encoding appli-
cations have high processing and throughput
requirements.

3.2 Machine learning
Machine learning is a branch of artificial

intelligence that explores approaches for en-
abling systems to learn from data, identify
patterns and make decisions. Its vast field
of application includes automated control in
manufacturing, adaptive traffic planning and
smart health-care diagnosis, among others.
Machine learning, in general, has high pro-
cessing and operating memory requirements.
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3.3 In-memory analytic
In-memory analytic is essential for effi-

cient low-latency decisions on devices with
limited resources. It explores data manipula-
tion such as inspecting, filtering and trans-
forming, and enables efficient extraction of
knowledge and non-biased decision-making.
Its fields of application include smart cities,
healthcare and recommender systems. The
in-memory analytic applications require large
memory capacity and strict communication
latency.

4 Performance evaluation

4.1 Video encoding
We evaluate the encoding performance

of the computing continuum using FFm-
peg version 3.4.6 with the most popular
H.264/MPEG-4 video encoder4 deployed by
more than 90% of the video industry5. We
perform the encoding on a raw video seg-
ment with length of 4 s and size of 514 MB,
available in the Sintel6 video-set. The video
segment is encoded in three resolutions (HD-
ready, Full HD and Quad HD) with data rates
of 1500, 3000, and 6500 kbps.

Figure 2 depicts the average encoding
time and transfer time, from the video source
(located at the University of Klagenfurt) to
the encoding device or instance, for a single
raw video segment in the three resolutions.
The standard deviation ranges from 1.3%
for the AWS m5a.xlarge instance to 3.6%
for the Raspberry Pi 3B devices. We ob-
serve that the older generation single-board
computers (Raspberry Pi 3B) have a signif-
icantly higher encoding time than the other
resources. However, the Raspberry Pi 3B
devices provide lower transfer times than the
cloud instances and are suitable for video-on-
demand services employing offline encoding.
The Raspberry Pi 4 and the Jetson Nano de-
vices efficiently perform video encoding and
provide low transfer times. In some cases,
Jetson Nano was capable of encoding up to
20% faster than the AWS t2.micro instance

4https://trac.ffmpeg.org/wiki/Encode/H.264
5https://www.itu.int/rec/T-REC-H.264-201906-I/en
6https://media.xiph.org/sintel

with significantly lower transfer times. The
remaining cloud and fog resources showed
similarly video encoding performance in the
range between 0.5 s to 1.3 s. Nevertheless,
the cloud and fog resources have limited
effective throughput causing higher raw video
transfer times. However, the cloud resources
are suitable for live video streaming due to
the low encoding times. Overall, the EGS
achieved the lowest encoding and transfer
time due to the low utilization rate and its high
computing and networking capabilities.
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(b) Average raw video segment transfer time.

Figure 2: Average encoding performance of a
4 s long video segment with the x264 codec
and FFmpeg 3.4.6.

Recommendation. We recommend exe-
cuting video-on-demand encoding at the
edge using the latest generation of single-
board computers or dedicated systems, as
they significantly reduce the raw video trans-
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fer time. Cloud and fog devices (i.e., close-by
servers, small data centers) are more suitable
for continuous live stream encoding if the
effective incoming and outgoing throughput
is sufficient and the delay incurred by the
transport is tolerable.

4.2 Machine learning
We use TensorFlow Core version 2.3.0 to

evaluate machine learning performance. We
created two training and validation scenarios
for feature identification in a set of images:

• A quantum neural network using the
MNIST data-set7 limited to 20000 samples
with a size of 3.3 MB. The scenario cre-
ates a neural network with two layers and
128 outputs from the previous layer to the
next. We conduct five iterations to reach a
feature identification accuracy of 90%.

• A convolutional neural network using the
Kaggle data-set8 with a size of 218 MB.
The minimum required accuracy is 80%.
The convolutional network has three layers
with a kernel size of three. Each layer uses
increasingly higher filter sizes in the range
[32, 64, 128]. After each layer, we use
a max-pooling sample-based discretization
process to reduce the spatial dimensions.
We repeat the training five times.

Figure 3 analyzes the average execu-
tion time for training the two neural network
types and the transfer times of the train-
ing data from centralized storage to the de-
vice or instance that performs the training.
The standard deviation ranges from 1.2%
for the Raspberry Pi 4 devices to 5.4% for
the AWS t2.micro instance. The evaluation
shows that the less complex quantum neural
network requires a relatively lower training
time across all resources. The old generation
single-board computers show again a lower
performance, and their suitability for training
heavily depends on the size of the training
data and the model. The other fog and edge
devices provide similar performance to the
cloud resources. The single-board computers

7http://yann.lecun.com/exdb/mnist/
8https://www.kaggle.com/tags/animals

provide lower training performance for the
convolutional network. The only exception are
the Jetson Nano devices able to train the
convolutional network up to four times faster
than the Raspberry Pi devices. In general,
the EGS provides the lowest training time
among all devices. The training data trans-
fer time has limited influence on the training
process, especially for the quantum neural
network. While the training data transfer time
is significantly higher for the convolutional
neural network, the cloud and fog resources
outperform the edge devices, except EGS.

Recommendation. We recommend the
model training with large data-sets and
multiple layers in the cloud or on dedicated
systems (such as EGS), whenever possible.
We recommend offloading to the edge only
when the training data is of limited size, or
when the neural network has few layers.

4.3 In-memory data analytics
The in-memory data analytics evaluation

explores two scenarios using Apache Spark
version 2.4.6:

• Collaborative data filtering aims to fill miss-
ing entries for improved recommendation
of movies to consumers. The model uses
the alternating least squares algorithm and
a data-set9 of movie preferences with a
size of 31.6 kB. We trained the model over
the available data-set with a cold start
strategy that randomly divides the data into
training and validation sets.

• π estimation is a memory and computa-
tionally intensive task that estimates the
value of π by distributing the work among
multiple Spark executors. This enables us
to evaluate the computational and mem-
ory performance of the distributed memory
computing continuum for complex tasks.

Figure 4 shows the average execution
time of the in-memory collaborative data fil-
tering and the π estimation. The standard
deviation ranges from 1.3% for the AWS

9https://github.com/apache/spark/blob/master/data/mllib/
als/sample movielens ratings.txt
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(b) Average training data transfer time.

Figure 3: Average training and data transfer
times of two neural network types.

m5a.xlarges instance to 4.6% for the Ex-
oscale Tiny instance. The AWS and Ex-
oscale cloud instances perform better than
the EGS and the single-board computers
for the π calculation thanks to their larger
memory size and the more efficient memory
controllers. The collaborative filtering shows
the same trend and the Exoscale instances
in Vienna show the best performance. The
data transfer time of the collaborative filtering
is negligible due to its small size.

Recommendation. We recommend fog in-
stances for collaborative data filtering, due to
the relatively small difference in the execution
time compared to the cloud. The edge de-
vices can be a reasonable option for applica-

tions with soft constraints on the data filtering
time. Finally, we recommend executing com-
pute intensive in-memory processing (e.g., π
estimation) in the cloud or offloading to fog
devices with good memory management.
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Figure 4: Average execution time for in-
memory collaborative data filtering and π es-
timation using Apache Spark.

4.4 Network performance
Furthermore, we evaluate the network

performance of each instance and device in
the C3 testbed by measuring the effective
downlink throughput with the iPerf310 tool
over TCP and the round-trip latency by send-
ing ICMP echo requests from a device regis-
tered in the University of Klagenfurt network.

Figure 5 shows the average results with
a standard deviation between 0.5% for EGS
to 15% for the Exoscale Tiny instance. The
single-board computers and edge devices
provide a 10 times higher throughput and 20
times lower latency.

Recommendation. The edge and fog re-
sources are most suitable for applications that
generate frequent input and output requests
with larger data sizes.

4.5 Carbon emission
We evaluate the power consumption of the

physical devices used for the convolutional

10https://iperf.fr/
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Figure 5: Round-trip communication latency
and effective throughput measured with
iPerf3 and ICMP echo request.

neural network training in TensorFlow. We
use a digital multimeter to physically measure
the average electrical current during training
on the edge and fog resources. We rely on
an AWS research report to approximate the
power consumption of the fog devices and
cloud instances provided by AWS and Ex-
oscale for different utilization rates [7]. We
estimate the carbon emission directly corre-
lated with the power consumption [3], based
on the grams of CO2 emissions for producing
one kW h of energy in the European Union.

Figure 6 shows that the edge devices emit
up to six times less carbon during training.
We therefore expect to reduce the carbon
emissions by 1000 kg per year by offloading
the computation from the cloud to the edge,
which is equivalent to a 5517 km-long travel
with a gasoline vehicle.

Recommendation. We recommend
offloading applications with soft execution
time constraints (e.g., video-on-demand,
data filtering, model training with small
data-sets) to the edge devices. This reduces
the energy costs of service providers and
the carbon footprint.

5 Conclusion
In this article we provide a set of rec-

ommendations for practitioners on where to
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Figure 6: Carbon footprint for training a neural
network with accuracy of above 80%.

offload their applications across the comput-
ing continuum, summarized in Table 2. We
formulate the recommendations based on a
systematic performance and carbon footprint
analysis of a selected set of applications on
a heterogeneous set of devices and cloud in-
stances across the computing continuum. For
this purpose, we deployed a representative
testbed called Carinthian Computing Contin-
uum that spawns across a three-layered con-
ceptual architecture. Our results revealed that
to reduce the network traffic over the comput-
ing continuum it is recommended to offload to
edge and fog resources, while we advocate
the cloud for lower execution times. Lastly, for
decreasing the CO2 emissions, with an ac-
ceptable computational performance penalty,
we recommend edge resources.
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