
IEEE Network • July/August 201316 0890-8044/13/$25.00 © 2013 IEEE

hrough the utilization of elastic resources and widely
deployed data centers, cloud computing has provided
countless new opportunities for both new and exist-
ing applications. Existing applications, from file shar-

ing and document synchronization to media streaming, have
experienced a great leap forward in terms of system efficien-
cy and usability through leveraging cloud computing plat-
forms. Many of these advances have come from exploring the
cloud’s massive resources with computational offloading and
reducing user access latencies with strategically placed cloud
data centers. Recently, advances in cloud technology have
expanded to allow offloading not only of traditional computa-
tion but also of such more complex tasks as high-definition
3D rendering, which turns the idea of cloud gaming into a
reality. Cloud gaming, in its simplest form, renders an inter-
active gaming application remotely in the cloud and streams
the scenes as a video sequence back to the player over the
Internet. A cloud gaming player interacts with the application
through a thin client, which is responsible for displaying the
video from the cloud rendering server as well as collecting
the player’s commands and sending the interactions back to
the cloud. Figure 1 shows a high-level architectural view of
such a cloud gaming system with thin clients and cloud-based
rendering.

Onlive [1] and Gaikai [2] are two industrial pioneers of
cloud gaming, both having seen success with multimillion-
user bases. The recent $380 millon purchase of Gaikai by
Sony [3], an industrial giant in digital entertainment and
consumer electronics, shows that cloud gaming is beginning
to move into the mainstream. From the perspective of
industry, cloud gaming can bring immense benefits by

expanding the user base to the vast number of less powerful
devices that support thin clients only, particularly smart-
phones and tablets. As an example, the recommended sys-
tem configuration for Battlef ield 3 , a highly popular
first-person shooter game, is a quad-core CPU, 4 Gbytes
RAM, 20 Gbytes storage space, and a graphics card with at
least 1 Gbyte RAM (e.g., NVIDIA GEFORCE GTX 560 or
ATI RADEON 6950), which already costs more than $500.
The newest tablets (e.g., Apple’s iPad with Retina display
and Google’s Nexus 10) cannot even meet the minimum sys-
tem requirements that need a dual-core CPU over 2.4 GHz,
2 Gbytes RAM, and a graphics card with 512 Mbytes RAM,
not to mention smartphones of which the hardware is limit-
ed by their smaller size and thermal control. Furthermore,
mobile terminals have different hardware/software architec-
ture from PCs (e.g., ARM rather than x86 for CPU), lower
memory frequency and bandwidth, power limitations, and
distinct operating systems. As such, the traditional console
game model is not feasible for such devices, which in turn
become targets for Gaikai and Onlive. Cloud gaming also
reduces customer support costs since the computational
hardware is now under the cloud gaming provider’s full con-
trol, and offers better digital rights management (DRM)
since the game code is not directly executed on a customer’s
local device.

However, cloud gaming remains in its early stage, and there
remain significant theoretical and practical challenges toward
its widespread deployment. In this article, we conduct a sys-
tematic analysis of state-of-the-art cloud gaming platforms, in
terms of both their design and their performance. We first
offer an intuitive description of the unique design considera-
tions and challenges addressed by existing platforms. We high-
light their framework design. Using Onlive as a representative,
we then measure its real world performance in terms of both
interaction latency and streaming quality. Finally, we discuss
the future of cloud gaming as well as issues yet to be addressed.

TT

Ryan Shea and Jiangchuan Liu, Simon Fraser University
Edith C.-H. Ngai, Uppsala University

Yong Cui, Tsinghua University

Abstract
Recent advances in cloud technology have turned the idea of cloud gaming into a
reality. Cloud gaming, in its simplest form, renders an interactive gaming applica-
tion remotely in the cloud and streams the scenes as a video sequence back to the
player over the Internet. This is an advantage for less powerful computational
devices that are otherwise incapable of running high-quality games. Such industrial
pioneers as Onlive and Gaikai have seen success in the market with large user
bases. In this article, we conduct a systematic analysis of state-of-the-art cloud gam-
ing platforms, and highlight the uniqueness of their framework design. We also
measure their real world performance with different types of games, for both inter-
action latency and streaming quality, revealing critical challenges toward the
widespread deployment of cloud gaming.

Cloud Gaming:
Architecture and Performance

This research is supported by a Canadian NSERC Discovery Grant, a
Swedish STINT Initial Grant, and a Chinese NSFC Major Program of
International Cooperation Grant (61120106008).

SHEA LAYOUT_Layout 1 7/24/13 3:23 PM Page 16

IEEE Network • July/August 2013 17

Cloud Gaming: Issues and Challenges
From low-latency live video streaming to high-performance
3D rendering, cloud gaming must bring together a plethora of
bleeding edge technologies to function. We begin our analysis
with the important design considerations currently being
addressed by cloud gaming providers. A cloud gaming system
must collect a player’s actions, transmit them to the cloud
server, process the action, render the results, encode/compress
the resulting changes to the game world, and stream the video
(game scenes) back to the player. To ensure interactivity, all
of these serial operations must happen within milliseconds.
Intuitively, this amount of time, which is defined as interaction
delay, must be kept as short as possible in order to provide a
rich experience to cloud game players. However, there are
trade-offs: the shorter the player’s tolerance for interaction
delay, the less time the system has to perform such critical
operations as scene rendering and video compression. Also,
the lower this time threshold, the more likely a higher net-
work latency can negatively affect a player’s experience of
interaction. With this is mind, we start our design discussion
with delay tolerance.

Interaction Delay Tolerance
Studies on traditional gaming systems have found that differ-
ent styles of games have different thresholds for maximum
tolerable delay [4]. Table 1 summarizes the maximum delay
that an average player can tolerate before the quality of expe-
rience (QoE) begins to degrade. As a general rule, games that
are played in the first person perspective, such as the shooter
game Counter Strike, become noticeably less playable when
actions are delayed by as little as 100 ms. This low delay toler-
ance is because such first person games tend to be action-
based, and players with a higher delay tend to have a
disadvantage [5]. In particular, the outcome of definitive game
changing actions such as who “pulled the trigger” first, can be
extremely sensitive to the delay in an action-based first person
shooter (FPS) game. Third person games, such as role playing
games (RPGs), and many massively multiplayer games, such
as World of Warcraft, can often have a higher delay tolerance
of up to 500 ms. This is because a player’s commands in such
games (e.g., use item, cast spell, or heal character) are gener-
ally executed by the player’s avatar; there is often an invoca-
tion phase, such as chanting magic words before a spell is cast,
and hence the player does not expect the action to be instan-
taneous. The actions must still be registered in a timely man-
ner, since the player can become frustrated if the interaction
delay causes them a negative outcome (e.g., they healed
before an enemy attack but still died because their commands
were not registered by the game in time). The last category of
games are those played in an “omnipresent” view, that is, a
top-down view looking at many controllable entities. Exam-
ples are real-time strategy (RTS) games like Star Craft and
simulation games such as The Sims. Delays of up to 1000 ms
can be acceptable to these styles of games since the player
often controls many entities and issues many individual com-
mands, which often take seconds or even minutes to com-
plete. In a typical RTS game, a delay of up to 1000 ms for a
build unit action that takes over a minute will hardly be
noticed by the player.

Although there is much similarity between interaction delay
tolerance for traditional gaming and cloud gaming, we must
stress the following critical distinctions. First, traditionally, the
interaction delay was only an issue for multiplayer online
gaming systems, and was generally not considered for single-
player games. Cloud gaming drastically changes this; now all
games are being rendered remotely and streamed back to the
player’s thin client. As such, we must be concerned with inter-
action delay even for a single-player game. Also, traditional
online gaming systems often hide the effects of interaction
delay by rendering the action on a player’s local system before
it ever reaches the gaming server. For example, a player may
instruct the avatar to move, and it immediately begins the
movement locally; however, the gaming server may not
receive the update on the position for several milliseconds.
Since cloud gaming offloads its rendering to the cloud, the
thin client no longer has the ability to hide the interaction
delay from the player. Visual cues such as mouse cursor
movement can be delayed by up to 1000 ms, making it imprac-
tical to expect the player to be able to tolerate the same inter-
action delays in cloud gaming as they do in traditional gaming
systems. We conjecture that the maximum interaction delay
for all games hosted in a cloud gaming context should be at
most 200 ms. Other games, specifically such action-based
games as FPSs, likely require less than 100 ms interaction
delay in order not to affect the players’ QoE. Recent research
using subjective tests have indicated that this is indeed the
case [6].

Figure 1. Cloud gaming overview.

Cloud-based rendering devices

Thin client

Table 1. Delay tolerance in traditional gaming.

Example game type Perspective Delay threshold

First person shooter (FPS)
Role playing game (RPG)
Real-time strategy (RTS)

First person
Third person
Omnipresent

100 ms
500 ms
1000 ms

SHEA LAYOUT_Layout 1 7/24/13 3:23 PM Page 17

IEEE Network • July/August 201318

Video Streaming and Encoding
We next examine the video streaming and encoding needs of
a cloud gaming system. Cloud gaming’s video streaming
requirements are quite similar to another classical application,
live media streaming. Both cloud gaming and live media
streaming must quickly encode/compress incoming video and
distribute it to end users. In both, we are only concerned with
a small set of the most recent video frames and do not have
access to future frames before they are produced, implying
encoding must be done with respect to very few frames.

However, live video streaming and cloud gaming also have
important differences. First, compared to live media stream-
ing, cloud gaming has virtually no capacity to buffer video
frames on the client side. This is because when a player issues
a command to the local thin client, the command must tra-
verse the Internet to the cloud, be processed by the game
logic, rendered by the processing unit, compressed by the
video encoder, and streamed back to the player. Given that
this must all be done in under 100–200 ms, it is apparent that
there is not much margin for a buffer. Live media streaming,
on the other hand, can afford a buffer of hundreds of millisec-
onds or even a few seconds with very little loss in the QoE of
the end user.

The sensitive real-time encoding needs of cloud gaming
make the choice of video encoder of paramount importance
for any cloud gaming provider. Currently, the major cloud
gaming providers Gaikai and Onlive both use versions of the
H.264/MPEG-4 AVC encoder. Gaikai uses a software-based
approach to encoding, whereas Onlive is using specialized
hardware to compress its cloud gaming video streams. In
either case, the choice of the H.264 encoder is motivated by
the fact that the encoder not only has a very high compression
ratio, but also can be configured to work well with stringent
real-time demands.

Cloud Gaming Framework
Based on the design considerations we have been discussing,
we now outline a generic framework for a cloud gaming sys-
tem. Figure 2 shows the various functions and modules
required by a cloud gaming system. As can be observed, a
player’s commands must be sent over the Internet from its
thin client to the cloud gaming platform. Once the commands
reach the cloud gaming platform, they are converted into
appropriate in-game actions, which are interpreted by the
game logic into changes in the game world. The game world
changes are then processed by the cloud system’s graphical

processing unit (GPU) into a rendered scene. The
rendered scene must be compressed by the video
encoder and then sent to a video streaming module,
which delivers the video stream back to the thin
client. Finally, the thin client decodes the video and
displays the video frames to the player.

To confirm the representability of this generic
framework, we have conducted traffic measurement
and analysis from the edge of four networks, which
are located in the United States, Canada, China, and
Japan. We recorded the packet flow of both Gaikai
and Onlive. After that, we used Wireshark to extract
packet-level details, which reveal the existence of
thin clients and their interactions with remote cloud
servers. We also discover that Gaikai is implemented
using two public clouds: Amazon EC2 and Lime-
light. When a player selects a game on Gaikai, an
EC2 virtual machine will first deliver the Gaikai
game client to the player. After that, it forwards the
IP addresses of game proxies that are ready to run

the selected games to the players. The player will then select
one game proxy to run the game. For multiplayer online
games, these game proxies will also forward the players’ opera-
tions to game servers and send the related information/reac-
tions back to the players. Onlive’s workflow is quite similar,
but is implemented with a private cloud environment. Using
public clouds enables lower implementation costs and higher
scalability; however, a private cloud may offer better perfor-
mance and customization that fully unleash the potential of
the cloud for gaming. Hence, we use Onlive in the following
measurement and analysis.

Real World Performance: Onlive
Despite some recent financial issues, Onlive was one of the
first to enter the North American market and offers one of
the most advanced implementations of cloud gaming available
for analysis. A recent official announcement from Onlive put
the number of subscribers at roughly 2.5 million, with an
active user base of approximately 1.5 million. We evaluate the
critically acclaimed game Batman Arkham Asylum on Onlive
and compare its performance to a copy of the game running
locally. In our analysis, we look at two important metrics, the
interaction delay (response time) and image quality. Our
hardware remains consistent for all experiments. We run Bat-
man through an Onlive thin client as well as locally on our
local test system. The test system contains an AMD 7750 dual
core processor, 4 Gbytes of RAM, a 1-Tbyte 7200 RPM hard
drive, and an AMD Radeon 3850 GPU. The network access is
provided through a wired connection to a residential cable
modem with a maximum connection speed of 25 Mb/s for
download and 3 Mb/s for upload. Our system specifications
and network connections exceed the recommended standards
for both Onlive and the local copy of the game, which ensures
that the bottleneck we will see is solely due to the intervention
of the cloud.

Measuring Interaction Delay
As discussed previously, minimizing interaction delay is a fun-
damental design challenge for cloud gaming developers and is
thus a critical metric to measure. To accurately measure inter-
action delay for Onlive and our local game, we use the follow-
ing technique. First, we install and configure our test system
with a video card tuning software, MSI afterburner. It allows
users to control many aspects of the system’s GPU, even the
fan speed. However, we are interested in its secondary uses,
particularly the ability to perform accurate screen captures of

Figure 2. Framework of a cloud gaming platform.

Game
logic

GPU
rendering

Game
actions

User
commandsUser

interaction
Thin client
interaction

Thin client Cloud gaming
platform

Video
encoder

Encoded
video

Rendered
scene

Game world
changes

Video
streamVideo

decoder
Video

streaming

SHEA LAYOUT_Layout 1 7/24/13 3:23 PM Page 18

IEEE Network • July/August 2013 19

gaming applications. Second, we configure our screen capture
software to begin recording at 100 frames/s when we press the
Z key on the keyboard. The Z key also corresponds to the
“Zoom Vision” action in our test game. We start the game
and use the zoom vision action. By looking at the resulting
video file, we can determine the interaction delay from the
first frame in which our action becomes evident. Since we are
recording at 100 frames/s, we have a 10-ms granularity in our
measurements. To calculate the interaction delay in millisec-
onds, we take the frame number and multiply by 10 ms. Since
recording at 100 frames/s can be expensive in terms of CPU
and hard disk overhead, we apply two optimizations to mini-
mize the influence recording has on our games performance.
First, we resize the frame to 1/4 of the original image resolu-
tion. Second, we apply Motion JPEG compression before
writing to the disk. These two optimizations allow us to record
at 100 frames/s, while using less than 5 percent of the CPU
and writing only 1 Mbyte/s to the disk.

To create network latencies, we set up a software Linux
router between our test system and Internet connection. On
our router we install the Linux network emulator Netem,
which allows us to control such network conditions as network
delay. We determine that our average baseline network
round-trip time (RTT) to Onlive is approximately 30 ms with
a 2-ms standard deviation. For each experiment we collect
three samples and average them. The results can be seen in
Fig. 3, where the labels on the Onlive data points indicate the
added latency. For example, Onlive (+20 ms) indicates that
we added an additional 20 ms on the network delay, bringing
the total to 50 ms. Our locally rendered copy has an average
interaction delay of approximately 37 ms, whereas our Onlive
baseline takes approximately four times longer at 167 ms to
register the same game action. As expected, when we simulate
higher network latencies, the interaction delay increases.
Impressively, the Onlive system manages to keep its interac-
tion delay below 200 ms in many of our tests. This indicates
that for many styles of games, Onlive could provide accept-
able interaction delays. However, when the network latency
exceeds 50 ms, the interaction delays may begin to hinder the
users’ experience. Also, even with our baseline latency of only
30 ms, the system could not provide an interaction delay of
less than 100 ms, the expected threshold for FPSs.

We next further break down the delay into detailed com-
ponents. Returning to Fig. 3, we define the processing time
to be the amount of interaction delay caused by the game
logic, GPU rendering, video encoding, etc; that is, it is the
components of the interaction delay not explained by the net-
work latency. For example, our locally rendered copy of the
game has no network latency; therefore, its processing time is
simply 37 ms. Our Onlive base case, on the other hand, has
its communication delayed by approximately 30 ms due to the
network latency, meaning its processing time is approximately
137 ms. Finally, we calculate the cloud overhead, which we
define to be the delay not caused by the core game logic or
network latency. It includes the amount of delay caused by
the video encoder and streaming system used in Onlive. To

calculate this number, we subtract the local render processing
time of 37 ms from our Onlive experiment processing time.
Table 2 gives the interaction processing and cloud overhead
measured in our experiments. As can be seen, the cloud pro-
cessing adds about 100–120 ms of interaction delay to the
Onlive system. This finding indicates that the cloud process-
ing overhead alone is over 100 ms, meaning that any attempt
to reach this optimal interaction delay threshold will require
more efficient designs in terms of video encoders and stream-
ing software.

Measuring Image Quality
Just as critical as low interaction delay to a cloud game player is
image quality. As mentioned previously, Onlive uses a hard-
ware H.264 encoder with a real-time encoding profile, implying
the compression will cause some degree of image quality loss.
Devising a methodology to objectively analyze the image quali-
ty of a commercial cloud gaming system such as Onlive has a
number of technical challenges. First, to obtain an accurate
sample for video quality analysis, we must be able to record a
deterministic sequence of frames from Onlive and compare it
to our local platform. However, although the stream is known
to be encoded by H.264, the stream packets can hardly be
directly captured and analyzed since it appears that Onlive is
using a proprietary version of the Real Time Transport Proto-
col (RTP). The rendering settings used by Onlive are not pub-
licly visible, either. For example, it remains unknown if Onlive
has enabled anti-aliasing or what the draw distance is for any
game. With these issues in mind, we have determined the fol-
lowing methodology to measure Onlive image quality.

Once again, we select the popular Batman Arkham Asylum
as our test game and use the same test platform described
previously. To mitigate the effect different rendering settings
have on the image quality, we choose the pre-rendered intro
movie of the game to record. To improve the accuracy of our
analysis, we unpack the intro video’s master file from the
game files of our local copy of Batman Arkham Asylum. The
extracted movie file has a resolution of 1280 ¥ 720 pixels
(720p), which perfectly matches the video streamed by Onlive.
We also configured our local copy of Batman to run at 720p.
We configured our display driver to force a frame rate of 30
frames/s to match the rate of the target video. Next, we con-
figure MSI afterburner to record the video uncompressed with
a resolution of 720p at 30 frames/s. The lack of video com-
pression is very important as we do not want to taint the sam-
ples by applying lossy compression.

Figure 3. Interaction delay in Onlive.

O
nlive base

Local render

50

0

M
ill

is
ec

on
ds

100

150

200

250

300

O
nlive (+

10 m
s)

O
nlive (+

20 m
s)

O
nlive (+

50 m
s)

O
nlive (+

75 m
s)

Interaction delay
Network RTT

Processing time

Table 2. Processing time and cloud overhead.

Measurement Processing
time (ms)

Cloud overhead
(ms)

Local render
Onlive base
Onlive (+10 ms)
Onlive (+20 ms)
Onlive (+50 ms)
Onlive (+75 ms)

36.7
136.7
143.3
160.0
160.0
151.7

N/A
100.0
106.7
123.3
123.3
115.0

SHEA LAYOUT_Layout 1 7/24/13 3:23 PM Page 19

IEEE Network • July/August 201320

We then capture the intro sequence of our locally running
game and Onlive running with different bandwidth limits. To
control the bandwidth, we again use our Linux software
router and perform traffic shaping. We test Onlive running
from its optimal bandwidth setting of 10 Mb/s gradually
down to 3 Mb/s. It covers a broad spectrum of bandwidths
commonly available to residential Internet subscribers.
Before each run, we ensure our bandwidth settings are cor-
rect by a probing test. After capturing all the required video
sequences, we select the same 40-second (1200-frame) sec-
tion from each video on which we will perform an image
quality analysis. We analyze the video using two classical
metrics: peak signal-to-moise ratio (PSNR) and structural
similarity index method (SSIM). The results for PSNR are
given in Fig. 4a and those for SSIM in Fig. 4b, respectively.
The PSNR method quantifies the amount of error (noise) in
the reconstructed video, which has been added during com-
pression. The SSIM method calculates the structural similar-
ity between the two video frames. As can be seen, our local
capture scored a high PSNR and SSIM; however, it is not
perfect, indicating some difference in the recorded video and
the master file. Much of this difference is likely due to
slightly different brightness and color settings used by the
internal video player in the Batman game engine. When the
local capture is compared to Onlive running at any connec-
tion rate, we can see a large drop in terms of both PSNR
and SSIM. Since PSNR and SSIM are not on a linear scale,
the drops actually indicate a considerable degradation in
image quality. Generally, a PSNR of 30 dB and above is con-

sidered good quality; however, 25 and above is considered
acceptable for mobile video streaming. Not surprisingly, as
we drop our test systems connection bandwidth, the image
quality begins to suffer considerable degradation as well.
With the exception of the 3 Mb/s test, all samples stay above
a PSNR of 25 dB; so although there is room for improve-
ment, the image quality is still acceptable. Figure 5 illus-
trates the effect of Onlive’s compression taken from a single
frame of the opening sequence. As can be seen, the effect of
compression is quite noticeable, especially as the amount of
available bandwidth decreases.

Conclusion and Further Discussion
This article has closely examined the framework design of
state-of-the-art cloud gaming platforms. We have also mea-
sured the performance of Onlive, one of the most representa-
tive and successful cloud gaming platforms to date. The
results, particularly on interaction latency and streaming qual-
ity under diverse game, computer, and network configura-
tions, have revealed the potential of cloud gaming as well as
the critical challenges toward its widespread deployment. For
future work we would like to further investigate the effect
other network conditions such as packet loss and jitter have
on the end user’s cloud gaming experience.

Cloud gaming is a rapidly evolving technology, with
many exciting possibilities. One frequently mentioned is to
bring advanced 3D content to relatively weaker devices
such as smartphones and tablets. This observation is made
even more relevant by the fact that both Gaikai and Onlive
are actively working on Android apps to bring their services
to these mobile platforms. However, recent large-scale
research indicates that it is not uncommon to find cellular
network connections that have network latencies in excess
of 200 ms [7], which alone may already cause the interac-
tion delay to become too high for many games. Seamless
integration between cellular data connection and lower-
latency WiFi connection is expected, and switching to Long
Term Evolution (LTE) may help alleviate the problem.
Other potential advancements involve intelligent thin
clients that can perform a portion of the game rendering
and logic locally to hide some of the issues associated with
interaction delay, or distributed game execution across mul-
tiple specialized virtual machines [8]. This wil l l ikely
require creating games specifically optimized for cloud
platforms.

Besides software and service providers, hardware manufac-
turers have also shown a strong interest in cloud gaming, and
some have begun working on dedicated hardware solutions to
address the prominent issues of cloud gaming. NVIDIA has
just unveiled the GeForce grid graphical processor, which is
targeted specifically toward cloud gaming systems [9]. It is
essentially an all-in-one graphical processor and encoding
solution. The published specification shows that each of these
processors has enough capability to render and encode four
games simultaneously. NVIDIA’s internal tests show that it
can significantly mitigate the latency introduced in current
cloud gaming systems [10]. It is widely expected that this type
of specialized hardware will usher in a new generation of
cloud gaming.

References
[1] Onlive, http://www.onlive.com/.
[2] Gaikai, http://www.gaikai.com/.
[3] “Sony Buys Gaikai Cloud Gaming Service for 380 Million,” Engadget,

http://www.engadget.com/2012/07/02/sony-buys-gaikai/.
[4] M. Claypool and K. Claypool, “Latency and Player Actions in Online

Games,” Commun. ACM, vol. 49, no. 11, 2006, pp. 40–45.

Figure 4. Onlive comparison: a) PSNR experiments; b) SSIM
experiments.

(a)

Onlive 10 M
b/s

Local capture

24

31.43

26.70
26.20

25.13
24.41

22

PS
N

R

26

28

30

32

Onlive 7 M
b/s

Onlive 6 M
b/s

Onlive 4 M
b/s

Onlive 3 M
b/s

(b)

Onlive 10 M
b/s

Local capture

0.8

0.966

0.901
0.878 0.877

0.834

0.80

0.75

SS
IM

0.85

0.9

0.95

1

Onlive 7 M
b/s

Onlive 6 M
b/s

Onlive 4 M
b/s

Onlive 3 M
b/s

25.41

SHEA LAYOUT_Layout 1 7/24/13 3:23 PM Page 20

IEEE Network • July/August 2013 21

[5] M. Claypool and K. Claypool, “Latency
Can Kil l : Precision and Deadline in
Online Games,“ Proc. 1st Annual ACM
SIGCOMM Conf. Mult imedia Sys.,
2010, pp. 215–22.

[6] M. Jarschel et al., “An Evaluation of QoE
in Cloud Gaming based on Subjective
Tests,” 5th Int’l. Conf. Innovative Mobile
and Internet Services in Ubiquitous Com-
puting, 2011, pp. 330–35.

[7] J. Sommers and P. Barford, “Cell vs.
WiFi: On the Performance of Metro Area
Mobile Connections,” Proc. 2012 ACM
Conf. Internet Measurement, 2012, pp.
301–14.

[8] Z. Zhao, K. Hwang, and J. Vi l leta,
“Game Cloud Design with Virtualized
CPU/GPU Servers and Initial Perfor-
mance Results,” Proc. 3rd Wksp. Scientic
Cloud Computing Date, 2012, pp.
23–30.

[9] GeForce grid, http://www.nvidia.ca/
object/grid-processors-cloud-games.html.

[10] J. Wang, “Nvidia Geforce Grid: A
Glimpse at the Future of Gaming,”
http://www.geforce.com/whats-new/arti-
cles/geforce-grid.

Biographies
RYAN SHEA (rws1@cs.sfu.ca) received his B.Sc.
degree in computer science from Simon Fraser
University, Burnaby, Canada, in 2010. He is
currently a Ph.D. candidate in the Network
Modeling lab at Simon fraser University,
where he also completed the Certificate in
University Teaching and Learning. He is a
recipient of the NSERC Alexander Graham
Bell Canada Graduate Scholarship. He has
worked as a network administrator with vari-
ous non-profit groups. His research interests
are computer and network virtualization, and
performance issues in cloud computing.
Recently, he received the best student paper
award at IEEE/ACM IWQoS 2012 for his
paper “Understanding the Impact of Denial of
Service Attacks on Virtual Machines.”

JIANGCHUAN LIU [S’01, M’03, SM’08] (jcliu@cs.sfu.ca) received his B.Eng.
degree (cum laude) from Tsinghua University, Beijing, China, in 1999, and
his Ph.D. degree from the Hong Kong University of Science and Technology in
2003, both in computer science. He is a recipient of a Microsoft Research Fel-
lowship (2000), a Hong Kong Young Scientist Award (2003), and a Canada
NSERC DAS Award (2009). He is a co-recipient of the IEEE ComSoc Best
Paper Award on Multimedia Communications (2009), Best Paper Award of
IEEE Globecom 2011, and Best Student Paper Awards of IEEE/ACM IWQoS
2008 and IWQoS 2012. He is currently an associate professor in the School
of Computing Science, Simon Fraser University and was an assistant professor
in the Department of Computer Science and Engineering at the Chinese Uni-
versity of Hong Kong from 2003 to 2004. His research interests include multi-
media systems and networks, wireless ad hoc and sensor networks, and
peer-to-peer and overlay networks. He is a member of Sigma Xi. He is an
Associate Editor of IEEE Transactions on Multimedia, and an Editor of IEEE
Communications Surveys and Tutorials. He is TPC Vice Chair for Information
Systems of IEEE INFOCOM 2011.

EDITH C.-H. NGAI (edith.ngai@it.uu.se) is currently an associate professor in
the Department of Information Technology, Uppsala University, Sweden. She
received her Ph.D. in computer science and engineering from the Chinese
University of Hong Kong in 2007. She was a post-doc at Imperial College

London in 2007–2008. Previously, she also conducted research at the Uni-
versity of California at Los Angeles, Simon Fraser University, and Tsinghua
University. Her research areas include wireless sensor networks, mobile
computing, information-centric networking, and network security and priva-
cy. Her co-authored papers have received best paper runner-up awards at
ACM/IEEE IPSN 2013 and IEEE IWQoS 2010. She served as TPC Co-
Chair for SNCNW 2012 and Publicity Co-Chair for IEEE MSN 2012. She
is a VINNMER Fellow (2009) awarded by the Swedish Governmental Agen-
cy of Innovation Systems (VINNOVA).

YONG CUI (cuiyong@tsinghua.edu.cn) received his B.E. and Ph.D. degrees
from Tsinghua University, China, in 1999 and 2004, respectively. He is
currently a full professor at Tsinghua University, a Council Member of the
China Communication Standards Association, and Co-Chair of IETF IPv6
Transition WG Softwire. Having published more than 100 papers in refer-
eed journals and conferences, he received the National Science and Tech-
nology Progress Award of China in 2005, the Influential Invention Award
of China Information Industry in both 2012 and 2004, and best paper
awards at ACM ICUIMC 2011 and WASA 2010. Holding more than 40
patents, he is one of the authors of RFC 5747 and RFC 5565 for his pro-
posal on IPv6 transition technologies. He serves on the Editorial Boards of
both IEEE TPDS and IEEE TCC. His major research interests include mobile
wireless Internet and computer network architecture.

Figure 5. Image quality comparison: a) master image; b) local capture (PSNR:33.85 dB,
SSIM:0.97); c) Onlive: 10 Mb/s connection (PSNR:26.58 dB, SSIM:0.94); d) Onlive: 6
Mb/s connection(PSNR:26.53 dB, SSIM:0.92); e) Onlive: 3 Mb/s connection (PSNR: 26.03
dB, SSIM:0.89).

(a) (b) (c)

(d) (e)

SHEA LAYOUT_Layout 1 7/24/13 3:23 PM Page 21

