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Abstract. We present a novel approach for dense 3-D cloud
reconstruction above an area of 10 × 10 km2 using two hemi-
spheric sky imagers with fisheye lenses in a stereo setup. We
examine an epipolar rectification model designed for fish-
eye cameras, which allows the use of efficient out-of-the-box
dense matching algorithms designed for classical pinhole-
type cameras to search for correspondence information at ev-
ery pixel. The resulting dense point cloud allows to recover
a detailed and more complete cloud morphology compared
to previous approaches that employed sparse feature-based
stereo or assumed geometric constraints on the cloud field.
Our approach is very efficient and can be fully automated.
From the obtained 3-D shapes, cloud dynamics, size, mo-
tion, type and spacing can be derived, and used for radiation
closure under cloudy conditions, for example.

Fisheye lenses follow a different projection function than
classical pinhole-type cameras and provide a large field of
view with a single image. However, the computation of dense
3-D information is more complicated and standard imple-
mentations for dense 3-D stereo reconstruction cannot be
easily applied.

Together with an appropriate camera calibration, which in-
cludes internal camera geometry, global position and orien-
tation of the stereo camera pair, we use the correspondence
information from the stereo matching for dense 3-D stereo
reconstruction of clouds located around the cameras.

We implement and evaluate the proposed approach us-
ing real world data and present two case studies. In the first
case, we validate the quality and accuracy of the method by
comparing the stereo reconstruction of a stratocumulus layer
with reflectivity observations measured by a cloud radar and
the cloud-base height estimated from a Lidar-ceilometer. The

second case analyzes a rapid cumulus evolution in the pres-
ence of strong wind shear.

1 Introduction

Ground-based photogrammetry has a large potential to com-
plement cloud observations from classical remote sensing via
radiometers, radars and lidar due to its high spatial and tem-
poral resolution. So-called hemispheric sky imagers provide
a complete hemispheric view of the cloudy sky at arbitrary
time intervals. Up to now, such imagers were predominantly
used only for the derivation of cloud cover or cloud-type clas-
sification. The derivation of additional information related to
cloud size and extension, including their temporal develop-
ment, especially of convective boundary layer clouds, would
provide valuable information for radiation closure studies un-
der cloudy conditions and could be used for validation of
LES-scale cloud simulations, e.g., from the new ICON model
(Zängl et al., 2015).

Current ground-based cloud observations are made pri-
marily with cloud radars, lidars, lidar-ceilometers and in-
frared and microwave radiometers, all of which usually only
sense clouds along a pencil beam; they record the 3-D cloud
evolution at time resolutions during which clouds already
change significantly. For instance, a cross section scan of a
cloud radar takes up to 1 min with a beam width of about
0.6◦; moreover, its sensitivity does not allow for detection
of the cloud boundaries. A lidar-ceilometer observes the
cloud-base height with high temporal resolution, but only
as zenith point measurement. Recent works show that stereo
photogrammetry may help to close this gap due to the capa-
bility of cameras to instantaneously capture the visible parts
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Figure 1. We employ two hemispheric sky imagers (left) in a stereo setup with a baseline of 300 m to derive dense and detailed geometric
information, such as height and morphology of clouds, within a range of about 5 km using the simultaneously recorded image pairs. The
derived heights (right) of an exemplary recorded cloud (middle) using the fisheye images, as shown in Fig. 4c, of the two sky imagers.

of clouds with a high spatial and temporal resolution. The
resulting 3-D cloud geometries can then be combined with
the observations from other instruments to provide valuable
information for cloud reconstruction.

In this paper we investigate the potential to derive the 3-
D morphology of clouds with two hemispheric sky imagers,
cf. to Fig. 1. Fisheye cameras provide a large field of view,
have robust mechanics and are very cost effective. Two cam-
eras with spatial displacement and simultaneous time of ex-
posure provide the necessary information for a 3-D recon-
struction within an area of about 10 × 10 km2 around the
cameras. Such stereo techniques are a well-studied field in
photogrammetry and computer vision and early approaches
of cloud photogrammetry date back to the late 19th cen-
tury (Koppe, 1896).

3-D stereo reconstruction is based on triangulation. Know-
ing the two camera orientations and the direction vector
(baseline) between the cameras, each pair of correspond-
ing image points can be back-projected into ray directions,
which intersect in the mapped 3-D point. This requires accu-
rately known parameters for the interior orientation, e.g., fo-
cal length and lens distortion, and also accurate knowledge of
the exterior orientation, namely the position and orientation
of the cameras in space, both of which need to be determined
by a calibration procedure.

The main contribution of this paper is an approach to com-
bine the large field of view of a fisheye camera with an effi-
cient out-of-the-box dense stereo matching algorithm in or-
der to obtain consistent and detailed cloud geometries above
the area around the cameras. We achieve this by employing
an epipolar rectification technique on the recorded images
that is designed for fisheye cameras and is required to apply
the dense stereo correspondence algorithm used in this study.
Although epipolar rectification is not required for a dense re-
construction in principle, many dense stereo algorithms re-
quire rectified images because computation is greatly sim-
plified. In contrast to regular feature-based methods used
in previous studies on cloud photogrammetry, dense meth-
ods seek a correspondence for every pixel in the stereo im-
ages, leading to a dense 3-D point cloud. At the same time

dense stereo methods often impose spatial consistency con-
straints, which allows us to obtain more reliable correspon-
dences in low-contrast image regions, which are typical for
clouds, than sparse feature-based methods. A more complete
and consistent cloud shape can be used in radiative trans-
fer applications where cloud geometry is modeled explicitly.
Cloud evolution studies can benefit from the larger geometric
data basis regarding segmentation and classification of indi-
vidual clouds and tracking and visualization, making further
analysis more effective. Once the system is calibrated our
approach runs fully automated and provides dense 3-D ge-
ometries over large parts of the hemisphere observed by the
fisheye cameras.

The paper is organized as follows. In Sect. 2, we dis-
cuss previous studies and their contributions to the field of
cloud photogrammetry. In Sect. 3, we describe the fisheye
camera model, the applied camera calibration techniques, as
well as the epipolar rectification method and triangulation.
Section 4 introduces the employed dense stereo algorithm
to obtain corresponding image points. Section 5 presents
our stereo setup, a geometric uncertainty analysis and two
stereo reconstruction case studies. One case shows a recon-
structed stratocumulus layer, which serves as a validation
for the achieved geometric accuracy, including comparisons
with lidar-ceilometer and cloud radar observations. The sec-
ond case analyzes the cloud development under strong con-
vection and wind shear and illustrates the quality of the cloud
morphology reconstruction.

2 Related work

Recent studies employed cameras with wide-angle lenses in
a stereo setup to recover 3-D information of clouds using
feature-based methods. Seiz (2003) exploited a stereo pair
of consumer cameras with an 800 m baseline to derive the
cloud-base height within a field of view of about 100◦ with
errors well below 5 %. Hu et al. (2010) used a stereo cam-
era system with a spatial offset of 1.5 km oriented towards
the Santa Catalina Mountains near Tucson, Arizona, to ob-
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serve the diurnal cycle of orographic convection in three di-
mensions. Recently, Öktem et al. (2014) used a stereo cam-
era setup for the observation of maritime clouds near Bis-
cayne Bay, Florida, with a baseline of 873 m; their results
show a good agreement with heights obtained with a lidar,
yielding errors of mostly below 2 % for shallow clouds and
up to 8 % for high cirrocumulus clouds. They also compared
the derived cloud motion of the individual cloud layers with
wind speed measurements from radiosondes. In Öktem et al.
(2014) they extended their approach to marine convection.
The studies of Seiz (2003) and Öktem et al. (2014) show
that an accurate cloud reconstruction is possible with a stereo
camera system. To the best of our knowledge, only Hu et al.
(2010) and Romps and Öktem (2015) used stereo vision to
reconstruct a convective cloud.

Experiments involving sky imagers focused on the deriva-
tion of the cloud-base height. Allmen and Kegelmeyer (1996)
used two whole sky imagers (WSI) to derive cloud-base
heights; a standard ordinary stereo matching method failed
due to the rather large distance of 5 km between the cameras.
More than 50 % of the estimated cloud heights deviated by
less than 5 % from heights obtained by the lidar-ceilometer.
Kassianov et al. (2010) compared cloud-base heights derived
from two virtual and two real fisheye cameras located at
the atmospheric radiation measurement (ARM) site in the
southern Great Plains, with a baseline of 540 m. They used
stochastic simulations to create a virtual cloud field and used
the virtual fisheye projections for stereo vision. Comparisons
with micropulse lidar observations showed that typical er-
rors were about 10 % for low-level clouds up to 2 km high.
Recently, Nguyen and Kleissl (2014) used a plane-sweep-
like approach with a baseline of 1230 m between the sky
imagers. Although a plane-sweep technique is also capa-
ble of producing a dense 3-D geometry (Häne et al., 2014),
their implementation assumes a horizontal cloud field with-
out any vertical structures and is aimed at computing the
cloud-base height for short-term solar radiation forecasting.
Nguyen and Kleissl (2014) also implemented a correlation-
based approach similar to Allmen and Kegelmeyer (1996)
that operates on the unrectified fisheye images and can be
extended to a global approach including spatial consistency
constraints.

In our work, we use two hemispheric sky imagers in a
stereo setup with a baseline of 300 m. In contrast to previ-
ous studies, we use an efficient dense out-of-the-box stereo
method to recover dense 3-D cloud geometries (Fig. 1).
Dense stereo methods obtain more geometric information
than feature-based methods, especially in image regions with
low contrast, which is a general problem in cloud photogram-
metry. This additional geometric information can prove ben-
eficial in cloud evolution and radiation closure studies where
the cloud geometry is modeled explicitly. We evaluate our re-
sults by comparing them with cloud-base height observations
from a lidar-ceilometer and reflectivity profiles of a cloud
radar.

3 Camera calibration and stereo reconstruction

In this section, we describe the projection model for fish-
eye cameras and we formulate the geometric relationship be-
tween two sky imagers, which is required for 3-D stereo re-
construction. We also introduce an epipolar image rectifica-
tion scheme for fisheye stereo cameras that allows the identi-
fication of corresponding image points between the two im-
ages using a dense stereo matching algorithm. Finally, we
describe the employed camera calibration methods and the
triangulation of 3-D points using corresponding image points
in the epipolar-rectified images.

3.1 Interior orientation of a fisheye camera

The interior orientation of a camera describes the camera-
specific projection of light onto the image plane. In a cen-
tral projection each ray passes through the projection center
in one particular direction. A camera is calibrated when its
calibration parameters are known and this direction can be
computed for every image point.

The camera model contains a projection function, which
should be close to the projection of light in the optics. The
interior orientation consists of the camera calibration param-
eters of this model, describing the camera specific projec-
tion on the image plane. The projection can be split up into
a mapping of a 3-D point P to a 2-D point x

′ on the model
image plane, and a mapping of x

′ to x to the actual pixel
coordinates on the sensor plane (Fig. 2). While most cam-
eras follow the pinhole camera model (Sonka et al., 1999;
Stockman and Shapiro, 2001), fisheye cameras have lenses
with a different projection function and follow the omnidi-
rectional camera model (Kannala and Brandt, 2006; Bakstein
and Pajdla, 2002), visualized in Fig. 2. Each projection ray
passes through the projection center C and intersects the im-
age sphere in the point x

′′, which determines the ray direc-
tion. The optical axis intersects the image plane in the prin-
cipal point xC .

x
′′ can be mapped to x

′ on the image plane using one of
the used projection functions r(θ) provided by Abraham and
Förstner (2005). Each symmetric projection function r(θ)
defines the distance between x

′ and the principal point xC as
a function of the zenith angle θ between the incoming projec-
tion ray and the optical axis as depicted in Fig. 2a. Accord-
ingly, the coordinates of x

′ on the image plane are a function
of the azimuth angle ϕ and r(θ) and are given by

x
′ =

[
cos(ϕ)r(θ)
sin(ϕ)r(θ)

]
.

The mapping of x
′ in Cartesian image coordinates to x in

pixel coordinates is usually described as an affine transfor-
mation:
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Figure 2. (a) In the omnidirectional camera model the 3-D ob-
ject point P is mapped to x

′ on the image plane. Several radial-
symmetric projection functions r(θ) can be used, which define the
distance to the projection center xC ; (b) the final projection x in
pixel coordinates is determined by the camera calibration parame-
ters and additional distortion coefficients.

x =
[
u

v

]
=

[
c 0 u0

0 c v0

][
x

′

1

]
,

which depends on the camera constant c and the principal
point x0 = (u0,v0)

⊤, i.e., the principal point xC in pixel co-
ordinates. Note that the origin of the sensor coordinate sys-
tem lies in the upper left corner of the image as depicted in
Fig. 2b.

Due to lens imperfections real camera projections do not
follow a projection model perfectly. The lenses of the cam-
era might be shielded by an additional glass dome as in our
setup, which additionally refracts the light before it enters the
lens. Radial symmetric distortions result in either a barrel- or
pillow-like stretching or bending of the image with increas-
ing distance from the principal point. Such distortions can be
compensated for by adding even-powered polynomials to the
radial distance function following Brown (1971):

△u= L(r̂)û= A1 û r̂
2 +A2 û r̂

4 +A3 û r̂
6

△v = L(r̂)v̂ = A1 v̂ r̂
2 +A2 v̂ r̂

4 +A3 v̂r̂
6,

with û= u− u0, v̂ = v− v0 and r̂ =
√
û2 + v̂2. A1, A2 and

A3 denote the respective coefficients of the polynomial.
In summary, we formulate the mapping into (distorted) im-

age point coordinates x̃ = (̃u, ṽ)⊤ on the sensor plane as

ũ= u+ △u= c cosϕ r(θ)+ u0 + △u
ṽ = v+ △v = c sinϕ r(θ)+ v0 + △v. (1)

The reverse mapping of a distortion-corrected image point x

in pixel coordinates to the 3-D direction vector x
′′ with unit

length is given by



x

y

z


 =




cosϕ sinθ
sinϕ sinθ

cosθ


 =




x′

r
sinr

y′

r
sinr

cosr


 ,

where x′ and y′ are normalized image coordinates,

x′ = u− u0

c
y′ = v− v0

c

and r =
√
x′2 + y′2 the respective value of the radial projec-

tion function r(θ). The equidistant projection r(θ)= θ fits
the projection of our sky imagers best. Section 3.5 and 3.6
describe the calibration procedure to determine the parame-
ters of interior orientation with distortion parameters as well
as the calibration of a stereo camera pair.

3.2 Exterior orientation and epipolar geometry

The omnidirectional camera model refers to the local camera
coordinate system with the projection center as the origin and
the sensor plane defining its orientation. The exterior orienta-
tion of a camera, which is described by three rotation angles
and three translation shifts, is described in a common world
reference system �W and allows the derivation of the geo-
metric relationship between two or more cameras. We choose
one camera as the reference camera, which is considered as
the left camera and the other as the right camera, which sim-
plifies the following notation and avoids misconceptions. The
choice of the reference camera has no impact on the recon-
struction results.

Figure 3 illustrates the principal stereo configuration with
two hemispheric cameras, making the world reference sys-
tem �W and the two camera reference systems �L and �R

explicit. Let CL be the world coordinates of the left camera
and PL an object point in the left camera reference frame.
The transformation of PL into world coordinates reads as

P = (RL PL)+ CL, (2)

with the rotation matrix RL = Rx(αL) Ry(βL) Rz(γL) and
CL ∈ R

3. Here αL, βL and γL are the Euler angles (roll, pitch,
yaw) and Rx(αL), Ry(βL) and Rz(γL) are the respective ro-
tation matrices. Considering RL and RR as the rotation ma-
trices and CL and CR as the world coordinates of the left
and right camera, we obtain the relative orientation between
the left and the right camera via a rotation matrix R and the
baseline vector t via

R = R⊤
L RR and t = R⊤

L (CR − CL) . (3)

The determination of an accurate relative pose is crucial, as
errors in the estimated exterior orientations may sum up to
larger errors in the relative orientation, which compromises
the image correspondence algorithm and the triangulation of
3-D point coordinates as investigated by Hirschmüller and
Gehrig (2009).

The two camera centers CL, CR and the object point P

span the epipolar plane. This geometry can be expressed with
the coplanarity equation and holds when

x
′′
L

⊤
Ex

′′
R = 0 with E = [t]×R, (4)
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Figure 3. The two hemispheric cameras are located at CL and CR
with independent orientation in the world coordinate system �W.
The projections x

′′
L and x

′′
R of a 3-D point P on the image hemi-

sphere in each camera system �L and �R span together with the
baseline t the epipolar plane and can be used to reconstruct P via
triangulation.

where E is the essential matrix obtained by a matrix multi-
plication of R with the skew symmetric matrix [t]× of t .

Given two direction rays x
′′
L and x

′′
R of corresponding im-

age points xL and xR in the left and the right camera im-
ages, E⊤

x
′′
L defines the normal vector of the epipolar plane

spanned by x
′′
L and t , and hence requires its correspondence

x
′′
R to lie on the intersection circle between the epipolar plane

and the image sphere. The same holds for Ex
′′
R and x

′′
L. In

case of deviations from this constraint, Eq. (4) defines the co-
sine of the angle between the two epipolar planes spanned by
t together with E⊤

x
′′
L and Ex

′′
R, respectively, which we are

using as an error measure to estimate E using image point
correspondences: the essential matrix E can be expressed
with five independent parameters, two for the baseline di-
rection t and three for the rotation angles. We use an adapted
version of the direct method of Longuet-Higgins (1981) to
compute E with eight correspondences, which exploits that
the eigenvalues of E are λ1 = λ2 = 1 and that we use spheri-
cally normalized ray directions.

The estimated essential matrix E can be decomposed to
obtain the relative rotation R and baseline vector t (Hartley
and Zisserman, 2003), which can be used for triangulation
and epipolar image rectification, as described in Sect. 3.3.
However, a 3-D reconstruction based on R and t alone takes
place only in the coordinate system of the reference cam-
era and only up to scale because of the scale ambiguity. A
meaningful reconstruction in world coordinates requires the
absolute length of the baseline (distance between the cam-
eras) and the absolute orientation of the reference camera.
Section 3.5 and 3.6 present methods to estimate both, the pa-
rameters of exterior and interior orientation.

3.3 Epipolar rectification

Once the epipolar geometry and the interior orientation is
known, the input images can be transformed in such a way
that corresponding image points lie on the same image row,

1

2

Epipolar-rectified imageOriginal image

(a) (b)

(c) (d)

Epipolar planes

Figure 4. Epipolar rectification for omnidirectional cameras: the
two-step rotational mapping between real and virtual cameras (a)

results in a canonical camera setup of virtual cameras during recti-
fication (b). A fisheye image (c) is rectified such that the angles β
and ψ correspond to the lines and rows of the image (d).

which reduces the search for corresponding image points
from two dimensions (image) to one (image row). In the
frame of pinhole-type cameras, epipolar image rectification
refers to the computation and application of a homography,
which maps epipolar lines (projections of epipolar planes on
the image plane) to image rows. In the omnidirectional cam-
era model however, epipolar lines become epipolar curves
due to the nonlinear projection and thus cannot be mapped
by a homography because of its line-preserving character.
Therefore, we employ the rectification scheme following
Abraham and Förstner (2005), which is sketched in Fig. 4.
The epipolar rectification allows the rectification of a fisheye
image over a broad spectrum of the angle θ , which allows the
use of the complete image content of a fisheye image, which
is not possible via perspective rectification. However, epipo-
lar rectification leads to lower accuracies at the margins as
the image is stretched in these areas, cf. to Schneider et al.
(2016).

The following derivations with respect to β and ψ are
only valid for an epipolar-rectified image pair. For each
real camera we can define a virtual camera (subscript V),
such that the virtual cameras are in a canonical stereo
setup, i.e., both have a common x axis, the same orienta-
tion (RL,V = RR,V = I) and are only shifted along the vir-
tual x axis tV = (‖t‖,0,0)⊤. An object point PV in the vir-
tual world coordinate system is then defined by the angle β,
which denotes the respective epipolar plane, and the two an-
gles ψL and ψR that define the angle of the projection ray
within the epipolar plane (Fig. 4b). Based on this geometry,
we are able to define a rectification scheme (Fig. 4d), which
covers the whole 3-D space: the image rows correspond to
the angle β, which represents the orientation of the epipo-
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lar plane, while the image columns represent the respective
angles ψL and ψR in the rotated epipolar plane:

x
′
V =

[
ψ

β

]
=

[
atan2(yV,zV)

atan2(xV,

√
y2

V + z2
V)

]

with x
′′
V =



xV

yV

zV


 ,

atan2(zV,yV)=





arctan
zV

yV
for yV > 0,

sgn(zV) ·
π

2
for yV = 0,

arctan
zV

yV
+π for yV < 0 ∧ yV ≥ 0,

arctan
zV

yV
−π for yV < 0 ∧ yV < 0

where x
′′
V corresponds to a projection ray within the frame of

a virtual camera.
Let x

′′
L and x

′′
R be the projection rays of an object point P

in the left and the right camera coordinate system (�L, �R),
respectively, and x

′′
L,V and x

′′
R,V are the corresponding pro-

jection rays in the virtual coordinate systems (�L,V, �R,V).
The mapping between the real and virtual coordinate system
follows a two-step procedure: in the first step, x

′′
L and x

′′
R

are mapped from the local camera coordinate systems (�L,
�R) to the world coordinate system �W. If we do not have
knowledge of the world coordinate system �W, we choose
�W =�L. From the essential matrix E, we extract the rota-
tions RL = I and RR = R, which map from camera coordi-
nates to world coordinates. This leads to an equal coordinate
system orientation; see step 1 in Fig. 4a. In the second step,
we construct an appropriate rotation matrix RV in order to
align each system’s x axis with the baseline t ; see step 2 in
Fig. 4a.

Since the matrix columns of RV are the images of the base
vectors ei , the first column is the normalized baseline vector.
We can freely choose the other two coordinate axes as long
as they form an orthonormal system because each realization
aligns the x axis with the baseline. This means that the recti-
fication scheme is defined up to a rotation about the baseline
t , which corresponds to a shift of the range of the angle β and
a vertical translation in the rectified image. We define the vir-
tual y axis in the x–y plane of the world coordinate system,
which also determines the virtual z axis.

Thus, we finally get

RV = [e1,e2,e3]

with
e1 = t‖t‖−1 ,

e2 = (−yT ,xT ,0)⊤‖(−yT ,xT ,0)‖−1 ,

e3 = e1 × e2 .

Given the angular information β, ψL and ψR as well as the
camera constant c, we get the rectified image coordinates by

uV = cψ + u0,V

vV = cβ + v0,V
where

u0,V = c π/2
v0,V = c π/2

.

Figure 5. Two corresponding ray directions x
′′
L and x

′′
R are defined

by the angles ψL and ψR within the epipolar plane. With baseline
length b the distance s between left camera and 3-D Point P can be
derived, which allows the determination of 3-D point coordinates
P = sx′′

L.

The reverse mapping, from rectified image coordinates to
world coordinates, is given by



x

y

z


 = RV




sin(ψ)
cos(ψ)sin(β)
cos(ψ)cos(β)




where
ψ = (uV − u0,V)/c

β = (vV − v0,V)/c .
(5)

3.4 Triangulation for 3-D reconstruction

Having corresponding image points xL and xR identified in
the image rows of the epipolar-rectified images, x

′′
L and x

′′
R

can be directly derived from xL,V and xR,V using the reverse
mapping of the rectification scheme of Eq. (5). Due to the
rectification the ray directions are guaranteed to lie in the 3-
D epipolar plane and to intersect. Considering the geometry
shown in Fig. 5 we identify the relation s · sin(ψR + π

2 )=
b · sin(γ ). With γ = ψL −ψR and P = s · x′′

L we have

P = b

(
cos(ψR)

sin(ψL −ψR)

)
x

′′
L . (6)

3.5 Parameters of the interior orientation

For the estimation of the parameters of the interior orien-
tation in Eq. (1) we employ a test field with markers that
encode a geometric relationship. Such a test field can be a
sophisticated setup in a laboratory (Seiz, 2003) or – as in our
case – a pattern printed or fixed on a plane or inside an open
half-cube as depicted in Fig. 6. The calibration generally pro-
ceeds in two steps: the first step provides sample images of
the pattern in different poses covering the field of view. For
each image an image processing routine detects and extracts
the image coordinates of the pattern geometry. In the sec-
ond step, the extracted image points are used to estimate the
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Figure 6. Camera calibration with cube: the pattern on the inside
of the cube defines a set of 3-D points with respect to the cube co-
ordinate system and can be used as reference data to solve for the
fisheye projection parameters.

optimal parameters of the camera model with an adjustment
procedure.

We employ a software developed by Abraham and Hau
(1997) that accepts input images of a calibration cube with
a fixed white dotted pattern. Each inner cube side has a fin-
gerprint pattern to make sure the detected dots are properly
identified as lying on the x, y or z plane, which determines
their corresponding absolute 3-D coordinates with respect to
the cube reference system. The extraction stage results in a
set of correspondences between 2-D image points and 3-D
cube points, which are then used in a nonlinear bundle ad-
justment that iteratively minimizes the reprojection error be-
tween the observed image points and the reprojections of the
3-D points of the pattern using the respective parameter esti-
mation according to Eqs. (1) and (2).

3.6 Parameters of the exterior orientation

First, we describe how to estimate the absolute location and
orientation of each camera in the world reference system.
This information is then used to derive a first estimate of the
essential matrix E∗, which will then be iteratively refined us-
ing point-feature correspondences obtained from the stereo
images according to the epipolar constraint in Eq. (4).

Employing a satellite navigation system like GPS allows
us to derive the geographic position of the cameras with an
accuracy of about 2–3 m. Accuracies in the range of centime-
ters can be achieved by using additional correction informa-
tion broadcasted by terrestrial reference stations (D-GPS).
The obtained coordinates can be mapped from the global ref-
erence system, e.g. WGS-84, to a local reference system us-

ing a suitable projection in order to get the exact baseline
length and direction.

A more challenging task is the estimation of the camera
orientation. Hu et al. (2010) uses geographic landmarks with
known coordinates, Öktem et al. (2014) use the horizon and
Seiz (2003) exploits stars as geometric references. As in Seiz,
we use sensed stars in the images (see Fig. 7) as observations
to estimate the absolute camera orientations. This requires a
set of reference stars, which can be observed by the cameras
in the local night sky. The coordinates of the stars can be
obtained from a star catalog like Stellarium or from online
sources, e.g., the NAOJ1. The coordinates are usually pro-
vided with the (north-aligned) azimuth angle ϕn and altitude
angle θ and have to be converted to 3-D unit vectors accord-
ing to

xs =
[
ϕn
θ

]
→ x

′′
s =




cos(ϕn+π/2)cos(θ)
−sin(ϕn+π/2)cos(θ)

sin(θ)


 .

In order to get the coordinates of each reference star in the
recorded image, we first take several long-exposure night sky
images, compute the median image and subtract the median
image from the original night sky images. As a result, only
the moving stars are left and we can compute the respective
centroid coordinates. The correct identification of the stars in
the image is currently done manually by adjusting the rota-
tion angles α, β and γ until the projections are close enough
to the centroids to be attributed. After the conversion of the
stars’ image coordinates and catalog coordinates to 3-D unit
vectors (x′′

s and x′′
cat), they are used to estimate the rotation

Rabs of the camera via a Levenberg–Marquardt minimization
(Madsen et al., 2004) of the angular error:

arg minRabs

{ ∑

i∈stars

(1 − (x′′
cat

⊤
(Rabs x

′′
s )))

2
}
,

where Rabs can be parametrized as a unit quaternion or as
axis-angle representation.

From the absolute location and orientation of the cameras
we can derive the relative orientation using Eq. (3) and a first
estimate E∗ of the essential matrix can be composed accord-
ing to Eq. (4).

For a further refinement of the essential matrix E∗, we
collect (scale invariant feature transform) SIFT-point-feature
correspondences (Lowe, 2004) that are consistent with the
epipolar constraint in Eq. (4): for each detected feature in
the left image, we can select all features in the right image
that are consistent with E∗ up to a predefined error threshold,
e.g.,e.g. ∡((E∗⊤

x
′′
L, E∗

x
′′
R) < 2◦, and then find the best match via

nearest neighbor using the SIFT feature descriptor. The same
is done in the other direction, i.e., from the right to the left
image, so that only mutually consistent matches are selected.

1http://eco.mtk.nao.ac.jp/cgi-bin/koyomi/cande/horizontal_
rhip_en.cgi, last accessed April 2016.
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Figure 7. Absolute orientation estimation via stars from long-
exposure images. In case of an accurate orientation estimation, the
projected coordinates from the star catalog should match the de-
tected stars in the image.

A couple of image pairs are enough to collect plenty of
evenly distributed correspondences, as is shown in Fig. 8.
Since this set of correspondences will contain mismatches
that would lead to a flawed refinement of E∗, we use the
robust parameter estimation technique RANSAC (random
sample consensus) (Fischler and Bolles, 1981) to filter out
those likely mismatches.

Finally, we employ Levenberg–Marquardt minimization
of the cost function:

arg minE

{ ∑

i∈inliers

sin2 (
e.g. ∡((x′′

L, x̂
′′
L)

)
+ sin2 (

e.g. ∡((x′′
R, x̂

′′
R)

)}
. (7)

Because the observations x
′′
L and x

′′
R are always subject to

measurement errors, they will not lie exactly within an epipo-
lar plane. x̂

′′
L and x̂

′′
R denote the estimated true locations of

x
′′
L and x

′′
R that do lie exactly within an epipolar plane and

are closest to the observations in an angular sense. As the es-
timations and the observations are unit vectors and lie on the
image sphere, Eq. (7) formulates a meaningful angular error
measure and its minimization provides an optimal maximum
likelihood solution; see Oliensis (2002).

4 Stereo matching

To calculate the 3-D information of a point P, we need to
know the coordinates of the projected point on both image
planes. Only if such correspondences are known, can its 3-D
location be computed. The aim of stereo matching algorithms
is to compute such correspondence information.

LEFT RIGHT

Figure 8. Detected interest points can be matched across the stereo
images and are marked by the same color. At least 5 correspon-
dences are needed to compute the relative orientation between the
cameras and each also provides one 3-D point.

The visual appearance of a scene point P in each cam-
era determines if stereo matching is successful or not. Au-
tomatic stereo matching is likely to fail if there are occlu-
sions, specular reflections, varying illumination or large scale
and pose differences between the images, so that either cor-
responding object points are not visible in both images or
differ significantly in their appearance with respect to shape
and size. Also objects may lack sufficient texture or contrast,
or a unique surface that has a consistent visual appearance
when observed from different perspectives does not exist. Es-
pecially the latter poses a problem in cloud photogrammetry.
Hence, depending on the cloud situation, stereo reconstruc-
tion has limitations. In practice, one either aims at finding
the correspondences between distinct points in the images
(sparse stereo) or between all pixels (dense stereo). A good
overview is given in Scharstein and Szeliski (2002). We only
employ sparse stereo during the estimation of the essential
matrix (Fig. 8) as described in Sect. 3.6.

Dense stereo can be advantageous when dealing with com-
plex and dynamic scenes that have limited texture because it
effectively delivers reasonable results for image regions with
low contrast. It propagates information from high-contrast
regions into the low-contrasts regions assuming similar depth
at nearby pixels with similar intensity. In such regions lo-
cal methods may deliver less or no information leading to
a sparse point cloud, which makes further analysis like seg-
mentation or classification difficult.

To simplify the search for correspondences, dense meth-
ods usually require epipolar-rectified images; see Sect. 3.3.
As a result of that, corresponding pixels are restricted to lie
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Figure 9. Illustration of dense stereo matching using epipolar-
rectified images. The correspondence information is stored in a dis-
parity map. Each disparityD(x) > 0 then defines a correspondence
between two image points xL,V and xR,V and can be used for trian-
gulation, which results in a dense 3-D point cloud.

on the same image row, which reduces the search space from
2-D to 1-D.

The correspondence information is stored in the so-called
disparity map D, that contains for each pixel in the rectified
reference image the horizontal sub-pixel distance d to its cor-
responding image point shifted in the same row in the other
image; see Fig. 9. Hence, for the two corresponding points
xL,V in the left and xR,V in the right image, we have for
each pixel position in the disparity map D(xL,V)= |uL,V −
uR,V| and therefore have the relation xR,V = (uR,V,vR,V)

⊤ =
(uL,V − d,uR,V)

⊤.
In our current approach, we rely on a dense matching al-

gorithm that is based on the semi-global matching (SGM)
proposed by Hirschmüller (2005) and is called semi-global
block-matching (SGBM). It produces accurate results while
being deterministic and computationally efficient. In this
work we use the implementation provided in OpenCV.

For a detailed algorithmic description, we refer to the orig-
inal paper by Hirschmüller (2005) and to the OpenCV docu-
mentation. Here, we present only a short summary.

The basic problem of finding an optimal disparity map can
be formalized as an energy minimization problem involving
an energy functional and an appropriate minimization tech-
nique (Scharstein and Szeliski, 2002). A good disparity map
should satisfy at least the following two aspects:

1. Two corresponding pixels should have similar intensity
or structural values (data consistency).

2. Neighboring pixels with similar intensity or structural
values should have similar disparity values (smoothness
assumption).

Both aspects can be combined to form the global energy
E(D)= Edata +Esmooth and are realized in SGBM as fol-
lows: to achieve data consistency (aspect 1), Edata(x) is
computed for each pixel x independently using a window-
based similarity measure such as the sum of absolute/squared
differences or normalized cross-correlation (NCC), yielding
one matching cost per pixel for each valid disparity value d ∈

[dmin,dmax]. Note, that using a larger window will smooth
the disparity map since small details have a smaller influence
on the measure. This causes fine structures to disappear, but
also reduces errors caused by image noise. However, rely-
ing only on a minimum in Edata will cause mismatches, es-
pecially in regions with low-contrast or repeating patterns,
which results in a flawed disparity map. This can be coun-
tered by introducing an additional smoothness term Esmooth

that penalizes larger disparity differences of neighboring im-
age points across eight linear paths.

Figure 9 illustrates the computation of Edata using
epipolar-rectified images and the final disparity map after in-
corporating Esmooth. One can clearly see the difference in the
disparity values between clouds that are closer (high dispar-
ity) and more distant clouds (smaller disparity).

In our application, we use a window size of 11 × 11 pixels.
To achieve a successful matching in larger low-contrast re-
gions and reduce the variability due to the noisy image signal
in the reconstruction, we scale the input images to one quar-
ter size. This causes an over-smoothing near cloud bound-
aries, but this way we obtain a smoother cloud boundary.

5 Stereo setup and results

In this section we present our stereo setup deployed at the
Forschungszentrum Jülich GmbH, Germany. We also give a
geometric uncertainty analysis of the current setup and dis-
cuss common error sources and how they affect the calibra-
tion and reconstruction results with a focus on asynchronous
recordings. Finally, we present our experimental results of
two case studies. The first case shows that our dense stereo
approach is able to achieve a geometric accuracy that is com-
parable with those of previous studies using sparse stereo
methods, like Seiz (2003) and Öktem et al. (2014). The sec-
ond case illustrates the capability of our approach to success-
fully reconstruct the complex 3-D cloud structure and dy-
namics of convective clouds. A Supplement regarding these
case studies is available; for a description we refer to Sect. 7.

5.1 Camera setup

We exploit two sky imagers installed at the Forschungszen-
trum Jülich GmbH, Germany, which also hosts the Jülich
Observatory for Cloud Evolution (JOYCE; Löhnert et al.,
2014), which was developed in the framework of the Transre-
gional Collaborative Research Center TR32 (Simmer et al.,
2015). For the evaluation of our results we use observations
from a local lidar-ceilometer and cloud radar (Fig. 10). The
first camera is located at 50.90849◦ N, 6.41342◦ E, and the
second at 50.90613◦ N, 6.41144◦ E, resulting in a baseline
length of approximately 300 m. Compared to previous stud-
ies that mention a baseline between 500 m (Kassianov et al.,
2010) and 900 m (Öktem et al., 2014), this is a rather short
distance and results in higher geometric uncertainty of the
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~ 300 m

 Camera 1
(reference)

 Camera 2

JOYCE

N

Figure 10. Camera setup at the Research Center Jülich (map source:
OpenStreetMap).

estimated 3-D points on the clouds, but reduces occlusions
and enhances the ratio of mutually visible cloud regions in
both images. Furthermore, the short baseline increases the
similarity of the cloud appearance in both images, which is
beneficial for stereo matching. A more in-depth analysis of
these aspects is presented in the next section.

Both cameras are IDS network cameras of type uEye
GigE UI-2280SE with a 2/3′′ CCD sensor consisting
of 2448 × 2048 pixels and are equipped with a Fujinon
FE185C057HA-1 C-Mount Fisheye adapter, providing a
185◦ field of view and fixed focus. The cameras are mounted
in a box and point towards the sky. An acrylic glass dome
protects the cameras against environmental effects. A power
supply and a fan distribute heat to prevent the condensation
of water on the glass dome. Each camera is connected to a
small computer that hosts a self-developed camera control
application, based on the IDS C++ SDK (IDS, 2013), which
allows us to control the cameras remotely, e.g., for scheduled
recordings with settings of exposure time, recording interval
(e.g., 15 s) or modes like long-exposure (night mode) or high
dynamic range (HDR). The images are currently saved lo-
cally and transferred if needed. Synchronization is done by
request to a local NTP service.

5.2 Geometric uncertainty

First, we discuss the general spatial accuracy of a 3-D re-
construction assuming correct orientation parameters, but a
flawed disparity estimate. In order to understand the indi-
vidual contribution of each parameter to the depth uncer-
tainty, we use the standard formulation for pinhole cameras
(Kraus, 2004), where the disparity is modeled by the par-
allax px and its uncertainty σpx . The parallax is the angle
between two corresponding projection rays, i.e., γ in Fig. 5,
which can also be formulated as the distance between cor-
responding projections on the image plane (Fig. 12). Given

a stereo system of identical cameras with camera constant c
(cf. Sect. 3.1) and baseline length t , as illustrated in Fig. 12,
we have the horizontal coordinate X and the depth D given
by

X = x′
L
t

px
D = c

t

px
.

We focus on the absolute depth uncertainty σD . From the
relation between the relative depth uncertainty σD and the
relative parallax uncertainty σpx

σD

D
= σpx

px

we can formulate the depth accuracy in several ways.

σD = D

px
σpx = c t

p2
x

σpx = D

c t/D
σpx

The first identity simply states that the (nominal) uncertainty
grows linear if the whole setup is scaled up (increasing depth
and baseline), while the second term indicates that the un-
certainty is proportional to the squared inverse of the dis-
parity. As a consequence, deviations at higher disparities are
less significant to σD than deviations at smaller disparities.
An analogous statement is that at smaller angles γ in Fig. 5,
deviations in ψL or ψR cause higher errors. The last iden-
tity shows that uncertainty is inverse to the ratio of baseline
length to depth value. In other words, doubling the baseline
t while maintaining a fixed distance to an object will double
the accuracy (increased γ ).

These considerations assume that the image points can be
identified and matched with a specific parallax uncertainty
σpx . However, larger baselines (or disparities) usually affect
the stereo matching because increasing parts of the object
might not be visible by both cameras. Additionally, the ob-
ject will have significantly different geometric appearance in
each camera. Thus, a tradeoff between accuracy and geomet-
ric completeness and consistency is necessary to get the best
results. Compared to previous studies, the small baseline of
our stereo setup leads to noisy and inconsistent reconstruc-
tions beyond 5 to 6 km. However, our current focus lies on
boundary layer clouds and their lateral morphology, which
usually have a horizontal spacing of just a couple of kilome-
ters between each other. Also, distant clouds are often oc-
cluded by others so that a larger baseline does not always
offer the desired benefits.

Figure 11 shows the reconstruction error for a virtual cloud
layer at 1500 and 3000 m height over a 10 × 10 km2 area
around the cameras, assuming an error of 1 pixel in the dis-
parity map after the matching phase (Sect. 4), which cor-
responds to a directional error of approximately 0.1◦. The
values represent absolute errors within the epipolar plane.
Therefore, depending on the horizontal distance from the
cameras, the error has a larger vertical component (small dis-
tance) or a larger horizontal component (larger distance). The
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Figure 11. Errors in the disparity values cause a directional devia-
tion of the projection rays within the epipolar plane. Assuming an
error of 1ψR = 0.1◦, we can compute the absolute geometric error
within the epipolar plane for a hypothetical cloud layer at 1.5 and
3 km height in an area of 5 km around the cameras.

error grows larger with increasing distance to the cameras
and with increasing co-linearity between object point and the
camera centers. In both cases, the angle γ between the pro-
jection rays becomes very small, yielding larger triangula-
tion errors. Thus, sky imagers do not provide hemispheric
3-D reconstruction with homogeneous accuracy. However,
this deficit can be ameliorated by employing a third cam-
era in a triangle configuration. A successful integration of a
third camera into the dense stereo matching scheme includ-
ing epipolar rectification is explained for perspective cameras
in Heinrichs and Rodehorst (2006). An adaption to omnidi-
rectional cameras has, to the best of our knowledge, not been
addressed yet, but seems possible.

Next, we compare the spatial resolution of a sky imager
with a wide-angle camera used in previous studies. Fisheye
lenses cover a substantially larger field of view than normal
perspective lenses, but at a reduced effective angular resolu-
tion. As a consequence, the stereo depth resolution is lower
for fisheye lenses compared to perspective ones. This draw-
back limits the effective range for a high quality reconstruc-
tion, especially for distant clouds. A comparison of our fish-
eye cameras with one of the wide-angle cameras from Öktem
et al. (2014) highlights the differences: while our camera has
a field of view (FOV) of about 180◦ and the circular view
field covers a 3.5-megapixel region (from a 5 megapixel sen-
sor), the wide-angle camera has a FOV of 67◦ and takes 1-
megapixel images from a 5-megapixel sensor. To compare
the view fields, the respective solid angle �fish for the sky
imager and �wa for the wide angle camera – given in stera-
dians – must be derived. Assuming a field of view of 180◦

Camera constant c
Horiz. parallax p

x
 

Baseline t

D

X

σ
px

Figure 12. Illustration of general geometric uncertainty of the re-
construction within an epipolar plane: an uncertainty in the projec-
tion rays σpx introduces an uncertainty in the estimated location of
P indicated by the gray region: a smaller/higher depth value D (or
higher/smaller parallax px ) reduces/increases the depth uncertainty
σD , but reduces/increases the horizontal uncertainty σX

for the sky imager and 67◦ for the wide-angle camera leads
to �fish = 6.28 and �wide = 1.04.

Furthermore, the solid angle per pixel is 6.28/3.5×10−6 =
1.8×10−6 for the fisheye and 1.04/1.0×10−6 = 1.04×10−6

for the wide-angle camera, resulting in a 43 % lower spatial
resolution of the fisheye camera. Using the full resolution of
the wide-angle camera with 5 megapixel, the ratio would be
11 %. Hence, one must use a sensor with almost 10 times
higher resolution to compete with the wide-angle camera in
this respect. Depending on the fisheye projection function
and the location in the image, the spatial resolution will of
course vary due to the different degree of distortion.

The imaging process of a sensor adds a random noise
signal, which can be limited, but not avoided. In principle,
this also affects parameter estimation, because both localiza-
tion and measurement are disturbed. Given a large number
of measurements for the calibration, the signal noise can be
compensated in a maximum likelihood estimation as the re-
dundancy is high. The stereo matching is also affected by the
noisy image signal and causes a disturbed 3-D reconstruc-
tion.

In the following analysis we investigate the effects of an
asynchronous recording of the stereo images during the ob-
servation of a dynamic cloud scene.

Despite frequent requests to an NTP service, we some-
times experience asynchronous system times on the local
computers in the range of a few seconds. Consequently, the
whole cloud scene shifts between the single shots and thus
causes a displacement in the images, which leads to a biased
or flawed disparity map. We investigate the effects of a cloud
field displacement of 1= ±15 m along the baseline (x di-
rection) and perpendicular to the baseline (y direction) in a
virtual sky imager setup together with a virtual cloud layer
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at 3 km, using the 3-D rendering software Blender (Blender
Foundation, 2016). The virtual sky imagers have identical in-
ternal camera geometries comparable to the real ones, and
a relative pose of RL = RR = I and t = (300,0,0)⊤ m. Fig-
ure 13 shows the cross sections of the respective reconstruc-
tion along the baseline (x axis) and perpendicular to the
baseline (y axis). A displacement along the x axis results
in a lower (2875 m for 1= −15 m) or a higher (3183 m for
1= +15 m) cloud base compared to the unaffected recon-
struction (3025 m for 1= 0 m), while a displacement along
the y axis just causes an overall higher standard deviation
of the reconstruction without a systematic error in the mean
base height (σ(1= +15 m)= 45 m, σ(1= −15 m) = 48 m
and σ(1= 0 m) = 35 m). The results confirm that a displace-
ment in x direction is equivalent to a change in the length of
the baseline t . Hence, the reconstructed cloud base ĥ com-
pared to the real cloud base h can be derived according to
ĥ= h ·

[
‖t‖/(‖t‖ +1)

]
.

5.3 Evaluation of the 3-D reconstruction

The following two case studies are designed to evaluate our
approach using observations from a lidar-ceilometer and a
cloud radar, and to show its capability of capturing the com-
plex 3-D shapes and dynamics of convective clouds.

We compare some of the reconstructions with observa-
tions of cloud-base heights from a lidar-ceilometer and re-
flectivity measurements by a cloud radar, both deployed in
the vicinity of the cameras at the JOYCE observation site.
The lidar-ceilometer is a Vaisala CT25K, which was operated
with a range between 60 and 7500 m and a beam diameter of
0.043◦, which corresponds to 2.25 m at 3000 m height. The
cloud radar is a Metek polarimetric Doppler Radar (MIRA)
operating at 35 GHz with a similar angular resolution over a
range between 150 m and 15 km and a maximum sensitivity
of −45 dBZ at 5 km. For our comparisons we average ob-
servations over an integration time of 0.15 s for each range-
resolved beam. A complete cross section scan then takes ap-
proximately 1 min for all elevation angles that range between
15 and 165◦. For the empirical evaluation, we use the cloud-
base height observations from the lidar-ceilometer. Since the
lidar-ceilometer offers only point measurements every 15 s,
we use observations from a 10 min period around the mea-
surement time of the cameras to get a meaningful compari-
son. We compare the mean reconstructed height values from
a near-zenith rectangular area of 9 km2. The cloud radar of-
fers a direct comparison between the reflectivity signal from
an RHI cross section scan and the respective cross section of
the 3-D cloud shape derived by the stereo method. In order
to cover the region of best geometric accuracy of the stereo
method, we orientate the radar scans along an almost perpen-
dicular direction to the baseline (compare Figs. 10 and 11).
After image acquisition, the input images are preprocessed,
which includes a resampling to one quarter size and a con-
trast enhancement using the Contrast Limited Adaptive His-

Figure 13. Simulation of an asynchronous recording by the stereo
cameras for the same area size. A virtual cloud layer at 3 km height
was displaced between the two recordings of the stereo cameras by
±15 m (a) along the baseline (x direction) and (b) in perpendicular
direction (y axis). Plots show the respective cross sections in x and
y direction of the reconstruction for each case.
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Figure 14. Comparison of the reconstruction with cloud radar (cross section) and lidar (near-zenith cloud-base heights) at 11 August 2014,
14:12:00 UTC. The original fisheye image showing the respective direction of the cross sections (top left). The cross section of the re-
construction compared with the reflectivities from the cloud radar (top right). Histogram of the cloud-base heights observed by the stereo
camera (bottom left) and the lidar-ceilometer (bottom right).

togram Equalization (CLAHE). For stereo matching with
SGBM we use a window size of 11 × 11 pixels and a cloud
mask to remove some artifacts. After triangulation of the 3-D
point cloud, we create a cloud boundary mesh using methods
from the open-source Point Cloud Library (Library, 2016).

5.3.1 Analysis of the 3-D reconstruction of

stratocumulus-layer clouds

We present two cases with stratocumulus clouds, which we
will use to evaluate our result by comparing it against obser-
vations from the lidar-ceilometer and the cloud radar.

Figure 14 shows the results from 11 August 2014, at
14:12:00 UTC, right after a shower moved over the JOYCE
site with a trailing stratocumulus layer, which was also cap-
tured by the cloud radar. The mean cloud-base heights from
the reconstructions are 2881 m while the lidar-ceilometer ob-
servations result in 2897 m. Note also, that the cloud radar
is – due to its measuring frequency in the microwaves – not
as sensitive as the lidar-ceilometer or the camera to the visi-

ble outer cloud boundaries, with the consequence that espe-
cially the boundaries of a cloud might not be detectable by
the radar, but could be detected by the camera or the lidar.

The second case has been recorded on 5 August 2014,
which is interesting for two reasons: first, a typical bound-
ary layer evolution has been observed, starting with small-to-
medium-size cumulus convection along with a steady rise of
the cloud base. Second, from early noon on the cloud scenery
shifted towards stratocumulus layers, resulting in less con-
vection and thus providing again good conditions for a com-
parison against observations from the lidar-ceilometer and
the cloud radar (Fig. 15). Comparing the reconstruction re-
sult with the cloud radar indicates a reasonable estimation of
the bases of the higher cloud layer and the cumulus cloud be-
low it. However, differences between 100 and 150 m are no-
ticeable and the lidar-ceilometer observations report a cloud-
base mean height of 2922 m compared with the height of
2766 m derived from stereo reconstruction. See Sect. 5.3.3
for a discussion of the potential reasons for this discrepancy.

www.atmos-chem-phys.net/16/14231/2016/ Atmos. Chem. Phys., 16, 14231–14248, 2016



14244 C. Beekmans et al.: Cloud photogrammetry with dense stereo for fisheye cameras

Figure 15. Comparison of the reconstruction with cloud radar and lidar at 5 August 2014, 11:31:30 UTC; as in Fig. 14.

5.3.2 Analysis of the 3-D reconstruction of

cumulus clouds

The 24 July 2014 showed strong convection with rapid cloud
development and decline, providing excellent conditions to
apply our dense stereo reconstruction and to capture their
complex shapes and dynamics of the clouds. Figure 16 shows
a cumulus mediocris forming approximately 3 km away from
the stereo camera pair. One can observe the convective up-
draft and the rising cumulus turret. While reaching a height
of about 4000 m, the turret enters the higher wind field, re-
sulting in a skewed shape of the cloud due to wind shear. Fig-
ure 17 shows a cross section of the reconstructed 3-D cloud
boundary at 12:07:00 UTC together with the cloud base mea-
sured with the lidar-ceilometer.

Figure 18 shows a smaller convective cloud, but also with a
rather complex morphology from 11:28:00 to 11:32:00 UTC
on the same day. One observes how the developing convec-
tive turret covers parts of the cloud, which results from its in-
creasingly concave shape. The temporally closest cloud-base
height values from the lidar-ceilometer between 12:14:38
and 12:17:08 UTC report 1487 m on average. Figure 19
shows a cross section of the reconstruction similar to that
in Fig. 17.

5.3.3 Discussion of the experimental results

Our cloud reconstructions show an overall good agreement
with the cloud-base height observations from the lidar-
ceilometer and the cloud radar. Mean near-zenith cloud-base
heights for the stratocumulus cases are within 1 % for 11 Au-
gust and 5 % for 5 August of the lidar-ceilometer mean val-
ues, and the stereo method is able to capture the geomet-
ric shapes of the cloud bases as in Fig. 15. A possible ex-
planation for the deviation occurring on the 5 August is a
shift between the computer system times, as described in
Sect. 5.2. Although errors in the orientation parameters can-
not be excluded, the relative orientation estimation shows a
standard deviation of 0.04◦, which is comparably accurate.
On the other hand, a bias in the computers system time could
be observed at times and confirms this assumption. Based
on the observations from the nearby wind lidar, which re-
ported a wind speed of about 5 m s−1 in a direction almost
collinear to the baseline, a time difference of about +3 s be-
tween the left and the right camera would lead to a scaled re-
constructed cloud base of 2922 m · (302 m/317 m) = 2783 m,
which is close to the actual reconstructed cloud-base height
of 2766 m.
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Figure 16. 3-D reconstruction of cumulus mediocris on 24 July 2014 approximately 3 km away: the left column shows a subsection of the
images obtained from Camera 1. The central column visualizes the reconstruction as an untextured triangulated boundary mesh. The right
column shows the color-coded height of the reconstruction in meters with contour lines (right). Results are shown for 12:03:00 UTC (top
row), 12:05:00 UTC (middle row) and 12:07:00 UTC (bottom row).
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Figure 17. Cross section of the reconstruction from 24 July 2014, 12:07:00 UTC, and highlighted cloud-base height from the lidar-ceilometer.

The results from 24 July show that the dense stereo method
is able to almost fully reconstruct the visible outer shape of
a convective cloud. In both cases the concave and increas-
ingly skewed shape of the cloud is nicely captured by the
dense stereo method, as is illustrated in the cross sections

in Figs. 17 and 19. Also the cloud base is clearly visible and
matches the lidar-ceilometer value of 1495 m quite well, con-
sidering that temporally close measurements are only avail-
able from 12:12:07 to 12:17:08 UTC ranging from 1448 to
1585 m.
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Figure 18. 3-D reconstruction of cumulus cloud from 24 July 2014, organized as in Fig. 16. Results are shown for 11:28:00 UTC (top row),
11:30:00 UTC (middle row) and 11:32:00 UTC (bottom row). The cloud is approximately 3 km away.
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Figure 19. Cross section of the reconstruction from 24 July 2014, 11:32:00 UTC.

6 Conclusions

In this paper, we investigate the reconstruction of the 3-D ge-
ometry of clouds from fisheye cameras using dense stereo ap-
proaches from photogrammetry. We present a complete ap-
proach for stereo cloud photogrammetry using hemispheric
sky imagers. Our approach combines calibration, epipo-
lar rectification, and block-based correspondence search for
dense fisheye stereo reconstruction for clouds. We show that
cloud photogrammetry is able to compute the cloud enve-
lope geometry and demonstrate the potential of such methods
for the analysis of detailed cloud morphologies. By applying

an epipolar rectification together with a dense (semi-)global
stereo matching algorithm, we are able to compute cloud
shapes that are more complete and contiguous than recon-
structions relying on regular feature-based methods. Once
the cameras are calibrated, the method can be fully auto-
mated to deliver real-time information of the cloud scene.

The proposed technique requires accurate camera calibra-
tion parameters and synchronously triggered cameras. Al-
though the validation of our results with cloud radar ob-
servations should be extended to convective clouds, the re-
constructions have shown to be stable over time, yielding
robust cloud base and motion estimates. The validation for
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stratiform clouds shows acceptable deviations from the lidar-
ceilometer and radar measurements.

The system will be permanently installed at JOYCE and
record cloud evolution on an automated basis, which will
provide a large data basis for more extended analysis. We
will add further camera pairs at larger distances from JOYCE
to enable the reconstruction of more complete cloud bound-
aries. Future work will also focus on the combination of
cloud photogrammetry with different sensors.

7 Data availability

The Supplement includes the reconstruction data of all pre-
sented case studies as a 3-D point cloud in .csv files. Addi-
tionally, some figures have been added showing the original
fisheye image together with a contour-height plot.

The Supplement related to this article is available online

at doi:10.5194/acp-16-14231-2016-supplement.
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