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Abstract—Cloud covers, which generally appear in optical re-
mote sensing images, limit the use of collected images in many
applications. It is known that removing these cloud effects is a
necessary preprocessing step in remote sensing image analysis.
In general, auxiliary images need to be used as the reference
images to determine the true ground cover underneath cloud-
contaminated areas. In this paper, a new cloud removal approach,
which is called multitemporal dictionary learning (MDL), is pro-
posed. Dictionaries of the cloudy areas (target data) and the
cloud-free areas (reference data) are learned separately in the
spectral domain. The removal process is conducted by combining
coefficients from the reference image and the dictionary learned
from the target image. This method could well recover the data
contaminated by thin and thick clouds or cloud shadows. Our
experimental results show that the MDL method is effective in re-
moving clouds from both quantitative and qualitative viewpoints.

Index Terms—Cloud removal, dictionary learning, image recon-
struction, multitemporal, sparse representation.

I. INTRODUCTION

W ITH the development of remote sensing technology,

satellite images have become very useful in a variety

of applications, including the following: Earth observation, cli-

mate change, and environmental monitoring. However, optical

remote sensing images are often contaminated by clouds and

cloud shadows since optical sensors acquire data at the visible

and near-infrared wavelengths [1]. Cloud cover is considered

to be a severe problem in optical images because it also leads

to cloud shadow emerging. Both clouds and cloud shadows

will degrade the utilization of image data and limit the use of

these optical remote sensing images in further applications. For

this reason, the process of removing clouds is necessary for

improving the usefulness of optical remote sensing images.

Cloud effects vary due to their different compositions and

heights. Opaque clouds obscure all the reflectance from the

Earth’s surface, allowing no ground cover signal to be collected
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by sensors. In this paper, we particularly focus on the case of

thin clouds that do not entirely cover the signal corresponding

to the underlying objects, as opposed to opaque clouds which

entirely dominate the pixel spectral signature. The task of

removing clouds is treated as an image restoration problem.

A number of cloud removal methods have been developed to

address this problem. The related approaches can be classified

into two categories: individual-based and multitemporal-based

methods.

In individual-based methods, cloud removal is implemented

by making use of other bands from the individual image to

model the cloud effects. An automatic thin cloud removal

method utilizing the cirrus band as the auxiliary multispectral

data was proposed in [2]. The relationships between the cirrus

band in Landsat 8 Operational Land Imager (OLI) and other

bands were used to model cloud effects. In [3], the haze

optimized transformation method was proposed based on the

high correlation between visible bands under clear atmospheric

conditions and corrected for cloud effects by recovering how

the linear relationship deviated as a result of clouds. The author

in [4] used the near-infrared bands to estimate the spatial

distribution of haze in visible bands by building a linear model

over deep water regions. However, overcorrection will appear

when clouds are not relatively thin. Generally, these individual-

based cloud removal methods have difficulty mitigating the

effects of thick clouds.

In contrast, multitemporal-based methods are capable of

dealing with both thin and thick clouds. Since satellites re-

visit the same geographical location periodically, multitempo-

ral cloud-free images can be acquired for the same location

at different dates. A cloud removal method based on clone

information was developed in [5]. Data from multitemporal

images with no clouds were cloned to the cloudy patches based

on the Poisson equation and a global optimization process.

A cloud removal method by applying image fusion and a

multiscale wavelet-based approach was proposed in [6], using

target cloudy and multitemporal clear images to generate cloud-

free images. Some methods designed for filling the gaps in

Landsat ETM+Scan Line Corrector (SLC)-off imagery based

on this idea have been also applied to the cloud removal task

[7], [8]. For instance, a modified neighborhood similar pixel

interpolator (MNSPI) cloud removal approach was proposed

in [9] to predict the value of pixels blocked by thick clouds

from its neighboring similar pixels with the help of auxiliary

no-cloud images.

Cloud shadows are another problem which is even more

difficult to cope with. Cloud shadows occur when the cloud
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occludes the sunlight and prevents it from reaching the land

surface [10]. Therefore, the areas contaminated by cloud shad-

ows have normally lower reflectance than other regions. Lu [11]

developed a cloud/shadow detection and substitution method

based on maximum and minimum filters. This method needs

thresholds determined by trial and error to extract clouds or

shadows. Hence, the method exhibits limited accuracy when

shadows cover high-reflectance surfaces or for thin clouds,

which allow image regions to remain bright in these cases.

In [12], a masking method was developed to detect cloud

and cloud shadow in Landsat imagery over water and land,

separately. Cloud shadow effects were detected by using a near-

infrared band to set up a shadow layer.

Dictionary learning techniques are another option for cloudy

data correction. Dictionary learning is a key component in

sparse representation theory which has received a growing

interest for the decomposition of signals into a subset of linear

projections from an overcomplete dictionary. Dictionary learn-

ing methods aim at searching a data set to best represent the

signals by only using a small subset of the dictionary (i.e., a

few atoms). Sparse representation has been employed in many

applications, such as image denoising [13], face recognition

[14], feature extraction and classification [15], and image su-

perresolution [16]. With regard to cloud removal, a method was

proposed in [17] for the reconstruction of cloudy areas based on

compressive sensing theory. The basis pursuit and orthogonal

matching pursuit approaches were adopted for addressing the

sparse representation. Genetic algorithms have been also ex-

ploited to obtain the best solution of an ℓ0-norm optimization

problem. Most recently, a method has been developed in [18]

using two multitemporal dictionary learning methods based

on the expanded K-SVD (K-means clustering process) and

Bayesian algorithms to recover quantitative remote sensing

products contaminated by thick clouds and shadows. This

method sorts a set of time series data according to the temporal

correlations for K-SVD and adjusts the weights in a Bayesian

scheme. So far, cloud removal methods based on dictionary

learning are very limited and have been only employed in the

spatial domain.

In this paper, a cloud removal method is developed by

combining multitemporal and dictionary learning methods.

Specifically, we propose a new data restoration approach, which

is called multitemporal dictionary learning (MDL), based on

sparse representation to remove cloud and cloud shadow ef-

fects. Dictionaries of the cloudy areas (target data) and the

cloud-free areas (reference data) are learned separately in the

spectral domain, where each atom is associated with a ground

cover component under the two aforementioned conditions.

Meanwhile, cloud detection is not a required preprocessing step

in the proposed method. The cloud information is reflected in

the coefficients of the cloudy target image. The removal process

is conducted by combining the coefficients from the reference

image and the dictionary from the target image.

The remainder of this paper is organized as follows.

Section II describes the proposed MDL method for recon-

structing cloudy images. Section III gives an assessment of our

experimental results. Finally, discussions and conclusions are

presented in Section IV.

Fig. 1. Flowchart of the proposed cloud removal method.

II. METHODOLOGY

The proposed method is shown in Fig. 1. The cloudy image

to be corrected is referred to as the target image. A clear

image of the same location is used as a reference image. The

method has three parts: 1) dictionary learning from target and

reference images, respectively; 2) reordering dictionaries; and

3) reconstructing the cloud/shadow-free image. These three

parts are presented in the following.

A. Training Dictionaries From Target and Reference Images

The goal of sparse representation is to define a given data

vector x ∈ R
n as a weighted linear combination of a small

number of basis vectors. This representation is usually ex-

pressed as

x = Dα (1)

where D ∈ R
n×k is called the dictionary matrix, and typically,

k > n. The columns of D are the basis vectors {di}
k
i=1

, which

are often referred to as the atoms of D. These atoms represent

the dominant patterns in the input data x. The elements of α ∈
R

k are sparse coefficients, which satisfy the constraint that the

number of nonzero elements in α is much smaller than k.

If D is given, the process of finding α is called sparse

coding. On the contrary, if α is known, we use dictionary

learning to find D. Compressed sensing is a special case of

sparse coding where the dictionary matrix takes a special form.

Suppose y ∈ R
k and Ψ ∈ R

k×k represents an orthogonal basis.

If y can be represented sparsely in the domain defined by the

matrix Ψ, then y can be expressed as

y = Ψα. (2)

The subsampled data vector x ∈ R
n can be then defined as

x = Φy = ΦΨα (3)

where the matrix Φ ∈ R
n×k typically has the form of an iden-

tity matrix with random rows removed. Sparse coding can be

then used to find α given x, Φ, and Ψ; and y can be found

using (2).

In most studies, sparse representation theory has been devel-

oped for denoising and feature extraction. In these scenarios,
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Fig. 2. Illustration of dictionary learning in the spectral domain.

sparse representations of the data in the image domain have

been exploited, with a sliding window of various sizes. Given

that cloud and cloud shadow effects do not follow a distinct

pattern within a spatial window, the cloud contaminations are

different for different pixels. On the other hand, the contamina-

tion on each spectral band of a given pixel is highly related, i.e.,

the true reflected spectrum from each pixel is modified when

there is a cloud/shadow cover. Therefore, we propose to exploit

sparse representations of the data in the spectral domain. The

window size is b× 1, where b is the number of spectral bands.

A block diagram showing how the data are expressed, in our

method, by a sparse representation in the spectral domain, is

shown in Fig. 2.

Let X = [x1, . . . ,xn] ∈ R
b×n represent a spectral image

signal with b bands and n = r × c pixels. Then, let xi satisfy

min
D∈C,α∈Rb×n

n
∑

i=1

1

2
‖xi −Dαi‖

2

2
s.t. D ≥ 0, ∀αi ≥ 0 (4)

where D ∈ R
b×k is the dictionary, and each column di is

a basis vector. Nonnegative constraints are enforced in the

decomposition process to make the values of α meaningful. C
is the convex set of matrices with the following constraint:

C �
{

D ∈ R
b×k s.t. ∀j=1, . . . , k, ‖dj‖2 ≤ 1 and dj ≥ 0

}

.
(5)

This is a joint optimization problem with respect to the dictio-

nary D and the coefficients A = [α1, . . . ,αn] ∈ R
k×n. This

joint minimization problem is not convex. However, a convex

minimization problem can be formulated with respect to each

of D and A if the other is fixed. The online dictionary learning

method proposed in [19] takes this approach, and we propose

to use this method to solve the joint optimization problem

described earlier.

The online dictionary learning method can be summarized

as follows. The initial dictionary D0 is provided with random

elements from a training set. Sparse coding steps are used to

compute the coefficients A using the Least Angle Regression

(LARS) method [20]. Then, the updated dictionary Dt is found

by minimizing

Dt � argmin
D∈C

1

n

n
∑

i=1

1

2
‖xi −Dαi‖

2

2
(6)

using a block-coordinate descent approach with respect to the

jth column dj while keeping the other columns fixed with the

constraint ‖dj‖2 ≤ 1. This process is then repeated using

the updated dictionary until a convergence criterion is satis-

fied (for a more detailed explanation of the online dictionary

learning method, please refer to [19]).

This spectral domain sparse representation approach is ap-

plied to the problem of cloud and cloud shadow removal in

the following manner. Let Xt ∈ R
b×n be the target image

contaminated by clouds andXr ∈ R
b×n be the reference image

of the same geographical region from a clear day. Let n = r × c
be the total number of pixels of an image of r rows by

c columns, and b is the number of spectral bands. The columns

of Xt and Xr correspond to the spectral vectors of each pixel.

k is the number of columns in the dictionary. Let Dt and Dr

denote the dictionaries of the target and reference images,

respectively. Then, the sparse representation of the target and

reference images can be expressed as

Xt = DtAt + εt (7)

Xr = DrAr + εr. (8)

Dictionaries Dt and Dr are learned separately using the online

dictionary learning method introduced earlier.

In general, dictionaries are an overcomplete matrix and can

reflect the basic patterns contained in each window. In our case,

the dictionaries represent the spectra of fundamental compo-

nents which all the pixels contain, and the sparse coefficients

are the weights of the associated components. In other words,

each measured pixel spectrum is a weighted sum of the spectra

of a few selected fundamental components (atoms).

B. Dictionary Reordering

When there is a cloud cover, we can expect that the fun-

damental components that a pixel contains remain unchanged.

Therefore, the same number of atoms for the two dictionaries

is selected. However, the two dictionaries are not identical

due to two reasons. First, the order of the atoms may not

be the same since they are generated separately during each

dictionary training. Second, the atoms corresponding to the

same spectral components (subclasses) change with imaging

conditions. Nevertheless, the corresponding atoms from the

cloudy/shadowy image should have the same pattern as those

from the clear image and are highly correlated. It is important

that the two dictionaries are in the same order for performing

the next step of the proposed method. Hence, reordering is

performed using the correlation matrix (CM) between the atoms

in the two dictionaries. The CM is determined by calculating the

correlation coefficient (CC) between each atom in Dt and Dr.

Every element in the CM is the CC of the two dictionaries. As

a result, the CM is a k × k matrix in which the nth column
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represents the CC of the nth atom in Dt with all the atoms

in Dr. The reordered matrix is generated by searching the

highest CC value of each column in the CM. Each column is

reordered by moving the highest CC value to the nth row in the

nth column. Then, each column in Dt will change according to

the movement in the CM. These steps are used to make sure that

the two dictionaries have the same order. The new reordered

dictionary is denoted by D∗
t.

It has been observed that both dictionaries are composed of

the spectral vectors of various fundamental components of land

cover materials. There is no cloud component in the dictionary

which is learned from the cloudy image (target image), as

illustrated in the experimental section. This result indicates that

the dictionary is not affected by the cloud cover. This is an

important property and leads to the proposed method for cloudy

image restoration.

C. Cloudy Image Restoration

Based on the concept of sparse representation, we know that

Ar determines which atoms are associated with a given pixel

and what the corresponding weights are. This association will

not be changed due to cloud cover. However, the magnitudes

of the atoms may be different and are affected by the different

imaging conditions, such as the changes in atmospheric param-

eters. Therefore, to recover the signals for the target image, we

propose to use the (reordered) target image’s dictionary D∗
t and

the reference image’s coefficients Ar to reconstruct the clear

image. Specifically, the clear image is obtained as follows:

Xc
t = D∗

tAr (9)

where Xc
t is the reconstructed image after removing cloud and

cloud shadows.

Our newly proposed MDL method can be applied to various

types of remote sensing data, including multispectral and hyper-

spectral images. The only parameter that needs to be adjusted

is the size of the dictionary k. Differing from conventional

cloud/shadow removal approaches, the proposed method can

be conducted without screening clouds or cloud shadows as a

preprocessing step. Moreover, it is not affected by the size of the

cloud/shadow cover area and the complexity of the background.

III. EXPERIMENTS AND RESULTS

A. Experiments on a Simulated Image

1) Generation of a Simulated Cloudy Image: In order to

quantify the performance of the MDL approach, simulation

experiments are described here. In this experiment, cloud cover

is simulated by utilizing the cirrus band (band 9) from Landsat

OLI. The cirrus band at 1.375 μm has very strong water vapor

absorption. Therefore, the background underneath clouds will

become dark in this particular band. The brighter the cloudy

pixels, the thicker the clouds are in this band. The boundary

of clouds is displayed clearly in the single cirrus cloud image

in Fig. 3. In order to make the simulated cloud cover closer to

the true case, we also apply a cloud signature to this image.

This way, a simulated cloudy image was generated, as shown

Fig. 3. Flowchart of the procedure adopted to generate a simulated cloudy
image.

in Fig. 3. The cloudy target image is simulated by overlaying

the original clear image acquired on January 15, 2014 with the

simulated cloud data, as shown in Fig. 3. The simulated target

image is contaminated by clouds over different areas and with

varying thickness.

2) Cloudy Image Dictionaries: With regard to the dictio-

nary learning process, the online dictionary learning algorithm

was exploited for sparse representation because of its good

performance on large data sets (e.g., pixelwise spectral image

processing) and its increased speed from using the SPArse

Modelling Software toolbox [19], [21]. A nonnegative matrix

factorization [22] is also included to ensure that the elements in

D and α are positive. Due to the dictionary learning method

being applied in the spectral domain, the patch size in the

training process is fixed, i.e., 7 × 1 for OLI data.

In order to test the dictionary learning method over different

types of ground cover, two regions were selected, i.e., cloudy

water and vegetation areas. In this test, the two dictionaries are

learned when k = 5 and shown in Fig. 4(a) and (b), respec-

tively. It is clear that no cloud element appears in the two plots

of water and vegetation dictionaries, although the cloudy image

is simulated by cloud signature in Fig. 3. The online dictionary

learning was also conducted on the whole target cloudy image.

Fig. 4(c) shows the plot of dictionary atoms extracted from

the whole simulated target image when k = 20. From all the

three plots, we can see that dictionary learning can extract

the fundamental materials from the image contaminated with

clouds and a cloud signature is not selected in this process.

3) Comparisons of Target and Reference Image Dictionaries:

A reference image was collected on December 30, 2013 in the

same region as the original image. This image scene covers

the Canberra region in Australia and consists of heterogeneous

urban, mountain, and lake areas. The reference dictionary is

also learned when k = 20 in the target dictionary. The two

extracted dictionaries are shown in Fig. 5 as Dt and Dr.

Although the components from the two images exhibit a similar

pattern, it is still hard to ensure that they are of the same order.

Therefore, dictionary reordering is implemented based on the



3002 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 5, MAY 2016

Fig. 4. Illustration of dictionary learning on the simulated target image. The original image was acquired on January 15, 2014.

Fig. 5. Illustration of the reordering procedure on the target dictionary according to the dictionary of the reference image.

proposed method. The CM is first calculated to present the

correlation coefficients between each column in Dt and Dr .

The purpose of reordering is to make the atom in Dt have the

highest correlation with the corresponding atom in Dr. The

reordered dictionary D∗
t is adjusted this way. The CM after

reordering is shown in Fig. 5 as well. There is little difference

between the two matrices, and it should be noted that the

correlation coefficients of each of the corresponding elements

are reasonably high before reordering. The mean value of the

correlation coefficients for each corresponding element in the

target and reference dictionaries increased from 0.87 to 0.92

after reordering. Therefore, we can conclude that the reordering

procedure is a necessary process to make sure that the sparse

coefficients represent the associated components as accurately

as possible.

4) Cloud Removal Results: To draw comparisons, the

MNSPI method [9] was also applied to the simulated image

in our experiments. Mean absolute percentage error (MAPE),
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Fig. 6. Landsat 8 OLI images used in the simulation experiments, with
false color composite R = band 5, G = band 4, B = band 3. (a) Simulated
target cloudy image. (b) Reference image acquired on December 30, 2013.
(c) Recovered image using the MNSPI method. (d) Recovered image using the
proposed MDL method.

TABLE I
QUANTITATIVE RESULTS OF SIMULATION EXPERIMENTS

USING THE PROPOSED MDL AND MNSPI METHODS

peak signal-to-noise ratio (PSNR), and CC were used to as-

sess the proposed method quantitatively. The recovered images

using MNSPI and the proposed MDL method are shown in

Fig. 6(c) and (d), respectively. The MAPE, PSNR, and CC in-

dexes of the simulated cloudy image and the images recovered

by MNSPI and MDL versus the original clear image are shown

in Table I. The MAPE is defined as (1/N)
∑n

i=1
|(xo(i)−

xc(i))/xo(i)|, where N is the total number of pixels conta-

minated by clouds, and xo(i) and xc(i) are the original and

recovered image values, respectively. Three bands are evaluated

in Table I. The recovered image using the MDL method has

the lowest MAPE value, which means that it is closest to the

original true data. The simulated cloudy image has a very low

PSNR value (10.74 dB, 10.51 dB, 14.42 dB), indicating that the

simulated clouds strongly affect the quality of the image. The

CCs for MDL improve more than for the MNSPI method in

all three bands. The MNSPI method is effective in recovering

the edges of regions, but is sensitive to the size of the clouds.

The large patches of simulated clouds decrease the accuracy

of recovery by MNSPI. From the simulation experiments, we

can conclude that the proposed MDL method provides more

accurate restoration results.

B. Experiments on Real Images

1) Cloud Removal for a Hyperion Image: In order to better

substantiate our restoration results, we also performed exper-

iments on real hyperspectral data. One data set consisting of

EO-1 Hyperion images was tested. Two Hyperion images ac-

quired on March 22, 2003 and March 6, 2003 were selected as

target and reference images, respectively. The target image is

contaminated by clouds and cloud shadows over large areas of

the image. Fig. 7 illustrates the details of the recovery process

using the proposed MDL method on EO-1 data. The first

column shows the target, reference, and recovered Hyperion

images with composite colors of R: band 49 (0.844 μm),

G: band 45 (0.803 μm), and B: band 10 (0.447 μm). The

dictionaries and coefficients extracted from the target and ref-

erence images, respectively, are shown in the second column in

Fig. 7. The number of elements in the dictionary is 20. The

recovered image was generated by combining the reordered

target image dictionaryD∗
t and the reference image coefficients

Ar. A cloudy pixel, which is labeled by the red X, was selected

as an illustrative example. The spectral profiles of this pixel in

the target, reference, and recovered images are shown in the

third column. Each legend shows the coefficients corresponding

to each extracted atom (spectra) in the dictionary. The marked

pixel is generated by the sum of these values. Spectral profiles

of the labeled pixel show that the MDL method can restore

the signatures of the ground covered by clouds. The difference

between the reference and recovered spectra is regarded as the

difference in atmospheric conditions for the two dates. The

cloud shadow regions are also recovered in the results.

2) Cloud Removal for an OLI Image: Here, one real data

set from Landsat 8 OLI data is investigated using the proposed

MDL method. The experimental OLI images were downloaded

from the National Aeronautics and Space Administration web-

site (http://earthexplorer.usgs.gov/). The OLI is a 30-m spatial

resolution optical sensor with a 16-day revisit time. Therefore,

it is possible to acquire time series data in the same geo-

graphical area. The experimental target image was acquired on

December 4, 2013, and the reference image was acquired on

September 18, 2013. These images contain 500 × 500 pixels

with seven spectral bands.

In Fig. 8, the target image is contaminated by relatively thin

clouds over almost the entire image. The recovered image, as

shown in Fig. 8(c), is visually clear and close to the reference

image acquired on September 18. The number of dictionary

atoms is 30 in this experiment. The homogeneous and hetero-

geneous areas are both corrected. In the top right corner of

the scene, the urban area is restored well. Fig. 8(e)–(f) shows

zoomed images revealing clear edges and high quality. The

results indicate that the proposed MDL method can recover data

affected by different types of clouds and is not sensitive to the

type of ground covers.
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Fig. 7. Details of cloud removal results for EO-1 Hyperion data. The target and reference images were acquired on March 22, 2003 and March 6, 2003,
respectively.

IV. DISCUSSION AND CONCLUSIONS

In this paper, a cloud removal method, which is called MDL

method, has been proposed. A reference image is required as

auxiliary data for determining the fundamental components

in each pixel contaminated by clouds. The dictionary learned

from the target image is reordered to match the atoms in the

reference image. The recovery process is conducted by combin-

ing the reordered target dictionary and the sparse coefficients

from the reference image. Simulated and real data were both

quantitatively and qualitatively investigated in our experiments.

The recovery results show better performance of the proposed

MDL method when compared with the MNSPI method. Our

proposed method can handle thin and thick clouds, as well as

cloud shadows. The size of the contaminated areas is not a

limitation for the proposed method. It should be noted that the

only parameter that needs to be set manually in the recovery

procedure is the number of atoms in the dictionary. In the

experiments, various values for this parameter were tested to
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Fig. 8. Cloud removal results for the Landsat 8 OLI images in real data exper-
iments. (a) Target image acquired on December 4, 2013. (b) Reference image
acquired on September 18, 2013. (c) Recovered image using the proposed MDL
method. (d)–(f) Zoomed images of the square area marked in (a)–(c).

obtain the best restoration results. This testing process indicated

that the optimal value of this parameter varies for different

image scenes. In the future, the reasons for this variation will

be investigated. Further applications of the MDL method will

be also explored.
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