
Journal of Cloud Computing:
Advances, Systems and Applications

Tomarchio et al. Journal of Cloud Computing: Advances, Systems

and Applications (2020) 9:49

https://doi.org/10.1186/s13677-020-00194-7

RESEARCH Open Access

Cloud resource orchestration in the
multi-cloud landscape: a systematic review
of existing frameworks
Orazio Tomarchio†* , Domenico Calcaterra† and Giuseppe Di Modica†

Abstract

The number of both service providers operating in the cloud market and customers consuming cloud-based services
is constantly increasing, proving that the cloud computing paradigm has successfully delivered its potential.
Nevertheless, the unceasing growth of the cloud market is posing hard challenges on its participants. On the provider
side, the capability of orchestrating resources in order to maximise profits without failing customers’ expectations is a
matter of concern. On the customer side, the efficient resource selection from a plethora of similar services advertised
by a multitude of providers is an open question. In such a multi-cloud landscape, several research initiatives advocate
the employment of software frameworks (namely, cloud resource orchestration frameworks - CROFs) capable of
orchestrating the heterogeneous resources offered by a multitude of cloud providers in a way that best suits the
customer’s need. The objective of this paper is to provide the reader with a systematic review and comparison of the
most relevant CROFs found in the literature, as well as to highlight the multi-cloud computing open issues that need
to be addressed by the research community in the near future.

Keywords: Cloud computing, Cloud resource orchestration, Multi-cloud, Cloud interoperability, Interconnected
clouds, Cloud brokerage

Introduction
Over the last few years, cloud computing has established

itself as a new model of distributed computing by offering

complex hardware and software services in very differ-

ent fields. As reported in the RightScale 2019 State of

the Cloud Report [1], many companies and organisations

have successfully adopted the cloud computing paradigm

worldwide, while more and more are approaching it as

they see a real opportunity to grow their business. Accord-

ing to that report, 94 percent of IT professionals surveyed

said their companies are using cloud computing services,

and 91 percent are using the public cloud. Organisations

leverage almost 5 clouds on average, and companies are

*Correspondence: orazio.tomarchio@unict.it
†Orazio Tomarchio, Domenico Calcaterra and Giuseppe Di Modica
contributed equally to this work.
Department of Electrical, Electronic and Computer Engineering, University of
Catania, Catania, Italy

running about 40 percent of their workloads in the cloud.

The enterprise cloud spend is growing quickly as com-

panies plan to spend 24 percent more on public cloud in

2019 vs. 2018.

The competition between cloud providers is getting

stronger in order to acquire increasing market shares: a

key point to optimise resource usage and fully exploit

the potential of cloud computing is the issue of resource

orchestration [2]. Cloud resource orchestration regards

complex operations such as selection, deployment, mon-

itoring, and run-time control of resources. The overall

goal of orchestration is to guarantee full and seamless

delivery of applications by meeting Quality of Service

(QoS) goals of both cloud application owners and cloud

resource providers. Resource orchestration is considered

to be a challenging activity because of the scale dimen-

sion that resources have reached, and the proliferation

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00194-7&domain=pdf
http://orcid.org/0000-0003-4653-0480
mailto: orazio.tomarchio@unict.it
http://creativecommons.org/licenses/by/4.0/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 2 of 24

of heterogeneous cloud providers offering resources at

different levels of the cloud stack.

Cloud Resource Orchestration Frameworks (CROFs)

have emerged as systems to manage the resource life-

cycle, from the selection phase to the monitoring one

[2–4]. Today most of commercial cloud providers offer a

cloud orchestration platform to end-users [5]: however,

these products are proprietary and, for obvious business

reasons, are not portable. In addition, although modern

configuration management solutions exist (e.g., Amazon

OpsWorks, Ansible, Puppet, Chef) that provide support

for handling resource configuration over cloud services,

all potential users (ranging from professional program-

mers and system administrators to non-expert end-users)

are often required to understand various low-level cloud

service APIs and procedural programming constructs in

order to create and maintain complex resource configura-

tions.

The advent of the multi-cloud computing further exac-

erbates the already challenging orchestration issues. The

multi-cloud paradigm is a very recent technological trend

within the cloud computing landscape, which revolves

around the opportunity of taking advantage of services

and resources provided by multiple clouds [6, 7]. Multi-

cloud presumes there is no a priori agreement between

cloud providers, and a third party is responsible for the

services. That is the case for Cloud brokerage scenarios,

where a broker intermediates between cloud providers

and cloud consumers [8]. In order to enable an effec-

tive multi-cloud paradigm, it is essential to guarantee an

easy portability of applications among cloud providers

[9, 10]. This new requirement calls for more powerful

resource orchestration mechanisms cross-cutting multi-

ple cloud administrative domains, i.e., capable of dealing

with the heterogeneity of the underlying cloud resources

and services.

This work explores the many issues of resource orches-

tration in the cloud landscape. A review of existing works

in the addressed field is conducted in order to identify the

challenges that havemostly attracted researchers in recent

years, and highlight the aspects that have not been fully

covered yet. Themain contribution of our work is twofold.

Firstly, by deeply analysing recently appeared literature,

we build a comprehensive taxonomy of desirable features

and dimensions useful to characterise CROFs. Then, in

accordance with the identified features, we compare sev-

eral CROFs from both industry and academia. This will

help the reader not only to understand the strengths of

each framework, but also to identify the unsolved chal-

lenges that have to be addressed in the near future.

The remainder of the paper is organised as follows.

In “Research methodology” section the methodology fol-

lowed in our study is described. “Related surveys” section

presents a survey of existing works related to our study.

In “Analysis framework” section we identify the CROF

capabilities which have been used to carry out the review

presented in “Review of cROFs” section. In “Critical dis

cussion” section we summarise the results of the review,

emphasising current limitations and open challenges.

Finally, “Conclusion” section concludes our work.

Researchmethodology
The primary motivation of this study is to shed light on

the recent advances that both industry and academia have

made in facing the cloud resource orchestration’s issues in

the multi-cloud landscape.

With this aim in mind, we identified the fields rele-

vant to our study in order to clearly frame the research

scope. Beyond the quite expected cloud resource orches-

tration topic, the following macro topics were also inves-

tigated: cloud interoperability, cloud brokerage, intercon-

nected clouds. As outlined in “Introduction” section, cloud

resource orchestration deals with the discovery, selection,

allocation, and management of cloud resources. When

multiple clouds are in place, cloud brokering and interop-

erability issues due to the simultaneous access to hetero-

geneous services of interconnected providers cannot be

neglected in the analysis of cloud resource orchestration.

We surveyed the literature recently produced in the

mentioned fields. Specifically, we sought for proposals,

frameworks, prototypes, commercial products somehow

addressing the above discussed issues. The databases

taken into consideration in this survey are the follow-

ing: Scopus1, ACM Digital Library2, IEEE Xplore Digital

Library3, Elsevier ScienceDirect4, and SpringerLink5. We

also took care of filtering out research items that are dated

earlier than the last decade.

We found out that many researchers have already pub-

lished surveys that are relevant to our object of study.

Each of these surveys lists and classifies, under differ-

ent perspectives, numerous initiatives taken under the

big umbrella of the cloud resource orchestration field, be

them fully-fledged CROFs or minor proposals focusing

just on a restricted set of orchestration features. The pri-

mary objective of the study proposed in this work is to

provide a new, unified analysis of the existing initiatives,

which embraces all the analysis perspectives proposed

by the past surveys and eventually identifies the missing

ones.

Therefore, as shown in Fig. 1, the first step of our study

consisted in reviewing the literature surveys with the aim

of a) consolidating the list of CROFs and, in general, pro-

posals on which to run a qualitative comparative analysis,

1http://www.scopus.com/
2https://dl.acm.org/
3http://ieeexplore.ieee.org/
4https://www.sciencedirect.com/
5https://link.springer.com/

http://www.scopus.com/
https://dl.acm.org/
http://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://link.springer.com/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 3 of 24

Fig. 1 Research methodology steps

b) extracting the analysis dimensions addressed in each

survey. Then, the second step was to elaborate an analy-

sis framework in order to provide a more comprehensive

set of features on which a new comparison step would

be run. Next, following the references found in the sur-

veys, each CROF on the list was further revised according

to the above-mentioned comparative guidelines, and the

output of the analysis was eventually gathered in a syn-

optic table, helping the reader to compare the different

features. Finally, the comparison results were the basis for

a critical discussion on the state of the art, open challenges

and future expectations on CROFs.

Related surveys
This section presents the results of a literature survey

we conducted in order to identify published studies that

relate to our work to varying degrees. Specifically, we

investigated the vast area of cloud computing searching

for proposals and initiatives falling under the theme cloud

resource orchestration in the multi-cloud landscape.

Of particular importance in the context of the discus-

sion were the following works: Inter-cloud Challenges,

Expectations and Issues Cluster position paper [11], and

the Manifesto for Future Generation Cloud Comput-

ing [12]. Both works acknowledged resource provisioning

and orchestration as an open challenge. In [11], Fer-

rer et al. recognised it as a research area with a high

business impact in the medium term. Besides, in light

of more and more heterogeneous cloud resources dis-

tributed across diverse cloud typologies and models, both

studies stressed the importance of investigating related

research areas, such as cloud interoperability and porta-

bility, service discovery and composition (i.e., cloud bro-

kerage), and interconnected clouds. The relationship of

these related research areas with the main topic of this

survey are schematically depicted in Fig. 2. We depicted

the multi-cloud resource orchestration research scope as

a big umbrella fully covering the cloud resource orchestra-

tion research area, and partially sharing themes covered

by the cloud brokerage, inter-clouds and cloud interoper-

ability/portability research fields.

We remark that the study conducted in this first inves-

tigative step did not intend to seek for actual proposals

and initiatives in the focused fields. Instead, it targeted

the literature works proposing themselves surveys of the

most relevant proposals (step 1 in Fig. 1). Here, the aim

is to highlight the limits of existing literature surveys and,

thus, to provide a motivation to our work. Also, by “sur-

veying existing literature surveys” we were able to collect

the pointers to the actual research proposals, which were

the object of investigation in the next steps of our study.

Below, we discuss some of the most representative liter-

ature surveys broken down into the four above-mentioned

cloud sub-topics. In each of the following sections the sub-

topic is briefly introduced, and the aspects relevant to the

multi-cloud orchestration topic are pointed out.

Cloud interoperability

The cloud computing community typically uses the term

interoperability to refer to the ability of easily moving

workloads and data from one cloud provider to another or

between private and public clouds [13]. Ten years ago, the

standardisation bodies NIST [14], OMG [15] and DMTF

[16] developed, among others, several use cases related

to cloud interoperability. All the bodies, independently of

each other, defined a common umbrella of interoperabil-

ity use cases covering topics such as user authentication,

workload migration, data migration and workload man-

agement.

In [17], the authors performed a comprehensive survey

on cloud interoperability, with a focus on interoperability

among different IaaS cloud platforms. They investigated

the existing efforts on taxonomies and standardisation of

cloud interoperability, and identified some open issues to

advance the research topic as well. Nevertheless, the pre-

sented solutions and concepts are mainly focused on IaaS

interoperability.

In [18], the authors did their survey on service interop-

erability and portability on cloud systems with respect to

cloud computing service discovery. Still, other interoper-

ability approaches such as the Model Driven Engineering

(MDE) and open solutions were not extensively explored.

In [19], the authors described the main challenges

regarding cloud federation and interoperability, as well as

showcased and reviewed the potential standards to tackle

these issues. Similar to [17], their work is restricted to

IaaS interoperability, with no other service or deployment

models being covered.

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 4 of 24

Fig. 2 Related research areas

Cloud brokerage

According to the Gartner definition [20], “Cloud services

brokerage is an IT role and business model in which a

company or other entity adds value to one or more (public

or private) cloud services on behalf of one or more con-

sumers of that service via three primary roles including

aggregation, integration and customization brokerage”. As

defined by NIST [21], a cloud service broker “... is an

entity that manages the use, performance and delivery of

cloud services and negotiates relationships between cloud

providers and cloud consumers.” From these definitions,

it is clear that any business player which intends to act

as a broker between the cloud consumers and the cloud

providers must cope with the diversity of providers and

the heterogeneity of the multitude of services the latter

offer.

In [6], the authors proposed taxonomies for inter-cloud

architectures and application brokering. They presented

a detailed survey of both academic and industry devel-

opments for inter-cloud, cataloguing many projects and

fitting them onto the introduced taxonomies. They also

analysed the existing works and identified open challenges

in the area of inter-cloud application brokering. Their

efforts are nonetheless limited to broker-based strategies.

In [22], a systematic literature survey was conducted to

compile studies related to cloud brokerage. The authors

presented an understanding of the state of the art and a

novel taxonomy to characterise cloud brokers, identifying

the main limitations of current solutions and highlight-

ing areas for future research. However, just like [6], their

whole analysis only covers broker-based approaches.

Interconnected clouds

Interconnected clouds, also called Inter-cloud, can be

viewed as a natural evolution of cloud computing. Inter-

cloud has been introduced by Cisco [23] as an inter-

connected global “cloud of clouds” that mimics the term

Inter-net, “network of networks”. Basically, the Inter-cloud

refers to a mesh of clouds that are unified based on open

standard protocols to provide a cloud interoperability.

A more sophisticated definition of Inter-cloud is given

by the Global Inter-cloud Technology Forum (GICTF)

[24]: “Inter-cloud is a cloud model that, for the purpose of

guaranteeing service quality, such as the performance and

availability of each service, allows on-demand reassign-

ment of resources and transfer of workload through an

interworking of cloud systems of different cloud providers

based on coordination of each consumer’s requirements

for service quality with each provider’s SLA and use of

standard interfaces”.

In [8, 9, 25], the author investigated the consump-

tion of resources and services from multiple clouds, as

well as proposed a list of requirements for interoper-

ability solutions, highlighting the technological barriers

and some well-known solutions for multi-cloud environ-

ments. The author did not present the origin of these

requirements, nor did she identify the degree of fulfill-

ment of the requirements by theoretical approaches and

technical solutions.

In [26], the authors discussed all the relevant aspects

motivating cloud interoperability, categorising and iden-

tifying cloud interoperability scenarios and architectures.

They provided a taxonomy of the main challenges for the

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 5 of 24

Inter-cloud realisation. A comprehensive review of the

state of the art, including standardisation initiatives, ongo-

ing projects and studies in the area, was also conducted.

In [27], the authors analysed the existing literature to

identify how interoperability in cloud computing has been

addressed. They investigated requirements and usage sce-

narios for interoperable applications as well as cloud

interoperability solutions, presenting a limited list of open

issues and directions for future research.

In [28], the authors surveyed the literature to analyse

and categorise various solutions for solving the interop-

erability and portability issues of Interconnected clouds,

referring to both user-side (Multi-clouds or Aggregated

service by Broker) and provider-side (Federated clouds or

Hybrid clouds) scenarios, as specified in [8, 25]. They also

performed a comparative analysis of the literature works

falling into the same category, and discussed the chal-

lenges of Interconnected clouds along the same lines as

[17] and [26].

Despite delving into Interconnected clouds, starting

with motivation, scenarios, possible solutions for interop-

erability, and ending with open issues and future direc-

tions, all these works ([26–28]) gave limited attention to

cloud resource orchestration. In addition, none of them

covered aspects pertaining to the application develop-

ment, deployment, and lifecycle management.

Cloud resource orchestration

In a panorama where organisations get to use many types

of cloud computing systems simultaneously, the com-

plexity of the workloads devoted to the management of

the life-cycle of resources (data and applications) across

the systems dramatically increases. Cloud orchestration

is the process of managing these multiple workloads,

in an automated fashion, across several cloud solutions.

Typical activities underlying such a complex process are

the resource description, selection, configuration, deploy-

ment, monitoring and control. Let us not forget that the

orchestration problem is exacerbated by the diversity of

the cloud systems, for what concerns both technical and

administrative features.

In [2], the authors characterised the cloud resource

orchestration in a multi-layered stack, and highlighted

the main research challenges involved in programming

orchestration operations for different cloud resource

types across all layers of a cloud resource stack. The scope

of their analysis is nevertheless restricted to the area of

cloud resource orchestration.

In [3], the authors proposed a multidimensional taxon-

omy for classifying and comparing cloud resource orches-

tration techniques from both industry and academia,

identifying open research issues and offering directions

for future study. Similar to [2], their work only covers the

topic of cloud resource orchestration.

In [29], the authors performed a systematic literature

survey to build up a taxonomy of the main research inter-

ests regarding TOSCA. Different topics were addressed,

such as devising cloud orchestration methods using

TOSCA, extending the language of TOSCA, and present-

ing tools for manipulating TOSCA models. Despite being

envisioned as a topic which is expected to play an increas-

ingly important role, interoperability received very limited

attention.

Analysis framework
In this section we introduce the desired capabilities

for CROFs, focusing on deployment and management

aspects. From the consumers’ standpoint, CROFs imple-

ment a service-oriented model which ensures success-

ful hosting and delivery of applications by using cloud

resources in order to meet their QoS requirements. Our

reference architecture for CROFs is depicted in Fig. 3.

Processes and services involved in cloud resource orches-

tration are categorised depending on their functionalities

in relation to this reference model.

The Access Layer regulates interaction with the frame-

work. Users can access services from the lower layers by

means of CLIs, Web APIs, and Dashboards. The Applica-

tion Management Layer concerns the handling of appli-

cations throughout their entire lifecycle, from the Devel-

opment to the Execution passing through the Deploy-

ment. TheDevelopment refers to languages and models to

typically represent applications, workflows, QoS require-

ments, and policies. Application descriptions define appli-

cation components as well as their relationships. Work-

flow descriptions specify the behavioural aspects of appli-

cations by means of declarative or imperative approaches.

Policy descriptions provide applications with dynamic

control behaviours (e.g. defining load-based policies to

scale up and down applications) in order to meet QoS

requirements. The Deployment refers to the actual appli-

cation deployment on cloud resources, which might go

through a preliminary resource discovery process. The

Execution entails effective automation of complex man-

agement tasks, such as scaling and failure handling, which

typically require a monitoring engine collecting system

and application metrics. Based on the captured metrics,

a recovery engine and a policy enforcement engine can

determine the decisions to make in order to recover from

failures and enforce policies, respectively.

The Resource Management Layer includes services (e.g.

discovery services, provisioning services, monitoring ser-

vices) handling resources throughout their whole lifecycle.

These services coordinate the required actions from the

upper layer by leveraging operations at the Resource Pro-

visioning Layer. The Resource Provisioning Layer encom-

passes services offering the most basic operations regard-

ing cloud resources. A range of provisioning services (e.g.

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 6 of 24

Fig. 3 Reference architecture for CROFs

create, start, scale, stop, and delete) are usually furnished

for every supported resource.

Significant research has been done in academic and

industry landscapes toward characterisation of cloud

orchestration tools. In [4, 30], Baur et al. investigated

the required features for such tools, and gave a defini-

tion of them. In [31], Ranjan et al. introduced technical

dimensions for CROF analysis, thus providing insights

into existing frameworks. In [3], Weerasiri et al. identified

the main dimensions and common building blocks which

characterise cloud resource orchestration solutions.

In [32–34], the authors presented their vision for cloud

computing, including views on future research areas, one

of them being resource provisioning and orchestration.

A thorough analysis of these research areas and related

challenges from different perspectives was carried out.

In [35], GigaSpaces Research investigated prevalent

approaches for managing applications in cloud environ-

ments, namely, orchestration, PaaS (Platform as a Service)

and CMP (Cloud Management Platform). A number of

categories serving as a common ground for comparison

between the different approaches were proposed.

Based on the study of Baur et al.[4], we enriched

the list of desirable capabilities pertaining to CROFs by

reviewing the literature and integrating the aforemen-

tioned works. Such capabilities, summarised in Fig. 4,

can be classified into two main categories as either

Cloud Features or Application Features. Details about

each set of features are provided in the following

subsections.

Cloud features

Cloud features address cloud infrastructure aspects with

special focus on supported deployment across multiple

cloud providers. Whilst some works [4, 35] investigated

features such as multi/cross-cloud support and integra-

tion of external services and systems, others [31] focused

on capabilities such as interoperability and access modes

to CROFs. We propose a comprehensive approach which

takes into account all the said aspects that we discuss next.

Multi-cloud support

Supporting multiple cloud providers is one of the most

crucial features for CROFs, as it allows to select the

best matching offer for an application from a diverse

cloud landscape. Cloud providers often differ from each

other regarding their APIs. For that reason CROFs should

offer a cloud abstraction layer (see “Interoperability

approach” section), which hides differences and avoids

the need for provider-specific customisation causing the

vendor lock-in issue.

Cross-cloud support

Cross-cloud support enhances the multi-cloud feature by

allowing to distribute component instances of a single

application over multiple cloud providers. The advantages

of cross-cloud deployment are threefold: a) it allows a

sophisticated selection of the best-fitting cloud providers

on a per component instance basis, optimising costs or

improving quality of services; b) it leverages the appli-

cation availability as it introduces resilience against the

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 7 of 24

Fig. 4 Taxonomy of the CROF characterisation framework

failure of individual cloud providers; and c) it helps coping

with privacy issues.

Interoperability approach

In the context of cloud computing, interoperability can be

defined as the ability to develop applications that com-

bine resources that can interoperate, or work together

from multiple cloud providers, hence taking advantage

of specific features provided by each provider [27]. A

few research papers [9, 27, 28] comprehensively reviewed

the literature in order to dissect the state of the art

in cloud interoperability, resulting in a diverse range of

approaches falling into the following categories: open

standards, semantics, model-driven engineering (MDE),

and open libraries & services.

Formulating standards for cloud computing is the

most obvious solution for interoperability. Even though

a plethora of standards have been proposed so far (e.g.,

OCCI6, CIMI7, OVF8, CDMI9, TOSCA [36]), lack of

widespread accepted standards necessitates investigating

other solutions for interoperability. When cloud providers

use different APIs and data models in order to exhibit

the same features, semantic interoperability becomes

involved. Semantic technologies (e.g, OWL10, SPARQL11,

SWRL12) can prove useful to provide semantic interop-

erability among different cloud providers. Broker-based

approaches can also alleviate semantic interoperability by

means of ontology-based interfaces concealing the differ-

ences among cloud vendors. Cloud interoperability can

also be addressed by exploiting MDE techniques [10].

6https://occi-wg.org/about/specification/
7https://www.dmtf.org/standards/cmwg
8https://www.dmtf.org/standards/ovf
9https://www.snia.org/cdmi
10https://www.w3.org/TR/owl-syntax/
11https://www.w3.org/TR/sparql11-query/
12https://www.w3.org/Submission/SWRL/

https://occi-wg.org/about/specification/
https://www.dmtf.org/standards/cmwg
https://www.dmtf.org/standards/ovf
https://www.snia.org/cdmi
https://www.w3.org/TR/owl-syntax/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/Submission/SWRL/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 8 of 24

Another viable solution for cloud interoperability includes

open libraries (e.g., Apache jclouds13, Apache Libcloud14)

and services, which rely on abstraction layers in order

to decouple application development from proprietary

technologies of cloud providers.

Integration

Support for advanced IaaS/PaaS services (e.g., DBaaS,

LBaaS, FWaaS) is desirable. It reduces complexity and

management efforts for the end user. On a negative note,

it comes at the expense of flexibility.

BYON (Bring Your Own Node) captures the ability to

use already running servers for application deployment. In

particular, it enables the use of servers not managed by a

cloud platform or virtual machines on unsupported cloud

providers.

Access

This feature captures what interfaces CROFs use to inter-

act with cloud resources. Three types of interfaces are

usually supported: command-line, web-based dashboard,

and web-based API.

Command-line interfaces wrap cloud-specific API

actions as commands or scripts executable through shell

environments. Despite command-line interfaces being

easier to implement, their usage requires a deep under-

standing about cloud resources and related orchestration

operations.

Web-based dashboards present cloud resources as user-

friendly artifacts and resource catalogues. Visual arti-

facts and catalogues aim at simplifying resource selec-

tion, assembly, and deployment. These features make

Web-based dashboards simpler and more flexible than

command-line interfaces.

Web-based APIs allow other tools and systems (e.g.

monitoring tools) to integrate cloud resource manage-

ment operations into their functionalities. They provide

the highest abstraction out of the three interface types.

Application features

Application features address development, deployment,

and execution aspects of applications. To this end, unlike

all previous works, we collect features according to the

application phase they pertain to. For instance, with ref-

erence to the development phase, we have identified

Portability and Containerisation as relevant features. Fur-

thermore, we also propose a classification of application

domains of interest for CROFs.

Application domain

Application domain refers to the types of applications that

CROFs have been targeted and customised for. Academic

13https://jclouds.apache.org/
14http://libcloud.apache.org/

research has been done toward the characterisation of

application domains over the past few years [31][37][38].

Grounding on the study of Buyya et al. [37], we classi-

fied application domains into two categories: Scientific

applications, and Business applications (see Fig. 5).

Cloud computing systems meet the needs of dif-

ferent types of applications in the scientific domain:

high-performance computing (HPC) applications, high-

throughput computing (HTC) applications, and Large-

scale data analytics/Internet of Things (IoT), which

is a matter of common interest for both scien-

tific and business sectors. In regard to the business

domain, cloud computing is the preferred technol-

ogy for a wide range of applications, from multi-

tier web applications (e.g., web, mobile, online gam-

ing applications) to media and content delivery network

(CDN) applications (e.g, video encoding & transcoding,

video rendering, video streaming, web/mobile content

acceleration).

Portability

Portability has been defined as the capability of a pro-

gram to be executed on various types of data processing

systems without converting the program to a different

language and with little or no modification [39]. In the

context of cloud computing, portability can be classified

into three categories: data portability, function or appli-

cation portability, and service or platform portability [40].

In particular, application portability refers to the ability

to define application functionalities in a vendor-agnostic

way.

Supporting open standards such as CAMP [41] and

TOSCA [36] for modelling the application topology and

the component lifecycles facilitates the usage of CROFs

and further increases the reusability of the topology

definition, as it restricts the vendor lock-in issue to

cloud provider level. Reusability can also be improved

via a modularised approach regarding the application

description. Methods to achieve modularity include

templating, parameterisation, and inheritance. Further-

more, since the initial effort for describing applications

and application components is high, model sharing by

means of existing libraries or marketplaces would be

beneficial.

Containerisation

Container-based virtualisation [42] is a key approach for

sharing the host operating system kernel across multi-

ple guest instances (i.e., containers), while keeping them

isolated. Environment-level containers provide a resource

isolation mechanism with little overhead compared to

OS-level hypervisors [43]. Moreover, the increased isola-

tion offered by containers allows resource consumption to

be configured, controlled, and limited at the instance level.

https://jclouds.apache.org/
http://libcloud.apache.org/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 9 of 24

Fig. 5 Application domain classification

Docker is the leading Linux-based platform for develop-

ing, shipping, and running applications through container

based virtualisation.

Since managing a large amount of containers inside a

Docker cluster can be difficult, container-centric orches-

trators such as Docker Swarm15, Google Kubernetes16,

and Apache Mesos17 have appeared. They perform

orchestration at container level by automating the pro-

visioning and management of complex containerised

deployments across multiple hosts and locations.

Resource selection

Resource selection refers to the level of automation sup-

ported by CROFswith respect to the selection of hardware

and software resources. It usually involves identifying and

analysing alternative cloud resources based on selection

criteria. Resource selection approaches can be classified

into four categories.

In a manual binding users provide the concrete unique

identifiers of the cloud entities. In an automatic binding

they specify abstract requirements (e.g. number of cores),

which CROFs are responsible for binding to a concrete

offer at runtime. Automatic binding can be enhanced by

offering an optimised binding, which leverages optimisa-

tion criteria based on attributes of the cloud provider (e.g.,

price, location) to select the best fitting offer. A dynamic

binding offers a solving system that enables changes to the

binding based on runtime information (e.g., metric data

from the monitoring system).

Lifecycle control

Lifecycle control defines the actions that need to be exe-

cuted in order to fully manage cloud applications. Existing

CROFs provide varying levels of automation, typically

categorised as script-based, and DevOps approaches.

15https://docs.docker.com/engine/swarm/
16https://kubernetes.io/
17http://mesos.apache.org/

A script-based approach consists of a set of shell scripts,

which are executed in a specific order. It has limited ability

to express dependencies, react to changes, and verify con-

figurations. Script-based approaches can be extended to

support DevOps tools (e.g., Chef18, Puppet19, Ansible20)

that offer a more sophisticated approach to deployment

management and ready-to-use deployment descriptions.

Wiring &workflow

Most cloud applications are distributed with components

residing on different virtual machines. When application

deployment takes place, an application instance consisting

of one or more component instances gets created. Since

dependency relationshipsmay exist between components,

the deployment functionality also has the task of wiring

component instances together.

A straight-forward approach to resolve those dependen-

cies is attribute and event passing, in which case lifecycle

scripts lock/wait for attributes to become available or

register listeners on topology change events. An improve-

ment is a manual workflow defined by users in order to

take care of the deployment order. Nevertheless, the eas-

iest way for users to deploy applications is an automatic

workflow deduction from the lifecycle actions defined on

components and their relationships. Additionally, CROFs

may offer extensions for external services like IaaS/PaaS

services (see “Integration” section) to ensure that the

deployment engine is aware of this dependency.

Monitoring

Tracking the behaviour of applications is the key to assess-

ing the quality of the deployment and an important build-

ing block for adaptation. As a first step this comprises

the collection of metrics. CROFs should offer a way to

measure system metrics (e.g., CPU usage) and application

metrics (e.g., number of requests). If predefined metrics

18https://www.chef.io/
19https://puppet.com/
20https://www.ansible.com/

https://docs.docker.com/engine/swarm/
https://kubernetes.io/
http://mesos.apache.org/
https://www.chef.io/
https://puppet.com/
https://www.ansible.com/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 10 of 24

are not sufficient, a well defined way to add custommetrics

should be provided. Aggregation mechanisms enable to

compute higher-level metrics and combine multiple met-

rics as well. Access to historical data is also desirable in

order to support a higher-level evaluation of monitoring

data.

Runtime adaptation

CROFs should automatically adapt applications in order

to deal with dynamic deviations (e.g., increased load).

Operations to face such changes are mainly scaling, and

migration. However, the adaptation support of many

CROFs is limited to horizontal scaling with threshold-

based triggers. Rule engines leveraging complex metrics

and QoS goals would be an improvement.

Since cross-cloud deployments may experience failures,

CROFs should also support recovery from undesired, erro-

neous states. Another feature related to adaptation is con-

tinuous integration/continuous delivery (CI/CD), which

allows to modify the topology model of deployed applica-

tions reducing changes to as few as possible.

Review of cROFs
This section presents a selection of CROFs from differ-

ent landscapes. Notwithstanding that the current state

of the art embraces a large number of frameworks, this

work contemplates a subset of them which we deem to

be representative of the characteristics of the majority

of existing solutions. We classify the frameworks in two

categories: production/commercial CROFs, and experi-

mental/academic ones.

Production/commercial CROFs are used in a produc-

tion environment by private and public cloud providers.

Whereas some of them are closed-source, others are

open-source and supported by a thriving community

of developers and users. Experimental/academic CROFs

usually originate from the research scenery and advance

the state of the art, even though their implementation is

mostly prototypal.

We discuss next each class of CROFs, and analyse

their main capabilities from both cloud and application

perspectives, as extensively covered in “Analysis frame

work” section. Table 1 provides a bird’s-eye view of the

frameworks taken under consideration. Specifically, each

row represents a CROF (Name) and specifies the origi-

nal authors (Organisation), basic dates for the initial and

latest releases (Active), a brief introduction (Description),

and the sources consulted (References).

Production/commercial cROFs

Nowadays, there is a great variety of produc-

tion/commercial CROFs around [44], such as

infrastructure-centric services (e.g., Heat, CloudForma-

tion) provided by cloud providers which are also IaaS

providers, platform-centric (e.g., Cloud Foundry, Open-

Shift) and platform-agnostic (e.g., Cloudify, Terraform)

tools provisioning resources from IaaS providers. In this

section we first debate some of the most relevant solu-

tions introduced in Table 1, and subsequently summarise

their cloud and application features in Tables 2 and 3

respectively.

Heat

OpenStack Heat [45] is a service for managing the

entire life-cycle of infrastructure and applications within

OpenStack clouds. It implements an orchestration engine

to launch multiple composite cloud applications based

on either a CloudFormation compatible template for-

mat (CFN) or the native OpenStack Heat Orchestration

Template format (HOT). HOT templates are defined in

YAML.

A Heat template describes the infrastructure of a cloud

application in a declarative fashion, enabling creation of

most OpenStack resource types as well as more advanced

functions (such as instance high availability, instance auto-

scaling, and nested stacks) through OpenStack-native

REST API calls. The resources, once created, are referred

to as stacks. Heat templates are consumed by the Open-

StackClient, which provides a command-line interface

(CLI) to OpenStack APIs for launching stacks, view-

ing details of running stacks, and updating and deleting

stacks.

Heat only allows a single-cloud deployment on an

OpenStack environment. With reference to interoperabil-

ity, Heat provides neither semantics nor MDE solutions,

but it provides support for TOSCA via the independent

Heat-Translator project 21 which translates TOSCA tem-

plates to HOT.

Regarding portability, Heat partially supports model

standards (TOSCA) and reusability via input parameters,

and template composition. It also supports containerisa-

tion by means of OpenStack Zun service 22.

Cloud resources can only be selected through manual

binding, whereas both manual and automatic workflows

can leverage script-based or DevOps tools (such as Chef

and Puppet) in order to handle the whole application

life-cycle. Heat provides horizontal scaling with thresh-

old triggers based on infrastructure metrics. It partially

supports continuous delivery by updating existing stacks,

resulting in some resources being updated in-place and

others being replaced with brand new resources. Fail-

ure recovery capabilities are also supported by means of

manual workflows and stacks update.

21https://wiki.openstack.org/wiki/Heat-Translator
22https://wiki.openstack.org/wiki/Zun

https://wiki.openstack.org/wiki/Heat-Translator
https://wiki.openstack.org/wiki/Zun

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 11 of 24

T
a
b
le

1
Li
st
o
fC

RO
Fs

u
n
d
er
co
n
si
d
er
at
io
n
fo
rr
ev
ie
w
p
u
rp
o
se
s

N
a
m
e

O
rg
a
n
is
a
ti
o
n

A
ct
iv
e

D
e
sc
ri
p
ti
o
n

R
e
fe
re
n
ce
s

H
ea
t

O
p
en

St
ac
k

20
10
-p
re
se
n
t

H
ea
t
o
rc
h
es
tr
at
es

co
m
p
o
si
te

cl
o
u
d
ap

p
lic
at
io
n
s
vi
a

te
m
p
la
te
s,
th
ro
u
g
h
b
o
th

an
O
p
en

St
ac
k-
n
at
iv
e
A
PI

an
d
a
C
lo
u
d
Fo
rm

at
io
n
-c
o
m
p
at
ib
le
Q
u
er
y
A
PI
.

[4
5]

C
lo
u
d
ify

G
ig
aS
p
ac
es

20
12
-p
re
se
n
t

C
lo
u
d
ify

is
a
TO

SC
A
-b
as
ed

cl
o
u
d
o
rc
h
es
tr
at
io
n

fr
am

ew
o
rk
w
h
ic
h
en

ab
le
s
to

m
o
d
el
ap

p
lic
at
io
n
s
an
d

se
rv
ic
es

an
d
au
to
m
at
e
th
ei
re
n
tir
e
lif
ec
yc
le
.

[4
6]

Br
o
o
kl
yn

A
p
ac
h
e

20
12
-p
re
se
n
t

Br
o
o
kl
yn

is
a
cl
o
u
d
o
rc
h
es
tr
at
io
n
fr
am

ew
o
rk

im
p
le
m
en

tin
g
O
A
SI
S
C
A
M
P
th
at
al
lo
w
s
to

d
ep

lo
y

an
d
m
an
ag
e
ap

p
lic
at
io
n
s
vi
a
d
ec
la
ra
tiv
e
b
lu
ep

rin
ts
.

[4
7]

St
ra
to
s

A
p
ac
h
e

20
13
-2
01
7

St
ra
to
s
is
a
p
o
ly
g
lo
t
Pa
aS

fr
am

ew
o
rk
th
at
h
el
p
s

m
o
d
el
an
d
ru
n
co
m
p
o
si
te

an
d
sc
al
ab

le
ap

p
lic
at
io
n
s

o
n
al
lm

aj
o
rc
lo
u
d
in
fr
as
tr
u
ct
u
re
s.

[4
8]

A
lie
n
4C

lo
u
d

Fa
st
C
o
n
n
ec
t

20
14
-p
re
se
n
t

A
lie
n
4C

lo
u
d
is
a
w
eb

-b
as
ed

p
la
tf
o
rm

p
ro
vi
d
in
g

m
ea
n
s
to

m
o
d
el
,d
ep

lo
y
an
d
m
an
ag
e
TO

SC
A
-b
as
ed

ap
p
lic
at
io
n
s
vi
a
a
TO

SC
A
ru
n
tim

e
en

g
in
e.

[4
9]

Te
rr
af
o
rm

H
as
h
iC
o
rp

20
14
-p
re
se
n
t

Te
rr
af
o
rm

is
an

in
fr
as
tr
u
ct
u
re
-a
s-
co
d
e
to
o
lt
h
at

en
ab

le
s
to

p
ro
vi
si
o
n
,a
n
d
m
an
ag
e
in
fr
as
tr
u
ct
u
re
s

u
si
n
g
a
h
ig
h
-le
ve
lc
o
n
fig

u
ra
tio

n
la
n
g
u
ag
e.

[5
0]

C
o
m
m
e
rc
ia
l

C
lo
u
d
Fo
rm

at
io
n

A
W
S

20
11
-p
re
se
n
t

C
lo
u
d
Fo
rm

at
io
n
is
an

in
fr
as
tr
u
ct
u
re
-a
s-
co
d
e
to
o
lt
h
at

h
el
p
s
m
o
d
el
an
d
se
t
u
p
A
W
S
in
fr
as
tr
u
ct
u
re
re
so
u
rc
es

b
y
m
ea
n
s
o
fa

JS
O
N
en

co
d
ed

te
m
p
la
te
.

[5
1]

C
lo
u
d
ia
to
r

U
n
iv
er
si
ty
o
fU

lm
20
15
-2
01
7

C
lo
u
d
ia
to
ri
s
a
cr
o
ss
-c
lo
u
d
o
rc
h
es
tr
at
io
n
to
o
lt
h
at

al
lo
w
s
to

d
es
cr
ib
e
an

ap
p
lic
at
io
n
o
n
ce

an
d
d
ep

lo
y
it

o
n
d
iff
er
en

t
p
u
b
lic

an
d
p
riv
at
e
cl
o
u
d
p
ro
vi
d
er
s.

[5
2,
53
]

Ro
b
o
co
n
f

U
n
iv
er
si
ty
o
fG

re
n
o
b
le
A
lp
es

20
14
-2
01
7

Ro
b
o
co
n
fi
s
b
o
th

a
p
la
tf
o
rm

an
d
a
fr
am

ew
o
rk
to
o
lt
o

d
ep

lo
y
an
d
m
an
ag
e
el
as
tic

cl
o
u
d
ap

p
lic
at
io
n
s
u
si
n
g

au
to
m
at
ic
re
ac
tio

n
s
an
d
re
co
n
fig

u
ra
tio

n
s.

[5
4]

IN
D
IG
O

IN
D
IG
O
co
n
so
rt
iu
m

20
15
-2
01
7

IN
D
IG
O
is
a
d
at
a
an
d
co
m
p
u
tin

g
p
la
tf
o
rm

ta
rg
et
ed

at
sc
ie
n
tif
ic
co
m
m
u
n
iti
es
,w

h
ic
h
o
p
tim

is
es

ap
p
lic
at
io
n

ex
ec
u
tio

n
o
n
cl
o
u
d
an
d
g
rid

in
fr
as
tr
u
ct
u
re
s.

[5
5,
56
]

M
iC
A
D
O

C
O
LA

co
n
so
rt
iu
m

20
17
-2
01
9

M
iC
A
D
O
is
a
h
ig
h
ly
cu
st
o
m
is
ab

le
m
u
lti
-c
lo
u
d

o
rc
h
es
tr
at
io
n
an
d
au
to
-s
ca
lin
g
fr
am

ew
o
rk
fo
rD

o
ck
er

co
n
ta
in
er
s,
o
rc
h
es
tr
at
ed

b
y
Ku

b
er
n
et
es
.

[5
7]

M
O
D
A
C
lo
u
d
s

M
O
D
A
C
lo
u
d
s
co
n
so
rt
iu
m

20
12
-2
01
5

M
O
D
A
C
lo
u
d
s
is
a
to
o
lb
o
x
an
d
a
ru
n
tim

e
p
la
tf
o
rm

fo
r

th
e
d
es
ig
n
an
d
au
to
m
at
ic
d
ep

lo
ym

en
t
o
f

ap
p
lic
at
io
n
s
o
n
m
u
lti
p
le
cl
o
u
d
s
w
ith

g
u
ar
an
te
ed

Q
o
S.

[5
8,
59
]

A
ca
d
e
m
ic

Se
aC

lo
u
d
s

Se
aC

lo
u
d
s
co
n
so
rt
iu
m

20
13
-2
01
6

Se
aC

lo
u
d
s
is
a
fr
am

ew
o
rk
th
at
en

ab
le
s
se
am

le
ss

ad
ap

tiv
e
m
u
lti
-c
lo
u
d
m
an
ag
em

en
t
o
fs
er
vi
ce
-b
as
ed

ap
p
lic
at
io
n
s
o
ve
rm

u
lti
p
le
h
et
er
o
g
en

eo
u
s
cl
o
u
d
s.

[6
0,
61
]

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 12 of 24

Table 2 Cloud-based comparison of production/commercial CROFs

CROFs

Cloud Features Heat Cloudify Brooklyn Stratos Alien4Cloud Terraform CloudFormation

Multi-Cloud x � � � � � x

Cross-Cloud x � � � � � x

Interoperability

- Open Standards 0 0 x x 0 x x

- Semantics x x x x x x x

- MDE x x x x x x x

- Open Libraries & Services x x � � x x x

Integration

- External IaaS/PaaS services x x x x x � x

- BYON x � � x � x x

Access

- Command-Line � � � � � � �

- Web-based Dashboard � � � � � � �

- Web-based API � � � � � � �

x = not fulfilled, 0 = partially fulfilled,� = fully fulfilled

Cloudify

Cloudify [46] is an open-source orchestration framework

based on TOSCA. It provides services in order to model

applications and automate their entire life-cycle through

a set of built-in workflows. Application templates are

referred to as blueprints, which are YAML documents

written in Cloudify’s DSL (Domain Specific Language).

Blueprints are normally consumed by the Cloudify CLI,

which includes all of the commands necessary to run any

actions on Cloudify Manager.

Typical blueprints contain declarations for various

resource types, including cloud resources. Cloudify allows

multi-cloud and cross-cloud deployments by means of

built-in plugins. It also supports BYON, and leverages

TOSCA for interoperability and portability. However,

despite being aligned with the modelling standard, Cloud-

ify’s DSL does not directly reference the standard types.

Cloudify supports containerisation using Docker. Con-

tainer orchestration is also available through Kubernetes.

Cloud resources can only be selected through manual

binding, whereas both manual and automatic workflows

can leverage script-based or DevOps tools (such as Ansi-

ble, Chef, and Puppet) in order to handle the applica-

tion life-cycle. Cloudify provides infrastructure, applica-

tion, and custom metrics. It also enables the definition

of custom aggregations and policies using Clojure23 and

Riemann24.

23https://clojure.org/
24http://riemann.io/

Cloudify offers built-in workflows for application

healing (by applying the uninstall and install work-

flows’ logic, respectively) and horizontal scaling. Com-

plex scenarios (e.g., vertical scaling, cloud bursting)

are not supported out of the box. Live migration

is partially-fulfilled in the context of containerised

applications, though. Multiple pods with container-

ised applications can be moved between nodes in

the same Kubernetes cluster, without service disrup-

tion. Continuous delivery is supported through deploy-

ment updates, which allow to modify a running topol-

ogy by adding/removing/modifying nodes. Modifying

existing nodes will cause their automatic reinstallation,

though.

Brooklyn

Apache Brooklyn [47] is an open-source framework for

modelling, deploying, and managing distributed applica-

tions defined using declarative YAML blueprints writ-

ten in Brooklyn’s DSL. Brooklyn’s YAML format follows

the CAMP specification [41], but uses some custom

extensions. Support for TOSCA is planned for the near

future. Blueprints are usually consumed by the Brooklyn

client CLI in order to access a running Brooklyn Server.

A web console and powerful REST-APIs are available

as well.

Brooklyn allows multi-cloud and cross-cloud deploy-

ments on many public and private clouds. It also supports

private infrastructures (BYON), and leverages Apache

jclouds as cloud abstraction layer for interoperability.

Portability is achieved via model reusability mechanisms

(e.g, type inheritance) and model sharing (e.g, types

https://clojure.org/
http://riemann.io/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 13 of 24

Table 3 Application-based comparison of production/commercial CROFs

CROFs

Application Features Heat Cloudify Brooklyn Stratos Alien4Cloud Terraform CloudFormation

Portability

- Model Standards 0 0 0 x 0 x x

- Model Reusability 0 � 0 0 � � 0

- Model Sharing x � � 0 � � x

Development Containerisation � � x � � � �

Resource Selection

- Manual Binding � � � � � � �

- Automatic Binding x x 0 x x x x

- Optimised Binding x x x x x x x

- Dynamic Binding x x x x x x x

Lifecycle Control

- Script-based � � � x � � �

- DevOps � � � � � � �

Wiring &Workflow

- Attribute & Event Passing � � 0 � � � �

- Manual Workflow � � x � � x x

- Automatic Workflow � � x x � � �

Deployment - External Services x x x x x � x

Monitoring

- System Metrics � � x � � � �

- Application Metrics x � x � � x �

- Custom Metrics x � � x � x �

- Aggregation � � 0 � � � �

- Historical Data x � x x � x �

Runtime Adaptation

- Threshold-based � � � � � � �

- Rule Engine x � x � � x x

- Horizontal Scaling � � � � � � �

- Migration x 0 x 0 0 x 0

- Failure Recovery � � 0 � � x �

Execution - CI/CD 0 � 0 x � � �

x = not fulfilled, 0 = partially fulfilled,� = fully fulfilled

shared either locally or in a Git repository). Brooklyn

does not support containers out of the box. However,

containerisation can be integrated by means of separate

projects (e.g, Cloudsoft Clocker25).

Brooklyn supports manual as well as basic automatic

binding for resource selection, whereas it does not sup-

port workflow scenarios. Life-cycle actions (i.e. effectors)

for entities can be configured through either shell scripts

25http://www.clocker.io/

or Chef recipes. Brooklyn pulls metrics by either execut-

ing remote actions or accessing an external monitoring

tool. Nevertheless, it is the user’s responsibility to imple-

ment those actions, or to provide an interface to an

external monitoring tool.

Metrics/QoS can be fed into policies, which auto-

matically take actions such as restarting failed

nodes, or scaling out. By default, a threshold-

based policy is available. Continuous delivery is

exclusively possible on component level, namely

http://www.clocker.io/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 14 of 24

by redeploying single components with updated

software.

Stratos

Apache Stratos [48] is an open-source PaaS framework

which allows developers to build distributed applica-

tions and services. Applications are typically composed

of sets of cartridges representing descriptions of abstract

VMs hosting both business and infrastructure services,

combined with deployment and scaling policies. Stratos

defines configurations and applications in a specific JSON

format, therefore they can be shared. Reusability is lim-

ited, since cartridges contain references to IDs of IaaS

snapshots and hardware configuration. Applications can

be managed by means of Stratos CLI. A web console and

powerful REST-APIs are available as well.

Stratos support multiple providers and utilises Apache

jclouds as cloud abstraction layer for interoperability.

Despite using jclouds, BYON is not supported. No exter-

nal services are supported either. Stratos leverages Kuber-

netes as a cluster orchestration framework in order to

provide containerisation. Cloud resources are manually

selected when configuring cartridges. In addition, while

the life cycle description for managing VMs is done by

Stratos itself, the software setup is delegated to Puppet.

Only manual workflows are supported.

Stratos uses a cartridge agent residing within each VM

in order to access system and application metrics. It is

not possible to define custom metrics. Using in-flight

requests, load average, and free memory metrics com-

bined with a complex event processor and the Drools

rule engine26, Stratos enacts a multi-factored horizontal

auto-scaling. It also includes cloud bursting, allowing to

seamlessly migrate applications between clouds. Recovery

actions are supported in case some tasks within VMs of

an application topology fail, by automatically destroying

and recreating the affected cartridge instance. Continuous

delivery is not supported, since users need to undeploy

applications before changing their definitions.

Alien4Cloud

Alien4Cloud (Application LIfecycle ENabler for cloud)

[49] is an open-source platform that makes application

management on the cloud easy for enterprises. It leverages

other existing open-source projects that help orchestrat-

ing cloud applications and focus on run-time aspects

(e.g., Cloudify). In Alien4Cloud, applications templates

(blueprints) are modelled in TOSCA in order to allow

interoperability and portability. Blueprints can also be

shared across platform users via amaintained TOSCA cat-

alog. However, Alien4Cloud supports a slightly modified

version of TOSCA Simple Profile.

26https://www.drools.org/

Application deployment is done through an orchestra-

tor on a location configured for and managed by an

orchestrator. Alien4Cloud supports a number of orches-

trators (Cloudify, Puccini27, and Marathon28) via plugins.

Locations describe a logical deployment target ranging

from private/public clouds to a set of physical machines

(BYON), or even Docker containers (Kubernetes and

Mesos). Multi-cloud and cross-cloud deployments are

supported.

Cloud resources can only be selected through man-

ual binding (node substitution), whereas both manual and

automatic workflows can leverage script-based or DevOps

tools (such as Ansible, Chef, and Puppet) in order to

handle the application life-cycle. Regarding monitoring

and run-time adaptation, since Cloudify can be used as

Alien4Cloud’s backend orchestration solution, the same

considerations apply. In particular, Alien4Cloud supports

horizontal scaling as well as continuous delivery.

Terraform

Terraform [50] is an open-source infrastructure as code

tool for building, changing, and versioning infrastructures

in a platform-agnostic way. It uses its own high-level con-

figuration language known as Hashicorp Configuration

Language (HCL), or optionally JSON, in order to detail the

infrastructure setup. Despite being non-compliant with

any model standards, HCL supports reusability via mod-

ules and module composition. Reusable modules can also

be shared by means of the Terraform Registry as well as

other sources (e.g., GitHub, Bitbucket). Configurations are

usually consumed by the Terraform CLI, but Terraform

Enterprise also provides both a web-based dashboard and

REST APIs.

Terraform can manage multiple cloud providers and

even cross-cloud dependencies by means of special plu-

gins called providers. Providers are available for Docker

containers and container orchestration as well as external

cloud services (e.g. Amazon RDS29). However, no sup-

port is provided for BYON. Cloud resources are manually

selected during configuration, while life-cycle actions can

be configured through provisioners executing scripts or

running configuration management (Chef, Puppet, Salt).

Only automatic workflows are supported.

Terraform leverages providers in order to provide auto-

scaling capabilities with threshold triggers on systemmet-

rics gathered by monitoring services (e.g., Azure Mon-

itor30, Amazon CloudWatch31). Continuous delivery is

supported by applying configuration updates, which allow

to add/remove/modify resources. When resource argu-

ments cannot be updated in-place, the existing resource

27https://github.com/tliron/puccini
28http://mesos.apache.org/
29https://docs.aws.amazon.com/rds/index.html
30https://docs.microsoft.com/en-us/azure/azure-monitor/
31https://docs.aws.amazon.com/cloudwatch/index.html

https://www.drools.org/
https://github.com/tliron/puccini
http://mesos.apache.org/
https://docs.aws.amazon.com/rds/index.html
https://docs.microsoft.com/en-us/azure/azure-monitor/
https://docs.aws.amazon.com/cloudwatch/index.html

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 15 of 24

will be replaced by a new one instead. No recovery actions

are supported out of the box, since any errors need to be

addressed manually.

CloudFormation

AWS CloudFormation [51] is a template-based

infrastructure-as-code tool for managing AWS infrastruc-

ture deployments. All resources and dependencies are

declared in a JSON or YAML template, which CloudFor-

mation uses as a blueprint for building AWS resources. A

collection of managed resources is called stack. Although

CloudFormation templates do not comply with any model

standards, reusability is partially supported via input

parameters, and nested stacks. Templates are usually con-

sumed by the CloudFormation console, or REST APIs, or

CLI.

CloudFormation can only model and manage AWS

resources. No support is provided for multiple cloud

providers or BYON. Containerisation is natively sup-

ported via Elastic Container Service (ECS)32 resources.

Container orchestration is also supported by means of

Elastic Kubernetes Service (EKS)33 resources as well.

Cloud resources are selected through manual binding,

whereas lifecycle actions can be configured through user-

data scripts or DevOps tools (Chef, Puppet). Only auto-

matic workflows are supported.

CloudFormation provides automatic scaling capabilities

by means of AWS Auto Scaling34, which uses dynamic

scaling and predictive scaling to automatically scale

resources based on Amazon CloudWatch metrics. Cus-

tomised metrics for Application Auto Scaling can also be

defined. Live migration is partially-fulfilled in the context

of containerised applications. For instance, it’s possible

to gracefully migrate existing applications from a worker

node group to another. Continuous delivery is supported

by stack updates. Depending on the resource and prop-

erties being updated, an update might interrupt or even

replace an existing resource. Recovery actions are sup-

ported by automatically rolling back the existing stack on

failure.

Experimental/academic cROFs

In this section, we initially review an ensemble of

significant experimental/academic CROFs outlined in

Table 1, and then summarise them according to their

cloud and application features in Tables 4 and 5

respectively. Additionally, we briefly run through other

research initiatives focusing only on specific aspects of

CROFs.

32https://docs.aws.amazon.com/ecs/index.html
33https://docs.aws.amazon.com/eks/
34https://aws.amazon.com/autoscaling/

Cloudiator

Cloudiator [52, 53, 62] is an open-source cross-cloud

orchestration framework, which relies on Apache jclouds

in order to support many public and private cloud plat-

forms. The main orchestration component, namely Colos-

seum, can be accessed via a Java client, or a web-based user

interface, or a REST-API.

The application description consists of individual com-

ponents, which are assembled to form a full application.

Each component provides interface operations (e.g., bash

scripts) for managing the component life-cycle. Depen-

dencies between application components are described

through communication entities linking provided ports

and required ports. Despite being non-compliant to any

modelling standards, application components are reusable

across different applications.

The resource broker is responsible for automatically

selecting the correct cloud offer (previously discovered by

the discovery engine), depending on the desired require-

ments/constraints on virtual machine configuration. The

deployment engine acquires the virtual machine and for-

wards the component installation request to the remote

life-cycle agent, namely Lance. Lance runs component

instances within Docker containers by default. In addition,

only automatic workflows are supported.

Automatic scaling capabilities are provided by means

of AXE, a monitoring and adaptation engine embedded

in Cloudiator, which implements scalability rules con-

sisting of threshold-based conditions linked to raw or

composed metrics. Migration features are partially ful-

filled by supporting access to OpenStack’s live migra-

tion functionality. Recovery actions are supported by the

recovery engine, which detects abnormal states of sys-

tem entities marking them as failed, and applies solu-

tions based on failure categories. The same mechanism

is used in order to represent changes in the models

(continuous delivery).

Roboconf

Roboconf [54, 63] is an open-source scalable orchestra-

tion framework for multi-cloud platforms. Many IaaS

providers (e.g., OpenStack, AWS, Azure, vSphere), as

well as Docker containers and local deployments for on-

premise hosts, are supported by using special plugins.

Roboconf partially supports interoperability by means of

OCCI extensions and a generic target implementation

based on Apache jclouds. In addition, it can be accessed

by means of a shell-based console, or a web-based user

interface, or a REST API.

Roboconf provides a CSS-inspired DSL, which allows

to describe applications and their execution environments

in a hierarchical way. A distributed application is seen as

a set of components, building an acyclic graph describ-

ing both containment and run-time relationships between

https://docs.aws.amazon.com/ecs/index.html
https://docs.aws.amazon.com/eks/
https://aws.amazon.com/autoscaling/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 16 of 24

Table 4 Cloud-based comparison of experimental/research CROFs

CROFs

Cloud Features Cloudiator Roboconf INDIGO-DataCloud MiCADO MODAClouds SeaClouds

Multi-Cloud � � � � � �

Cross-Cloud � � � � � �

Interoperability

- Open Standards x 0 � 0 x 0

- Semantics x x x x x x

- MDE x x x x � x

- Open Libraries & Services � 0 x x � �

Integration

- External IaaS/PaaS services x � x x � �

- BYON x � � x x �

Access

- Command-Line x � � x � x

- Web-based Dashboard � � � � x �

- Web-based API � � � � � �

x = not fulfilled, 0 = partially fulfilled,� = fully fulfilled

components, and a group of instances of these compo-

nents. Component definitions can be reused via abstract

types (facets), imports, and inheritance.

Roboconf consists of several modules. The Deploy-

ment Manager (DM) is in charge of instantiating and

managing VMs and remote agents. Agents use plu-

gins (such as Bash or Puppet) in order to handle

the life-cycle of software instances. The DM and the

agents communicate with each other through an asyn-

chronous messaging server. The SoftwareInstanceMan-

ager is responsible for automatically generating software

life-cycle management and monitor software instances

themselves.

Automatic scaling capabilities are provided by means of

autonomic management implemented by the DM and the

remote agents. Agents send notifications to the DMwhen-

ever certain threshold-based conditions linked to system

metrics are met. The DM’s decision engine responds

to those notifications using corresponding imperative

rules. Monitoring application metrics still needs to be

addressed. Both application migrations and global/per-

component rollbacks (continuous deployment) are part of

Roboconf ’s roadmap, but they are not supported out of

the box yet.

INDIGO-DataCloud

INDIGO-DataCloud (INtegrating Distributed data Infras-

tructures for Global ExplOitation) [55, 56, 64] is an open-

source data and computing platform targeted at scientific

communities, and provisioned over Cloud andGrid-based

infrastructures as well as over HTC and HPC clusters.

The INDIGO-DataCloud framework has been developed

within the homonymous project funded under the EU’s

Horizon 2020 Framework Programme [65].

The INDIGO-DataCloud project extended existing

PaaS solutions in order to provide automatic distribution

of applications and/or services over a hybrid and het-

erogeneous set of IaaS infrastructures. Some of the key

INDIGO PaaS components include: Orchestrator, Infras-

tructure Manager (IM), CloudProviderRanker, Monitor-

ing, SLAManager (SLAM),Managed Services/Application

(MSA) Deployment, and Data Management Services. The

Orchestrator coordinates the process of deploying ser-

vices and applications on both on-premise and public IaaS

platforms. It can be accessed via a command-line interface

(Orchent), or a GUI-based portlet, or a REST API.

The Orchestrator delegates the deployment to the IM,

to OpenStack Heat or to the Mesos frameworks, based on

TOSCA templates and a list of providers ranked by the

CloudProviderRanker. The Monitoring component col-

lects monitoring data from both PaaS core services and

client infrastructure/services by means of specific probes.

The SLAM establishes an agreement between customer

and provider about capacity and quality targets. The Data

Management Services provide an abstraction layer for

accessing the data storage in a unified and federated

way.

INDIGO-DataCloud supports multi-cloud and

cross-cloud deployments, as well as interoperabil-

ity by leveraging open standards (OCCI, CDMI). It

also promotes portability by adopting an extension of

TOSCA for describing applications and services. Cloud

resources are automatically selected and optimised

by the CloudProviderRanker, depending on SLAs and

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 17 of 24

Table 5 Application-based comparison of experimental/research CROFs

CROFs

Application Features Cloudiator Roboconf INDIGO-DataCloud MiCADO MODAClouds SeaClouds

Portability

- Model Standards x x 0 0 x 0

- Model Reusability � � � � 0 �

- Model Sharing � � � 0 � �

Development Containerisation � � � � x x

Resource Selection

- Manual Binding x � x � x x

- Automatic Binding � x � x � �

- Optimised Binding � x � x � �

- Dynamic Binding x x x x x �

Lifecycle Control

- Script-based � � x x � x

- DevOps x � � x � x

Wiring &Workflow

- Attribute & Event Passing � � � � � �

- Manual Workflow x x x x x x

- Automatic Workflow � � � � � �

Deployment - External Services x � x x � �

Monitoring

- System Metrics � � � � � �

- Application Metrics � x x x � �

- Custom Metrics � x x x x x

- Aggregation � x � � � �

- Historical Data x x � � � �

Runtime Adaptation

- Threshold-based � � � � � �

- Rule Engine � � � � � �

- Horizontal Scaling � � � � � �

- Migration 0 x 0 x � 0

- Failure Recovery � x � � 0 �

Execution - CI/CD � x x � � x

x = not fulfilled, 0 = partially fulfilled,� = fully fulfilled

monitoring data. A configuration management solution

based on Ansible roles is adopted to carry out both the

deployment of the application and the creation of the pre-

configured Docker images. Only automatic workflows are

supported.

Runtime actions, such as horizontal scaling and fail-

ure handling, are automatically supported by the MSA

Deployment (based on Apache Mesos), which uses the

Automatic Scaling Service (based on EC3/CLUES35)

35https://www.grycap.upv.es/clues/eng/index.php

to ensure the elasticity of the cluster, Marathon36

and Chronos37 frameworks in order to handle Long-

Running Services (LRS) and application jobs, respectively.

Marathon can also migrate services if problems occur.

Despite different DevOps practises being adopted for both

the core services and user applications (e.g., automated

builds of each application image are triggered once a new

change is committed to its repository), hot changes in

application deployments are not supported out of the box.

36https://mesosphere.github.io/marathon/
37https://mesos.github.io/chronos/

https://www.grycap.upv.es/clues/eng/index.php
https://mesosphere.github.io/marathon/
https://mesos.github.io/chronos/

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 18 of 24

MiCADO

MiCADO (Microservices-based Cloud Application-level

Dynamic Orchestrator) [57] is an open-source multi-

cloud orchestration and auto-scaling framework for

Docker containers, orchestrated by Kubernetes (or alter-

natively by Docker Swarm). The full MiCADO framework

has been investigated and implemented in the COLA

(Cloud Orchestration at the Level of Application) project

funded by the European Commission [66].

MiCADO core services are deployed onMiCADOMas-

ter, which is configured as the Kubernetes Master Node

and provides the Docker Engine, Occopus [67] (to scale

VMs), Prometheus38 (for monitoring), Policy Keeper (to

perform decision on scaling), and Submitter (to provide

submission endpoint) microservices. During operation,

MiCADOworkers are instantiated on demand and join the

cluster managed by the MiCADOMaster.

MiCADO supports multi-cloud and cross-cloud

deployments on various public and private cloud infras-

tructures. It also provides interoperability and portability

by means of a TOSCA-based Application Description

Template (ADT), which comprises three sections: a) the

definition of the individual applications making up a

Kubernetes Deployment, b) the specification of the VM

and c) the implementation of scaling policies for both VM

and Kubernetes scaling levels. ADTs can be consumed by

means of a web-based dashboard or a REST API.

Cloud resources are manually selected when config-

uring VMs. The application life-cycle is handled by

MiCADO itself, which leverages Occopus and Kubernetes

for managing VMs and containers, respectively. Only

automatic workflows are supported. MiCADO allows

automated scaling depending on VM and container met-

rics gathered by two built-in exporters on each MiCADO

worker: Prometheus Node Exporter39 and CAdvisor40.

Scaling policies can be defined specifically for the appli-

cations. Lastly, continuous delivery capabilities are sup-

ported via “rolling updates” on Kubernetes Deployments.

MODAClouds

MODAClouds (MOdel-Driven Approach for the design

and execution of applications on multiple Clouds) [58, 59]

is an open-source design-time and run-time platform for

developing and operating multi-cloud applications with

guaranteed QoS. The MODAClouds framework has been

developed within the homonymous project funded by the

European Commission [68].

The MODAClouds Toolbox consists of three main

components: Creator4Clouds, Venues4Clouds, and Ener-

gizer4Clouds. Creator4Clouds is a design-time platform

which allows to design multi-cloud applications, carry out

38https://prometheus.io/
39https://github.com/prometheus/node_exporter
40https://github.com/google/cadvisor

performance and cost evaluation, and plan the deploy-

ment strategy by choosing the service providers that best

suit all business and QoS requirements. Venue4Clouds

is a decision support system (DSS) to choose the most

suitable cloud providers depending on different aspects

such as application architecture, business risk, quality and

cost. Energizer4Clouds is a run-time platform to deploy,

manage, monitor and assure operations of multi-cloud

services. Specifically, Tower4Clouds sub-component is

responsible for collecting, analysing, and storing mon-

itoring information, whereas SpaceOps4Clouds sub-

component enacts application self-adaptation in order to

meet predefined objectives and/or constraints whenever

changes happen.

MODAClouds supports multi-cloud and cross-cloud

deployments on both IaaS and PaaS providers. It lever-

ages an MDE approach in order to support interoper-

ability between cloud providers. In particular, MODA-

CloudML is a set of UML extensions enabling developers

to model multi-cloud applications through three level

of abstractions: Cloud-enabled Computation Indepen-

dent Models (CCIM), Cloud-Provider Independent Mod-

els (CPIM), and Cloud-Provider Specific Models (CPSM).

These models facilitate portability, since they are mostly

reusable. Cloud resources can be automatically selected

and optimised via Venues4Clouds and SpaceDev4Clouds,

and managed through either shell scripts or Puppet. Only

automatic workflows are supported.

Within the MODAClouds runtime environment, the

Models@Runtime engine is responsible for enacting adap-

tation actions such as application scaling and bursting,

data and application migration, and continuous deliv-

ery on both infrastructure and component levels. Failure

recovery is partially supported for data migration and

scaling/bursting scenarios.

SeaClouds

SeaClouds (SEamless Adaptive multi-Cloud management

of service-based applicationS) [60, 61] is an open-source

platform for deploying and managing multi-component

applications over heterogeneous clouds. The SeaClouds

framework has been investigated and implemented within

the homonymous project funded by the European Com-

mission [69].

The SeaClouds architecture comprises six main com-

ponents: Dashboard, Discoverer, Planner, Deployer,Mon-

itor, and SLA Service. The Dashboard allows to model

applications (topology and requirements). The Discov-

erer identifies the available capabilities offered by cloud

providers. The Planner receives the AAM (Abstract Appli-

cation Model) from the Dashboard and creates a set of

ADP (Abstract Deployment Plan) meeting the application

requirements. From the selected plan a Deployable Appli-

cation Model (DAM) is to be generated, containing the

https://prometheus.io/
https://github.com/prometheus/node{_}exporter
https://github.com/google/cadvisor

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 19 of 24

information needed by the Deployer (based on Apache

Brooklyn [47]) to deploy, configure and run the applica-

tion. The Monitor collects infrastructure and application

level metrics from the targeted cloud providers in order

to verify that QoS requirements are met. And if not,

reconfiguration actions can be triggered. The SLA Service

enforces business-oriented policies and business actions

to apply in case of violation.

SeaClouds supports multi-cloud and cross-cloud

deployments on both IaaS and PaaS providers. It also

promotes interoperability and portability by adopting

a TOSCA-based representation for AAMs and ADPs,

as well as a CAMP-based description for DAMs. Cloud

resources are automatically selected and optimised by the

Planner. Changes to the binding can also occur in case of

reconfiguration actions. Only automatic workflows are

supported.

SeaClouds allows repairing actions, such as scaling hor-

izontally and vertically cloud resources, or restarting and

replacing failed components. It also supports replanning

in order to handle the cases that cannot be solved by

repairing. A migration of application modules may hap-

pen in this process. Continuous delivery is not supported

out of the box.

Other initiatives

In this section, we briefly review a number of other

research approaches derived from related EU projects

which address, to varying degrees, multi-cloud orches-

tration, interoperability and portability. Specifically,

a few works target semantic interoperability (i.e.,

moSAIC, cloud4SOA), some explore the benefits of

federated cloud networks (BEACON, ATMOSPHERE),

whereas others focus on application portability via

non-standard (i.e, Claudia, OPTIMIS, ASCETiC,

HARNESS), partially-standard (i.e, soCloud) and

fully-standard (i.e., CELAR, CloudLightning) cloud

modelling.

mOSAIC [70, 71] is an open-source API and platform

for multiple clouds designed and developed within the

homonymous project [72]. Application deployment and

portability across multiple clouds are facilitated by means

of a common API and a high-level abstraction of cloud

resources. mOSAIC also enables application developers

to specify resource requirements in terms of a cloud

ontology, whereas the platform, using a brokering mech-

anism, performs a matchmaking process in order to find

the best-fitting cloud services. In so doing, developers

can postpone their decision on the procurement of cloud

services until runtime. However, even though a platform-

independent component-based programming model is

used, applications need to be implemented by leverag-

ing one of the supported language-dependent APIs (Java,

Python).

Cloud4SOA [73, 74] is a multi-cloud broker-based solu-

tion developed under the homonymous project [75],

which addresses semantic interoperability and portability

challenges at the PaaS layer. It supports multi-platform

matchmaking, management, monitoring and migration

of applications by semantically interconnecting heteroge-

neous PaaS offerings. Similar to mOSAIC, Cloud4SOA

introduces a cloud ontology establishing a set of abstrac-

tions among different PaaS offerings while exposing a

multi-PaaS standardised API for the seamless application

deployment and management across different cloud plat-

forms. Despite being independent of specific APIs offered

by the underlying PaaS offerings, adapters acting as a mid-

dleware between the Cloud4SOA API and native PaaS

APIs are still needed.

Themain goal of the BEACON project [76] is to develop

techniques to federate cloud network resources, and to

enable an efficient and secure deployment of federated

cloud applications. Specifically, the proposed approach is

to build a homogeneous virtualisation layer on top of het-

erogeneous underlying physical networks, computing and

storage infrastructures. By leveraging the combination of

Cloud federation, Software Defined Networking (SDN),

and Network Function Virtualization (NFV) technolo-

gies, the project has delivered an innovative design of a

Federation Management system acting as an external ser-

vice provider dealing with federated networking services

among multiple federated OpenStack Clouds [77].

ATMOSPHERE [78] aims to design and implement a

framework and platform relying on lightweight virtuali-

sation, hybrid resources and Europe and Brazil federated

infrastructures to develop, build, deploy, measure and

evolve trustworthy, cloud-enabled applications. Orches-

tration and deployment of complex application topologies

is achieved through the TOSCA standard. In the con-

text of the project, partners developed a federated net-

work architecture [79] by creating multi-tenant overlay

networks across different sites. The developed frame-

work offers services such as distribution and inter-site

migration of VMs, resource management, and network

management.

Claudia [80] is a service management system imple-

menting an abstraction layer that allows for the automatic

service deployment and scaling depending on both infras-

tructure and service status. Conversely to mOSAIC and

Cloud4SOA, each service in Claudia is defined by its cor-

responding Service Description File (SDF) whose syntax is

based on the OVF standard, thereby providing vendor and

platform portability. However, special OVF extensions

must be defined in order to support automatic scalability,

deployment-time customisation and external connectivity

specification.

OPTIMIS [81] is a toolkit which addresses and opti-

mises the whole service lifecycle on the basis of aspects

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 20 of 24

such as trust, risk, eco-efficiency and cost, taking into

consideration a number of cloud scenarios, namely, cloud

federation, multi-cloud, hybrid cloud. However, regard-

ing multi-cloud, interoperability with non-OPTIMIS

providers can only be achieved by using APIs and adapters

externally to the OPTIMIS components. According to

OPTIMIS programming model, each service is defined

as a collection of core elements being packed along with

any external software components into VM images. Simi-

lar to Claudia, these VM images are configured by means

of a service manifest based on the OVF standard, but

a set of OVF extensions are required in order to spec-

ify the functional and non-functional requirements of the

service.

ASCETiC [82] is an open architecture and approach to

multi-cloud optimising energy efficiency, designed within

the homonymous EU project [83]. Analogous to OPTI-

MIS, the OVF specification is employed to define a com-

plete set of VMs to be deployed at an IaaS provider.

Nevertheless, OVF extensions are necessary in order to

support SLA negotiation and self-adaptation rules.

The HARNESS project [84] develops a cloud comput-

ing platform incorporating non-traditional and heteroge-

neous computational, networking and storage resources

into the data centre stack to provide high performance

at low cost. HARNESS envisions an enhanced cloud PaaS

software stack that not only supports existing commodity

technologies, but also incorporates heterogeneous tech-

nologies such as Dataflow Engines (DFEs), programmable

routers and different types of storage devices [85]. The

project demonstrated its results via extensions to Open-

Stack.

soCloud [86] is a service-oriented component-based

PaaS for managing portability, elasticity, provisioning,

and high availability across multiple clouds. Application

descriptors are based on the OASIS Service Compo-

nent Architecture (SCA) standard [87]. However, since

the SCA model doesn’t allow to define non-functional

requirements, special SCA extensions are required. A cus-

tom DSL is also used in order to describe elasticity. Addi-

tionaly, not only does soCloud support only SCA-based

applications, but maintaining the mappings to various

cloud providers and keeping up with recent features of

supported clouds are a concern.

CELAR [88, 89] is a resource management platform able

to automatically deploy, monitor and scale applications

over a cloud infrastructure. Applications are described

using TOSCA, which ensures the portability of applica-

tion descriptions across different IaaS platforms. How-

ever, every time a new application is to be deployed,

users need to issue the request to the appropriate CELAR

Server instance inside the cloud they want to deploy their

application to. In contrast to mOSAIC, cloud4SOA and

ASCETiC, no brokering mechanism is defined in order

to best fit cloud resource requirements. Furthermore,

cross-cloud is not supported.

CloudLightning [90] is a heterogeneous cloud service

management and delivery model developed within the

homonymous EU project [91]. Based on the principles

of self-organisation and self-management, CloudLight-

ning allows users to design and deploy their applica-

tions without the need for selecting the most suitable

resources. This separation of concerns is made possi-

ble using a CloudLightning-specific service description

language (CL-SDL), which extends TOSCA in order to

capture specific attributes . The declarative approach is

enriched with resource discovery mechanisms allowing

easier identification and consumption of a variety of het-

erogeneous resources. CloudLightning proposes a solu-

tion based on a Gateway Service, which relies on two

open-source tools: Alien4Cloud acting as the Gateway

Service UI and Brooklyn-TOSCA41 acting as the deploy-

ment orchestrator. In view of the above, the same remarks

made in “Brooklyn” section are applicable to CloudLight-

ning.

Critical discussion
Tables 2, 3, 4 and 5 summarise the CROFs presented

in “Review of cROFs” section by outlining the features

debated in “Analysis framework” section. We discuss the

main characteristics of these frameworks next.

Most of the reviewed CROFs provide different access

modes, including web-based dashboards and APIs,

and allow both multi-cloud and cross-cloud deploy-

ments, except for Heat and CloudFormation which, as

infrastructure-centric services, only support their own

IaaS providers (i.e., OpenStack and Amazon, respec-

tively). Besides, some of them natively support deploy-

ments on BYON (e.g., Cloudify, Brooklyn, Roboconf,

SeaClouds). Interoperability between cloud providers is

mainly achieved by means of open standards and open

libraries/abstraction layers (e.g. jclouds). Open standards

appear to be gaining ground, especially in academic sce-

narios. As such, a number of academic CROFs pro-

vide interoperability via OCCI (e.g., Roboconf) or CDMI

(e.g., INDIGO-DataCloud) support, while others do via

TOSCA (MiCADO, SeaClouds). Despite being the focus

of previous research efforts (e.g., mOSAIC, Cloud4SOA),

semantic approaches seem to be no longer a priority

compared to the adoption of open standards. Of all

the initiatives, MODAClouds is the only one to employ

model-driven methodologies.

With regard to application portability, CROFs from

both industry and academia are placing ever-increasing

importance on modelling standards. However, while tak-

ing TOSCA (e.g., Cloudify, MiCADO) and CAMP (e.g.,

41https://github.com/cloudsoft/brooklyn-tosca

https://github.com/cloudsoft/brooklyn-tosca

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 21 of 24

Brooklyn, SeaClouds) as reference models, they happen

to customise and extend standard types. Thus, a further

effort would be appropriate in order to ensure greater

compliance with the aforementioned specifications. Aside

from the adoption of standard models, model reusability

is encouraged by means of modules shared either locally

or remotely. Besides, since containers provide improved

application encapsulation and abstraction from resources,

most of the CROFs support containers as well as container

orchestration.

As regards resource provisioning, there are different

aspects of the matter that need to be considered, such as:

selection, configuration and deployment of resources. In

multi-cloud scenarios, selection is far from being a trivial

task due to the diversity of cloud services’ characteris-

tics and QoS. While manual selection is supported in the

majority of CROFs, automatic and optimised selections

are almost exclusively supported by academic CROFs. The

optimised selection leverages QoS and technical require-

ments, and is carried out either based on static informa-

tion on the service quality provided by cloud providers

or through dynamic negotiation of SLAs. A few multi-

cloud projects (e.g., INDIGO-DataCloud, MODAClouds,

SeaClouds) provide support for SLA management, even

though multi-cloud SLAs are not covered. Limited sup-

port is currently available for dynamic selection (i.e.,

SeaClouds).

Resource deployment can be manual or automatic.

While most commercial CROFs support both manual

and automatic workflows, academic CROFs exclusively

support automatic ones. Using standard models such as

TOSCA, where applicable, proves useful both for defining

a custom workflow and for automatically generating one.

However, since current standards lack support for mod-

elling the semantics related to the instantiation of relation-

ships between component instances, the actual wiring of

component instances depends on the capabilities offered

by the CROF enacting the deployment. On that note,

standard extensions in support of sophisticated wiring on

instance level would be desirable. As for resource configu-

ration, on the one hand scripts are extensively supported,

but on the other hand configuration management tools

are mostly supported by commercial CROFs. Nonethe-

less, a few academic projects (e.g., INDIGO-DataCloud

and MODAClouds) exploit these tools in order to enact

DevOps practices as well.

Monitoring plays a key role in keeping track of the status

of applications as well as physical and virtual resources.

Monitoring metrics at different abstraction levels (e.g.,

infrastructure and application ones) and capturing depen-

dencies between these levels allow to perform root cause

analysis, such that any issues at infrastructure level can

automatically lead to run-time infrastructure adaptation

which best fits run-time application requirements. While

infrastructure metrics are widely supported by both com-

mercial and academic CROFs, application and custom

metrics necessitate further investigation. Metric aggre-

gation mechanisms are available for a large majority of

CROFs. Nevertheless, in light of multi-cloud scenarios,

where applications and resources may be largely dis-

tributed, metric collection and aggregation from hetero-

geneous cloud environments are necessary. As a result,

standardised interfaces and formats should be inspected.

Monitoring data allows for different purposes such

as enforcing SLAs, enabling elasticity, ensuring QoS.

SLAs can be used as a basis for cloud services and

respective applications to be managed during their life-

cycle. Multi-cloud management requires specific mech-

anisms for run-time adaptation across a diversity of

cloud set-ups, including scalability, migration, fault-

tolerance, continuous delivery. While reactive approaches

to run-time adaptation are fairly consolidated among

all CROFs, predictive approaches (based on work-

load prediction models and machine learning opti-

misation) are only supported in some commercial

CROFs (e.g., AWS CloudFormation) and should be more

explored.

Both academic and commercial CROFs largely provide

support for threshold-based horizontal scaling. Policy-

based approaches, especially in the academic landscape,

are gaining in importance as well. Migration support

is still limited in both industry and academia, as it is

closely linked to portability in all its facets, i.e., VM porta-

bility, application portability, data portability. Although

platform-independent standards (TOSCA) and virtuali-

sation techniques (containers) have improved application

encapsulation and abstraction from resources, platform-

independent data representation and standardisation of

data import and export across diverse and heteroge-

neous clouds need to be inspected. In this regard,

MODAClouds provides a solution to the data migra-

tion issue, albeit in the context of scalable NoSQL

databases.

Both academic and commercial CROFs support failure

recovery mechanisms based on restarting/replacing failed

components or, in a worst-case scenario, rolling back

entire application stacks. Of all academic CROFs, Cloudi-

ator, MODAClouds and SeaClouds allow to identify

abnormal and undesirable states of the system and apply

a limited set of autonomic actions. However, the emer-

gence of decentralised multi-cloud setups connecting a

wider variety of entities and resources requires autonomic

management systems that consider self-organisation, self-

management and self-healing across a diversity of cloud

deployments. Continuous delivery is well supported in the

commercial landscape, and it is also gaining ground in the

academic one because of the ever-growing use of DevOps

methodologies.

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 22 of 24

Conclusion
Cloud computing technology has greatly evolved over

the past few years, transforming the traditional infras-

tructure, platform and software resources into elastic and

on-demand virtual components. However, heterogeneous

and multi-layer resources have to be orchestrated in an

effective way in order to ensure that end-users are pro-

vided with acceptable quality levels.

In this work we thoroughly analysed the cloud orches-

tration landscape: after presenting a taxonomy of relevant

features and dimensions, we mapped and evaluated sev-

eral cloud resource orchestration frameworks against it,

especially focusing on multi-cloud capabilities. This sys-

tematic analysis has allowed to identify key open research

issues, also proposing a set of future research directions in

the cloud orchestration scenario.

Abbreviations

CROF: Cloud Resource Orchestration Framework; MDE: Model Driven
Engineering; IaaS: Infrastructure as a Service; PaaS: Platform as a Service; CMP:
Cloud Management Platform; SLA: Service Level Agreement; TOSCA: Topology
and Orchestration Specification for Cloud Applications; VM: Virtual Machine;
BYON: Bring Your Own Node; CI/CD: Continuous Integration/Continuous
Delivery

Acknowledgements

Not applicable.

Authors’ contributions

All authors contributed equally to the article. The author(s) read and approved
the final manuscript.

Funding

Not applicable.

Availability of data andmaterials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 14 April 2020 Accepted: 4 August 2020

References

1. RightScale (2019) RightScale 2019 State of the Cloud Report. https://info.
flexera.com/SLO-CM-WP-State-of-the-Cloud-2019. Accessed 12 Oct 2019

2. Ranjan R, Benatallah B, Dustdar S, Papazoglou MP (2015) Cloud resource
orchestration programming: Overview, issues, and directions. IEEE
Internet Comput 19(5):46–56. https://doi.org/10.1109/MIC.2015.20

3. Weerasiri D, Barukh MC, Benatallah B, Sheng QZ, Ranjan R (2017) A
Taxonomy and Survey of Cloud Resource Orchestration Techniques. ACM
Comput Surv 50(2):26–12641. https://doi.org/10.1145/3054177

4. Baur D, Seybold D, Griesinger F, Tsitsipas A, Hauser CB, Domaschka J
(2015) Cloud Orchestration Features: Are Tools Fit for Purpose?,. In: 2015
IEEE/ACM 8th International Conference on Utility and Cloud Computing
(UCC). pp 95–101. https://doi.org/10.1109/UCC.2015.25

5. Bousselmi K, Brahmi Z, Gammoudi MM (2014) Cloud services
orchestration: A comparative study of existing approaches. In: 28th
International Conference on Advanced Information Networking and
Applications Workshops. pp 410–416. https://doi.org/10.1109/WAINA.
2014.72

6. Grozev N, Buyya R (2014) Inter-cloud architectures and application
brokering: taxonomy and survey. Softw Pract Experience 44(3):369–390.
https://doi.org/10.1002/spe.2168

7. Ferry N, Rossini A, Chauvel F, Morin B, Solberg A (2013) Towards
Model-Driven Provisioning, Deployment, Monitoring, and Adaptation of
Multi-cloud Systems. In: IEEE Sixth International Conference on Cloud
Computing. pp 887–894. https://doi.org/10.1109/CLOUD.2013.133

8. Petcu D (2014) Consuming resources and services from multiple clouds. J
Grid Comput 12(2):321–345. https://doi.org/10.1007/s10723-013-9290-3

9. Petcu D, Vasilakos A (2014) Portability in Clouds: Approaches and
Research Opportunities. Scalable Comput Pract Experience
15(3):251–270. https://doi.org/10.12694/scpe.v15i3.1019

10. Ferry N, Rossini A (2018) CloudMF: Model-Driven Management of
Multi-Cloud Applications. ACM Trans Internet Technol 18(2):16–24.
https://doi.org/10.1145/3125621

11. Ferrer AJ (2016) Inter-cloud research: Vision for 2020. Procedia Comput
Sci 97:140–143. https://doi.org/10.1016/j.procs.2016.08.292

12. Buyya R, Srirama SN, Casale G, Calheiros R, Simmhan Y, Varghese B,
Gelenbe E, Javadi B, Vaquero LM, Netto MAS, Toosi AN, Rodriguez MA,
Llorente IM, Vimercati SDCD, Samarati P, Milojicic D, Varela C, Bahsoon R,
Assuncao MDD, Rana O, Zhou W, Jin H, Gentzsch W, Zomaya AY, Shen H
(2018) A Manifesto for Future Generation Cloud Computing: Research
Directions for the Next Decade. ACM Comput Surv 51(5):105–110538.
https://doi.org/10.1145/3241737

13. Lewis GA (2013) Role of standards in cloud-computing interoperability. In:
46th Hawaii International Conference on System Sciences. pp 1652–1661.
https://doi.org/10.1109/HICSS.2013.470

14. Badger L, Bohn R, Chandramouli R, Grance T, Karygiannis T, Patt-Corner R,
Voas E (2010) Cloud Computing Use Cases. https://www.nist.gov/itl/use-
cases. Accessed 12 Oct 2019

15. Ahronovitz M, et al. (2010) Cloud Computing Use Cases White Paper
Version 4.0. http://www.cloud-council.org/Cloud_Computing_Use_
Cases_Whitepaper-4_0.pdf. Accessed 12 Oct 2019

16. Distributed Management Task Force (2010) Use Cases and Interactions for
Managing Clouds. https://www.dmtf.org/sites/default/files/standards/
documents/DSP-IS0103_1.0.0.pdf. Accessed 12 Oct 2019

17. Zhang Z, Wu C, Cheung DWL (2013) A survey on cloud interoperability:
Taxonomies, standards, and practice. SIGMETRICS Perform Eval Rev
40(4):13–22. https://doi.org/10.1145/2479942.2479945

18. Stravoskoufos K, Preventis A, Sotiriadis S, Petrakis EGM (2014) A Survey on
Approaches for Interoperability and Portability of Cloud Computing
Services. In: Proceedings of the 4th International Conference on Cloud
Computing and Services Science (CLOSER2014). pp 112–117. https://doi.
org/10.5220/0004856401120117

19. García ÁL, del Castillo EF, Fernández PO (2016) Standards for enabling
heterogeneous IaaS cloud federations. Comput Stand Interfaces
47:19–23. https://doi.org/10.1016/j.csi.2016.02.002

20. Gartner (2018) Competitive Landscape: Cloud Service Brokerage. https://
www.gartner.com/en/documents/3889023/competitive-landscape-
cloud-service-brokerage. Accessed 12 Oct 2019

21. Liu F, Tong J, Mao J, Bohn RB, Messina JV, Badger ML, Leaf DM (2011) NIST
Cloud Computing Reference Architecture. https://www.nist.gov/
publications/nist-cloud-computing-reference-architecture. Accessed 12
Oct 2019

22. Elhabbash A, Samreen F, Hadley J, Elkhatib Y (2019) Cloud brokerage: A
systematic survey. ACM Comput Surv 51(6):119–111928. https://doi.org/
10.1145/3274657

23. Bernstein D, Ludvigson E, Sankar K, Diamond S, Morrow M (2009)
Blueprint for the Intercloud - Protocols and Formats for Cloud Computing
Interoperability. In: Proceedings of the 2009 Fourth International
Conference on Internet and Web Applications and Services. ICIW ’09.
pp 328–336. https://doi.org/10.1109/ICIW.2009.55

24. Global Inter-cloud Technology Forum (2010) Use Cases and Functional
Requirements for Inter-Cloud Computing: A white paper. http://www.
gictf.jp/doc/GICTF_Whitepaper_20100809.pdf. Accessed 12 Oct 2019

25. Petcu D (2013) Multi-cloud: Expectations and current approaches. In:
Proceedings of the 2013 International Workshop on Multi-cloud
Applications and Federated Clouds. MultiCloud ’13. ACM, New York.
pp 1–6. https://doi.org/10.1145/2462326.2462328

26. Toosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing
environments: Challenges, taxonomy, and survey. ACM Comput Surv
47(1):7–1747. https://doi.org/10.1145/2593512

27. Nogueira E, Moreira A, Lucrédio D, Garcia V, Fortes R (2016) Issues on
developing interoperable cloud applications: definitions, concepts,

https://info.flexera.com/SLO-CM-WP-State-of-the-Cloud-2019
https://info.flexera.com/SLO-CM-WP-State-of-the-Cloud-2019
https://doi.org/10.1109/MIC.2015.20
https://doi.org/10.1145/3054177
https://doi.org/10.1109/UCC.2015.25
https://doi.org/10.1109/WAINA.2014.72
https://doi.org/10.1109/WAINA.2014.72
https://doi.org/10.1002/spe.2168
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1007/s10723-013-9290-3
https://doi.org/10.12694/scpe.v15i3.1019
https://doi.org/10.1145/3125621
https://doi.org/10.1016/j.procs.2016.08.292
https://doi.org/10.1145/3241737
https://doi.org/10.1109/HICSS.2013.470
https://www.nist.gov/itl/use-cases
https://www.nist.gov/itl/use-cases
http://www.cloud-council.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
http://www.cloud-council.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf
https://doi.org/10.1145/2479942.2479945
https://doi.org/10.5220/0004856401120117
https://doi.org/10.5220/0004856401120117
https://doi.org/10.1016/j.csi.2016.02.002
https://www.gartner.com/en/documents/3889023/competitive-landscape-cloud-service-brokerage
https://www.gartner.com/en/documents/3889023/competitive-landscape-cloud-service-brokerage
https://www.gartner.com/en/documents/3889023/competitive-landscape-cloud-service-brokerage
https://www.nist.gov/publications/nist-cloud-computing-reference-architecture
https://www.nist.gov/publications/nist-cloud-computing-reference-architecture
https://doi.org/10.1145/3274657
https://doi.org/10.1145/3274657
https://doi.org/10.1109/ICIW.2009.55
http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf
http://www.gictf.jp/doc/GICTF_Whitepaper_20100809.pdf
https://doi.org/10.1145/2462326.2462328
https://doi.org/10.1145/2593512

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 23 of 24

approaches, requirements, characteristics and evaluation models. J Softw
Eng Res Dev 4(1):7. https://doi.org/10.1186/s40411-016-0033-6

28. Kaur K, Sharma DS, Kahlon DKS (2017) Interoperability and portability
approaches in inter-connected clouds: A review. ACM Comput Surv
50(4):49–14940. https://doi.org/10.1145/3092698

29. Bellendorf J, Mann ZÁ (2018) Cloud Topology and Orchestration Using
TOSCA: A Systematic Literature Review. In: Kritikos K, Plebani P, de Paoli F
(eds). Service-Oriented and Cloud Computing. pp 207–215. https://doi.
org/10.1007/978-3-319-99819-0_16

30. Domaschka J, Griesinger F, Baur D, Rossini A (2015) Beyond Mere
Application Structure Thoughts on the Future of Cloud Orchestration
Tools. Procedia Comput Sci 68:151–162. https://doi.org/10.1016/j.procs.
2015.09.231

31. Khoshkbarforoushha A, Wang M, Ranjan R, Wang L, Alem L, Khan SU,
Benatallah B (2016) Dimensions for evaluating cloud resource
orchestration frameworks. Computer 49(2):24–33. https://doi.org/10.
1109/MC.2016.56

32. Clusters of European Projects on Cloud (2015) Inter-cloud Challenges,
Expectations and Issues Cluster Position Paper: Initial Research Roadmap
and Project’s Classification. https://eucloudclusters.wordpress.com/
future-cloud. Accessed 12 Oct 2019

33. Clusters of European Projects on Cloud (2016) Inter-cloud Challenges,
Expectations and Issues Cluster Position Paper: Research Roadmap
Update. https://eucloudclusters.wordpress.com/future-cloud. Accessed
12 Oct 2019

34. Clusters of European Projects on Cloud (2017) Future Cloud Cluster Vision
for 2030. https://eucloudclusters.wordpress.com/future-cloud. Accessed
12 Oct 2019

35. GigaSpaces Research CloudifyTeam (2016) Cloud Management in the
Enterprise - An Overview of Orchestration vs. PaaS vs. CMP. https://
cloudify.co/blog/cloud-management-roundup-orchestration-paas-
cmp/. Accessed 12 Oct 2019

36. OASIS (2013) Topology and Orchestration Specification for Cloud
Applications Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/
os/TOSCA-v1.0-os.html. Accessed 6 July 2020

37. Buyya R, Vecchiola C, Selvi ST (2013) Chapter 10 - Cloud Applications. In:
Buyya R, Vecchiola C, Selvi ST (eds). Mastering Cloud Computing. Morgan
Kaufmann, Boston. pp 353–371. https://doi.org/10.1016/B978-0-12-
411454-8.00010-3

38. Costache S, Dib D, Parlavantzas N, Morin C (2017) Resource management
in cloud platform as a service systems: Analysis and opportunities. J Syst
Softw 132:98–118. https://doi.org/10.1016/j.jss.2017.05.035

39. Kolb S, Wirtz G (2014) Towards Application Portability in Platform as a
Service. In: IEEE 8th International Symposium on Service Oriented System
Engineering. pp 218–229. https://doi.org/10.1109/SOSE.2014.26

40. Oberle K, Fisher M (2010) ETSI CLOUD - Initial Standardization
Requirements for Cloud Services. In: Proceedings of the 7th International
Conference on Economics of Grids, Clouds, Systems, and Services.
GECON’10. Springer, Berlin, Heidelberg. pp 105–115. https://doi.org/10.
1007/978-3-642-15681-6_8

41. OASIS (2014) Cloud Application Management for Platforms Version 1.1.
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html.
Accessed 12 Oct 2019

42. Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L (2007)
Container-based Operating System Virtualization: A Scalable,
High-performance Alternative to Hypervisors. In: Proceedings of the 2Nd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2007.
EuroSys ’07. ACM, New York. pp 275–287. https://doi.org/10.1145/
1272996.1273025

43. Singh S, Singh N (2016) Containers & Docker: Emerging roles & future of
Cloud technology. In: 2nd International Conference on Applied and
Theoretical Computing and Communication Technology (iCATccT).
pp 804–807. https://doi.org/10.1109/ICATCCT.2016.7912109

44. Komarek A, Pavlik J, Sobeslav V (2017) Hybrid System Orchestration with
TOSCA and Salt. J Eng Appl Sci 12(9):2396–2401. https://doi.org/10.
36478/jeasci.2017.2396.2401

45. OpenStack (2016) OpenStack Heat. https://wiki.openstack.org/wiki/Heat.
Accessed 12 Oct 2019

46. Cloudify (2019) Cloudify. http://cloudify.co/. Accessed 12 Oct 2019
47. The Apache Software Foundation (2016) The Apache Brooklyn project.

https://brooklyn.apache.org/. Accessed 12 Oct 2019

48. Apache (2015) Apache Stratos. https://stratos.apache.org/. Accessed 12
Oct 2019

49. FastConnect (2018) Alien4Cloud. https://alien4cloud.github.io. Accessed
12 Oct 2019

50. HashiCorp (2019) HashiCorp Terraform. https://www.terraform.io/.
Accessed 12 Oct 2019

51. Amazon (2016) Amazon CloudFormation. https://aws.amazon.com/
cloud\discretionary-for\discretionary-ma\discretionary-tion/. Accessed
12 Oct 2019

52. Baur D, Domaschka J (2016) Experiences from building a cross-cloud
orchestration tool. In: Proceedings of the 3rd Workshop on CrossCloud
Infrastructures & Platforms. CrossCloud ’16. pp 4–146. https://doi.org/10.
1145/2904111.2904116

53. Baur D, Seybold D, Griesinger F, Masata H, Domaschka J (2018) A
Provider-Agnostic Approach to Multi-cloud Orchestration Using a
Constraint Language. In: 18th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). pp 173–182. https://doi.
org/10.1109/CCGRID.2018.00032

54. Pham LM, Tchana A, Donsez D, de Palma N, Zurczak V, Gibello P (2015)
Roboconf: A Hybrid Cloud Orchestrator to Deploy Complex Applications.
In: IEEE 8th International Conference on Cloud Computing. pp 365–372.
https://doi.org/10.1109/CLOUD.2015.56

55. Salomoni D, Campos I, Gaido L, et al. (2016) Indigo-datacloud:
foundations and architectural description of a platform as a service
oriented to scientific computing. CoRR abs/1603.09536. 1603.09536.
Accessed 6 July 2020

56. Salomoni D, Campos I, Gaido L, et al. (2018) INDIGO-DataCloud: a
Platform to Facilitate Seamless Access to E-Infrastructures. J Grid Comput
16(3):381–408. https://doi.org/10.1007/s10723-018-9453-3

57. Kiss T, Kacsuk P, Kovacs J, Rakoczi B, Hajnal A, Farkas A, Gesmier G,
Terstyanszky G (2019) MiCADO—Microservice-based Cloud
Application-level Dynamic Orchestrator. Futur Gener Comput Syst
94:937–946. https://doi.org/10.1016/j.future.2017.09.050

58. Ardagna D, Di Nitto E, Mohagheghi P, Mosser S, Ballagny C, D’Andria F,
Casale G, Matthews P, Nechifor C, Petcu D, Gericke A, Sheridan C (2012)
MODAClouds: A model-driven approach for the design and execution of
applications on multiple Clouds. In: 4th International Workshop on
Modeling in Software Engineering (MISE). pp 50–56. https://doi.org/10.
1109/MISE.2012.6226014

59. Nitto ED, Matthews P, Petcu D, Solberg A (2017) Model-Driven
Development and Operation of Multi-Cloud Applications: The
MODAClouds Approach. https://doi.org/10.1007/978-3-319-46031-4

60. Brogi A, Carrasco J, Cubo J, D’Andria F, Ibrahim A, Pimentel E, Soldani J
(2014) SeaClouds: Seamless adaptive multi-cloudmanagement of service-
based applications. In: 17th Conferencia Iberoamericana en Software
Engineering (CIbSE 2014). Curran Associates, Inc., Pucon. pp 95–108

61. Brogi A, Fazzolari M, Ibrahim A, Soldani J, Wang P, Carrasco J, Cubo J,
Durán F, Pimentel E, Di Nitto E, D’Andria F (2015) Adaptive management
of applications across multiple clouds: The SeaClouds Approach. CLEI
Electron J 18:2–2. https://doi.org/10.19153/cleiej.18.1.1

62. University of Ulm (2015) Cloudiator. http://cloudiator.org/. Accessed 12
Oct 2019

63. Linagora (2013) Roboconf. http://roboconf.net. Accessed 12 Oct 2019
64. Caballer M, Zala S, García ÁL, Moltó G, Fernández PO, Velten M (2018)

Orchestrating Complex Application Architectures in Heterogeneous
Clouds. J Grid Comput 16(1):3–18. https://doi.org/10.1007/s10723-017-
9418-y

65. INDIGO consortium (2017) The INDIGO-DataCloud project. https://www.
indigo-datacloud.eu/. Accessed 12 Oct 2019

66. COLA consortium (2017) The COLA Project. https://project-cola.eu/.
Accessed 12 Oct 2019

67. Kovács J, Kacsuk P (2018) Occopus: a multi-cloud orchestrator to deploy
and manage complex scientific infrastructures. J Grid Comput
16(1):19–37. https://doi.org/10.1007/s10723-017-9421-3

68. MODAClouds consortium (2012) The MODAClouds project. http://
multiclouddevops.com/. Accessed 12 Oct 2019

69. SeaClouds consortium (2013) The SeaClouds project. http://www.
seaclouds-project.eu/. Accessed 12 Oct 2019

70. Petcu D, Macariu G, Panica S, Crăciun C (2013) Portable Cloud
applications—From theory to practice. Futur Gener Comput Syst
29(6):1417–1430. https://doi.org/10.1016/j.future.2012.01.009

https://doi.org/10.1186/s40411-016-0033-6
https://doi.org/10.1145/3092698
https://doi.org/10.1007/978-3-319-99819-0_16
https://doi.org/10.1007/978-3-319-99819-0_16
https://doi.org/10.1016/j.procs.2015.09.231
https://doi.org/10.1016/j.procs.2015.09.231
https://doi.org/10.1109/MC.2016.56
https://doi.org/10.1109/MC.2016.56
https://eucloudclusters.wordpress.com/future-cloud
https://eucloudclusters.wordpress.com/future-cloud
https://eucloudclusters.wordpress.com/future-cloud
https://eucloudclusters.wordpress.com/future-cloud
https://cloudify.co/blog/cloud-management-roundup-orchestration-paas-cmp/
https://cloudify.co/blog/cloud-management-roundup-orchestration-paas-cmp/
https://cloudify.co/blog/cloud-management-roundup-orchestration-paas-cmp/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://doi.org/10.1016/B978-0-12-411454-8.00010-3
https://doi.org/10.1016/B978-0-12-411454-8.00010-3
https://doi.org/10.1016/j.jss.2017.05.035
https://doi.org/10.1109/SOSE.2014.26
https://doi.org/10.1007/978-3-642-15681-6_8
https://doi.org/10.1007/978-3-642-15681-6_8
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1109/ICATCCT.2016.7912109
https://doi.org/10.36478/jeasci.2017.2396.2401
https://doi.org/10.36478/jeasci.2017.2396.2401
https://wiki.openstack.org/wiki/Heat
http://cloudify.co/
https://brooklyn.apache.org/
https://stratos.apache.org/
https://alien4cloud.github.io
https://www.terraform.io/
https://aws.amazon.com/clouddiscretionary {-}{}{}fordiscretionary {-}{}{}madiscretionary {-}{}{}tion/
https://aws.amazon.com/clouddiscretionary {-}{}{}fordiscretionary {-}{}{}madiscretionary {-}{}{}tion/
https://doi.org/10.1145/2904111.2904116
https://doi.org/10.1145/2904111.2904116
https://doi.org/10.1109/CCGRID.2018.00032
https://doi.org/10.1109/CCGRID.2018.00032
https://doi.org/10.1109/CLOUD.2015.56
http://arxiv.org/abs/1603.09536
https://doi.org/10.1007/s10723-018-9453-3
https://doi.org/10.1016/j.future.2017.09.050
https://doi.org/10.1109/MISE.2012.6226014
https://doi.org/10.1109/MISE.2012.6226014
https://doi.org/10.1007/978-3-319-46031-4
https://doi.org/10.19153/cleiej.18.1.1
http://cloudiator.org/
http://roboconf.net
https://doi.org/10.1007/s10723-017-9418-y
https://doi.org/10.1007/s10723-017-9418-y
https://www.indigo-datacloud.eu/
https://www.indigo-datacloud.eu/
https://project-cola.eu/
https://doi.org/10.1007/s10723-017-9421-3
http://multiclouddevops.com/
http://multiclouddevops.com/
http://www.seaclouds-project.eu/
http://www.seaclouds-project.eu/
https://doi.org/10.1016/j.future.2012.01.009

Tomarchio et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:49 Page 24 of 24

71. Petcu D, Martino BD, Venticinque S, Rak M, Máhr T, Lopez GE, Brito F,
Cossu R, Stopar M, Šperka S, Stankovski V (2013) Experiences in building a
mOSAIC of clouds. J Cloud Comput Adv Syst Appl 2(1):12. https://doi.org/
10.1186/2192-113X-2-12

72. mOSAIC consortium (2010) The mOSAIC project. http://www.mosaic-
cloud.eu/. Accessed 12 Oct 2019

73. DAndria F, Bocconi S, Cruz JG, Ahtes J, Zeginis D (2012) Cloud4SOA:
Multi-cloud Application Management Across PaaS Offerings. In: 14th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing. pp 407–414. https://doi.org/10.1109/SYNASC.2012.
65

74. Kamateri E, Loutas N, Zeginis D, Ahtes J, D’Andria F, Bocconi S, Gouvas P,
Ledakis G, Ravagli F, Lobunets O, Tarabanis KA (2013) Cloud4SOA: A
Semantic-Interoperability PaaS Solution for Multi-cloud Platform
Management and Portability. In: Lau K-K, Lamersdorf W, Pimentel E (eds).
Service-Oriented and Cloud Computing, ESOCC 2013. pp 64–78. https://
doi.org/10.1007/978-3-642-40651-5_6

75. Cloud4SOA consortium (2010) The Cloud4SOA project. http://www.
cloud4soa.eu/. Accessed 12 Oct 2019

76. BEACON consortium (2015) The BEACON project: Enabling Federated
Cloud Networking. http://www.beacon-project.eu/. Accessed 12 Oct
2019

77. Celesti A, Levin A, Massonet P, Schour L, Villari M (2016) Federated
networking services in multiple openstack clouds. pp 338–352. https://
doi.org/10.1007/978-3-319-33313-7_26

78. ATMOSPHERE consortium (2017) The ATMOSPHERE project: Adaptive,
Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring Hybrid,
Ecosystem for Resilient Cloud Computing. https://www.atmosphere-
eubrazil.eu/. Accessed 12 Oct 2019

79. Castañeda IA, Blanquer I, de Alfonso C (2019) Easing the deployment and
management of cloud federated networks across virtualised clusters. In:
Proceedings of the 9th International Conference on Cloud Computing
and Services Science, CLOSER 2019, Heraklion, Crete, Greece, May 2-4,
2019. pp 601–608. https://doi.org/10.5220/0007877406010608

80. Rodero-Merino L, Vaquero LM, Gil V, Galán F, Fontán J, Montero RS,
Llorente IM (2010) From infrastructure delivery to service management in
clouds. Futur Gener Comput Syst 26(8):1226–1240. https://doi.org/10.
1016/j.future.2010.02.013

81. Ferrer AJ, Hernández F, Tordsson J, Elmroth E, Ali-Eldin A, Zsigri C, Sirvent
R, Guitart J, Badia RM, Djemame K, Ziegler W, Dimitrakos T, Nair SK,
Kousiouris G, Konstanteli K, Varvarigou T, Hudzia B, Kipp A, Wesner S,
Corrales M, Forgó N, Sharif T, Sheridan C (2012) OPTIMIS: A holistic
approach to cloud service provisioning. Futur Gener Comput Syst
28(1):66–77. https://doi.org/10.1016/j.future.2011.05.022

82. Ferrer AJ, Lordan F, Ortiz D, Guitart J, Macias M, Panuccio P, M. Badia R,
Ponsard C, Temporale C, García D, Sirvent R, Deprez J, Sommacampagna
D, Djemame K, Armstrong D, Agiatzidou E, Ejarque J, Blasi L, Kammer M
(2014) Ascetic - adapting service lifecycle towards efficient clouds. In:
European Project Space on Information and Communication Systems -
EPS Barcelona. SciTePress, Barcelona. pp 89–106. https://doi.org/10.5220/
0006183400890106

83. ASCETiC consortium (2013) The ASCETiC project. http://ascetic-project.
eu/. Accessed 12 Oct 2019

84. HARNESS consortium (2012) The HARNESS project: Hardware and
Network-Enhanced Software Systems for Cloud Computing. http://www.
harness-project.eu/. Accessed 12 Oct 2019

85. Coutinho JGF, Pell O, O’Neill E, Sanders P, McGlone J, Grigoras P, Luk W,
Ragusa C (2014) Harness project: Managing heterogeneous computing
resources for a cloud platform. In: Goehringer D, Santambrogio MD,
Cardoso JMP, Bertels K (eds). Reconfigurable Computing: Architectures,
Tools, and Applications. Springer. pp 324–329. https://doi.org/10.1007/
978-3-319-05960-0_36

86. Paraiso F, Merle P, Seinturier L (2016) soCloud: a service-oriented
component-based PaaS for managing portability, provisioning, elasticity,
and high availability across multiple clouds. Computing 98(5):539–565.
https://doi.org/10.1007/s00607-014-0421-x

87. OASIS (2011) Service Component Architecture (SCA). http://www.oasis-
opencsa.org/sca. Accessed 12 Oct 2019

88. Giannakopoulos I, Papailiou N, Mantas C, Konstantinou I, Tsoumakos D,
Koziris N (2014) CELAR: Automated application elasticity platform. In: IEEE

International Conference on Big Data (Big Data). pp 23–25. https://doi.
org/10.1109/BigData.2014.7004481

89. CELAR consortium (2012) The CELAR project. http://www.
celarcloudproject.eu/. Accessed 12 Oct 2019

90. Selea T, Drăgan I, Fortiş T-F (2017) The CloudLightning Approach to
Cloud-user Interaction. In: Proceedings of the 1st International Workshop
on Next Generation of Cloud Architectures. CloudNG:17. pp 4–145.
https://doi.org/10.1145/3068126.3068130

91. CloudLightning consortium (2018) The CloudLightning project. https://
cloudlightning.eu/. Accessed 12 Oct 2019

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1186/2192-113X-2-12
https://doi.org/10.1186/2192-113X-2-12
http://www.mosaic-cloud.eu/
http://www.mosaic-cloud.eu/
https://doi.org/10.1109/SYNASC.2012.65
https://doi.org/10.1109/SYNASC.2012.65
https://doi.org/10.1007/978-3-642-40651-5_6
https://doi.org/10.1007/978-3-642-40651-5_6
http://www.cloud4soa.eu/
http://www.cloud4soa.eu/
http://www.beacon-project.eu/
https://doi.org/10.1007/978-3-319-33313-7_26
https://doi.org/10.1007/978-3-319-33313-7_26
https://www.atmosphere-eubrazil.eu/
https://www.atmosphere-eubrazil.eu/
https://doi.org/10.5220/0007877406010608
https://doi.org/10.1016/j.future.2010.02.013
https://doi.org/10.1016/j.future.2010.02.013
https://doi.org/10.1016/j.future.2011.05.022
https://doi.org/10.5220/0006183400890106
https://doi.org/10.5220/0006183400890106
http://ascetic-project.eu/
http://ascetic-project.eu/
http://www.harness-project.eu/
http://www.harness-project.eu/
https://doi.org/10.1007/978-3-319-05960-0_36
https://doi.org/10.1007/978-3-319-05960-0_36
https://doi.org/10.1007/s00607-014-0421-x
http://www.oasis-opencsa.org/sca
http://www.oasis-opencsa.org/sca
https://doi.org/10.1109/BigData.2014.7004481
https://doi.org/10.1109/BigData.2014.7004481
http://www.celarcloudproject.eu/
http://www.celarcloudproject.eu/
https://doi.org/10.1145/3068126.3068130
https://cloudlightning.eu/
https://cloudlightning.eu/

	Abstract
	Keywords

	Introduction
	Research methodology
	Related surveys
	Cloud interoperability
	Cloud brokerage
	Interconnected clouds
	Cloud resource orchestration

	Analysis framework
	Cloud features
	Multi-cloud support
	Cross-cloud support
	Interoperability approach
	Integration
	Access

	Application features
	Application domain
	Portability
	Containerisation
	Resource selection
	Lifecycle control
	Wiring & workflow
	Monitoring
	Runtime adaptation

	Review of cROFs
	Production/commercial cROFs
	Heat
	Cloudify
	Brooklyn
	Stratos
	Alien4Cloud
	Terraform
	CloudFormation

	Experimental/academic cROFs
	Cloudiator
	Roboconf
	INDIGO-DataCloud
	MiCADO
	MODAClouds
	SeaClouds
	Other initiatives

	Critical discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

