
Cloud Security Is Not (Just) Virtualization Security

A Short Paper

Mihai Christodorescu, Reiner Sailer, Douglas Lee Schales
IBM T.J. Watson Research

{mihai,sailer,schales}@us.ibm.com

Daniele Sgandurra, Diego Zamboni
IBM Zurich Research

{dsg,dza}@zurich.ibm.com

ABSTRACT
Cloud infrastructure commonly relies on virtualization. Customers
provide their own VMs, and the cloud provider runs them often
without knowledge of the guest OSes or their configurations. How-
ever, cloud customers also want effective and efficient security for
their VMs. Cloud providers offering security-as-a-service based on
VM introspection promise the best of both worlds: efficient central-
ization and effective protection. Since customers can move images
from one cloud to another, an effective solution requires learning
what guest OS runs in each VM and securing the guest OS without
relying on the guest OS functionality or an initially secure guest
VM state.

We present a solution that is highly scalable in that it (i) central-
izes guest protection into a security VM, (ii) supports Linux and
Windows operating systems and can be easily extended to support
new operating systems, (iii) does not assume any a-priori semantic
knowledge of the guest, (iv) does not require any a-priori trust as-
sumptions into any state of the guest VM. While other introspection
monitoring solutions exist, to our knowledge none of them moni-
tor guests on the semantic level required to effectively support both
white- and black-listing of kernel functions, or allows to start moni-
toring VMs at any state during run-time, resumed from saved state,
and cold-boot without the assumptions of a secure start state for
monitoring.

Categories and Subject Descriptors
D.4 [Security and Protection]: Access controls

General Terms
Security

Keywords
integrity,outsourcing,virtualization,cloud computing

1. INTRODUCTION
Cloud computing holds significant promise to improve the de-

ployment and management of services by allowing the efficient

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-784-4/09/11 ...$10.00.

sharing of hardware resources. In a typical cloud scenario, a user
uploads the code and data of their workload to a cloud provider,
which in turn runs this workload without knowledge of its code in-
ternals or its configuration. Users benefits from offloading the man-
agement of their workload to the provider, while the provider gains
from efficiently sharing their cloud infrastructure among workloads
from multiple users. This sharing of execution environment to-
gether with the fact that the cloud user lacks control over the cloud
infrastructure raises significant security concerns about the integrity
and confidentiality of a user’s workload. One underlying mecha-
nism enabling cloud computing is virtualization, be it at the hard-
ware, middleware, or application level. While a large amount of
research has focused on improving the security of virtualized envi-
ronments, our ongoing work on building virtualization-aware secu-
rity mechanisms for the cloud has taught us that existing security
techniques do not necessarily apply to the cloud because of the mis-
match in security requirements and threat models.

In cloud computing, security applies to two layers in the soft-
ware stack. First, users’ workloads have to be run isolated from
each other, so that one (malicious) user cannot affect or spy on an-
other user’s workload. Second, each user is also concerned with
the security of their own workload, especially if it is exposed to the
Internet (as in the case of a web service or Internet application).
Many solutions exist for enforcing isolation between workloads,
including the use of virtualization. Securing a particular workload
is a much harder task and requires knowing what code is part of the
workload. For example, in the case of an infrastructure cloud built
on hardware virtualization, the workload is the guest operating sys-
tem (OS) running in a virtual machine (VM). Because we have two
parties involved (a cloud provider that controls the virtual-machine
monitor (VMM) and a cloud user that controls the OS inside the
VM), information about the guest OS is not readily available to the
VMM. Securing the guest OS without relying on the guest OS func-
tionality and without having a priori knowledge of the OS running
in the guest VM falls outside the capabilities of existing solutions.

Current virtualization research assumes that the virtualization
environment, e.g., the VMM, has knowledge of the software being
virtualized, e.g., the guest OS. This knowledge can then be used to
monitor the operation of the guest VM, to determine its integrity
and to correct any observed anomalies. More specifically, all tech-
niques proposing to monitor and enforce the security of an operat-
ing system inside a guest VM rely on several assumptions. First,
the locations of code and data inside of the guest VM are often ex-
pected to be found based on symbol tables, with no verification of
whether the memory layout of the running VM matches the symbol
tables. Any malware that relocated security-sensitive data struc-
tures would fool detectors built on these techniques, and any valid
update of the guest OS by the VM owner would result in numer-
ous false alarms. Second, existing techniques need to monitor the

97

mailto:\protect \T1\textbraceleft mihai,sailer,schales\protect \T1\textbraceright @us.ibm.com
mailto:\protect \T1\textbraceleft dsg,dza\protect \T1\textbraceright @zurich.ibm.com

guest VM from the very moment when the guest OS boots. This is
certainly unfeasible in infrastructure clouds, where the lifetime of a
VM is decoupled from the lifetime of the guest OS running inside
that VM (for example, a VM can start from a snapshot of the guest
OS, in which case the VM starts with the OS fully loaded and run-
ning). These two assumptions make existing virtualization-based
security techniques unsuitable for the cloud setting.

In this paper we describe the architecture we have developed to
secure the customers’ virtualized workloads in a cloud setting. Our
solution, a secure version of virtual-machine introspection, makes
no assumptions about the running state of the guest VM and no as-
sumptions about its integrity. The OS in the guest VM is in an un-
known state when our security mechanism is started, and we moni-
tor it to discover its operation and measure its level of integrity. The
monitoring infrastructure initially assumes only the integrity of the
hardware state, as we presume that an attacker inside a VM can-
not re-program the CPU. Starting from known hardware elements
such as the interrupt descriptor table we explore automatically the
code of the running VM, validating its integrity and that of the data
structures on which it depends. This approach of combining the
discovery of relevant code and data in the guest OS with the in-
tegrity measurements of the same code and data allows us to over-
come the challenges of monitoring an a priori unknown guest OS
without requiring a secure boot.

In this paper we make the following contributions:

• We introduce a new architecture for secure introspection, in which
we combine discovery and integrity measurement of code and
data starting from hardware state. Integrity measurements are
done using whitelists of code executing in the VM, which need
to be generated offline once for every supported operating sys-
tem. This architecture addresses both the semantic gap present
in virtual-machine introspection and the information gap spe-
cific to cloud computing, where no information about the soft-
ware running in the guest VM is available outside the guest VM.
Section 3 provides details of our security-oriented introspection
mechanism.

• We present a technique to learn the exact type and version of
an operating system running inside a guest VM. This technique
builds on our secure-introspection infrastructure. Section 4.1
describes the technique and Section 5.1 evaluates its precision
in comparison to existing OS-discovery tools from the forensic
world.

• As a second application of our secure-introspection infrastruc-
ture, we design a rootkit-detection and -recovery service, which
runs outside the guest VM and uses introspection to identify
anomalous changes to guest-kernel data structures. When a root-
kit is detected, it is rendered harmless by restoring the damaged
kernel data structures to their valid state. Sections 4.2 and 5.2
respectively describe the design of this anti-rootkit service and a
preliminary evaluation that highlights a high detection rate and
lack of false positives.

2. RELATED WORK
Virtual Machine Introspection for security. Virtual machine in-
trospection (VMI) was first proposed in [5] together with Livewire,
a prototype IDS that uses VMI to monitor VMs. XenAccess [2]
is a monitoring library for guest OS running on top Xen that ap-
plies VMI and virtual disk monitoring capabilities to access the
memory state and disk activity of a target OS. Further VMI-based
approaches are virtual machine replay [4] and detecting past intru-
sions [6]. These approaches mandate that the system is clean when
it starts being monitored, which our solution VMs does not require.

Memory Protection. CoPilot [10] is a coprocessor-based kernel
integrity monitor that performs checks on system memory to de-
tect illegal modifications to a running Linux kernel. Paladin [1]
is a framework that exploits virtualization to detect and contain
rootkit attacks by leveraging the notion of Memory Protected Zone
(MPZ) and File Protected Zone (FPZ) that are guarded against ille-
gal accesses. For example, the memory image of the kernel and its
jump tables are in the MPZ, which is set as non-writable. XENKi-
mono [13] detects security policy violations on a kernel at run-time
by checking the kernel from a distinct VM through VMI. It imple-
ments integrity checking, to detect illegal changes to kernel code
and jump-tables, and cross-view detection and applies a whitelist-
based mechanism, such as for checking the list of kernel modules
that can be loaded into the kernel. SecVisor [16] is a tiny hypervi-
sor that ensures that only user-approved code can execute in kernel
mode. SecVisor virtualizes the physical memory, so that it can set
hardware protections over kernel memory, and the CPU’s MMU
and the IOMMU to ensure that it can intercept and check all mod-
ifications to their states. These systems require information about
the guest OS (e.g. location of data structures) to operate. Instead,
our system only relies on hardware state and discovers any other
information safely, before it is used.
Secure Code Execution. Manitou [7] is a system implemented
within a VMM that ensures that a VM can only execute authorized
code by computing the hash of each memory page before execut-
ing the code. Manitou sets the executable bit for the page only if
the hash belongs to a list of authorized hashes. NICKLE [15] is a
lightweight VMM-based system that transparently prevents unau-
thorized kernel code execution for unmodified commodity OSes by
implementing memory shadowing: the VMM maintains a shadow
physical memory for a running VM and it transparently routes at
run-time guest kernel instruction fetches to the shadow memory so
that it can guarantee that only the authenticated kernel code will
be executed. One requirement for this system is that the guest OS
is clean at boot and that is monitored continuously from power-
on and throughout its life-cycle. With our framework, VMs can
be created, cloned, reverted to snapshots and migrated arbitrarily
throughout their lifetime.
Secure Control Flow. Lares [9] is a framework that can control
an application running in an untrusted guest VM by inserting pro-
tected hooks into the execution flow of a process to be monitored.
These hooks transfer control to a security VM that checks the mon-
itored application using VMI and security policies. Since the guest
OS needs to be modified on the fly to insert hooks, this mechanism
may not be applied to some customized OS. KernelGuard [14] is a
prevention solution that blocks dynamic data kernel rootkit attacks
by monitoring kernel memory access using a set of VMM policies.
Petroni and Hicks [11] describe an approach to dynamically moni-
tor kernel integrity based on a property called state-based control-
flow integrity, which is composed of two steps: (i) validate kernel
text, including all static control-flow transfers, by keeping a hash
of the code; (ii) validate dynamic control-flow transfers. The run-
time monitor considers the dynamic state of the kernel and then tra-
verses it starting from a set of roots (kernel’s global variables), and
follows the pointers to locate each function that might be invoked
and it verifies whether these pointers target valid code regions, ac-
cording to the kernel’s control flow graph. This system requires the
kernel source code to apply static analysis to build the kernel’s con-
trol flow graph, whereas in our solution we also check the integrity
of OSes for which source code is not available.

3. OVERVIEW OF OUR ARCHITECTURE
Ensuring integrity in a running operating system is a daunting

98

Assumptions of existing work Points of failure in a cloud environment

System is monitored continuously from power-on and
throughout its lifecycle

VMs can be created, cloned, reverted to snapshots and migrated arbitrarily
throughout their lifetime.

Guest system is clean when it starts being monitored VMs can come into existence already infected or compromised.

Guest system can be modified on the fly to insert
hooks or other monitoring mechanisms

Some customized systems may not be able to be modified, or we may not have
the knowledge necessary to do the modifications.

Guest OS is known in advance VMs may be configured with any one or more guest OSes (e.g., multi-boot VMs).

Guest OS source code is available Most real-world attacks (e.g. rootkits) operate on Windows.

Guest OS information (e.g. location of data struc-
tures) is available

The location of internal data structures is unknown when no source code and no
version information are available.

Malware is known in advance and given as blacklists New malware is created constantly, realistic protection cannot rely on blacklists.

Trusted boot process exists Not all h/w platforms, hypervisors, and OSes support trusted boot.

Table 1: Assumptions made by existing kernel integrity-checking mechanisms.

b) Cloud Environment: Run-time Checking of Guest VMs.a) Lab Environment: One-Time Reference Measurements.

OS Type

Guest

CPU

Registers

Guest

CPU

Registers
Pointers to
Interrupts

Pointers to
Interrupts

Pointers to
System

Calls

Pointers to
System

Calls

Read

Registers1 Determine OS
(policy based)

2 Code Discovery

(OS-type based)
3

Guest Kernel Code

Pointers to
Other Code

Pointers to
Other Code

Validate Guest CodeValidate Guest Code

Create OS + Apps WhitelistCreate OS + Apps Whitelist

Create Malware BlacklistCreate Malware Blacklist

Blacklist

Whitelist

Figure 1: Overview of the integrity discovery system using secure introspection

challenge, and one that has been explored for a long time in the
research community. In a system running on real hardware, all in-
tegrity checks need to be done from within the system being mon-
itored, which inevitably raises the question of how to verify the
integrity of the integrity-monitoring components themselves. Tra-
ditionally, this has been solved by requiring a trusted boot process
to be in place, so that the integrity of the operating system and all
its components can be verified by starting from power on.

With virtualization, it becomes possible to monitor the system
“from the outside,” through the use of virtual-machine introspec-
tion. This improves the situation by moving the monitoring com-
ponents outside the monitored VM and outside the reach of an at-
tacker. In addition to existing challenges of determining the code
and data integrity of a running OS, building introspection-based
monitors poses several new challenges:

• The semantic gap [3] between the level of detail observed by the
monitor and the level of detail needed to make a security decision
can only be bridged through deep knowledge of the guest OS.

• The complex lifecycle of VMs, which can be cloned, suspended,
transferred, restarted, and modified arbitrarily makes any require-
ments for a trusted boot or for continuous monitoring unrealis-
tic. The monitor must determine the integrity of the guest OS by
starting only from the current state, without requiring any his-
tory.

• Operating systems for which source code is not available (in par-
ticular Windows, by far the largest target for rootkits and other
malware) make bridging the semantic gap harder.

Table 1 presents some of the common assumptions made by
existing kernel-integrity-protection work, and sample situations in
which those assumptions break. These assumptions make most ex-
isting kernel-integrity-monitoring systems unable to protect VMs
in a real production cloud environment.
Threat Model. In spite of these challenges, we wish to handle
threats as generic as possible against cloud workloads. We allow
the attacker to control completely the guest virtual machines, both
the user-space applications and the operating-system kernel and as-
sociated drivers. Additionally, we assume that the cloud user (i.e.,
the victim) that owns these guest VMs does not provide the cloud
provider with any information about the type, version, or patch sta-
tus of the software running inside the guest VMs. We make only
two assumptions. First, the hypervisor, which is under the control
of the cloud provider, is correct, trusted, and cannot be breached.
Second, there are virtual machines, again under the control of the
cloud provider, which no attacker can breach. We will use these
VMs (called security VMs) to host our discovery & integrity solu-
tion.
Our Secure-Introspection Technique. Figure 1(b) shows the steps
to discover and verify the integrity of a guest kernel:

99

1. Read the IDT location from the virtual CPU registers.

2. Analyze the contents of the IDT, and using the hash values of in-
memory code blocks and whitelists of known operating systems,
determine the guest OS running in the VM.

3. Using the information about the running OS, use the appropriate
algorithms to discover other operating system structures that are
linked to from the IDT (e.g. system call tables, lists of processes
and loaded kernel modules, etc.)

4. Continuously analyze all the discovered data structures using
the whitelist appropriate for the guest OS, to determine when
they are modified and if the modifications are authorized or not.
Follow the execution of the code to the maximum extent pos-
sible to verify the integrity of as much of the kernel code as
possible, during live execution of the guest VM.

The whitelists used by our approach consist of cryptographic
hashes of normalized executable code found in the kernel (includ-
ing modules and device drivers) of the operating system, plus some
metadata to indicate the type and location of the entry. A whitelist
needs to be produced for each supported OS type and version (or
service pack), and for each whitelisted application, and can be gen-
erated offline (Figure 1(a)) using a clean installation of the OS, us-
ing an automated process. Blacklists are implemented by the same
mechanism.

This algorithm addresses the problems mentioned in Table 1. It
allows us to start monitoring a guest VM at any time in its life cycle
and to monitor it correctly starting at that point, because the discov-
ery of the OS structures depends only on the hardware state, which
can be read at any moment. We can start monitoring a system that is
already infected and we can correctly identify the infection, thanks
to the use of whitelists. We do not need to know the guest OS in
advance, since it is determined on the fly by the analysis, nor do
we need access to the OS source code, making it particularly suit-
able for protecting against real-world attacks against both Windows
and Linux. There is no need to know malicious code in advance.
Thanks to the use of whitelists, any modifications to the guest OS
will be correctly detected (and prevented, depending on policy).
No trusted boot is required in the VMs. By assuming the hypervi-
sor and the Security VM (from which the monitoring is done) are
trusted, we can establish a “dynamic root of integrity” that allows
us to dynamically determine the integrity of all critical components
in the VM. Because secure introspection is non-intrusive, allow-
ing us to examine the state of the virtual hardware in a completely
transparent manner, no modifications need to be made to the guest
system to support monitoring.

4. SECURE INTROSPECTION
To build the functionality required for secure introspection, we

apply an iterative, incremental process of validating the integrity
of kernel code and data. We assume the hardware to be trusted
to perform as specified and to be impervious to attacks.1 This as-
sumption means that the hardware state which by specification de-
fines control-flow transfers has values reflecting the true execution
flow in the system. For example, if entry 0 of the interrupt de-
scription table (IDT) contains an interrupt-gate descriptor with the
value 0xffffabcd, then we know that the code at virtual address 0
xffffabcd will be invoked on a division-by-zero exception. Then
we can bootstrap integrity by (a) validating all of the code pointed
to by hardware state, then (b) identifying the kernel data used by the

1The problem of attacks that overwrite the BIOS, the firmware of
various devices, or the processor microcode is outside the scope of
this work.

validated code, and (c) repeating the process for any code pointed
to by the newly identified kernel data.

A pseudo-code sketch of our algorithm for secure introspection
is given in Algorithm 1. Initially only the hardware “code” (i.e., the
functionality of the hardware, including the microcode) is trusted.
The algorithm relies on three subroutines. First, CFDATAUSED re-
turns the sets of hardware state and memory locations that influ-
ence the control flow out of a given code fragment. As a special
case, CFDATAUSED returns the hardware state used in hardware-
mediated control-flow transfers (e.g., for Intel IA-32 processors this
includes the IDTR register and the msr_sysenter_cs, msr_sys-
enter_eip, and msr_star model-specific registers). For other
code, we derive their dependencies on memory locations a pri-
ori. In the case of indirect control transfers, for which we know
the memory location or register used to direct the control flow but
we do not know its actual value, we use execute triggers (via the
introspection infrastructure) to gain control over the VM right be-
fore the control-flow transfer is about to occur. The second routine,
CODEISVALID, computes a checksum over the code paths starting at
the given location and checks it against a whitelist of known code
checksums. Finally, MONITORFORWRITES simply monitors (via the
introspection infrastructure) the memory regions occupied by the
given code and data. When a write occurs to a monitored region,
the corresponding code and data are scheduled for re-validation by
removing them from the Trusted sets.

Algorithm 1: Secure introspection
TrustedCode ← {hardware} ;
TrustedData ← ∅ ;
while true do

d← ∅ ;
foreach c ∈ TrustedCode do d← d ∪ CFDATAUSED(c) ;
d← d \ TrustedData ;

foreach ptr ∈ d do
if CODEISVALID(code at ptr) then

add code at ptr to TrustedCode ;
add ptr to TrustedData ;

else
raise alarm ;

MONITORFORWRITES(TrustedCode ∪ TrustedData) ;
end

This algorithm allows us to discover the integrity of the kernel
code running inside the guest VM, without any expectations about
the layout of that code. Because we follow the code paths through-
out memory, we validate only the code that is actually run and do
not need to worry about distinguishing between code and data on
mixed-use memory pages.

4.1 Application #1: Guest-OS Identification
Asset identification and inventory is an important part of net-

work and system management. The most common approach is to
use network-based scanning to fingerprint devices connected to the
network, using tools like nmap [8]. However, network-based fin-
gerprinting can be easily defeated by programs running in the de-
vice, and this capability is widely available in programs like hon-
eyd [12].

Using introspection to analyze the state and behavior of virtual
machines provides advantages not only from the security point of
view, but also from the system and network management point of
view. One such advantage is the ability to precisely identify the
operating system running in each VM, independently of the behav-
ior of both user- and system-level programs in the VM. Through

100

experimentation, we established that the first code fragments that
are validated in our secure-introspection algorithm are sufficient to
uniquely identify the guest OS. In other words, the interrupt han-
dlers (as pointed to by the IDT entries) vary significantly across
OS types, versions, and even patch levels. It would be extremely
difficult for an attacker to modify the interrupt handlers to fool the
identification, while at the same time maintaining the guest OS in
functioning state.

4.2 Application #2: Rootkit Detection
The secure-introspection algorithm provides information about

the integrity of the kernel code, validating each code fragment pre-
sent in memory against a whitelist of known code. Additionally, the
validation procedure takes into account the control flow between
code fragments, making sure that authorized code invokes only the
authorized code using the appropriate control flows. Based on this
functionality, we easily build a rootkit detector that works by identi-
fying the presence of unauthorized code in kernel space. Every time
the secure-introspection algorithm cannot validate a code fragment,
it indicates that the kernel integrity might have been breached. De-
pending on the defined security policy, the secure-introspection
monitor can raise alerts on all unknown code fragments, or can use
a database of known malicious code (i.e., a blacklist) to reduce the
number of false positives.

A novel feature we gain for free from secure introspection is the
detection of rootkits (and more generally any malware) that dis-
ables security software present in the guest. Most security software
hooks into kernel data structures that allow it to monitor security-
sensitive operations such as file creation, file modification, or net-
work communication. A malware can make such security software
ineffective by unhooking its code from the kernel structures. Our
introspection-based monitor observes this operation as a change of
kernel pointer from one authorized code fragment to another au-
thorized one. A simple security policy prevents such unhooking at-
tacks by assigning priorities to authorized code, such that the code
of a firewall handler takes precedence over the default code built
into the OS.

5. EVALUATION
We looked to determine the effectiveness of our secure-intros-

pection approach by evaluating two key metrics. First, we com-
pared the accuracy of the OS-identification technique built on se-
cure introspection with existing approaches. Second, we measured
the detection and false-alarm rates of our rootkit detector that uses
secure introspection.

To summarize our results, OS identification has perfect accuracy
even where nmap-style techniques fail, and the anti-rootkit appli-
cation has a high detection rate with no false positives. Overhead
observed during experiments is minimal, with only few seconds of
delay when the secure-introspection engine first connects to a guest
VM and less than 2% overhead in macrobenchmarks. The experi-
ments were performed on a 2.66GHz dual quad-core system with
18GB of memory, running 23 different guest OSes, including Mi-
crosoft Windows XP and 2003 at various service-pack levels, and
multiple releases of RedHat, SuSE, and Ubuntu Linux, in both 32-
and 64-bit versions. We used a commercial hypervisor with intro-
spection capabilities.

5.1 Guest-OS Identification
To test this capability, we set up a test network using honeyd

in a Linux VM, and used both nmap and our approach to identify
the operating system running on it. Honeyd is set up to simulate
two devices: a generic Windows machine with some services (POP,

Figure 2: Experimental setup for guest-OS identification.

Starting Nmap 4.62 (http://nmap.org) at ...
Interesting ports on 192.168.1.1:
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http
110/tcp open pop3
Device type: general purpose
Running (JUST GUESSING) :

Microsoft Windows NT|95|98 (91%)
Aggressive OS guesses:

Microsoft Windows NT 4.0 SP5 - SP6 (91%),
Microsoft Windows 95 (90%), ...

No exact OS matches for host.

Interesting ports on 192.168.1.150:
PORT STATE SERVICE
23/tcp open telnet
Aggressive OS guesses:

Vegastream Vega 400 VoIP Gateway (91%),
D-Link DPR-1260 print server,
or DGL-4300 or DIR-655 router (90%), ...

No exact OS matches for host

Figure 3: Nmap run on honeyd hosts (redacted for space).

Initializing Introspection Manager...
...
waiting for VM to be attached
VM is attached to agent 192.168.1.34:8080
CPU started.
Operating System Detection active.
Reboot Monitoring active.
Guest OS identified as Linux.
guest OS reported: Linux/RHEL Linux 5.2
(32-bit)/32-bit/SMP/0.0.0.0

Figure 4: OS detection using secure introspection.

HTTP, FTP, SSH) and a Cisco router with Telnet enabled. Figure 2
shows the experimental setup.

We ran the experiment by running nmap from a different VM on
both honeyd addresses, at the same time as our OS identification
code was running on the SVM. Nmap identified the honeyd “per-
sonalities” as Windows (with a confidence of 91%) and as different
network devices, respectively. Our code identifed the VM correctly
as Linux. These results are shown in Figures 3 and 4, respectively.

5.2 Rootkit Detection
As an example we use the Trojan W32/Haxdoor.AU, which in-

fects Windows systems. Upon execution, the trojan drops some
files into the Windows System folder (among others: ycsvgd.
sys), and hooks several services in the System Service Descriptor
Table (SSDT) to hide itself and to inject code into the explorer

101

[1] Event source: ARK Engine 1, Pid 32369
[2] Type of event: SSDT, Entry 173
[3] Driver: \??\C:\WINDOWS\system32\ycsvgd.sys
[4] Owner: W32/Haxdoor.AU
[5] ControlFlowHash: [SHA256 hash]
[6] Severity: High
[7] Action: Monitor

Figure 5: Information provided in a rootkit-detection event.

.exe process, code which it later executes as a remote thread.
When activating W32/Haxdoor.AU on our monitored 32-bit Win-
dows XP SP2 VM, the anti-rootkit shows changes to six system
services (NtQueryDirectoryFile, NtOpenProcess, Nt-
QuerySystemInformation, NtCreateProcessEx, Nt-
CreateProcess, and NtOpenThread). We show in Figure 5
the event generated by the anti-rootkit when the NtQuerySys-
temInformation service entry (SSDT Entry #173) is manipu-
lated to illustrate the information it yields. In this example, the en-
try is redirected to point into rootkit code mapped from file ycsvgd
.sys.

Monitoring the kernel control flow semantically enables the anti-
rootkit engine also to ensure that the routines on which firewalls and
antivirus software rely to inspect files and traffic are active and un-
altered. We can detect and alert if a rootkit (cf. Unhooker) succeeds
in unhooking these routines, rendering the running AV or firewall
ineffective. Additionally, the anti-rootkit engine can also restore
the hooks used by the firewall or the AV software, taking care to
perform this step only if the corresponding firewall or AV code is
still present in memory.

We focused our current implementation of the anti-rootkit engine
to kernel-level malware, as monitoring the user space of the guest
VM imposes an excessive overhead. Too many events would need
to be monitored, leading to many expensive context switches to and
from the Security VM. We plan to address this limitation through
the injection into the guest VM of security agents, which would
then run locally to identify user-space malware.

5.3 Performance
To measure the performance of the introspection, we performed

two category of benchmarks. In the first, we measured the perfor-
mance of the introspection layer. In particular, we measured the
rate at which memory could be copied from the monitored guest to
the SVM. In our setting, we could copy 2500 pages/second, which
is well above the 2.8 memory pages inspected on average by the
secure-introspection technique during the steady state of the guest
OS. When the monitor first connects to a guest VM, the number of
pages initially retrieved can reach 200.

For the second test, we measured the actual impact that the mon-
itoring had on performance of the guest. httperf was used to
assess the performance of a web server running on the guest with
monitoring enabled and disabled. Overhead from monitoring using
periodic (one second) checks was less than 2%.

6. CONCLUSIONS AND FUTURE WORK
While clouds are moving workloads closer together to save en-

ergy by better utilizing hardware, they also depend on reliable mal-
ware detection and immediate intrusion response to mitigate the
impact of malicious guests on closely co-located peers. In this
work, we have described how we securely bridged the semantic
gap into the operating system semantics. The presented solution
enables novel security services for fast changing cloud environ-
ments where customers run a variety of guest operating systems,

which need to be monitored closely and quarantined promptly in
case of compromise.

We are currently extending our framework with a mechanism
to transparently inject a context agent from a Security VM into
guest VMs through the introspection interface. While it has to
be protected through introspection by a Security VM, the context
agent can bridge the semantic gap by providing the Security VM
with high-level information about the guest VM, such as the list of
the running processes, open files and network connections, logged
users, running kernel modules and so on. Agent injection holds the
promise of bridging the semantic gap to any level of detail desired
while eliminating most of the monitoring overhead.

7. REFERENCES
[1] A. Baliga, X. Chen, and L. Iftode. Paladin: Automated detection and

containment of rootkit attacks. Department of Computer Science,
Rutgers University, April., 2006.

[2] Bryan D. Payne and Martim Carbone and Wenke Lee. Secure and
flexible monitoring of virtual machines. Computer Security
Applications Conference, Annual, 0:385–397, 2007.

[3] P. M. Chen and B. D. Noble. When virtual is better than real. In
HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, page 133, Washington, DC, USA, 2001. IEEE
Computer Society.

[4] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
Revirt: enabling intrusion analysis through virtual-machine logging
and replay. SIGOPS Oper. Syst. Rev., 36(SI):211–224, 2002.

[5] T. Garfinkel and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In Proceedings of the 2003
Network and Distributed System Symposium, 2003.

[6] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting past
and present intrusions through vulnerability-specific predicates. In
SOSP ’05: Proceedings of the twentieth ACM symposium on
Operating systems principles, pages 91–104, New York, NY, USA,
2005. ACM.

[7] L. Litty and D. Lie. Manitou: a layer-below approach to fighting
malware. In ASID ’06: Proceedings of the 1st workshop on
Architectural and system support for improving software
dependability, pages 6–11, New York, NY, USA, 2006. ACM.

[8] G. F. Lyon. NMAP Network Scanning. Nmap Project, 2009.
[9] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An

architecture for secure active monitoring using virtualization.
Security and Privacy, IEEE Symposium on, 0:233–247, 2008.

[10] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot -
a coprocessor-based kernel runtime integrity monitor. In SSYM’04:
Proceedings of the 13th conference on USENIX Security Symposium,
pages 13–13, Berkeley, CA, USA, 2004. USENIX Association.

[11] N. L. Petroni, Jr. and M. Hicks. Automated detection of persistent
kernel control-flow attacks. In CCS ’07: Proceedings of the 14th
ACM conference on Computer and communications security, pages
103–115, New York, NY, USA, 2007. ACM.

[12] N. Provos. Honeyd — A virtual honeypot daemon. In 10th
DFN-CERT Workshop,, Hamburg, Germany, Feb. 2003.

[13] N. A. Quynh and Y. Takefuji. Towards a tamper-resistant kernel
rootkit detector. In SAC ’07: Proceedings of the 2007 ACM
symposium on Applied computing, pages 276–283, New York, NY,
USA, 2007. ACM.

[14] J. Rhee, R. Riley, D. Xu, and X. Jiang. Defeating Dynamic Data
Kernel Rootkit Attacks via VMM-based Guest-Transparent
Monitoring. In Proceedings of ARES 2009 Conference, 2009. To
appear.

[15] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention of
Kernel Rootkits with VMM-Based Memory Shadowing. In RAID
’08: Proceedings of the 11th international symposium on Recent
Advances in Intrusion Detection, pages 1–20, Berlin, Heidelberg,
2008. Springer-Verlag.

[16] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a tiny
hypervisor to provide lifetime kernel code integrity for commodity
OSes. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pages 335–350, New
York, NY, USA, 2007. ACM.

102

	Introduction
	Related Work
	Overview of Our Architecture
	Secure Introspection
	Application #1: Guest-OS Identification
	Application #2: Rootkit Detection

	Evaluation
	Guest-OS Identification
	Rootkit Detection
	Performance

	Conclusions and Future Work
	References

