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Abstract

To optimally deploy their applications, users of

Infrastructure-as-a-Service clouds are required to eval-

uate the costs and performance of different combina-

tions of cloud configurations to find out which combi-

nation provides the best service level for their specific

application. Unfortunately, benchmarking cloud services

is cumbersome and error-prone. In this paper, we propose

an architecture and concrete implementation of a cloud

benchmarking Web service, which fosters the definition

of reusable and representative benchmarks. In distinction

to existing work, our system is based on the notion of

Infrastructure-as-Code, which is a state of the art concept

to define IT infrastructure in a reproducible, well-defined,

and testable way. We demonstrate our system based on an

illustrative case study, in which we measure and compare

the disk IO speeds of different instance and storage types

in Amazon EC2.

I. Introduction

The idea of cloud computing [3], [4] is a new paradigm,

that has the potential to fundamentally change the IT

industry. In cloud computing, resources, such as virtual

machines (VMs), programming environments, or entire

application services, are acquired on a pay-per-use basis. In

the IaaS model of cloud computing, ”processing, storage,

networks, and other fundamental computing resources”

[18] are acquired on a pay-per-use basis, most commonly

in the form of virtual machines (VMs). The functional

similarities of these services are contrasted by significant

variations in non-functional properties. Service perfor-

mance not only varies between providers, as studies listed

in [8] show, but also for services exhibiting the same spec-

ification [10]. Under these conditions, software engineers

obtain the best results for service selection in terms of

accuracy and relevance by running the raw (i.e., real world)

application in the cloud, as shown for instance in [2],

[16]. However, systematic benchmarking (i.e., performance

testing) of actual applications is practically hampered by

the required monetary and time commitment. Therefore,

representative benchmarks are often chosen to estimate

the performance of the actual application in advance (e.g.,

in [17], [20]).

Systematic cloud benchmarking is an elaborate task

and demands for automation to efficiently conduct vari-

ous benchmarks. Although representative benchmarks are

typically much easier to deploy and execute on cloud

services than actual applications, testing multiple providers

with variable configurations results in a large parame-

ter space to explore, making this kind of benchmarking

still labor intensive. Moreover, in fast moving cloud en-

vironments, continuous reevaluation is inevitable, when

providers change their supported instance types or up-

grade their hardware. Therefore, several research projects

[7], [14], [21] aiming at extensible cloud benchmark

automation were recently introduced. They all facilitate

systematic cloud benchmarking, however, defining bench-

marks is typically a tedious and error-prone activity. It

often involves manually creating VM images for each

benchmark, cloud provider, and region. This increases

the time necessary to benchmark a given configuration,

and reduces comparability and reproducability of results.

Time-consuming benchmark preparation was identified as

recurring problem especially for application benchmarks in

[5] and application deployment in general was mentioned

as a key challenge for cloud computing in [19]. These

challenges led us to the formulation of the following

research questions, which guide this paper.

• RQ1: How can existing IaaS cloud benchmarks be

described in a modular and portable manner?

• RQ2: How can such benchmarks be periodically

scheduled and executed in cloud environments in a

fully reproducible way, and without manual interac-

tion?

We argue that a suitable answer to these questions is to
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adopt the notion of Infrastructure-as-Code (IaC) for bench-

marking, as introduced by the current DevOps trend [13].

In IaC, the complete provisioning and configuration of

various middleware components, most importantly IaaS

VMs, operating systems, and standard software, is cap-

tured in provisioning code. Applying provisioning code

reproducibly converges a system to a desired state, without

the need for manual steps and irrespective of previous

configurations of the same components. This concept is

known as idempotence [12].

We present the Cloud WorkBench (CWB) framework,

which is grounded on IaC to foster simple definition,

execution, and repetition of benchmarks over a wide array

of cloud providers and configurations. Further, we give

an example of the capabilities of CWB by using it to

analyse the disk I/O speed of various standard VM instance

types in Amazon EC2. Disk I/O speed is one of the most

relevant indicators for estimating the performance of On-

Line Transaction Processing (OLTP) applications in the

cloud.

The rest of this paper is structured as follows. We

introduce CWB in Section II. In Section III, we illustrate

the possibilities enabled by CWB with a case study.

We compare CWB to the current state of research in

Section IV. Finally, in Section V, we conclude the paper

with an outlook on future work.

II. Cloud WorkBench Architecture

This section introduces the CWB framework for defin-

ing, scheduling, and executing benchmarks.

A. System Overview

Defining and executing a benchmark in CWB involves

interactions among five main components, as illustrated in

Figure 1.

The (human) experimenter defines benchmarks via the

provisioning service and the CWB web interface, which

subsequently allows one to schedule and manage execu-

tions of benchmarks. The CWB server is the main compo-

nent of the system, consisting of a standard three-tier web

application. It provides the web interface, implements the

business logic in collaboration with external dependencies,

and stores its data (benchmark definitions and benchmark

results) in a relational database. A component of the CWB

server business logic is the scheduler, which periodically

executes the defined benchmarks.

Benchmarks in CWB are typically defined across a

multitude of different IaaS providers, which the CWB

server interacts with over a provider API. Fundamentally,

this API is mostly used to acquire and release cloud

VMs of a given user-defined specification. These cloud
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Fig. 1: Architecture Overview

VMs are the System Under Test (SUT) and execute the

actual benchmarking code. To ease the interaction between

the cloud VMs and the CWB server, a small CWB

client library is installed in each VM. This client library,

along with all other required code (e.g., Linux packages

required by a benchmark, or the benchmark code itself), is

provisioned in the cloud VMs based on IaC configurations

retrieved from a provisioning service. The provisioning

service knows how to prepare a given bare VM to execute

a given benchmark.

All interactions among these components happen typ-

ically over REST services to foster loose coupling and

reusability, with the exception of the interaction between

the CWB server and the cloud VMs. These components

communicate over the standard Linux utilities rsync and

ssh for reasons of simplicity.

B. Benchmark Definition

One core feature of CWB is that benchmarks, including

the cloud configuration they are evaluating, can be defined

entirely in code and by using the CWB web interface,

essentially following the ideas of DevOps and IaC. As

argued in [13], this renders the process reproducible,

modularizable, flexible, and testable using standard soft-

ware engineering techniques. Common components among

benchmarks can be easily shared and provisioning config-

urations from a large provisioning service community can

be reused to efficiently describe the benchmark installation.

Logically, a benchmark definition requires the information

depicted in the simplified UML class diagram in Figure 2.

Every benchmark definition requires one or more client

VMs, which are brought into the expected configuration
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Fig. 2: Structure of a Benchmark Definition

state via executing one or more provisioning configura-

tions. Both, the definition of client VMs and provisioning

configurations, follows the established notions of standard

IaC tooling, e.g., Vagrant1 and Opscode Chef2. In addition,

every benchmark definition requires one or more result

models, which capture the type of outcome a benchmark

will deliver. Finally, benchmarks optionally also contain

a schedule (benchmarks without a schedule are only trig-

gered manually by the experimenter) and a timeout, after

which the execution of a benchmark is terminated no

matter whether it is finished or not.

CWB defines an interface to handle the interaction with

user-defined benchmarks. Each benchmark must imple-

ment a callback (i.e., a piece of code following a defined

convention, which can be invoked by the CWB server)

to start executing. Further, benchmarks should use the

provided CWB client library to notify state updates (e.g.,

when the benchmark run is completed or a failure has oc-

curred, more details on the CWB state model will follow in

Section II-D) and submit results back to the CWB server.

The client library can easily be installed via a pre-defined

provisioning configuration. One additional advantage of

this benchmark definition model is that experimenters can

easily define variations of the same benchmark, e.g., to

execute identical benchmarks against a number of different

cloud VM configurations. This is facilitated by CWB via

features for cloning and modifying existing benchmark

definitions. As the provisioning code is logically separated

from the definition of the cloud VMs, it is hence easy to

set up a large array of benchmarks that evaluate different

cloud configurations, and be confident that the code and

setup of each benchmark is in fact identical except for the

facets that the experimenter specifically wants to vary.

C. Executing Benchmarks

Figure 3 illustrates the interactions when a new bench-

mark execution is triggered by the experimenter or the

scheduler. For simplicity, we focus on a successful ex-

1http://www.vagrantup.com
2http://www.getchef.com

Fig. 3: Executing a Benchmark

ecution here (i.e., neither provisioning nor benchmark

execution fails, and the benchmark finishes before the

defined timeout is exceeded). Firstly, a provider plugin

in the business logic asynchronously acquires resources

(typically cloud VMs, but may also comprise cloud specific

features, such as dedicated block storage or dynamically

mapped IP addresses). As soon as the business logic

successfully managed to establish a remote shell con-

nection to the cloud VM, it starts orchestrating the VM

provisioning via the remote shell connection. Thereby,

each cloud VM fetches its role-dependent configurations

from the provisioning service and applies them. At this

point, the benchmark is entirely prepared for execution and

asynchronously started via a remote shell command. This

command invokes a defined callback on the VM that any

benchmark has to implement. Once the actual benchmark

workload is completed, the benchmark should notify this

state update to the CWB server via the client library. The

benchmark results are then postprocessed, which typically

involves textual result extraction, and submitted to the

CWB server as individual metrics or as a collection of

metrics via a CSV file. After completed work, the cloud

VM notifies the state update to the CWB server to trigger

all resources being released.

D. Benchmark State Model

Every benchmark execution in CWB runs through a

non-trivial state model during their lifetime. Changes in

the state model are triggered either by the CWB server

(for provisioning or resource cleanup related states) or by

the benchmark itself via the client library (for execution-

related states). Each state change is associated with a given

event (e.g., created). Figure 4 presents the benchmark

execution state model.

An execution is created either manually by the ex-

perimenter via the web interface, or automatically via a

schedule. It is then WAITING FOR START PREPARING

until the CWB server has processing capabilities avail-

able to start preparation (i.e., acquiring the VMs from
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Fig. 4: Benchmark Execution State Model

the cloud, and applying provisioning code). Immediately

before starting preparation, the event started preparing is

fired and subsequently, during preparation, the execution

is in the PREPARING state. Unhandled exceptions during

preparation (e.g., if the requested VM fails to launch) cause

the execution to enter the FAILED ON PREPARING state

and release the acquired resources after a configurable

timeout has elapsed. This timeout gives the experimenter

the opportunity to activate the interactive development

mode, fixing any provisioning errors, and reprovision the

cloud VMs again. Interactive development mode intro-

duces additional events and states that are not covered

here as they are mostly relevant during development and

testing of a benchmark. After an execution has finished

preparing, it is WAITING FOR START RUNNING until

the CWB server has free processing capabilities available.

The benchmark run is then started on the cloud VM via a

remote shell command resulting in a started running event

in case of success and failed on running event and state

on failure. Failures on start running and failures described

in the following are treated the same way as failures on

preparing, that is the acquired resources are released after

a timeout has been elapsed.

A successfully started benchmark is RUNNING until a

cloud VM notifies its completion, or the specified timeout

from the benchmark definition has been elapsed. In the

latter case, the execution is being treated as FAILED ON

RUNNING, as it failed to complete within the expected

time duration. The FAILED ON RUNNING state can also

be reached if a cloud VM detects and notifies a failure

by itself, for instance by catching a fatal error during

benchmark execution. After finished running, a cloud VM

may either immediately continue with postprocessing, or

enter the WAITING FOR START POSTPROCESSING state

until the CWB server has processing capabilities available

to trigger postprocessing. This indirection is aimed to

support multi-VM benchmarks, where the responsibilities

for recognizing benchmark completion and postprocessing

are taken by distinctive cloud VMs. Otherwise, postpro-

cessing follows the pattern for asynchronously executed

remote commands (e.g., running the benchmark) and re-

leasing resources follows the pattern for locally executed

commands (e.g., preparing the benchmark). Errors while

releasing resources are particularly problematic, as those

may leave back costly residual cloud VMs, which need to

be destroyed manually by the experimenter. All other error

cases do not have this problem, as CWB will always make

sure to reach a clean state (i.e., all resources are released)

after the execution timeout of a benchmark is elapsed.

Executions without any failures remain in the FINISHED

state after having finished releasing resources. Executions

that exhibit at least one failure show their first failure state

so that the experimenter can easily recognize at what step

an execution has failed.

E. Benchmarking Results

The observed results of a benchmark execution are

represented differently based on the type of their definition.

Currently, CWB supports four common types of results

(nominal, ordinal, interval, and ratio scale, following [22]).

Nominal scale results are stored as String data types

whereas other scale types are represented as floating point

data types. This distinction enables efficient sorting at

database level whereas presenting a uniform interface to

the rest of the application by abstracting implementation

details. The scale type of results also has implications for

any data analysis based on the collected benchmark results.

F. System Implementation

The CWB web application is implemented using the

Ruby on Rails3 framework. One of the fundamental dis-

tinctions between CWB and related work is that we strived

to reuse as much existing DevOps tooling as possible,

so that experimenters can build upon existing community

artifacts (e.g., for provisioning configurations) and knowl-

edge. Hence, we use Cron as scheduler, Vagrant as VM

environment management tool, and Opscode Chef as a

provisioning tool.

3http://rubyonrails.org/



Vagrant was chosen to represent cloud VM configura-

tions using an established Ruby-based DSL. It abstracts

cloud provider APIs, provisioning orchestration, and the

execution of remote shell commands. The DSL exposes all

relevant configuration options in a declarative and easy-to-

understand manner. Vagrant provides open source plugins

for all relevant IaaS providers. The CWB web interface

integrates a minimal web IDE with syntax highlighting

for the Vagrant DSL.

Choosing Opscode Chef with a dedicated Chef server

as provisioning service provides us a flexible way to install

and configure benchmark components in a reusable manner

by exploiting Chef attributes. Experimenters can reuse

software components (e.g., database installation and setup

code) in terms of cookbooks from the worldwide Chef

community, and easily share benchmark infrastructure

code with others. Furthermore, Chef integrates particularly

well with Vagrant. The attribute passing mechanism from

Vagrant to Chef allows to build configurable and thus

reusable benchmark cookbooks. Since both, Chef and

Vagrant, use an internal Ruby DSL, they not only ensure

language consistency across the project but also offer the

capabilities of a fully featured programming language that

is exploited with the use of variables and utility functions.

Fig. 5: Responsive Web Client

The web interface takes advantage of the popular Boot-

strap4 front-end framework and is visually enhanced using

an open source template and custom styling. It provides

basic CRUD operations for the application entities where

meaningful, context dependent tabular listing of entities,

some basic search and filter operations and live log refresh

via Ajax. Figure 5 exemplifies its ability to adapt to

different types of devices by dynamically rearranging the

user interface elements appropriately.

The current version of CWB is available as an open

source project from Github5, including samples and in-

stallation instructions. The CWB web interface itself can

easily be set up in an IaaS cloud using Vagrant.

4http://getbootstrap.com/
5https://github.com/sealuzh/cloud-workbench

III. Case Study

To illustrate the capabilities of CWB, we now present

a small-scale experiment regarding sequential disk write

speed in Amazon EC2. We aimed to answer the following

concrete questions, which could in a similar way also be

asked by a practitioner aiming to deploy an IO-intensive

application, e.g., a database system, on EC2: (1) When is

the sequential disk write speed of larger instance types

better than of smaller instance types? (2) When should

larger instance types be preferred over the better block

storage type? (3) How do instance types and block storage

types influence the variability of the sequential disk write

speed?

A. Study Setup

The data for this study was collected between June

20th and 23th, 2014 distributed over the day. Experiments

were repeated for each setting 8 to 12 times depending on

the observed variability. All experiments were conducted

in the EC2 region Ireland (eu-west-1) using Ubuntu

14.04 images. We conducted our experiments on three

different instance types (t1.micro, m1.small, and

m3.medium). Additionally, 20 GB of Amazon EBS was

provisioned for each instance. For this additional storage,

we chose either the magnetic volumes or the newer (and,

at the time of this writing, twice as expensive) general-

purpose SSD EBS. This information was captured in

Vagrantfiles via the CWB web interface. We used the FIO6

2.1.10 benchmark. The sequential write is performed with

workloads of 1 GiB (∼1074 MB) and 4 GiB (∼4295 MB)

using the default block size of 4 KiB (4096 bytes). Direct

I/O mode is used to assess the raw write performance

ignoring caches. Additionally, the refill buffers mode is

enabled to prevent SSD compression effects.

# Update package index

include_recipe "apt"

# Install the FIO benchmark

# via package manager

package "fio"

A Chef cookbook was created that describes the FIO

benchmark in a configurable manner. The listing above

shows the part of the Chef cookbook being responsible

for benchmark installation. Evidently, the fact that CWB

builds on top of Chef makes this step trivial for the

benchmark developer. This cookbook also generates Ruby

code to start the execution, postprocess the results, submit

the observed metrics, and notify state updates to the CWB

server. Thereby, two metrics are defined and reported.

6http://git.kernel.org/cgit/linux/kernel/git/axboe/fio.git



Firstly, the CPU model name and secondly, a log of the

bandwidth with the resolution of 500 milliseconds.

Vagrant.configure("2") do |config|

config.vm.provider :aws do

|aws, override|

aws.region = "eu-west-1"

aws.ami = "ami-896c96fe"

override.ssh.username = "ubuntu"

aws.instance_type = "m1.small"

end

config.vm.provision "chef_client" do

|chef|

chef.add_recipe

"recipe[fio-benchmark@0.3.0]"

chef.json =

{

"fio" => {

"metric_definition_id"

=> "seq. write",

"config" => {

"size" => "1g",

"refill_buffers" => "1"

}

}

}

end

end

The Vagrantfile above then specifies the desired cloud

resources, references the FIO benchmark Chef cookbook,

and passes optional configuration.

B. Results and Discussion

Next, we briefly discuss the answers we obtained from

the questions raised at the beginning of this section.

1) Difference in Write Performance of Different In-

stance Sizes: Raw sequential write performance increases

by about factor 4 for both EBS types when upgrading

from the smallest instance type in the study (t1.micro)

to the next larger instance type m1.small or the even

larger instance type m3.medium. Figure 6 illustrates this

performance increase, but also reveals that larger instance

types do not necessarily perform better than smaller in-

stance types in all cases.

The large difference between t1.micro and the larger

instance types may be explained with resource sharing

and limited networking capabilities of the t1.micro

instance type. Similar to other newer bursting instance

types, t1.micro shares its single CPU with another

tenant. Therefore, it only gets half of the CPU cycles at

maximum [23], which may affect the disk I/O performance

[11]. Networking performance influences the disk I/O
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performance, as block storage is connected to the VM

instance as network storage. The networking performance

specification provided by Amazon is very vague. Thus,

a potentially significantly slower networking performance

of t1.micro may degrade its disk I/O performance. In

order to assess these assumptions, further studies may

correlate disk I/O performance with CPU and networking

performance.

2) Contrasting Different Instance Types and Different

Storage Options: Larger instance types should be pre-

ferred over the better block storage type when using a

t1.micro instance type. This is shown by Figure 6,

as the absolute performance gain is much higher when

upgrading from t1.micro to m1.small (+2750 KB/s)

than when upgrading from the standard to the general

purpose storage type (+250 KB/s). The combination of

m1.small with standard EBS will be more expensive

than t1.micro with general purpose EBS for block

storage sizes below 350 GBs. However, without consid-

ering I/O operation expenses, the cost/performance ratio

is always better for the m1.small and standard EBS

combination. Disk I/O intensive applications with more

than one million I/O requests per hour can shift this ratio in

favor of the other combination (t1.micro with general

purpose EBS).

On the contrary, the better block storage type should

be preferred over larger instance types when using a

m1.small instance type. General purpose EBS can im-

prove the performance of a m1.small instance type

while the performance remains approximately the same

when upgrading to the larger m3.medium instance type.

Additionally, the cost/performance ratio is always better

with the m1.small and general purpose EBS combina-

tion. Considering the expenses for I/O requests will even



increase this advantage.

These results indicate that standard EBS is limited to

approximately 3500 KB/s whereas the performance of the

t1.micro instance type is restricted for other reasons.

Similarly, general purpose EBS reaches approximately

6000 KB/s with the two larger instance types whereas

its performance is restricted to about 1000 KB/s by the

t1.micro instance type.
3) Performance Variability of Instance and Block Stor-

age Types: In general, the observed disk I/O performance

varies remarkably. However, two patterns were recognized

when comparing the variability across and within distinct

benchmark executions for different types of VM instances

and EBS. Firstly, standard EBS exhibits larger variability

than general purpose SSD EBS for all instance types across

and within distinct benchmark executions, as shown by

Table I. Secondly, the t1.micro instance type exhibits

much larger variability within, but not across, distinct

benchmark executions compared to the larger instance

types. Table I shows this unusually high performance

variability of 20 to 50 % for both EBS types within single

benchmark executions for the t1.micro instance type.

The fact that this extraordinary high variability is

equalized across distinct benchmark executions supports

the assumption that CPU scheduling negatively influences

the performance, as the CPU scheduling effect is only

recognizable in the high resolution performance analysis

conducted within single benchmark executions.

Variability within a single execution is mostly ignored

in literature, and only the average value of single execu-

tions are collected. Although this makes sense in general,

analyzing single executions in detail can help to better

understand the nature of disk I/O performance. Figure 7

compares the sequential write performance over time for

single executions of the instances types t1.micro and

m1.small in combination with standard and general pur-

pose EBS. It illustrates strong oscillation for both instance

and storage types. This common behavior appears in com-

bination with sudden performance drops that may turn out

even stronger and endure even longer than illustrated by

the curve m1.small with standard EBS especially around

minute 15. In addition, this curve exemplifies the unpre-

dictable performance behavior of standard EBS exhibiting

arbitrary ups and downs. On the contrary, the bandwidth

for general purpose SSD EBS typically oscillates around

the mean but still periodically drops in performance.

IV. Related Work

The need for supporting experimenters in conducting

benchmarks in cloud environments has already been rec-

ognized in existing literature. Studies whose goals most

closely match those of CWB include CloudBench [21],

Expertus [14], [15], and Cloud Crawler [7].
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CloudBench [21] proposes a mainly imperative ap-

proach [7] for defining benchmarks at different levels of

abstraction. New benchmarks are defined via a high-level

experiment plan, one or multiple medium-level application

or workload templates, and multiple low-level hook shell

scripts. The authors claim that CloudBench can ”represent

and benchmark almost every observable interaction of a

cloud” [21]. Comprehensive literature review has shown

that CloudBench is currently the most sophisticated and

extensive approach. Especially its capabilities to execute

complex and dynamic scale-out benchmarks as demanded

in [1], [6], [9] makes CloudBench unique. Expertus, in-

troduced in [15] and extended in [14], proposes a code

generation based approach for defining benchmarks. New

benchmarks are defined via XSLT templates that gener-

ate shell scripts for the individual cloud VMs. Expertus

further provides benchmark and workload configurability

via XML, large-scale metric collection and a web interface

with interactive visualization and statistical analysis capa-

bilities. Cloud Crawler [7] proposes a declarative approach

for defining benchmarks. New benchmarks are defined via

its own external domain-specific language using a YAML-

based syntax. Additionally, each benchmark must extend

the Crawler execution engine by implementing a Java

interface.

CWB differentiates from these previous approaches

via its strong IaC core, which makes it easy to define

benchmarks based on standard tooling and concepts, as

well as share benchmark definitions. Further, none of

the previously described approaches is known to offer

provisioning capabilities to the same extent and with the

same modularity as CWB does. There is also no solution

known that integrates periodic scheduling functionality

into a web-based framework. Furthermore, CWB together

with CloudBench are the only frameworks designed for

benchmark extensibility at runtime.



TABLE I: Sequential Write Bandwidth Variability (1 GiB)

t1.micro m1.small m3.medium

Standard EBS 20% (20-50%) 20% (10-20%) 30% (15-60%)

General Purpose SSD EBS 10% (20-40%) 10% (5-15%) 10% (5-10%)

The variability is given as standard deviation in percentage of the mean across and within (in brackets)
distinct benchmark executions.

V. Conclusions

This paper presented a web-based framework called

CWB, which supports experimenters in conducting IaaS

cloud benchmarks. CWB was designed and implemented

to leverage the notion of IaC for cloud benchmarking,

and is used to automate the benchmarking lifecycle from

the definition to the execution of benchmarks. Currently,

we are using CWB to execute extensive benchmarks over

different cloud providers. At the time of this writing, we

have already collected data for close to 20000 benchmark

executions using our CWB tooling, illustrating the sys-

tem’s suitability of real-life use.

As part of our future work, we plan to add support

for additional cloud providers, automate the collection of

common metrics, integrate statistical analysis and visu-

alization capabilities, and facilitate benchmark definition

even more. The ultimate goal of CWB is to support the

entire benchmarking lifecycle, from benchmark definition

to the statistical analysis and visualization of the observed

metrics, via a single web-based toolkit.
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