
This paper is included in the Proceedings of the 

14th USENIX Conference on  

File and Storage Technologies (FAST ’16).

February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the  

14th USENIX Conference on 

File and Storage Technologies 

is sponsored by USENIX

CloudCache: On-demand Flash Cache Management 
for Cloud Computing

Dulcardo Arteaga and Jorge Cabrera, Florida International University; Jing Xu, VMware Inc.; 

Swaminathan Sundararaman, Parallel Machines; Ming Zhao, Arizona State University

https://www.usenix.org/conference/fast16/technical-sessions/presentation/arteaga



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 355

CloudCache: On-demand Flash Cache Management for Cloud Computing

Dulcardo Arteaga Jorge Cabrera

Florida International University

Jing Xu

VMware Inc.

Swaminathan Sundararaman

Parallel Machines

Ming Zhao

Arizona State University

Abstract

Host-side flash caching has emerged as a promising so-

lution to the scalability problem of virtual machine (VM)

storage in cloud computing systems, but it still faces se-

rious limitations in capacity and endurance. This pa-

per presents CloudCache, an on-demand cache manage-

ment solution to meet VM cache demands and minimize

cache wear-out. First, to support on-demand cache allo-

cation, the paper proposes a new cache demand model,

Reuse Working Set (RWS), to capture only the data with

good temporal locality, and uses the RWS size (RWSS)

to model a workload’s cache demand. By predicting the

RWSS online and admitting only RWS into the cache,

CloudCache satisfies the workload’s actual cache de-

mand and minimizes the induced wear-out. Second, to

handle situations where a cache is insufficient for the

VMs’ demands, the paper proposes a dynamic cache mi-

gration approach to balance cache load across hosts by

live migrating cached data along with the VMs. It in-

cludes both on-demand migration of dirty data and back-

ground migration of RWS to optimize the performance

of the migrating VM. It also supports rate limiting on the

cache data transfer to limit the impact to the co-hosted

VMs. Finally, the paper presents comprehensive exper-

imental evaluations using real-world traces to demon-

strate the effectiveness of CloudCache.

1 Introduction

Host-side flash caching employs flash-memory-based

storage on a virtual machine (VM) host as the cache for

its remote storage to exploit the data access locality and

improve the VM performance. It has received much at-

tention in recent years [10, 1, 14, 7], which can be at-

tributed to two important reasons. First, as the level of

consolidation continues to grow in cloud computing sys-

tems, the scalability of shared VM storage servers be-

comes a serious issue. Second, the emergence of flash-

memory-based storage has made flash caching a promis-

ing option to address this IO scalability issue, because

accessing a local flash cache is substantially faster than

accessing the remote storage across the network.

However, due to the capacity and cost constraints of

flash devices, the amount of flash cache that can be em-

ployed on a host is much limited compared to the dataset

sizes of the VMs, particularly considering the increasing

data intensity of the workloads and increasing number

of workloads consolidated to the host via virtualization.

Therefore, to fulfill the potential of flash caching, it is

important to allocate the shared cache capacity among

the competing VMs according to their actual demands.

Moreover, flash devices wear out by writes and face se-

rious endurance issues, which are in fact aggravated by

the use for caching because both the writes inherent in

the workload and the reads that miss the cache induce

wear-out [33, 15]. Therefore, the cache management also

needs to be careful not to admit data that are not useful to

workload performance and only damage the endurance.

We propose CloudCache to address the above issues

in flash caching through on-demand cache management.

Specifically, it answers two challenging questions. First,

how to allocate a flash cache to VMs according to their

cache demands? Flash cache workloads depend heav-

ily on the dynamics in the upper layers of the IO stack

and are often unfeasible to profile offline. The classic

working set model studied for processor and memory

cache management can be applied online, but it does

not consider the reuse behavior of accesses and may

admit data that are detrimental to performance and en-

durance. To address this challenge, we propose a new

cache demand model, Reuse Working Set (RWS), to cap-

ture the data that have good temporal locality and are

essential to the workload’s cache hit ratio, and use the

RWS size (RWSS), to represent the workload’s cache de-

mand. Based on this model, we further use prediction

methods to estimate a workload’s cache demand online

and use new cache admission policies to admit only the

RWS into cache, thereby delivering a good performance

to the workload while minimizing the wear-out. Cloud-



356 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Cache is then able to allocate the shared cache capacity

to the VMs according to their actual cache demands.

The second question is how to handle situations where

the VMs’ cache demands exceed the flash cache’s capac-

ity. Due to the dynamic nature of cloud workloads, such

cache overload situations are bound to happen in practice

and VMs will not be able to get their desired cache capac-

ity. To solve this problem, we propose a dynamic cache

migration approach to balance cache load across hosts

by live migrating the cached data along with the VMs. It

uses both on-demand migration of dirty data to provide

zero downtime to the migrating VM, and background mi-

gration of RWS to quickly warmup the cache for the VM,

thereby minimizing its performance impact. Meanwhile,

it can also limit the data transfer rate for cache migration

to limit the impact to other co-hosted VMs.

We provide a practical implementation of CloudCache

based on block-level virtualization [13]. It can be seam-

lessly deployed onto existing cloud systems as a drop-

in solution and transparently provide caching and on-

demand cache management. We evaluate it using a set

of long-term traces collected from real-world cloud sys-

tems [7]. The results show that RWSS-based cache allo-

cation can substantially reduce cache usage and wear-out

at the cost of only small performance loss in the worst

case. Compared to the WSS-based cache allocation, the

RWSS-based method reduces a workload’s cache usage

by up to 76%, lowers the amount of writes sent to cache

device by up to 37%, while delivering the same IO la-

tency performance. Compared to the case where the VM

can use the entire cache, the RWSS-based method saves

even more cache usage while delivering an IO latency

that is only 1% slower at most. The results also show

that the proposed dynamic cache migration reduces the

VM’s IO latency by 93% compared to no cache migra-

tion, and causes at most 21% slowdown to the co-hosted

VMs during the migration. Combining these two pro-

posed approaches, CloudCache is able to improve the av-

erage hit ratio of 12 concurrent VMs by 28% and reduce

their average 90th percentile IO latency by 27%, com-

pared to the case without cache allocation.

To the best of our knowledge, CloudCache is the first

to propose the RWSS model for capturing a workload’s

cache demand from the data with good locality and for

guiding the flash cache allocation to achieve both good

performance and endurance. It is also the first to propose

dynamic cache migration for balancing the load across

distributed flash caches and with optimizations to mini-

mize the impact of cache data transfer. While the discus-

sion in the paper focuses on flash-memory-based caches,

we believe that the general CloudCache approach is also

applicable to new nonvolatile memory (NVM) technolo-

gies (e.g., PCM, 3D Xpoint) which will likely be used as

a cache layer, instead of replacing DRAM, in the storage

hierarchy and will still need on-demand cache allocation

to address its limited capacity (similarly to or less than

flash) and endurance (maybe less severe than flash).

The rest of the paper is organized as follows: Section

2 and Section 3 present the motivations and architecture

of CloudCache, Section 4 and Section 5 describe the on-

demand cache allocation and dynamic cache migration

approaches, Section 6 discusses the integration of these

two approaches, Section 7 examines the related work,

and Section 8 concludes the paper.

2 Motivations

The emergence of flash-memory-based storage has

greatly catalyzed the adoption of a new flash-based

caching layer between DRAM-based main memory and

HDD-based primary storage [10, 1, 7, 24]. It has the

potential to solve the severe scalability issue that highly

consolidated systems such as public and private cloud

computing systems are facing. These systems often use

shared network storage [20, 5] to store VM images for

the distributed VM hosts, in order to improve resource

utilization and facilitate VM management (including live

VM migration [11, 25]). The availability of a flash cache

on a VM host can accelerate the VM data accesses using

data cached on the local flash device, which are much

faster than accessing the hard-disk-based storage across

network. Even with the increasing adoption of flash de-

vices as primary storage, the diversity of flash technolo-

gies allows the use of a faster and smaller flash device

(e.g., single-level cell flash) as the cache for a slower but

larger flash device (e.g., multi-level cell flash) used as

primary storage.

To fulfill the potential of flash caching, it is crucial

to employ on-demand cache management, i.e., allocat-

ing shared cache capacity among competing workloads

based on their demands. The capacity of a commodity

flash device is typically much smaller than the dataset

size of the VMs on a single host. How the VMs share

the limited cache capacity is critical to not only their per-

formance but also the flash device endurance. On one

hand, if a workload’s necessary data cannot be effec-

tively cached, it experiences orders of magnitude higher

latency to fetch the missed data from the storage server

and at the same time slows down the server from servic-

ing the other workloads. On the other hand, if a workload

occupies the cache with unnecessary data, it wastes the

valuable cache capacity and compromises other work-

loads that need the space. Unlike in CPU allocation

where a workload cannot use more than it needs, an ac-

tive cache workload can occupy all the allocated space

beyond its actual demand, thereby hurting both the per-

formance of other workloads and the endurance of flash

device.

S-CAVE [22] and vCacheShare [24] studied how to



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 357

Figure 1: Architecture of CloudCache

optimize flash cache allocation according to a certain cri-

teria (e.g., a utility function), but they cannot estimate the

workloads’ actual cache demands and thus cannot meet

such demands for meeting their desired performance.

HEC [33] and LARC [15] studied cache admission poli-

cies to reduce the wear-out damage caused by data with

weak temporal locality, but they did not address the

cache allocation problem. Bhagwat et al. studied how

to allow a migrated VM to access the cache on its previ-

ous host [9], but they did not consider the performance

impact to the VMs. There are related works studying

other orthogonal aspects of flash caching, including write

policies [17], deduplication/compression [21], and other

design issues [14, 7]. A detailed examination of related

work is presented in Section 7.

3 Architecture

CloudCache supports on-demand cache management

based on a typical flash caching architecture illustrated

in Figure 1. The VM hosts share a network storage

for storing the VM disks, accessed through SAN or IP

SAN [20, 5]. Every host employs a flash cache, shared

by the local VMs, and every VM’s access to its remote

disk goes through this cache. CloudCache provides on-

demand allocation of a flash cache to its local VMs and

dynamic VM and cache migration across hosts to meet

the cache demands of the VMs. Although our discus-

sions in this paper focus on block-level VM storage and

caching, our approaches also work for network file sys-

tem based VM storage, where CloudCache will manage

the allocation and migration for caching a VM disk file

in the same fashion as caching a VM’s block device. A

VM disk is rarely write-shared by multiple hosts, but if it

does happen, CloudCache needs to employ a cache con-

sistency protocol [26], which is beyond the scope of this

paper.

CloudCache supports different write caching policies:

(1) Write-invalidate: The write invalidates the cached

block and is submitted to the storage server; (2) Write-

through: The write updates both the cache and the stor-

age server; (3) Write-back: The write is stored in the

cache immediately but is submitted to the storage server

Trace Time (days) Total IO (GB) WSS (GB) Write (%)

Webserver 281 2,247 110 51

Moodle 161 17,364 223 13

Fileserver 152 57,887 1037 22

Table 1: Trace statistics

later when it is evicted or when the total amount of

dirty data in the cache exceeds a predefined threshold.

The write-invalidate policy performs poorly for write-

intensive workloads. The write-through policy’s perfor-

mance is close to write-back when the write is submit-

ted to the storage server asynchronously and the server’s

load is light [14]; otherwise, it can be substantially worse

than the write-back policy [7]. Our proposed approaches

work for all these policies, but our discussions focus on

the write-back policy due to limited space for our presen-

tation. The reliability and consistency of delayed writes

in write-back caching are orthogonal issues to this pa-

per’s focus, and CloudCache can leverage the existing

solutions (e.g., [17]) to address them.

In the next few sections, we introduce the two compo-

nents of CloudCache, on-demand cache allocation and

dynamic cache migration. As we describe the designs,

we will also present experimental results as supporting

evidence. We consider a set of block-level IO traces [7]

collected from a departmental private cloud as represen-

tative workloads. The characteristics of the traces are

summarized in Table 1. These traces allow us to study

long-term cache behavior, in addition to the commonly

used traces [4] which are only week-long.

4 On-demand Cache Allocation

CloudCache addresses two key questions about on-

demand cache allocation. First, how to model the cache

demand of a workload? A cloud workload includes IOs

with different levels of temporal locality which affect the

cache hit ratio differently. A good cache demand model

should be able to capture the IOs that are truly impor-

tant to the workload’s performance in order to maximize

the performance while minimizing cache utilization and

flash wear-out. Second, how to use the cache demand

model to allocate cache and admit data into cache? We

need to predict the workload’s cache demand accurately

online in order to guide cache allocation, and admit only

the useful data into cache so that the allocation does not

get overflown. In this section, we present the Cloud-

Cache’s solutions to these two questions.

4.1 RWS-based Cache Demand Model

Working Set (WS) is a classic model often used to es-

timate the cache demand of a workload. The working

set W S(t,T) at time t is defined as the set of distinct

(address-wise) data blocks referenced by the workload

during a time interval [t −T, t] [12]. This definition uses



358 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

 0

 25

 50

 75

 100
H

it
R

a
ti
o
 (

%
)

 0

 10

 20

 30

C
a
c
h
e

U
s
a
g
e
 (

%
)

 0
 15
 30
 45
 60
 75
 90

 0  1  2  3  4  5  6  7  8  9

F
la

s
h

W
ri
te

 (
%

)

Reuse Threshold

Figure 2: RWS analysis using different values of N

the principle of locality to form an estimate of the set of

blocks that the workload will access next and should be

kept in the cache. The Working Set Size (WSS) can be

used to estimate the cache demand of the workload.

Although it is straightforward to use WSS to estimate

a VM’s flash cache demand, a serious limitation of this

approach is that it does not differentiate the level of tem-

poral locality of the data in the WS. Unfortunately, data

with weak temporal locality, e.g., long bursts of sequen-

tial accesses, are abundant at the flash cache layer, as

they can be found in many types of cloud workloads,

e.g., when the guest system in a VM performs a weekly

backup operation. Caching these data is of little benefit

to the application’s performance, since their next reuses

are too far into the future. Allowing these data to be

cached is in fact detrimental to the cache performance,

as they evict data blocks that have better temporal local-

ity and are more important to the workload performance.

Moreover, they cause unnecessary wear-out to the flash

device with little performance gain in return.

To address the limitation of the WS model, we pro-

pose a new cache-demand model, Reuse Working Set,

RWSN(t,T ), which is defined as the set of distinct

(address-wise) data blocks that a workload has reused at

least N times during a time interval [t −T, t]. Compared

to the WS model, RWS captures only the data blocks

with a temporal locality that will benefit the workload’s

cache hit ratio. When N = 0 RWS reduces to WS. We

then propose to use Reuse Working Set Size (RWSS) as

the estimate of the workload’s cache demand. Because

RWSS disregards low-locality data, it has the potential

to more accurately capture the workload’s actual cache

demand, and reduce the cache pollution and unnecessary

wear-out caused by such data references.

To confirm the effectiveness of the RWS model, we

analyze the MSR Cambridge traces [4] with different val-

ues of N and evaluate the impact on cache hit ratio, cache

usage—the number of cached blocks vs. the number of

IOs received by cache, and flash write ratio—the num-

ber of writes sent to cache device vs. the number of IOs

received by cache. We assume that a data block is ad-

mitted into the cache only after it has been accessed N

times, i.e., we cache only the workload’s RWSN . Fig-

ure 2 shows the distribution of these metrics from the 36

MSR traces using box plots with whiskers showing the

quartiles. Increasing N from 0, when we cache the WS,

to 1, when we cache the RWS1, the median hit ratio is re-

duced by 8%, but the median cache usage is reduced by

82%, and the amount of flash writes is reduced by 19%.

This trend continues as we further increase N.

These results confirm the effectiveness of using RWSS

to estimate cache demand—it is able to substantially re-

duce a workload’s cache usage and its induced wear-out

at a small cost of hit ratio. A system administrator can

balance performance against cache usage and endurance

by choosing the appropriate N for the RWS model. In

general, N = 1 or 2 gives the best tradeoff between these

objectives. (Similar observations can be made for the

traces listed in Table 1.) In the rest of this paper, we use N

= 1 for RWSS-based cache allocation. Moreover, when

considering a cloud usage scenario where a shared cache

cannot fit the working-sets of all the workloads, using the

RWS model to allocate cache capacity can achieve bet-

ter performance because it prevents the low-locality data

from flushing the useful data out of the cache.

In order to measure the RWSS of a workload, we need

to determine the appropriate time window to observe the

workload. There are two relevant questions here. First,

how to track the window? In the original definition of

process WS [12], the window is set with respect to the

process time, i.e., the number of accesses made by the

process, instead of real time. However, it is difficult to

use the number of accesses as the window to measure a

VM’s WS or RWSS at the flash cache layer, because the

VM can go idle for a long period of time and never fill up

its window, causing the previously allocated cache space

to be underutilized. Therefore, we use real-time-based

window to observe a workload’s RWSS.

The second question is how to decide the size of the

time window. If the window is set too small, the ob-

served RWS cannot capture the workload’s current local-

ity, and the measured RWSS underestimates the work-

load’s cache demand. If the window is set too large,

it may include the past localities that are not part of

the workload’s current behavior, and the overestimated

RWSS will waste cache space and cause unnecessary

wear-out. Our solution to this problem is to profile the

workload for a period of time, and simulate the cache

hit ratio when we allocate space to the workload based

on its RWSS measured using different sizes of windows.

We then choose the window at the “knee point” of this



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 359

 30

 45

 60

 75

 90
H

it
 R

a
ti
o
 (

%
)

 0

 25

 50

 75

 100

 125

 6 12  24  48  72  96  120  144  168

A
llo

c
a
ti
o
n
 (

G
B

)

Window Size (Hours)

WSS RWSS

Figure 3: Time window analysis for the Moodle trace

hit ratio vs. window size model, i.e., the point where the

hit ratio starts to flatten out. This profiling can be per-

formed periodically, e.g., bi-weekly or monthly, to adjust

the choice of window size online.

We present an example of estimating the window size

using two weeks of the Moodle trace. Figure 3 shows

that the hit ratio increases rapidly as the window size in-

creases initially. After the 24-hour window size, it starts

to flatten out, while the observed RWSS continues to in-

crease. Therefore, we choose between 24 to 48 hours as

the window size for measuring the RWSS of this work-

load, because a larger window size will not get enough

gain in hit ratio to justify the further increase in the work-

load’s cache usage, if we allocate the cache based on the

observed RWSS. In case of workloads for which the hit

ratio keeps growing slowly with increasing window size

but without showing an obvious knee point, the window

size should be set to a small value because it will not af-

fect the hit ratio much but can save cache space for other

workloads with clear knee points.

4.2 Online Cache Demand Prediction

The success of RWSS-based cache allocation also de-

pends on whether we can accurately predict the cache

demand of the next time window based on the RWSS val-

ues observed from the previous windows. To address this

problem, we consider the classic exponential smoothing

and double exponential smoothing methods. The former

requires a smoothing parameter α , and the latter requires

an additional trending parameter β . The values of these

parameters can have a significant impact on the predic-

tion accuracy. We address this issue by using the self-

tuning versions of these prediction models, which esti-

mate these parameters based on the error between the

predicted and observed RWSS values.

To further improve the robustness of the RWSS pre-

diction, we devise filtering techniques which can dampen

the impact of outliers in the observed RWSS values when

predicting RWSS. If the currently observed RWSS is λ
times greater than the average of the previous n observed

values (including the current one), this value is replaced

with the average. For example, n is set to 20 and λ is set

to 5 in our experiments. In this way, an outlier’s impact

0.0

0.8

1.6

2.4

3.2

4.0

 0  2  4  6  8  10  12  14  16  18  20

#
 o

f 
U

n
iq

u
e

A
d
d
re

s
s
e
s
 (

M
)

Time (Days)

WSS RWSS

(a) Observed cache demand

0.0

0.4

0.8

1.2

1.6

2.0

 0  2  4  6  8  10  12  14  16  18  20

P
re

d
ic

te
d

C
a
c
h
e
 D

e
m

a
n
d
 (

M
)

Time (Days)

WSS RWSS RWSS+Filter

(b) Predicted demand

Figure 4: RWSS-based cache demand prediction

in the prediction is mitigated.

Figure 4 shows an example of the RWSS prediction

for three weeks of the Webserver trace. The recurring

peaks in the observed WSS in Figure 4a are produced

by a weekly backup task performed by the VM, which

cause the predicted WSS in Figure 4b to be substantially

inflated. In comparison, the RWSS model automatically

filters out these backup IOs and the predicted RWSS is

only 26% of the WSS on average for the whole trace.

The filtering technique further smooths out several out-

liers (e.g., between Day 4 and 5) which are caused by

occasional bursts of IOs that do not reflect the general

trend of the workload.

4.3 Cache Allocation and Admission

Based on the cache demands estimated using the RWSS

model and prediction methods, the cache allocation to

the concurrent VMs is adjusted accordingly at the start

of every new time window—the smallest window used

to estimate the RWSS of all the VMs. The allocation

of cache capacity should not incur costly data copying

or flushing. Hence, we consider replacement-time en-

forcement of cache allocation, which does not physically

partition the cache across VMs. Instead, it enforces log-

ical partitioning at replacement time: a VM that has not

used up its allocated share takes its space back by replac-

ing a block from VMs that have exceeded their shares.

Moreover, if the cache is not full, the spare capacity can

be allocated to the VMs proportionally to their predicted

RWSSes or left idle to reduce wear-out.

The RWSS-based cache allocation approach also re-

quires an RWSS-based cache admission policy that ad-

mits only reused data blocks into the cache; otherwise,

the entire WS will be admitted into the cache space allo-

cated based on RWSS and evict useful data. To enforce

this cache admission policy, CloudCache uses a small



360 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

portion of the main memory as the staging area for ref-

erenced addresses, a common strategy for implementing

cache admission [33, 15]. A block is admitted into the

cache only after it has been accessed N times, no matter

whether they are reads or writes. The size of the staging

area is bounded and when it gets full the staged addresses

are evicted using LRU. We refer to this approach of stag-

ing only addresses in main memory as address staging.

CloudCache also considers a data staging strategy for

cache admission, which stores both the addresses and

data of candidate blocks in the staging area and manages

them using LRU. Because main memory is not persis-

tent, so more precisely, only the data returned by read

requests are staged in memory, but for writes only their

addresses are staged. This strategy can reduce the misses

for read accesses by serving them from the staging area

before they are admitted into the cache. The tradeoff is

that because a data block is much larger than an address

(8B address per 4KB data), for the same staging area,

data staging can track much less references than address

staging and may miss data with good temporal locality.

To address the limitations of address staging and data

staging and combine their advantages, CloudCache con-

siders a third hybrid staging strategy in which the stag-

ing area is divided to store addresses and data, and the

address and data partitions are managed using LRU sep-

arately. This strategy has the potential to reduce the read

misses for blocks with small reuse distances by using

data staging and admitting the blocks with relative larger

reuse distances by using address staging.

4.4 Evaluation
The rest of this section presents an evaluation of

the RWSS-based on-demand cache allocation approach.

CloudCache is created upon block-level virtualization by

providing virtual block devices to VMs and transparently

caching their data accesses to remote block devices ac-

cessed across the network (Figure 1). It includes a ker-

nel module that implements the virtual block devices,

monitors VM IOs, and enforces cache allocation and ad-

mission, and a user-space component that measures and

predicts RWSS and determines the cache shares for the

VMs. The kernel module stores the recently observed

IOs in a small circular buffer for the user-space compo-

nent to use, while the latter informs the former about the

cache allocation decisions. The current implementation

of CloudCache is based on Linux and it can be seam-

lessly deployed as a drop-in solution on Linux-based en-

vironments including VM systems that use Linux-based

IO stack [8, 2]. We have also created a user-level cache

simulator of CloudCache to facilitate the cache hit ratio

and flash write ratio analysis, but we use only the real

implementation for measuring real-time performance.

The traces described in Section 3 are replayed on a real

iSCSI-based storage system. One node from a compute

 0

 20

 40

 60

 80

 100

Hit Ratio (%)

5
7
.5

6
5
7
.6

7
5
7
.6

7
5
7
.7

3
5
7
.6

6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Allocation (GB)

 0

 20

 40

 60

 80

 100

Prediction Error (%)

Last Value
DExp Self

Exp Self
DExp Fixed

Exp Fixed

Figure 5: Prediction accuracy

cluster is set up as the storage server and the others as the

clients. Each node has two six-core 2.4GHz Xeon CPUs

and 24GB of RAM. Each client node is equipped with

the CloudCache modules, as part of the Dom0 kernel,

and flash devices (Intel 120GB MLC SATA-interface) to

provide caching to the hosted Xen VMs. The server node

runs the IET iSCSI server to export the logical volumes

stored on a 1TB 7.2K RPM hard disk to the clients via a

Gigabit Ethernet. The clients run Xen 4.1 to host VMs,

and each VM is configured with 1 vCPU and 2GB RAM

and runs kernel 2.6.32. The RWSS window size for the

Webserver, Moodle, and Fileserver traces are 48, 24, and

12 hours, respectively. Each VM’s cache share is man-

aged using LRU internally, although other replacement

policies are also possible.

4.4.1 Prediction Accuracy

In the first set of experiments we evaluate the differ-

ent RWSS prediction methods considered in Section 4.2:

(1) Exp fixed, exponential smoothing with α = 0.3, (2)

Exp self, a self-tuning version of exponential smooth-

ing, (3) DExp fixed, double-exponential smoothing with

α = 0.3 and β = 0.3, (4) DExp self, a self-tuning version

of double-exponential smoothing, and (5) Last value, a

simple method that uses the last observed RWSS value

as predicted value for the new window.

Figure 5 compares the different prediction methods

using three metrics: (1) hit ratio, (2) cache alloca-

tion, and (3) prediction error—the absolute value of the

difference between the predicted RWSS and observed

RWSS divided by the observed RWSS. Prediction error

affects both of the other two metrics—under-prediction

increases cache misses and over-prediction uses more

cache. The figure shows the average values of these met-

rics across all the time windows of the entire 9-month

Webserver trace.

The results show that the difference in hit ratio is small

among the different prediction methods but is consider-

able in cache allocation. The last value method has the

highest prediction error, which confirms the need of pre-

diction techniques. The exponential smoothing methods

have the lowest prediction errors, and Exp Self is more

preferable because it automatically trains its parameter.

We believe that more advanced prediction methods are

possible to further improve the prediction accuracy and



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 361

45
48
51
54
57
60
63
66

0.0 0.2 0.4 0.6

Stage Area Size (GB)

Hit Ratio (%)

(a) Staging area size

 0

 20

 40

 60

 80

 100

Ref Hyb Dat Ref Hyb Dat Ref Hyb Dat

Webserver        Moodle         Fileserver

Hit Ratio (%)

Write Hit
Read Hit

(b) Staging strategies

Figure 6: Staging strategy analysis

 0

 20

 40

 60

 80

 100

Web Moodle File
server

Hit Ratio (%)

 0

 10

 20

 30

 40

 50

Web Moodle File
server

Allocation (GB)

 0

 20

 40

 60

 80

 100

Web Moodle File
server

Flash Write Ratio (%)

RWSS HEC TC+SSEQR

Figure 7: Comparison to HEC

our solution can be extended to run multiple prediction

methods at the same time and choose the best one at run-

time. But this simple smoothing-based method can al-

ready produce good results, as shown in the following

experiments which all use Exp Self to predict cache de-

mand.

4.4.2 Staging Strategies

In the second set of experiments, we evaluate Cloud-

Cache’s staging strategies. First, we study the impact of

the staging area size. In general, it should be decided ac-

cording to the number of VMs consolidated to the same

cache and the IO intensity of their workloads. There-

fore, our approach is to set the total staging area size as

a percentage, e.g., between 0.1% and 1%, of the flash

cache size, and allocate the staging area to the workloads

proportionally to their flash cache allocation. Figure 6a

gives an example of how the staging area allocation af-

fects the Webserver workload’s hit ratio when using ad-

dress staging. The results from data staging are similar.

In the rest of the paper, we always use 256MB as the total

staging area size for RWSS-based cache allocation. Note

that we need 24B of the staging space for tracking each

address, and an additional 4KB if its corresponding data

is also staged.

Next we compare the address, data, and hybrid stag-

ing (with a 1:7 ratio between address and data staging

space) strategies with the same staging area size in Fig-

ure 6b. Data staging achieves a better read hit ratio than

address staging by 67% for the Webserver trace but it

loses to address staging by 9% for Moodle. These results

confirm our discussion in Section 4.3 about the trade-

off between these strategies. In comparison, the hybrid

staging combines the benefits of these two and is con-

sistently the best for all traces. We have tested different

ratios for hybrid staging, and our results show that the

hit ratio difference is small (<1%). But a larger address

staging area tracks a longer history and admits more data

into the cache, which results in more cache usage and

flash writes. Therefore, in the rest of this paper, we al-

ways use hybrid staging with 1:7 ratio between address

and data staging space for RWSS-based allocation.

We also compare to the related work High Endurance

Cache (HEC) [33] which used two cache admission tech-

niques to address flash cache wear-out and are closely

related to our staging strategies. HEC’s Touch Count

(TC) technique uses an in-memory bitmap to track all

the cache blocks (by default 4MB) and admit only reused

blocks into cache. In comparison, CloudCache tracks

only a small number of recently accessed addresses to

limit the memory usage and prevent blocks accessed too

long ago from being admitted into cache. HEC’s Selec-

tive Sequential Rejection (SSEQR) technique tracks the

sequentiality of accesses and rejects long sequences (by

default any longer-than-4MB sequence). In comparison,

CloudCache uses the staging area to automatically filter

out long scan sequences.

Because HEC did not consider on-demand cache allo-

cation, we implemented it by using TC to predict cache

demand and using both TC and SSEQR to enforce cache

admission. Figures 7 shows the comparison using the

different traces, which reveals that on average HEC al-

locates up to 3.7x more cache than our RWSS-based

method and causes up to 29.2% higher flash write ratio—

the number of writes sent to cache device vs. the number

of IOs received by cache. In return, it achieves only up

to 6.4% higher hit ratio. The larger cache allocation in

HEC is because it considers all the historical accesses

when counting reuses, whereas the RWSS method con-

siders only the reuses occurred in the recent history—the

previous window. (If we were able to apply the same

cache allocation given by the RWSS method while us-

ing HEC’s cache admission method, we would achieve

a much lower hit ratio, e.g., 68% lower for Moodle, and

still a higher flash write ratio, e.g., 69% higher for Moo-

dle.) The result also confirms that the RWSS method is

able to automatically reject scan sequences (e.g., it re-

jects on average 90% of the IOs during the backup pe-

riods), whereas HEC needs to explicitly detect scan se-

quences using a fixed threshold.

4.4.3 WSS vs. RWSS-based Cache Allocation

In the third set of experiments, we compare RWSS-

based to WSS-based cache allocation using the same pre-

diction method, exponential smoothing with self-tuning.

In both cases, the cache allocation is strictly enforced,

and at the start of each window, the workload’s extra

cache usage beyond its new allocation is immediately

dropped. This setting produces the worst-case result for

on-demand cache allocation, because in practice Cloud-



362 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

 0

 20

 40

 60

 80

 100

Web Moodle File
server

Hit Ratio (%)

 0

 40

 80

 120

 160

 200

Web Moodle File
server

Allocation (GB)

 0

 20

 40

 60

 80

 100

Web Moodle File
server

Flash Write Ratio (%)

No-Alloc LARC WSS RWSS1 RWSS2

Figure 8: Allocation methods

 0

 1

 2

 3

N
o

Allo
ca

tio
n

W
SS

R
W

SS

Latency (msec)

(a) Webserver

 0

 1

 2

 3

 4

N
o

Allo
ca

tio
n

W
SS

R
W

SS

Latency (msec)

(b) Moodle

Figure 9: VM IO latency comparison

Cache allows a workload to use spare capacity beyond

its allocation and its extra cache usage is gradually re-

claimed via replacement-time enforcement. We also in-

clude the case where the workload can use up the entire

cache as a baseline (No Allocation), where the cache is

large enough to hold the entire working set and does not

require any replacement.

Figure 8 shows the comparison among these different

approaches. For RWSS, we consider two different val-

ues for the N in RWSN , as described in Section 4.1. In

addition, we also compare to the related cache admission

method, LARC [15], which dynamically changes the size

of the staging area according to the current hit ratio—a

higher hit ratio reduces the staging area size. Like HEC,

LARC also does not provide on-demand allocation, so

we implemented it by using the number of reused ad-

dresses to predict cache demand and using LARC for

cache admission.

RWSS1 achieves a hit ratio that is only 9.1% lower than

No Allocation and 4% lower than WSS, but reduces the

workload’s cache usage substantially by up to 98% com-

pared to No Allocation and 76% compared to WSS, and

reduces the flash write ratio by up to 6% compared to No

Allocation and 37% compared to WSS. (The cache allo-

cation of RWSS and LARC is less than 4GB for Web-

server and Fileserver and thus barely visible in the fig-

ure). No Allocation has slightly lower flash write ratio

than RWSS1 for Moodle and Fileserver only because it

does not incur cache replacement, as it is allowed to oc-

cupy as much cache space as possible, which is not a

realistic scenario for cloud environments. Compared to

LARC, RWSS1 achieves up to 3% higher hit ratio and still

reduces cache usage by up to 3% and the flash writes

by up to 18%, while using 580MB less staging area on

average. Comparing the two different configurations of

RWSS, RWSS2 reduces cache usage by up to 9% and

flash writes by up to 18%, at the cost of 4% lower hit

ratio, which confirms the tradeoff of choosing different

values of N in our proposed RWS model.

To evaluate how much performance loss the hit ratio

reduction will cause, we replay the traces and measure

their IO latencies. We consider a one-month portion of

the Webserver and Moodle traces. They were replayed

on the real VM storage and caching setup specified in

Section 4.4. We compare the different cache manage-

ment methods in terms of 95th percentile IO latency.

Figure 9 shows that the RWSS-based method delivers the

similar performance as the alternatives (only 1% slower

than No Allocation for Moodle) while using much less

cache and causing more writes to the cache device as

shown in the previous results.

The results confirm that our proposed RWSS-based

cache allocation can indeed substantially reduce a work-

load’s cache usage and the corresponding wear-out at

only a small performance cost. In real usage scenarios

our performance overhead would be much smaller be-

cause a workload’s extra cache allocation does not have

to be dropped immediately when a new time window

starts and can still provide hits while being gradually re-

placed by the other workloads. Moreover, because the

WSS-based method requires much higher cache alloca-

tions for the same workloads, cloud providers have to

either provision much larger caches, which incurs more

monetary cost, or leave the caches oversubscribed, which

leads to bad performance as the low-locality data are ad-

mitted into the cache and flush out the useful data.

5 Dynamic Cache Migration

The on-demand cache allocation approach discussed in

the previous section allows CloudCache to estimate the

cache demands of workloads online and dynamically al-

locate the shared capacity to them. To handle scenarios

where the cache capacity is insufficient to meet all the

demands, this section presents the dynamic cache migra-

tion approach to balance the cache load across different

hosts by dynamically migrating a workload’s cached data

along with its VM. It also considers techniques to opti-

mize the performance for the migrating VM as well as

minimize the impact to the others during the migration.

5.1 Live Cache Migration

Live VM migration allows a workload to be transpar-

ently migrated among physical hosts while running in its

VM [11, 25]. In CloudCache, we propose to use live



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 363

VM migration to balance the load on the flash caches

of VM hosts—when a host’s cache capacity becomes in-

sufficient to meet the local VMs’ total cache demands (as

estimated by their predicted RWSSes), some VMs can be

migrated to other hosts that have spare cache capacity to

meet their cache demands.

VM-migration-based cache load balancing presents

two challenges. First, the migrating VM’s dirty cache

data on the migration source host must be synchronized

to the destination host before they can be accessed again

by the VM. A naive way is to flush all the dirty data to the

remote storage server for the migrating VM. Depending

on the amount of dirty data and the available IO band-

width, the flushing can be time consuming, and the VM

cannot resume its activity until the flushing finishes. The

flushing will also cause a surge in the storage server’s IO

load and affect the performance of the other VMs sharing

the server. Second, the migrating VM needs to warm up

the cache on the destination host, which may also take a

long time, and it will experience substantial performance

degradation till the cache is warmed up [14, 7].

To address these challenges, CloudCache’s dynamic

cache migration approach uses a combination of reactive

and proactive migration techniques:

On-Demand Migration: When the migrated VM ac-

cesses a block that is dirty in the source host’s cache, its

local cache forwards the request to the source host and

fetches the data from there, instead of the remote storage

server. The metadata of the dirty blocks, i.e., their logical

block addresses, on the source host are transferred along

with VM migration, so the destination host’s local cache

is aware of which blocks are dirty on the source host.

Because the size of these metadata is small (e.g., 8B per

4KB data), the metadata transfer time is often negligible.

It is done before the VM is activated on the destination,

so the VM can immediately use the cache on the destina-

tion host.

Background Migration: In addition to reactively ser-

vicing requests from the migrated VM, the source host’s

cache also proactively transfers the VM’s cached data—

its RWS—to the destination host. The transfer is done in

background to mitigate the impact to the other VMs on

the source host. This background migration allows the

destination host to quickly warm up its local cache and

improve the performance of the migrated VM. It also al-

lows the source host to quickly reduce its cache load and

improve the performance of its remaining VMs. Bene-

fiting from the RWSS-based cache allocation and admis-

sion, the data that need to be transferred in background

contain only the VM’s RWS which is much smaller than

the WS, as shown in the previous section’s results. More-

over, when transferring the RWS, the blocks are sent in

the decreasing order of their recency so the data that are

most likely to used next are transferred earliest.

Figure 10: Architecture of dynamic cache migration

On-demand migration allows the migrated VM to ac-

cess its dirty blocks quickly, but it is inefficient for trans-

ferring many blocks. Background migration can trans-

fer bulk data efficiently but it may not be able to serve

the current requests that the migrated VM is waiting for.

Therefore, the combination of these two migration strate-

gies can optimize the performance of the VM. Figure

10 illustrates how CloudCache performs cache migra-

tion. When a VM is live-migrated from Host A to Host

B, to keep data consistent while avoiding the need to

flush dirty data, the cached metadata of dirty blocks are

transferred to Host B. Once the VM live migration com-

pletes, the VM is activated on Host B and its local flash

cache can immediately service its requests. By using the

transferred metadata, the cache on Host B can determine

whether a block is dirty or not and where it is currently

located. If a dirty block is still on Host A, a request is

sent to fetch it on demand. At the same time, Host A also

sends the RWS of the migrated VM in background. As

the cached blocks are moved from Host A to Host B, ei-

ther on-demand or in background, Host A vacates their

cache space and makes it available to the other VMs.

The CloudCache module on each host handles both

the operations of local cache and the operations of cache

migration. It employs a multithreaded design to handle

these different operations with good concurrency. Syn-

chronization among the threads is needed to ensure con-

sistency of data. In particular, when the destination host

requests a block on demand, it is possible that the source

host also transfers this block in background, at the same

time. The destination host will discard the second copy

that it receives, because it already has a copy in the lo-

cal cache and it may have already overwritten it. As

an optimization, a write that aligns to the cache block

boundaries can be stored directly in the destination host’s

cache, without fetching its previous copy from the source

host. In this case, the later migrated copy of this block

is also discarded. The migrating VM needs to keep the

same device name for its disk, which is the virtual block

device presented by CloudCache’s block-level virtualiza-

tion. CloudCache assigns unique names to the virtual

block devices based on the unique IDs of the VMs in the

cloud system. Before migration, the mapping from the



364 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

virtual block device to physical device (e.g., the iSCSI

device) is created on the destination host, and after mi-

gration, the counterpart on the source host is removed.

5.2 Migration Rate Limiting

While the combination of on-demand and background

migrations can optimize the performance of a migrating

VM, the impact to the other VMs on the source and des-

tination hosts also needs to be considered. Cache migra-

tion requires reads on the source host’s cache and writes

to the destination host’s cache, which can slow down the

cache IOs from the other co-hosted VMs. It also requires

network bandwidth, in addition to the bandwidth already

consumed by VM memory migration (part of the live

VM migration [11, 25]), and affects the network IO per-

formance of the other VMs.

In order to control the level of performance interfer-

ence to co-hosted VMs, CloudCache is able to limit the

transfer rate for cache migration. Given the rate limit, it

enforces the maximum number of data blocks that can

be transferred from the source host to the destination

host every period of time (e.g., 100ms), including both

on-demand migration and background migration. Once

the limit is hit, the migration thread will sleep and wait

till the next period to continue the data transfer. If on-

demand requests arrive during the sleep time, they will be

delayed and served immediately after the thread wakes

up. The rate can be set based on factors including the

priority of the VMs and the RWSS of the migrating VM.

CloudCache allows a system administrator to tune the

rate in order to minimize the cache migration impact to

the co-hosted VMs and still migrate the RWS fast enough

to satisfy the cache demands.

5.3 Evaluation

We evaluate the performance of CloudCache’s dynamic

cache migration using the same testbed described in Sec-

tion 4.4. Dynamic cache migration is implemented in

the CloudCache kernel module described in Section 4.4.

It exposes a command-line interface which is integrated

with virt-manager [3] for coordinating VM migration

with cache migration. We focus on a day-long portion of

the Moodle and Webserver traces. The Moodle one-day

trace is read-intensive which makes 15% of its cached

data dirty (about 5GB), and the Webserver one-day trace

is write-intensive which makes 85% of its cached data

dirty (about 1GB).

We consider four different approaches: (1) No Cache

Migration: the cached data on the source host are not

migrated with the VM; (2) On-demand: only the on-

demand cache migration is used to transfer dirty blocks

requested by the migrated VM; (3) On-demand + BG

Dirty: in addition to on-demand cache migration, back-

ground migration is used to transfer only the dirty blocks

of the migrated VM; (4) On-demand + BG RWS: both

0

1

2

3

No
Cache

Migration

On
demand

On
demand

+ BG
Dirty

On
demand

+ BG
RWS

Latency (sec)
90

th
 percentile

(a) Moodle

 0

 6

 12

 18

No
Cache

Migration

On
demand

On
demand

+ BG
Dirty

On
demand

+ BG
RWS

Latency (msec) 90
th

 percentile

(b) Webserver

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 0  5  10  15  20  25  30

Time (minutes)

Average Latency (sec)

No Cache Migration
On-Demand

On-demand + BG Dirty
On-demand + BG RWS

On-demand + BG WS

(c) The migrating VM’s performance (average IO latency per

minute) for Moodle. The migration starts at the 5th minute.

Figure 11: Migration strategies

on-demand migration of dirty blocks and background

migration of RWS are used. In this experiment, we as-

sume that the cache migration can use the entire 1Gbps

network bandwidth, and we study the impact of rate lim-

iting in the next experiment. For on-demand cache mi-

gration, it takes 0.3s to transfer the metadata for the Moo-

dle workload and 0.05s for the Webserver workload.

Figure 11a shows that for the Moodle workload, on-

demand cache migration decreases the 90th percentile la-

tency by 33% and the addition of background migration

of dirty data decreases it by 35%, compared to No Cache

Migration. However, the most significant improvement

comes from the use of both on-demand migration of dirty

data and background migration of the entire RWS, which

reduces the latency by 64%. The reason is that this work-

load is read-intensive and reuses a large amount of clean

data; background migration of RWS allows the workload

to access these data from the fast, local flash cache, in-

stead of paying the long network latency for accessing

the remote storage.

For the Webserver workload, because its RWS is

mostly dirty, the difference among the three cache migra-

tion strategies is smaller than the Moodle workload (Fig-

ure 11b). Compared to the No Cache Migration case,

they reduce the 90th percentile latency by 91.1% with

on-demand migration of dirty data, and by 92.6% with

the addition of background migration of RWS.

Note that the above results for the No Cache Migration

case do not include the time that the migrated VM has to

wait for its dirty data to be flushed from the source host

to the remote storage before it can resume running again,

which is about 54 seconds for the Moodle workload and

12 seconds for the Webserver workload, assuming it can

use all the bandwidths of the network and storage server.



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 365

0.0

0.5

1.0

1.5

2.0

2.5

No VM
Mig

Dest VM
40MB/s

Dest VM
100MB/s

Src VM
40MB/s

Src VM
100MB/s

Latency (msec)

(a) Co-hosted VMs

0.0

0.5

1.0

1.5

2.0

2.5

No VM
Mig

Mig VM
40MB/s

Mig VM
100MB/s

Latency (msec)

(b) Migrating VM

Figure 12: Impact of different cache migration rate

In comparison, the VM has zero downtime when using

our dynamic cache migration.

Figure 11c shows how the migrating VM’s perfor-

mance varies over time in this Moodle experiment so we

can observe the real-time performance of the different

migration strategies. The peaks in On-demand and On-

demand + BG Dirty are caused by bursts of on-demand

transfer of clean data blocks requested by the migrated

VM. We believe that we can further optimize our proto-

type implementation to avoid such spikes in latency.

In Figure 11c, we also compare our approach to an

alternative cache migration implementation (On-demand

+ BG WS) which migrates the VM’s entire working set

without the benefit of our proposed RWS model. Us-

ing the same Moodle trace, at the time of migration, its

RWSS is 32GB and WSS is 42GB. As a result, migrat-

ing the WS takes twice the time of migrating only the

RWS (6mins vs. 3mins) and causes a higher IO latency

overhead too (71% higher in 90th percentile latency).

In the next experiment, we evaluate the performance

impact of rate limiting the cache migration. In addition

to the migrating VM, we run another IO-intensive VM

on both the source and destination hosts, which replays

a different day-long portion of the Webserver trace. We

measure the performance of all the VMs when the cache

migration rate is set at 40MB/s and 100MB/s and com-

pare to their normal performance when there is no VM

or cache migration. Figure 12 shows that the impact to

the co-hosted VMs’ 90th percentile IO latency is below

16% and 21% for the 40MB/s and 100MB/s rate respec-

tively. Note that this is assuming that the co-hosted VMs

already have enough cache space, so in reality, their per-

formance would actually be much improved by using the

cache space vacated from the migrating VM. Meanwhile,

the faster migration rate reduces the migrating VM’s 90th

percentile IO latency by 6%. Therefore, the lower rate is

good enough for the migrating VM because the most re-

cently used data are migrated first, and it is more prefer-

able for its lower impact to the co-hosted VMs.

6 Putting Everything Together

The previous two sections described and evaluated the

RWSS-based on-demand cache allocation and dynamic

cache migration approaches separately. In this section,

 0

 8

 16

 24

 32

 40

 48

 56

 64

 0  2  4  6  8  10

C
a

c
h

e
 U

s
a

g
e

 (
G

B
)

Time (Days)

VM 12
VM 11
VM 10

VM 9
VM 8
VM 7

VM 6
VM 5
VM 4

VM 3
VM 2
VM 1

Threshold

Capacity

(a) No cache allocation

 0

 8

 16

 24

 32

 40

 48

 56

 64

 72

 80

 0  2  4  6  8  10

C
a

c
h

e
 U

s
a

g
e

 (
G

B
)

Time (Days)

Total
 Demand

Threshold
Capacity

(b) On-demand cache allocation without cache migration

 0

 8

 16

 24

 32

 40

 48

 56

 64

 72

 80

 0  2  4  6  8  10

C
a
c
h
e
 U

s
a
g
e
 (

G
B

)

Time (Days)

Total
 Demand

Threshold
Capacity

(c) On-demand cache allocation with dynamic cache migration

Figure 13: Cache usages of 12 concurrent VMs

we present how to use them together to realize on-

demand cache management for multiple VM hosts. Con-

sider the flash cache on a single host. If its capacity is

sufficient to satisfy the predicted cache demands for all

the local VMs, it is simply allocated to the VMs accord-

ing to their demands. The spare capacity is distributed

to the VMs proportionally to their demands, or left idle

to minimize wear-out. If the cache capacity is not suf-

ficient, then cache migration needs to be considered in

order to satisfy the demands of all the VMs.

When considering the use of cache migration, there

are three key questions that need to be answered, when

to migrate, which VM to migrate, and which host to mi-

grate it to? To answer the first question, CloudCache

reserves a certain percentage (e.g., 10%) of the cache

capacity as a buffer to absorb the occasional surges in

cache demands, and it starts a migration when the to-

tal cache demand exceeds the 90% threshold for several

consecutive RWSS windows (e.g., three times). This ap-

proach prevents the fluctuations in cache workloads from

triggering unnecessary cache migrations which affect the

VMs’ performance and the system’s stability.

To answer the second and third questions, Cloud-

Cache’s current strategy is to minimize the imbalance of

cache load among the hosts in the system. The host that

requires cache migration queries every other host’s cur-



366 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

rent cache load. It then evaluates all the possible migra-

tion plans of moving one of its local VMs to a host that

can accommodate the VM’s RWS under the 90% thresh-

old. It then chooses the plan that minimizes the variance

of the hosts’ cache load distribution.

We use a real experiment to illustrate the use of our ap-

proaches for meeting the cache demands of dynamically

changing workloads. We consider two VM hosts each

with 64GB of flash cache. Host A ran 12 VMs, and Host

B ran three VMs, concurrently. Each VM replayed a dif-

ferent 10-day portion of the Webserver trace. The cache

allocation was adjusted every 2 days on both hosts. The

first time window is the warm-up phase during which the

VMs were given equal allocation of the cache capacity.

Afterwards, the cache was allocated to the VMs propor-

tionally to their estimated RWSSes. Moreover, a VM

could take more than its share if there was idle capac-

ity from the other VMs’ shares because our approach is

work-conserving. The experiment was done on the real

VM storage and caching setup specified in Section 4.4.

Figure 13a shows how the cache space is distributed

among the VMs on Host A when (a) there is no cache

allocation, (b) on-demand cache allocation but without

cache migration, and (c) on-demand cache allocation

with dynamic cache migration. Comparing (a) and (b),

we can see how our RWSS-based on-demand allocation

improves the fairness among the competing VMs. For

example, between Days 4 and 8, VMs 6, 7, 8 dominated

the cache space in (a), but in (b), every VM got a fair

share of the cache space proportionally to their estimated

RWSSes. Notice that VMs 7 and 8 were allocated much

less in (b) than what they got in (a), which is an evidence

of how the RWS-based cache demand model filtered out

the VMs’ low-locality data and kept only those that are

useful to their performance. As a result, comparing the

average performance of all 12 VMs across the entire ex-

periment, (b) is better than (a) by 17% in terms of hit

ratio and 13% in terms of 90th percentile IO latency.

In (c) dynamic cache migration was enabled in ad-

dition to on-demand cache allocation. After the total

demand—the sum of the 12 VMs’ RWSSes—exceeded

the threshold for three consecutive windows, Cloud-

Cache initiated cache migration on Day 8 and chose to

move VM 11, the one with the largest predicted RWSS

at that time, and its cached data to Host B. As VM 11’s

RWS was moved to Host B, the remaining 11 VMs took

over the whole cache on Host A, proportionally to their

estimated RWSSes. As a result, comparing the average

performance of all 12 VMs after Day 8, (c) is better than

(b) by 49% in terms of hit ratio and 24% in terms of

90th percentile IO latency. Across the entire experiment,

it outperforms (a) by 28% in hit ratio and 27% in 90th

percentile IO latency, and outperforms (b) by 10% in hit

ratio and 16% in 90th percentile IO latency.

Although this experiment involved only two VM hosts

and the migration of only one VM, the above results are

still representative for the migration of any VM and its

cache data between two hosts in a large cloud computing

environment. But we understand in such a large environ-

ment, more intelligence is required to make the optimal

VM migration decisions. There is a good amount of re-

lated work (e.g., [31, 32]) on using VM migration to bal-

ance load on CPUs and main memory and to optimize

performance, energy consumption, etc. CloudCache is

the first to consider on-demand flash cache management

across multiple hosts, and it can be well integrated into

these related solutions to support the holistic manage-

ment of different resources and optimization for various

objectives. We leave this to our future work because the

focus of this paper is on the key mechanisms for on-

demand cache management, i.e., on-demand cache al-

location and dynamic cache migration, which are miss-

ing in existing flash cache management solutions and are

non-trivial to accomplish.

7 Related Work

There are several related flash cache management so-

lutions. S-CAVE [22] considers the number of reused

blocks when estimating a VM’s cache demand, and al-

locates cache using several heuristics. vCacheShare [24]

allocates a read-only cache by maximizing a unity func-

tion that captures a VM’s disk latency, read-to-write ra-

tio, estimated cache hit ratio, and reuse rate of the al-

located cache capacity. Centaur [18] uses MRC and la-

tency curves to allocate cache to VMs according to their

QoS targets. However, these solutions admit all refer-

enced data into cache, including those with weak tempo-

ral locality, and can cause unnecessary cache usage and

wear-out. Moreover, none of them considers dynamic

cache migration for meeting the demands when a cache

is overloaded. These problems are addressed by Cloud-

Cache’s on-demand cache allocation and dynamic cache

migration approaches.

HEC and LARC studied cache admission policies to

filter out data with weak temporal locality and reduce

the flash wear-out [33, 15]. However, they do not con-

sider the problem of how to allocate shared cache ca-

pacity to concurrent workloads, which is addressed by

CloudCache. Moreover, our RWSS-based approach is

able to more effectively filter out data with no reuses and

achieve good reduction in cache footprint and wear-out,

as shown in Section 4.4.

Bhagwat et al. studied how to allow a migrated VM

to request data from the cache on its previous host [9],

in the same fashion as the on-demand cache migration

proposed in this paper. However, as shown in Sec-

tion 5.3, without our proposed background cache migra-

tion, on-demand migration alone cannot ensure good per-



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 367

formance for the migrated VM. It also has a long-lasting,

negative impact on the source host in terms of both per-

formance interference and cache utilization. When the

migrated VM’s data are evicted on the source host, the

performance becomes even worse because a request has

to be forwarded by the source host to the primary stor-

age. VMware’s vSphere flash read cache [6] also sup-

ports background cache migration. Although its details

are unknown, without our proposed RWS model, a simi-

lar solution would have to migrate the VM’s entire cache

footprint. As shown in Section 5.3, this requires longer

migration time and causes higher impact to performance.

In comparison, CloudCache considers the combination

of on-demand migration and background migration and

is able to minimize the performance impact to both the

migrated VM and the other co-hosted VMs.

In the context of processor and memory cache man-

agement, ARC addresses the cache pollution from scan

sequences by keeping such data in a separate list (T1)

and preventing them from flooding the list (T2) of data

with reuses [23]. However, data in T1 still occupy cache

space and cause wear-out. Moreover, it does not pro-

vide answers to how to allocate shared cache space to

concurrent workloads. Related work [19] proposed the

model of effective reuse set size to capture the nec-

essary cache capacity for preventing non-reusable data

from evicting reusable data, but it assumes that all data

have to be admitted into the cache. There are also re-

lated works on processor and memory cache allocations.

For example, miss-rate curve (MRC) can be built to cap-

ture the relationship between a workload’s cache hit ra-

tio and its cache sizes, and used to guide cache alloca-

tion [27, 34, 28, 29, 30]. Process migration was also con-

sidered for balancing processor cache load on a multi-

core system [16].

Compared to these processor and memory caching

works, flash cache management presents a different set

of challenges. Low-locality data are detrimental to not

only a flash cache’s performance but also its lifetime,

which unfortunately are abundant at the flash cache layer.

While VM migration can be used to migrate workloads

across hosts, the large amount of cached data cannot be

simply flushed or easily shipped over. CloudCache is

designed to address these unique challenges by using

RWSS to allocate cache to only data with good local-

ity and by providing dynamic cache migration with tech-

niques to minimize its impact to VM performance.

8 Conclusions and Future Work

Flash caching has great potential to address the storage

bottleneck and improve VM performance for cloud com-

puting systems. Allocating the limited cache capacity

to concurrent VMs according to their demands is key to

making efficient use of flash cache and optimizing VM

performance. Moreover, flash devices have serious en-

durance issues, whereas weak-temporal-locality data are

abundant at the flash cache layer, which hurt not only the

cache performance but also its lifetime. Therefore, on-

demand management of flash caches requires fundamen-

tal rethinking on how to estimate VMs’ cache demands

and how to provision space to meet their demands.

This paper presents CloudCache, an on-demand cache

management solution to these problems. First, it em-

ploys a new cache demand model, Reuse Working Set

(RWS), to capture the data with good temporal locality,

allocate cache space according to the predicted Reuse

Working Set Size (RWSS), and admit only the RWS

into the allocated space. Second, to handle cache over-

load situations, CloudCache takes a new cache migra-

tion approach which live-migrates a VM with its cached

data to meet the cache demands of the VMs. Exten-

sive evaluations based on real-world traces confirm that

the RWSS-based cache allocation approach can achieve

good cache hit ratio and IO latency for a VM while sub-

stantially reducing its cache usage and flash wear-out.

It also confirms that the dynamic cache migration ap-

proach can transparently balance cache load across hosts

with small impact to the migrating VM and the other co-

hosted VMs.

CloudCache provides a solid framework for our future

work in several directions. First, we plan to use flash sim-

ulators and open-controller devices to monitor the actual

Program/Erase cycles and provide more accurate mea-

surement of our solution’s impact on flash device wear-

out. Second, when the aggregate cache capacity from all

VM hosts is not sufficient, CloudCache has to allocate

cache proportionally to the VMs’ RWSSes. We plan to

investigate a more advanced solution which maps each

VM’s cache allocation to its performance and optimizes

the allocation by maximizing the overall performance of

all VMs. Third, although our experiments confirm that

flash cache allocation has a significant impact on applica-

tion performance, the allocation of other resources, e.g.,

CPU cycles and memory capacity, is also important. We

expect to integrate existing CPU and memory manage-

ment techniques with CloudCache to provide a holistic

cloud resource management solution. Finally, while the

discussion in this paper focuses on flash-memory-based

caching, CloudCache’s general approach is also applica-

ble to emerging NVM devices, which we plan to evaluate

when they become available.

9 Acknowledgements

We thank the anonymous reviewers and our shepherd,

Carl Waldspurger, for the thorough reviews and insight-

ful suggestions. This research is sponsored by National

Science Foundation CAREER award CNS-125394 and

Department of Defense award W911NF-13-1-0157.



368 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

References

[1] Fusion-io ioCache. http://www.fusionio.com/

products/iocache/.

[2] Kernel Based Virtual Machine. http://www.

linux-kvm.org/page/Main_Page.

[3] Manage virtual machines with virt-manager.

https://virt-manager.org.

[4] MSR cambridge traces. http://iotta.snia.

org/traces/388.

[5] Network Block Device. http://nbd.

sourceforge.net/.

[6] Performance of vSphere flash read cache

in VMware vSphere 5.5. https://www.

vmware.com/files/pdf/techpaper/

vfrc-perf-vsphere55.pdf.

[7] D. Arteaga and M. Zhao. Client-side flash caching

for cloud systems. In Proceedings of International

Conference on Systems and Storage (SYSTOR 14),

pages 7:1–7:11. ACM, 2014.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-

ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.

Xen and the art of virtualization. In Proceedings of

the Nineteenth ACM Symposium on Operating Sys-

tems Principles (SOSP 03). ACM, 2003.

[9] D. Bhagwat, M. Patil, M. Ostrowski, M. Vilayan-

nur, W. Jung, and C. Kumar. A practical imple-

mentation of clustered fault tolerant write acceler-

ation in a virtualized environment. In Proceedings

of the 13th USENIX Conference on File and Stor-

age Technologies (FAST 15), pages 287–300, Santa

Clara, CA, 2015. USENIX Association.

[10] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Con-

dict, J. Kimmel, S. Kleiman, C. Small, and

M. Storer. Mercury: Host-side flash caching for

the data center. In Proceedings of the 28th IEEE

Conference on Massive Data Storage (MSST 12),

Pacific Grove, CA, USA, 2012. IEEE.

[11] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migra-

tion of virtual machines. In Proceedings of the 2nd

Conference on Symposium on Networked Systems

Design and Implementation (NSDI 05), pages 273–

286. USENIX Association, 2005.

[12] P. J. Denning. The working set model for program

behavior. Communications of the ACM, 11(5):323–

333, 1968.

[13] E. V. Hensbergen and M. Zhao. Dynamic policy

disk caching for storage networking. Technical Re-

port RC24123, IBM, November 2006.

[14] D. A. Holland, E. L. Angelino, G. Wald, and M. I.

Seltzer. Flash caching on the storage client. In

Proceedings of the 2013 USENIX Annual Technical

Conference (ATC 13). USENIX Association, 2013.

[15] S. Huang, Q. Wei, J. Chen, C. Chen, and D. Feng.

Improving flash-based disk cache with lazy adap-

tive replacement. In Proceedings of the 29th IEEE

Symposium on Mass Storage Systems and Tech-

nologies (MSST 13), pages 1–10. IEEE, 2013.

[16] R. C. Knauerhase, P. Brett, B. Hohlt, T. Li, and

S. Hahn. Using OS observations to improve per-

formance in multicore systems. IEEE Micro,

28(3):54–66, 2008.

[17] R. Koller, L. Marmol, R. Ranganswami, S. Sun-

dararaman, N. Talagala, and M. Zhao. Write poli-

cies for host-side flash caches. In Proceedings of

the 11th USENIX conference on File and Storage

Technologies (FAST 13), 2013.

[18] R. Koller, A. J. Mashtizadeh, and R. Rangaswami.

Centaur: Host-side SSD caching for storage perfor-

mance control. In Proceedings of the 2015 IEEE

International Conference on Autonomic Comput-

ing (ICAC 15), Grenoble, France, July 7-10, 2015,

pages 51–60, 2015.

[19] R. Koller, A. Verma, and R. Rangaswami. Gener-

alized ERSS tree model: Revisiting working sets.

Performance Evaluation, 67(11):1139–1154, Nov.

2010.

[20] M. Krueger, R. Haagens, C. Sapuntzakis, and

M. Bakke. Small computer systems interface proto-

col over the internet (iSCSI): Requirements and de-

sign considerations. Internet RFC 3347, July 2002.

[21] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone,

and G. Wallace. Nitro: A capacity-optimized SSD

cache for primary storage. In Proceedings of the

2014 USENIX Annual Technical Conference (ATC

14), pages 501–512. USENIX Association, 2014.

[22] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and

L. Zhou. S-CAVE: Effective SSD caching to im-

prove virtual machine storage performance. In Pro-

ceedings of the 22nd International Conference on

Parallel Architectures and Compilation Techniques

(PACT 13), pages 103–112. IEEE Press, 2013.



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 369

[23] N. Megiddo and D. S. Modha. ARC: A self-tuning,

low overhead replacement cache. In Proceedings of

the 2Nd USENIX Conference on File and Storage

Technologies (FAST 03), pages 115–130, Berkeley,

CA, USA, 2003. USENIX Association.

[24] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and

D. Liu. vCacheShare: Automated server flash

cache space management in a virtualization envi-

ronment. In Proceedings of the 2014 USENIX An-

nual Technical Conference (ATC 14), pages 133–

144, Philadelphia, PA, June 2014. USENIX Asso-

ciation.

[25] M. Nelson, B.-H. Lim, and G. Hutchins. Fast trans-

parent migration for virtual machines. In Proceed-

ings of the USENIX Annual Technical Conference

(ATC 05), pages 391–394. USENIX, 2005.

[26] M. N. Nelson, B. B. Welch, and J. K. Ouster-

hout. Caching in the sprite network file system.

ACM Transactions on Computer Systems (TOCS),

6(1):134–154, 1988.

[27] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic

cache partitioning for simultaneous multithreading

systems. In Proceedings of the IASTED Inter-

national Conference on Parallel and Distributed

Computing and Systems (ICPADS 01), pages 116–

127, 2001.

[28] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.

RapidMRC: Approximating L2 miss rate curves

on commodity systems for online optimizations.

In Proceedings of the 14th International Confer-

ence on Architectural Support for Programming

Languages and Operating Systems (ASPLOS 09),

pages 121–132, New York, NY, USA, 2009. ACM.

[29] C. A. Waldspurger, N. Park, A. Garthwaite, and

I. Ahmad. Efficient MRC construction with

SHARDS. In Proceedings of the 13th USENIX

Conference on File and Storage Technologies

(FAST 15), pages 95–110, Santa Clara, CA, Feb.

2015. USENIX Association.

[30] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and

A. Warfield. Characterizing storage workloads with

counter stacks. In Proceedings of the 11th USENIX

Symposium on Operating Systems Design and Im-

plementation (OSDI 14), pages 335–349, Broom-

field, CO, Oct. 2014. USENIX Association.

[31] T. Wood, P. Shenoy, A. Venkataramani, and

M. Yousif. Black-box and gray-box strategies for

virtual machine migration. In Proceedings of the

4th USENIX Conference on Networked Systems

Design and Implementation (NSDI 07), pages 17–

17, Berkeley, CA, USA, 2007. USENIX Associa-

tion.

[32] J. Xu and J. Fortes. A multi-objective approach

to virtual machine management in datacenters. In

Proceedings of the 8th ACM International Confer-

ence on Autonomic Computing (ICAC 11), pages

225–234, New York, NY, USA, 2011. ACM.

[33] J. Yang, N. Plasson, G. Gillis, and N. Talagala.

HEC: improving endurance of high performance

flash-based cache devices. In Proceedings of the

6th International Systems and Storage Conference

(SYSTOR 13), page 10. ACM, 2013.

[34] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,

Y. Zhou, and S. Kumar. Dynamic tracking of page

miss ratio curve for memory management. In Pro-

ceedings of the 11th International Conference on

Architectural Support for Programming Languages

and Operating Systems (ASPLOS 04), pages 177–

188, New York, NY, USA, 2004. ACM.


