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Abstract—In order to minimize user perceived latency while
ensuring high data availability, cloud applications desire to select
servers from one of the multiple data centers (i.e., server clusters)
in different geographical locations, which are able to provide de-
sired services with low latency and low cost. This paper presents
CloudGPS, a new server selection scheme of the cloud computing
environment that achieves high scalability and ISP-friendliness.
CloudGPS proposes a configurable global performance function
that allows Internet service providers (ISPs) and cloud service
providers (CSPs) to leverage the cost in terms of inter-domain
transit traffic and the quality of service in terms of network
latency. CloudGPS bounds the overall burden to be linear with
the number of end users. Moreover, compared with traditional
approaches, CloudGPS significantly reduces network distance
measurement cost (i.e., from O(N) to O(1) for each end user in
an application using N data centers). Furthermore, CloudGPS
achieves ISP-friendliness by significantly decreasing inter-domain
transit traffic.

I. INTRODUCTION

Nowadays, the Internet has evolved to the cloud comput-

ing era, which provides an elastic and stable infrastructure

for hosting online applications such as web searching, e-

mailing, instant messaging, online social networking, and

online gaming. Cloud infrastructure providers (CIPs) allocate

numerous computation nodes to form geographically distribut-

ed data centers, which becomes to a popular infrastructure

for hosting Internet applications, according to its attractive

features such as service-level agreement (SLA), auto scaling,

cheap/accountable pricing, and negligible front-end invest-

ment. For a cloud service provider (CSP), in order to serve

the huge and still increasing number of users distributed

all over the world, reserving computation nodes from data

centers located at various geo-locations is a desirable solution.

This solution can minimize the users’ perceived latency and

increase reliability in terms of reducing service outages [13].

Given a set of reserved service-hosting nodes, a CSP is facing

the challenge of server selection problem, i.e., how to arrange

the mapping between service-hosting nodes and end users in

† This work was done when Yang Chen and Tianyin Xu were with Institute
of Computer Science, University of Goettingen, Germany.

a scalable way to satisfy both end users’ and CSPs’ needs.

On one hand, the selection should improve users’ quality

of experience. Since end users would expect low end-to-

end latency in various applications, such as Voice over IP

and online/mobile gaming [4], [19], the CSP should arrange

every user a close service-hosting node. On the other hand,

such selection should provide a load-balancing among service-

hosting nodes, in order to effective utilize the CSP’s invest-

ment. Moreover, the traffic generated by CSPs should be ISP-

friendly, since these globally distributed service-hosting nodes

would be located within different ISP domains and the inter-

domain transit traffic bandwidth is limited and expensive [10].

There are several existing ways for server selection. One

straightforward method is to completely grant the choice

rights to the users. Intuitively, a user will choose its “closest”

server for obtaining the lowest access latency. However, such

selection does not consider servers’ workloads, which may

lead to an outage of some over-capacity servers. This weakness

can hardly be fixed by placing servers according to a certain

distribution because users’ online and offline behaviors are

highly dynamic and unpredictable. Moreover, the method im-

poses high burdens on user clients, especially mobile devices

with constrained energy and bandwidth. Although service-

hosting nodes from the same data center are co-located, still

the number of data centers can be large. Emerson Network

Power has reported there were 509,147 data centers worldwide

as of December 2011. Let’s take a single vendor as an

example, there are more than 1,158 server clusters in Akamai

in 2008 [15]. These numbers are still increasing. Thus for a

particular user, it takes a long time to do the measurement.

Based on our test by Synaptic Package Manager on Ubuntu

version 10.04 LTS using a desktop computer located in Uni-

versity of Goettingen, it takes about 45 seconds to select the

closest Ubuntu mirror, which consists of 348 servers. The time

cost is much more than acceptable for most cloud computing

services, especially those real-time applications.

Another method is to let CSPs or public CIPs handle

the server selection. For example, Akamai uses a centralized

hierarchical stable-marriage algorithm for pairing clients with

its CDN servers [23]. The centralized architecture causes an978-1-4673-1298-1/12/$31.00 c©2012 IEEE
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extremely large overhead, adds additional delay, and makes the

systems less responsive to sudden changes in client request

rates (i.e., flash crowds), so it is unsuitable to act as an

outsourcing system to provide services for all the commer-

cial clouds [23]. YouTube uses a hash-based mechanism to

share static loading, and a location-aware DNS resolution to

perform a semi-dynamic approach for its video sharing [3].

However, both of them put unnecessary burdens on CSPs than

outsourcing to a third organization because even the simplest

approach requires a whole distributed mapping system includ-

ing distributed domain name servers (DNSs) and mapping

nodes [23]. To solve the above-mentioned problems, some

outsourcing mapping systems (e.g., DONAR [23]) made up of

dedicated nodes are newly proposed. For example, DONAR

considers both proximity and server load in their selection

policy. However, this selection scheme has the following two

problems. Firstly, it requires a full measurement to all related

data centers, thus it cannot scale to larger amount of server

locations due to long measurement time. Secondly, it is not

an ISP-friendly solution since it does not consider the ISP

operational cost due to the inter-domain transit traffic [7], [24].

In this paper, we propose CloudGPS, a scalable and ISP-

friendly server selection scheme to address the above chal-

lenges. In CloudGPS, our goals include: (1) Scalability: The

CloudGPS system has to be scalable with the rapid-growing

of the applications, as well as the huge user scale and wide

user distribution. (2) ISP Friendliness: In CloudGPS, we take

the ISP’s economic profit into serious consideration. We aim

at reducing the inter-domain transit traffic, while still letting

users to access their nearby servers. Client nodes should give

preferences to server clusters in the same ISP or peering ISPs

in addition to proximity. (3) Decentralization: Centralized

systems introduce a single point of failure, as well as an

attractive target for attackers. As a result, a decentralized

system for server selection is desired. CloudGPS builds a

bridge between end users and CSPs for better user-server

mapping. By considering different behaviors of the stable

servers and dynamic users, we enhance the existing network

coordinate (NC) techniques for an accurate latency prediction.

Moreover, CloudGPS proposes a novel global performance

optimization for the server selection, by considering the ISP-

friendliness. In summary, the paper makes the following three

contributions:

1) We propose a novel server selection middleware for

cloud applications named CloudGPS, which performs

efficient user-server mapping in a decentralized way to

scale up to wider server and user distributions, involv-

ing several important issues such as proximity, server

workload, as well as ISP-friendliness.

2) We design a novel distance estimation component in

CloudGPS, which takes the advantage of two different

network coordinate (NC) techniques – distributed NC

and landmark-based NC to position the user clients with

high resilience to churn.

3) We evaluate CloudGPS based on the real-world Internet

traces collected by the Meridian project [2]. The results

verify that CloudGPS matches our design goals by

satisfying all involved entities (i.e., CSPs, CIPs, ISPs,

and end users).

The rest of the paper is organized as follows. We elaborate

CloudGPS’s system design in Section II including the mapping

system and the distance estimation system. Section III provides

the performance evaluation of CloudGPS when applied in the

most popular network topology dataset. Section IV concludes

the paper and envisions the future work.

II. CLOUDGPS: SYSTEM DESIGN

There are four kinds of entities in the cloud computing

application architectures: Internet service providers (ISPs),

cloud infrastructure providers (CIPs), cloud service providers

(CSPs), and end users. CIPs, who use ISPs’ Internet connec-

tion services, own the cloud computing infrastructure and lease
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the resources as instances to CSPs. CSPs use the resources

reserved from the CIPs to serve end users.

As shown in Fig. 1, CloudGPS builds a middleware to

provide outsourcing selection service, aiming at improving

network performance, balancing server workload, and reduc-

ing inter-domain transit traffic.

There are two main components in the CloudGPS sys-

tem, mapping module (MM) and distance estimation module

(DEM). MM allows CSPs to choose different selection poli-

cies. MM obtains server workload information, ISP informa-

tion, and latency information between servers and clients from

three corresponding databases (ISP Info Storage, Workload

Info, Latency Storage) respectively. Based on these informa-

tion, it makes server selection decisions using the algorithm

described in Section II.A. The ISP Info Storage database stores

the AS (typically an ISP) relationships (i.e., peering or not)

and IP-AS mapping information. CloudGPS obtains the daily

snapshot of AS relationships published by UCLA Internet

Topology Collection project [25], and collect the IP-AS map-

ping information from the Oregon RouteViews project [1].

The UCLA Internet Topology Collection project [25] publishes

latest AS-level topology graph by collecting the information

from BGP routing tables and routing updates, route servers,

and looking glasses; the Oregon RouteViews project [1] is

designed for Internet operators to obtain real-time information

about the global routing system from the perspectives of

several different backbones and locations around the Inter-

net. The real-time server workload information (Workload

Info database) is updated by the servers, and the latency

information (Latency Storage database) are updated by DEM.

DEM measures network distances among servers and distances

between every client and a fixed number of servers which are

chosen randomly. Moreover, DEM calculates and estimates the

latency information between clients and other servers based

on these measurement results and stores them to the Latency

Storage database. The partial measurements use tools such as

King [14], while calculation and estimation use the algorithm

described in Section II.B. King [14] is a tool to estimate the

round-trip time (RTT) between any two arbitrary hosts in the

Internet by estimating the RTT between their domain name

servers. Both Workload Info database and Latency Storage

database store local information only, and the decentralized

mapping algorithm ensures each local mapping node to make

the server selection decision based on the local workload and

latency information from local storages and global information

from other mapping nodes.

A. Mapping Module

Mapping Policy. We propose to use a global performance

function to minimize the network cost, and introduce

inter-domain transit traffic penalty coefficient to balance the

reduction of inter-domain transit traffic and the minimization

of user-server latency. There are two parameters should be

configured and updated in CloudGPS, the inter-domain transit

traffic coefficient and the capacity of each server cluster.

The CSPs update the inter-domain transit penalty coefficient

directly with any mapping node, to determine the degree

of pairing a client with a server in the same domain. CSPs

also update the capacity information of each server cluster

to the MM periodically. MM is composed of a cluster of

mapping nodes distributed in multiple geographical locations.

Each mapping node obtains ISP information from ISP Info

database, current workloads of all the local server clusters

from local Workload Info database, and network distances

between servers and local clients from local Latency Storage

database, respectively. Global server workload information

(only a constant number of values, will be described later) are

shared among mapping nodes by gossip-based dissemination

algorithms [12]. Each mapping node pushes the global server

workload information to its neighbors every 10 minutes. [16]

proves that if there are M nodes and each node gossips

to log(M) + c other nodes on average, the probability that

everyone gets the message converges to e−e
−c

, which is very

close to 1 without considering failures. The number of gossip

rounds necessary to spread global workload information to

all the mapping nodes respects log(n)/log(log(n)) [11],



which shows that it takes at most a logarithmic number of

steps to reach every mapping node. For example, there are

M = 100 mapping nodes, it cost about 6 rounds (i.e., 1

hour) to spread the global workload information to all the

mapping nodes if each mapping node spread its information

to 5 neighbors on average. In this case, each mapping node

solves the global performance optimization problem using the

parameters obtained through the policies above, and thus pairs

each client to the expected server cluster, as shown in Fig. 2.

The decentralized server selection algorithm guarantees the

selection of local mapping nodes are global optimal.

Server Selection Algorithm. Three important metrics should

be considered in the global server selection problem: (1)

network performance, (2) server workload balance, and (3)

inter-domain transit traffic. Large latency between clients and

servers causes poor user experience and network performance;

imbalanced workload of servers may cause a large overhead

for specific servers, which increases the risk of server breaking

down. The inter-domain transit traffic produces unnecessary

ISP operational cost. Our goal is to minimize the network cost,

balance client requests across servers, and reduce inter-domain

transit traffic. However, improving one of these components

typically comes at the expense of the others. Thus, we allow

our customers (i.e., CSPs) to configure the parameters to

satisfy their willingness for the trade-off among these three

factors.

An objective function is desired for seeking an optimal user-

server mapping. Subject to the pre-configured load balancing

requirement, we try to minimize the latency between every

user and the selected server. Furthermore, we introduce inter-

domain transit traffic penalty coefficient, to reflect the ISPs’

economic profit in the objective function. The following global

performance optimization problem describes the goals stated

above:

minimize
∑

c∈C

∑

i∈I

Rci · cost(c, i)

subject to B · Pi ≤ Bi, ∀i.

(1)

where

cost(c, i) =



















D(c, i)
ISP (c) and ISP (i)

are same or peering

penalty(D(c, i)) others
(2)

where D(c, i) denotes the latency from client c to server i,
and penalty(D(c, i)) is the penalty function for inter-domain

transit traffic. Generally we use

penalty(D(c, i)) = k ·D(c, i), (3)

where k is inter-domain transit traffic penalty coefficient [22].

The inter-domain transit traffic penalty coefficient k = 1
means the CSP does not want to distinguish inter- and intra-

domain traffic, and k = +∞ denotes the CSP forbids inter-

domain transit traffic by setting the cost penalty to an infinite

value. C and I are the set of clients and servers. Moreover,

Rci, which denotes the proportion of traffic mapped to server

i from client c, satisfies
∑

i∈I
Rci = 1 and Rci ≥ 0 for any

c. B is the total amount of traffic, a constant parameter that

can be calculated by summing the traffic observed by all the

servers. Bi is the capacity of server i, and Pi is the proportion

of requests directed to server i, so that

Pi =

∑

c∈C
Rci

∑

c∈C

∑

i∈I
Rci

=

∑

c∈C
Rci

number of clients
. (4)

There are several algorithms and tools to solve this linear

programming problem [8], e.g., the simplex algorithm and

the criss-cross algorithm. Moreover, the algorithms can be

decentralized by enabling each mapping node to perform a

smaller-scale local optimization system based on its own view

of clients and the aggregated global information collected from

other mapping nodes [23].

B. Distance Estimation Module

DEM in a Nutshell. We propose to use NC techniques as the

basic infrastructure for network distance estimation. However,

several technical challenges arise in building effective and

scalable NC systems in cloud server selection scenario. The

high dynamics and the constraints on bandwidth/radio cover-

age (e.g., mobility, unstable links) of “thin” client devices such

as smartphones leads to high churn rate [19], which greatly

deteriorates the performance of traditional decentralized NC

systems. One client cannot have stable neighbor nodes as

reference points. Moreover, based on the measurement in

mobile IP addresses on 3G networks, the exposed IP addresses

of individual mobiles may change frequently, even in a few

minutes [5]. Similar to node churn, this is also harmful to the

overall prediction accuracy of a decentralized NC system. As

a result, current NC systems with flat structures [6], [9], [20],

[21] are no longer applicable for positioning the clients in such

client-server model.

DEM’s design leverages the two features of server selection

in cloud computing: (1) The stability and availability of cloud

nodes within clouds are relatively high [17]; (2) Only the

distance estimation between clients and servers are required,

while inter-client distances are not useful, because only

the client-server distance matters in client-server model.

Fig. 3 demonstrates the architecture of DEM. DEM is a

two-layer distance estimation system which includes two

different kinds of NC systems: the intra-cloud NC system for

positioning cloud nodes and the client-cloud NC system for

orienting client nodes. For the intra-cloud NC, stable cloud

nodes are self-coordinated using decentralized NC systems

(e.g., Vivaldi [9], Phoenix [6]) to obtain accurate servers’

coordinates for satisfying the large scale of cloud nodes.

Further, these cloud nodes can serve as the landmarks (i.e.,

reference points) to orient the NC estimation of the clients.

Since the clients are not involved in the NC calculation of

the cloud servers, the overall estimation accuracy of DEM

will not be impacted by the high churn of client nodes.

Consequently, network distances between clients and servers
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are calculated based on these NCs. In this way, DEM reduces

each user’s measurement cost from O(N) to O(1) with

satisfying estimation accuracy, where N denotes the number

of servers within the cloud.

Intra-Cloud NC System. DEM proposes to employ the

decentralized NC system (DNCS) to determine the coordinates

of cloud nodes for DNCS’s high estimation accuracy. Due

to the stability of cloud nodes [17], cloud nodes can serve

as landmarks for typical “thin” clients of cloud services,

which cause few node churn to impact the overall estimation

accuracy. Serving as landmarks, cloud nodes should have

stable network coordinates. Unstable landmark coordinates

lead to poor estimation performance due to the subsequent

high churn of client’s coordinates. To satisfy the accurate

estimation and stable coordinate goals, we choose Phoenix [6]

as the intra-cloud NC system in DEM for the following two

considerations: (1) Phoenix utilizes a matrix factorization

model, which gets rid of the triangle inequality violation of

the Euclidean space and achieves higher accuracy. (2) The

regularization component in Phoenix makes its coordinates

stable, which is critical for landmarks. Serving as landmarks,

these cloud nodes enlighten the distance estimation between

client nodes and cloud nodes. Different from the existing

landmark-based NC systems like GNP [21] and IDES [20],

DEM gets rid of a centralized algorithm to calculate the NCs

of the landmarks, achieving high scalability within the cloud.

Client-Cloud Distance Estimation. Landmark-based NC

systems have good performance under the high churn of

client nodes (not landmarks), which is critical for client-cloud

coordinate calculation because of the mobility and dynamics

of “thin” client devices (e.g., smartphones) which is common

in the cloud-based networks. Each DEM client randomly

selects a subset of the landmarks, and calculates its own

NC by referring to the NCs of these landmarks. Rendezvous

point (RP) is used to randomly select landmarks from all

the cloud nodes in DEM, which ensures the decentralization

property. Each end users select different group of landmarks

to ensure the overhead balance among all the cloud servers.

As in the typical landmark-based matrix-factorization NC

system IDES [20], linear least squares are utilized for the NC

calculation. In this way, the network distances between all

the end users and servers can be obtained and stored to those

local Latency Storage databases.

Selective Measurement. The objective of server selection is

to direct client nodes to choose their closest or near-closest

cloud nodes within the cloud. However, as reported in [18],

the closest neighbor loss of NC systems is significantly large

(exemplified by Vivaldi [9]). Thus, it is inaccurate to simply

use current NC systems to estimate distances between servers

and clients.
We integrate selective measurement (SM) [26] into DEM

to improve the accuracy for closest server selection, i.e., each

client performs another K measurements to the top K closest

servers selected by previous NC-based algorithm, and then

updates the distance information of all the K links using

the real distance obtained by selective measurement. For an

N -server cloud, we assume that the probability of hitting the

actual closest server by selecting the i-th closest server based

on the estimated distance is pi, where
∑

N

i=1
pi = 1. Then,

the probability of selecting the actual closest server by simply

employing NC-based system is p = p1, and the probability

by introducing SM is p =
∑

K

i=1
pi. By introducing SM with

a little extra measurement cost, the probability of selecting

the actual closest server is greatly improved. We show the

effect of SM in Section III.

Measurement Cost Analysis. Measurement cost is an impor-

tant metric in server selection. High measurement cost makes

large bandwidth waste and is impractical for “thin” clients of

cloud services. In DEM, the measurement cost for each client

is (L+K) TM (we define the cost for measuring the distance

between two nodes is 1 time measurement, TM for short),



where L denotes the number of landmarks used in DEM and K
is the number of servers for selective measurement. Notice that

this measurement cost is a constant number; it will not increase

with the growing scale of clients and servers. Comparing with

the full measurement with (N) TM cost for each end user,

DEM’s measurement is much cheaper – DEM reduces the

cost from O(N) to O(1) compared with the full measurement.

The full measurement means measuring the network latency

between each end users and servers directly by measurement

tools such as King [14], which cost N TM for each end users.

Fig. 3 shows the saved measurement cost compared with the

full measurement. On the other hand, the measurement cost

for each server is (K) TM, which is trivial for cloud servers.

III. PERFORMANCE EVALUATION

A. Simulation Settings

InetDim dataset [2] is a real-world network latency dataset

with autonomous system (AS) topology. It contains all pairs

RTTs between 2385 hosts annotated with IP addresses, gen-

erated from the raw King [14] measurements made by the

Meridian Project [2]. Based on our observation, the propor-

tion of ASes containing only 1 node in InetDim dataset is

70%. One node cannot reflect the internal topology of the

corresponding AS, so we choose the nodes belonging to the

largest 10 ASes from InetDim dataset, which reflects the inter-

domain transit traffic properly. We evaluate the performance

of CloudGPS via simulation using the chosen InetDim dataset,

which includes the RTTs between 509 nodes. The impact of

the inter-domain transit traffic penalty is analyzed in a specific

way. We compare CloudGPS with CloudGPS without selective

measurement (denoted as CloudGPS without SM), full mea-

surement (FM) version CloudGPS (denoted as CloudGPS with

FM), and Round Robin algorithm, to show the performance

improved by selective measurement, and latency estimation.

Note that when inter-domain transit traffic penalty coefficient

k = 1, CloudGPS with FM is exactly the DONAR system [23].

We also analyze the results when inter-domain transit traffic

penalty coefficient k changes, and show the performance when

the number of servers increases. 100 randomly chosen nodes

serve as servers and the rest as clients; inter-domain transit

traffic penalty coefficient k is set to 2 in our simulation unless

explicitly specified else. The other simulation parameters are

set as the most popular values [6], [20], [26]: The number of

servers for selective measurement is set as K = 16, while

the number of landmarks used in IDES is set as L = 16 and

the network coordinate dimension is D = 10. According to

Section 2, each client’s measurement cost is L + K = 32
TM, i.e., CloudGPS saves (1 − 32/100) × 100% = 68%
measurement cost compared with the full measurement (the

cost of full measurement is N = 100 TM). We run 100

times for each simulation to mitigate the effect of randomness

and report the average result values. It takes 3.05 seconds

on average for 409 clients in the 100-server environment in

our simulation on MATLAB 2008b, Windows 7 Professional

64bit, Intel(R) Core(TM)2 Duo CPU E8400 @3.00GHz, 4GB

RAM.

B. Simulation Results

Ranked Order from Closest. We evaluate CloudGPS’s

performance by comparing inter-domain transit traffic penalty

coefficient k = 2 and k = 1 (without inter-domain transit

penalty). We measure ranked order from closest (ROFC) [23]

as the principal metric to evaluate the performance of the

whole selection. ROFC reflects the satisfying degree of user

experience. For example, if a client is oriented to the closest

server, the selection gives the best user experience. We

record the actual ranked order from 1 to 5, i.e., up to the

5th-closest cloud node. With the ranked order, the proportion

of selecting the closest server is calculated. Fig. 4 shows that

the proportion of selecting closest server (ROFC = 1) by

CloudGPS with FM, CloudGPS, CloudGPS without SM, and

Round Robin is 42.24%, 26.58%, 5.71%, 1.00%, respectively,

considering inter-domain transit penalty, and 39.92%, 25.86%,

6.61%, 1.00%, respectively, without considering inter-domain

transit penalty. The proportion of choosing the closest server

in CloudGPS is changed from 26.58% to 25.86%, with only

0.72 percentages decreased. Comparing with the reduced

inter-domain transit traffic (we will show later), it is more

than valuable. The reduced proportion from CloudGPS with

FM to CloudGPS is also valuable, comparing with the

reduced measurement cost, which is 68% in this simulation,

and will be much larger when the number of servers increases.

Accuracy in Closest Server Selection. We measure the

selection accuracy of CloudGPS in closest server selection

(CSS), i.e., the overhead of all the servers are unlimited.

Specially, we randomly select a number of nodes from our

dataset as the cloud node, and measure the stretch of using

estimation to select the closest server. The stretch is defined as

the distance to the closest cloud server cluster selected based

on estimation, divided by the distance to the actual closest

server cluster [26]. The result of FM is the exact closest

server definitely, so the CSS stretch of CloudGPS with FM

without inter-domain transit traffic penalty is always 1. Fig. 5

shows the average stretch for choosing different number of

servers (same as reported in [26], the average stretch of each

curve increases with the number of servers increasing). We

see the average stretch value of CloudGPS is very close to the

CloudGPS with FM value and outperforms the other two, and

the average stretch value of CloudGPS is very close to the

CloudGPS without inter-domain transit traffic penalty value.

When the number of servers is 50, the average stretch of

CloudGPS is 1.35, much smaller than of CloudGPS without

SM (16.04) and round robin (16.03). CloudGPS’s stretch

for 140 servers is only 2.78, much smaller than CloudGPS

without SM (24.61) and round robin (19.97). The average

stretch of CloudGPS without inter-domain transit traffic

penalty is 1.347, and of CloudGPS is 1.350, respectively;

when the number of servers is 40, they are almost the same.

From the analysis above, we conclude that comparing with

the reduced measurement cost and inter-domain transit traffic,

the performance is significant.
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(b) CloudGPS

Fig. 5. Accuracy in CSS

Impact of Inter-domain Transit Penalty Coefficient.

We measure the proportion of choosing closest server,

inter-domain transit traffic, and median latency, when the

penalty coefficient varies. With a randomly chosen 100 nodes

serving as cloud servers, we change the penalty coefficient

from 1 to 6 with the step of 0.5. Inter-domain transit traffic

penalty coefficient k = 1 means the CSP does not consider

inter-domain transit traffic penalty, and a large value means

the CSP strongly prefer to choose a server in the same ISP.

Fig. 6(a) shows the median latency is not influenced by

the value of inter-domain transit traffic penalty coefficient.

Fig. 6(b) shows that the proportion of choosing closest

server decreases a little when the inter-domain transit traffic

penalty coefficient increases. From Fig. 6(c), we find that

the inter-domain transit traffic decreases with the value of

inter-domain transit traffic penalty coefficient increasing,

and the absolute slope is decreasing. In real application, the

penalty coefficient k should be set based on the balance

between user-server proximity and inter-domain transit traffic

cost, because different applications’ sensitiveness of proximity

and inter-domain transit traffic cost varies a lot. With the large

amount of saved measurement cost and reduced inter-domain

transit traffic, CloudGPS performs very close to CloudGPS

with FM, and outperforms DONAR (CloudGPS with FM

with inter-domain transit traffic penalty coefficient k = 1).

Scalability of Mounting Servers. We measure the proportion

of choosing closest server, inter-domain transit traffic, and

median latency, when the number of servers increases. Same

as the paragraphs above, we randomly select a number of

nodes from our dataset as the cloud node, with inter-domain

transit traffic penalty coefficient k = 2. Fig. 7(a) shows

the median latency decreases with the increasing number of

server in a fixed number of ISPs, which means deploying

more servers improves the user experiences. To the same, the

proportion of choosing closest server and inter-domain transit

traffic decreases when the number of servers increases, in

Fig. 7(b) and Fig. 7(c). When the number of servers increases,

the measurement overhead of each client is the same, which

shows the scalability in terms of the increasing number of

servers.
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Fig. 6. Impact of Inter-domain Transit Penalty Coefficient
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Fig. 7. Scalability of Mounting Servers

C. Evaluation Summary

From the simulation results, we have the following obser-

vations:

1) CloudGPS performs a little worse1 than CloudGPS with

1Worse and better here are in terms of the proportion of choosing the
closest cloud node, compared to the decision with exact full global network
and server knowledge.

FM, but saves a large amount of measurement cost.

2) CloudGPS performs much better than CloudGPS with-

out SM, with similar measurement cost.

3) The proportion of inter-domain transit traffic decreases

when the inter-domain transit penalty coefficient K
increases, but when the coefficient K increases to larger

than 3, the decreasing speed becomes very slow.

4) CloudGPS is scalable with a constant number of mea-



surement cost for each client when the number of servers

increases.

To summary, CloudGPS reaches the scalability and ISP-

friendliness goals, as well as carries on the features in existing

server selection systems.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose CloudGPS, a novel server s-

election scheme for cloud-based applications. CloudGPS is

scalable to deal with the explosively-increasing numbers of

clouds as well as user clients based on its DEM component.

DEM takes the advantages of two different kinds of NC

techniques (i.e., the distributed NC and landmark-based NC) to

position both the clouds and users, achieving the measurement

cost reduction from O(N) to O(1) for clouds with N server

clusters. In addition, CloudGPS is ISP-friendly that effectively

reduces inter-domain transit traffic leading to low ISP opera-

tional costs and improve end users’ quality of service based

on its MM component which makes a balance between the

closest server selection and the inter-domain transit traffic, in

the limitation of servers’ capacity.

Our future work includes the following two aspects. First,

we expect to release a complete application program interface

(API) for quick and convenient configurations. Second, we

would like to deploy CloudGPS on a real-world cloud comput-

ing environment to demonstrate its feasibility and efficiency.
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