
CloudIDEA: A Malware Defense Architecture for

Cloud Data Centers

Andreas Fischer3, Thomas Kittel1, Bojan Kolosnjaji1, Tamas K Lengyel1,
Waseem Mandarawi3, Hermann de Meer3, Tilo Müller2, Mykola Protsenko2,

Hans P. Reiser3, Benjamin Taubmann3, and Eva Weishäupl4

1 Technische Universität München
{kittel, kolosnjaji, tklengyel}@sec.in.tum.de

2 University of Erlangen-Nürnberg
tilo.mueller@cs.fau.de, mykola.protsenko@fau.de

3 University of Passau
{firstname.lastname }@uni-passau.de

4 University of Regensburg
eva.weishaeupl@wiwi.uni-regensburg.de

Abstract. Due to the proliferation of cloud computing, cloud-based sys-
tems are becoming an increasingly attractive target for malware. In an
Infrastructure-as-a-Service (IaaS) cloud, malware located in a customer’s
virtual machine (VM) affects not only this customer, but may also attack
the cloud infrastructure and other co-hosted customers directly. This pa-
per presents CloudIDEA, an architecture that provides a security service
for malware defense in cloud environments. It combines lightweight in-
trusion monitoring with on-demand isolation, evidence collection, and
in-depth analysis of VMs on dedicated analysis hosts. A dynamic de-
cision engine makes on-demand decisions on how to handle suspicious
events considering cost-efficiency and quality-of-service constraints.

1 Introduction

Cloud computing has become a dominant computing paradigm over the past
years. The flexibility and scalability offered by cloud providers lead to more and
more services to be outsourced to the cloud. In this paper, we address security
challenges that arise in an Infrastructure-as-a-Service (IaaS) cloud environment.

Detecting, analyzing and preserving evidence about attacks against cus-
tomers’ virtual machines (VMs) in the cloud is more complex than handling
similar attacks on a local infrastructure controlled by the customer: the cus-
tomer on the one hand has detailed knowledge about his own VMs, but lacks
direct access to the cloud infrastructure. On the other hand, the cloud provider
has full control over the cloud infrastructure and is potentially in a good position
for analyzing abnormal activities, but lacks the contextual knowledge about the
hosted VMs.

This difficulty limits the applicability of intrusion detection systems (IDSs)
by the cloud operator. Using a heuristics-based IDS incurs the danger of false



positives, i.e., classifying normal behavior of a VM as an attack. If an IDS suspi-
cious activities alarm is used to automatically terminate the affected VM, false
alarms will inhibit a legitimate service. If the only reaction to the alarm is a
notification of the cloud customer, a delayed manual reaction to the alarm puts
the cloud provider and other customers’ VMs at risk.

The accuracy of attack detection, the comprehensiveness of malware anal-
ysis and the conclusiveness of evidence depend on the selection of information
sources and monitoring mechanisms. Typically, more detailed information gath-
ering incurs higher runtime cost. A non-trivial tradeoff to be made is between
performance impact on a production system, analysis costs and quality of the
collected data. Collecting data within a VM is susceptible to manipulation by
the attacker. Acquiring conclusive evidence requires data collection at a place
where an adversary is not able to alter it.

There are many existing approaches that address partial aspects of the out-
lined problem. To our best knowledge, however, there is no solution that com-
bines stealthy intrusion detection, comprehensive evidence collection and in-
depth automated malware analysis in a joint architecture for cloud-based envi-
ronments. In this paper, we address the following core research questions:

– How can both cloud providers and customers take advantage of state-of-the-
art malware defense mechanisms based on virtual machine introspection?

– What introspection-based techniques are sufficiently lightweight in order to
be used continuously on a production system?

– What introspection-based techniques – possibly heavy-weight – can be acti-
vated on demand to yield additional information and a detailed understand-
ing of malicious attacks and malware behavior?

In this paper, we present CloudIDEA, a system that monitors the activity of
VMs using lightweight detection mechanisms with low overhead on the produc-
tion environment. Upon observing abnormal symptoms, these mechanisms will
trigger events that a decision engine (DE) will combine with quality of service
(QoS) parameters and the current virtual resources allocation to take appropri-
ate actions such as isolating the VM to a dedicated analysis environment.

2 Threat model

As illustrated by Figure 1, there are three basic attack targets in a cloud envi-
ronment: the cloud management system, the hypervisor and node management,
and the VMs executed in the cloud.

The cloud management system, as any other software, potentially contains
exploitable security flaws [39]. Avoiding or detecting such attacks is currently
not in the main focus of our work. The hypervisor/node management subsystem
manages VMs and is controlled by the cloud management system. We assume
that the management interface is not accessible by external attackers, as it is
typically hidden within a dedicated management VLAN, and thus do not con-
sider direct external attacks against this subsystem. If the attacker controls a
VM, the hypercall interface of the VM is a potential attack vector [31].



Cloud Node

VM
Escape

Side-Channel

and DoS

Attack

Management Node

Hypervisor/Node management

Hardware

Cloud Management

System

Hardware

Virtual 

Maschine

Virtual 

Maschine

Attacker

Upload VM/

Attack VM
Attack Attack

Fig. 1. IaaS cloud threat model; arrows with solid lines are attacks considered in this
paper

The customer VMs can be both a target and a potential source of attacks.
As a target, an attacker can directly exploit vulnerabilities of software running
within the virtual machine. Such attacks cause immediate harm for the affected
cloud customer, and a core focus of our work is supporting the cloud customer
in the defense against such attacks. Furthermore, an adversary can simply up-
load any malicious VM in a public cloud. In both cases, a malicious VM can
perform two attacks against other VMs: denial of service (DoS) attacks and
cross-VM side channel attacks. DoS attacks can be performed by overloading
physical resources of a cloud node or through the virtual network [38]. Cross-
VM side channel attacks can be performed by examining the behavior of virtual
or physical hardware modules, such as the L2 cache [53], and deducing infor-
mation about the state of other VMs. Additionally, an infected VM might try
to escape the hypervisor using different mechanisms such as privilege escalation
or memory brute force attacks. In this case, the attacker gains control of other
VMs, the hypervisor, or the cloud node completely [40].

We assume that, in the future, the biggest threats to IaaS based clouds are
network based attacks against VMs, internal cross-VM side channel attacks and
VM escapes. Thus, the main focus of CloudIDEA is to detect those attacks by
monitoring and tracing VMs.

3 Architecture

The CloudIDEA architecture enhances the security of IaaS cloud data centers
by improving the capability to detect, analyze in depth, and preserve evidence
about the attacks described in Section 2. The architecture aims to satisfy the
following design goals:



Analysis Framework

Virtual Network 

Virtual Machines

Cloud Management

Production Network Analysis Network

CloudIDEA managementCloud Nodes Analysis Cloud Nodes

Decision Engine

Virtual Network 
Management

...

Analysis Framework

Virtual Network 

Virtual Machines

Cloud Management

...

Logging & Analysis
vCPU vMem vNet vCPU vMem vNet

resource
usage info

VM inter-
dependencies

Forensics Interface

Fig. 2. The CloudIDEA architecture

– Security-as-a-Service: Enable a cloud customer to use advanced detection,
analysis and evidence preservation techniques, such as transparent virtual
machine introspection (VMI).

– Security for the provider : Support the cloud provider in dealing with mali-
cious behavior originating from virtual machines, targeting the cloud infras-
tructure, other customers, or external targets.

– Running in production systems: Be well-suited to be used in a production
system. This means that we need to support mechanisms that are sufficiently
lightweight to cause only negligible overhead. Also, the system needs to be
tailored to the specific needs of both cloud provider and cloud customer.

– In-depth analysis and evidence preservation: Provide detailed information
and conclusive evidence about attacks.

3.1 Overview

The CloudIDEA architecture is shown in Fig. 2. This architecture contains a
decentralized, modular, and scalable analysis framework, which supports both
lightweight monitoring and heavyweight in-depth analysis, controlled by a cen-
tral CloudIDEA management component. For isolating potentially infected VMs
and for analysing them with resource-intensive mechanisms, the suspicious VMs
can be migrated to a dedicated analysis environment.

Every VM is monitored by a decentralized analysis framework, which is part
of every physical cloud node. It includes plug-ins for tracing and introspection of
VMs, e.g. , network traffic monitoring and hypercall tracing. Those plug-ins can
be activated and deactivated at runtime on demand, in order to minimize the
overhead in a production environment and tailor the monitoring mechanisms to
the observed current threat level.



Tracing Interpretation Logging Analysis

Virtual Machine Analysis Framework

vMem

vCPU

vNet

libVMI

pcap

guest

modules

protocol

parser http 

analysis

TCP stats

volatility

rekall

...

database

simple

logging

extended

logging

intrusion

detection

behavior

database

evidence

collection

OS

application

Hypervisor

Hardware
...

Logging & Analysis

Cloud Management

machine

learning

malware 

analysis

Fig. 3. Analysis Framework and Cloud Management

The traces are processed in a central CloudIDEA management component. It
incorporates all components that are responsible for attack detection, mitigation
and evidence collection in a central place in order to learn and compare common
patterns for all VMs in a cloud data center. This information is used, for example,
to detect distributed attacks against several targets. If suspicious behaviour is
observed, further processing, such as deeper analysis or restarting, is computed
by the DE. The components of the CloudIDEA management are: the forensics
interface, logging & analysis, DE and the virtual network management.

The logging & analysis component is responsible for storing the traces of VMs
to provide that information for intrusion detection and evidence collection (see
Figure 3). The behavior database contains a model for each VM which is deduced
with machine learning algorithms from the traces of the analysis framework.
These models serve as a basis for intrusion detection to recognize deviant be-
havior. The forensics interface provides customers access to this data and enables
customers to execute forensics analysis on their VMs. Whenever an anomaly is
detected, the DE is informed and determines how to react, e.g., by isolating or
restarting the corresponding VM. The decision is influenced by the customer
(e.g., predefined configurations and service level agreements (SLAs)) and cloud
internal information (e.g., available resources and VM interdependencies). If a
VM shows a suspicious behavior, which needs to be analyzed more intensely,
it is migrated to an analysis host. Therefore, the virtual network management
reconfigures the virtual network infrastructure and ensures that resources are
still available and SLA compliances can still be guaranteed.



3.2 Intrusion detection and analysis

Monitoring and tracing the state of VMs is an important feature of the analysis
framework in order to detect possible intrusions. In this section we will discuss
the applied techniques.

VM introspection for intrusion detection and prevention Over the last
decade, there has been a significant push to move the security stack from VMs
into regions protected by the hypervisor [23,30]. With the proliferation of kernel-
mode rootkits, this elevated protection has become ever more important [3,13].
While running external to the context of the VM being protected, such security
software inherently had to tackle the semantic gap problem: reconstructing high-
level state information from low-level data-sources [14]. This problem has been
a main motivation for a significant portion of research over the last decade.
However, with recent advances in forensics tools, the semantic gap problem can
be considered a solved engineering problem [21].

In recent years, open-source forensics memory analysis frameworks such as
Volatility5 and Rekall6 have achieved an unparalleled view into the execution
of modern operating systems, such as Windows, Linux and MacOS X. Further-
more, as the underlying use-case for these frameworks has been extracting evi-
dence of compromise, the inclusion of various methods to side-step obfuscation
and rootkit techniques has significantly raised the bar for malware to achieve
effective stealth [9]. Further combined with active monitoring systems, such as
utilizing the CPUs two-stage paging mechanism (Intel EPT) to monitor memory
accesses [47] or via stealthy breakpoint-injection [7], external security software
are now capable of not just extracting state-information of running VMs but also
interposing on the execution to deliver additional protection mechanisms [8,26].

Ongoing research thus has not been focusing on how to gain access to the
required information but rather how to utilize it to deliver additional security
services: intrusion detection and intrusion prevention [15]. Furthermore, it is
essential for such systems to exert limited overhead on production systems. Re-
search has shown that system call interception [19] and heap-tracing [34] are
a viable approach to detect intrusions; however, the exerted overhead may be
prohibitive on production systems. While upcoming next-generation virtualiza-
tion extensions such as Intel #VE may be capable of mitigating some of that
overhead, there is a clear need for lightweight detection mechanisms as well [11].

Lightweight malware detection Compared to classical antivirus (AV) en-
gines, VMI based detection systems have the advantage of being able to monitor
and alter the execution of the operating systems they protect from an elevated
CPU mode [5]. While static signature based malware detection mechanisms can
be ported to use VMI for data-access, additional protection mechanisms can also
be implemented. For example, buffer-overflow and heap-spray attacks inherently
rely on placing code into memory regions normally used only for data: the stack

5 The volatility framework - https://www.volatilesystems.com/default/volatility
6 Rekall: Memory forensics analysis framework - http://www.rekall-forensic.com



and the heap [41]. While modern OS’s provide counter-measures to these types of
attacks, such as data execution protection (DEP) and address space layout ran-
domization (ASLR), they are known to be easily circumvented. However, if DEP
is implemented by the hypervisor as well, it can act as a low-overhead indicator
of compromise (IoC). Recent extensions to open-source hypervisor technologies,
such as Xen7, now actively support such protection schemes, where the shell-code
can further be turned into a NOP-sled via the use of emulators [2].

Rootkit mechanisms also notoriously rely on placing hooks into the OS ex-
ecution [50]. The behavior is well documented in several malware families, and
the immediate target of such hooks are core tables, for example, holding the
addresses for system call handlers and interrupts [27]. By replacing members of
these tables, rootkits can actively interpose on the execution of the OS, thus
being able to log and mangle the output of any such event. Stealthier versions
place inline-hooks [4] directly into the target function entry points, which have
the advantage of allowing a wider set of combination of placing the hooks, thus
detection can be complicated on systems that allow dynamic run-time kernel
patching and updates to be deployed [25]. Other hardware events may also act
as low-overhead indicators of compromise, such as the rapid querying of the Time
Stamp Counter (TSC) counter. Such behavior usually indicates an in-guest agent
attempting to detect the presence of out-of-guest monitors [8]. Furthermore, the
rapid querying of the TSC has also been used during side-channel attacks [53].
Given that the RDTSC instruction can be configured to be trapped into the
hypervisor, an external frequency analysis would easily reveal such malicicous
behaviors.

These malware behaviors naturally lend themselves to lightweight detection:
under normal operation of the operating system well-behaved application would
never exhibit such behaviors. Furthermore, as the overhead added by the pro-
tection only applies when a malicious behavior is triggered, it would arguably
be negligible.

Heavyweight malware detection While the lightweight detection mecha-
nisms apply to a potentially wide-range of malware, it is by no means exhaustive.
A lot of malware operates without exhibiting the behaviors previously discussed.
Therefore, our lightweight detection is not a replacement for existing security so-
lutions, such as in-VM antivirus engines and network IDS solutions, rather an
augmentation on the existing stack. While ideally lightweight detection would
be possible for all malware instances, we need to collect additional artifacts for
systems which exhibit suspicious but unidentifiable malicious behavior.

Growing number of malware instances and families create significant diffi-
culties for traditional signature-based detection systems to correctly detect and
classify malware samples. A recent trend of malware having properties of multi-
ple families further complicates the detection and classification. An attempt to
solve this is using statistical machine learning methods. These methods lever-
age gathered behavioral data about malware to generate statistically confident

7 Xen - http://www.xenproject.org



knowledge. This has been attempted in the past with various data sources that
characterize program behaviour: system calls [45], registry accesses [18], network
packets [42]. These event sequences are analyzed using unsupervised (clustering)
or supervised learning (classification) methods. The used methods can be further
divided into one-class anomaly detection and multiclass learning.

For the heavyweight detection mechanism it is crucial to maintain the sample
set from different malware families and their behavioral patterns to be able to
properly classify the suspicious applications. Furthermore, in the case of sequen-
tial data, automatic methods for extraction of semantically relevant features
must be used to cope with the possibly noisy and high-dimensional data. An
example of this is given by recent application of topic modeling approaches to
the classification of system call sequences [49]. This approach can be extended
by including memory allocation patterns and other traceable operations. The
standard methods for direct classification of sequential data are Hidden Markov
Models (HMM) and Recurrent Neural Networks (RNN). Support vector ma-
chines (SVM) with string kernels give another approach, where a standard clas-
sification scheme is augmented to work with sequences of variable length [32].
Network traffic produced by the analyzed samples can be classified by taking
into account the frequency and length of different type of packets or generating
n-gram features out of packet payloads.

Results of the heavyweight detection mechanisms can be structured to form
a significant knowledge base. The knowledge acquired after executing the heavy-
weight detection mechanisms can be fed back to the lightweight detection as
behavioral signatures, to further decrease the necessary resource usage. Also,
malware samples that do not belong to the previously defined families can be
added as prototypes to the clustering or classification schemes. This method has
shown success in the previously published work [35].

In case of suspicious activity, our architecture enables extensive data collec-
tion using tools for VMI and network traffic analysis. This data is an input for
the machine learning-based malware detection mechanism. The machine learning
engine contains two main parts: extraction of relevant, preferably semantically
interpretable features from raw data and classification based on those features.
Different feature extraction methods are applied based on the type of data.
Based on these features, a suspicious application is either classified into known
families, as benign, or as a malware of unknown family. In the last case, the
behavioral signature of this application is used to form a new class. Ensemble
learning enables the usage of different classifiers and averaging out of their re-
sults. The classification results are fed back to the DE. Feature values and the
classification results of the analyzed sample are saved to the behavior database
for further reference.

3.3 Decision engine

The task of the DE is to orchestrate the decentralized analysis frameworks. A
main mechanism of the architecture is to isolate suspicious VMs by migrating



them to a dedicated analysis environment. This environment provides an infras-
tructure with smaller attack surface and with the required features and resources
for the analysis, which may not be available in the production environment. The
main challenge of the migration is keeping the service requirements and depen-
dencies between VMs satisfied. The approaches for resource allocation in virtual
environments try to optimally allocate VMs according to certain requirements
such as to minimize energy consumption [22]. An optimized reconfiguration pro-
cess is required to determine the minimum set of VM migrations that can re-
configure the virtual network in a way that allows for a detailed analysis and at
the same time adhere to the QoS requirements.

Economical aspects The distribution of specialized investigation hosts plays a
main role in the decision process. Finding an efficient distribution of these hosts
is also an economical challenge of the proposed architecture. This requires a
detailed analysis of the target environments and expected attack scenarios. The
trade-off between protection costs and attack costs will be a major output of this
analysis. Another economic aspect is the minimization of the VM’s downtime
during the migration to prevent a monetary [48] and a reputational loss [16] for
the cloud provider. The service provider commits to a certain level of service,
which is described by a SLA. Usually, the SLA expresses the VM availability. For
example, 99.999% guaranteed availability means 5 minutes downtime per year.
Non-compliance to such SLAs can lead to (monetary) penalties for the providers
and can harm their reputation [44]. Reputational damage leads to economical
long-term consequences, because the consumer’s trust in the service might be
lost and fewer customers might use the provider’s services in future. Therefore,
the downtime and migration time of the VM need to be minimized. Although
live migration usually causes only a short downtime to a VM, small interruptions
ranging from 60 milliseconds to 3 seconds are inevitable [1]. In order to guarantee
a certain QoS it is, therefore, essential to predict the worst case downtime as
precisely as possible [36]. Based on the model presented by Salfner et al. [36] and
the characteristics of our architecture, the migration time and downtime will be
predicted and measured. Voorsluys et al. [44] performed experiments to evaluate
the cost of migration of VMs considering service disruptions and violations of
SLAs. They concluded that most SLAs can still be met when migrations are
performed, so that the reputational harm is within limits.

Inputs The DE depicted in Figure 4 is the central component of the proposed
architecture. It has communication interfaces with the cloud management sys-
tem, detection mechanisms deployed in cloud nodes, a set of databases, and the
cloud administrator and customer. The main role of this engine is to react to
alarms received from the detection mechanisms when certain behavior patterns
are detected. The reaction can be a certain reconfiguration action in the cloud
environment, or raising an alarm to the cloud administrator or customer. To
perform this task, the DE needs four main inputs.

The first input is the configuration and monitoring data that is acquired
from the cloud management system and contains four data sets. The physical



Decision Engine

Virtual Machines

vCPU vMem vNet

Cloud Node Analysis NodeDatabase

Cloud Management

Events

Actions

Configuration 

and Monitoring 

Data

Reconfiguration 

Algorithm

Action

Module

Events

Resource

Allocation

Virtual

Networks
SLAsTopology

Detection

Mechanisms
Patterns Policies

Cloud

Customer

Cloud

Administrator

Events

Analysis Framework

...

Analysis Framework

...
Results

Virtual Machines

vCPU vMem vNet

Fig. 4. Decision Engine Interfaces

network defines the cloud hosts and analysis nodes and detection mechanisms
deployed in them, the resource capacities and usage, and the network topology.
The virtual networks deployed in the environment define the topology, resource
demands, and constraints of the virtual networks. An example constraint is the
maximum communication latency between two VMs. The resource allocation
defines how resources are allocated to the virtual networks in the cloud envi-
ronment. The SLAs define the QoS requirements of the virtual networks such
as service availability. This availability could modeled as a downtime budget for
each VM.

The second input comes from three databases. The behavior patterns database
is maintained by the cloud administrator and by the analysis nodes that update
the information about possible attacks based on the results of the analysis. This
database includes pre-defined behavior patterns that refer to a probability of a
certain attack. This database consists of records of the form: {Pattern, Param-
eter ranges, Suspected malware, Possible attacks, Suspicion level}. An example
of such a record is: {Network traffic spike, Period > 5 seconds, Unknown, DoS,
50%}. The policy database is maintained by both the cloud administrator and
customer. It specifies a list of actions that should be executed by the DE when an
event from a detection mechanism or an analysis result from an analysis node
is received for a specified VM. This database consists of records of the form:
{Pattern, VM ID, Actions}. An example of such a record is: {Network traffic
spike, VM 100, block}. The detection mechanisms database is maintained by the
cloud administrator. It is used by the DE mainly to find the estimated resource
requirements of each mechanism. The structure of this database can only be de-



termined after an extensive evaluation of the resource utilization by the required
detection mechanisms.

The third input of the DE is the events received from detection mechanisms.
The detection mechanisms running in cloud nodes should have access to the
behavior patterns database. When a certain behavior is detected, an event is
reported to the DE. The event includes the following information: {VM ID,
node ID, pattern, Parameters}. An example of such an event is: {VM 100, Node
1, Memory usage spike, Period:5 seconds}.

The last input is the analysis results received from analysis nodes. When
a suspicious VM is migrated to an analysis node, the node sends the analysis
results to the decision engine that executes further actions defined in the policy.

Actions The DE includes an action module that receives the events from the
detection mechanism, reads the behavior and policy database, and determines
the required list of actions to respond to this event. Possible simple cloud actions
are blocking the network connections of a VM when the VM is suspected to be
performing a network attack, restarting a VM when facing a transient attack,
and shutting down the VM immediately when an attack is highly probable and
the damage that might be caused to the environment cannot be easily recovered.
A significant action is activating additional detection mechanisms in the cloud
node to perform a more detailed analysis on the VM if the required resources for
running these mechanisms are available in the node. The most important action
in the DE is migrating the VM to a dedicated analysis node where an extensive
analysis can be performed without interrupting the functionality of this VM. A
similar action is cloning the VM and moving the copy to an analysis node when
service interruption is not feasible and the suspicion level is low. One important
action after receiving an analysis result of a migrated or cloned VM is recovering
the VM in case the analysis identifies the VM as harmless.

Reconfiguration algorithm To perform the cloning and migration actions,
the DE uses a reconfiguration algorithm that reads the configuration and moni-
toring data for the affected virtual network and finds the available analysis nodes.
In the cloning action, the algorithm has only to find an analysis node that has
enough resource capacities to host the VM and perform a detailed analysis. In
the migration action, the algorithm is more complex, and three main factors
should be considered in the decision making. The first factor is the migration
downtime. The live migration of VMs usually causes a small downtime. However,
a maximum downtime should be estimated before the migration is performed.
The migration downtime mainly depends on the memory usage of the VM, the
network bandwidth, and migration strategy. This downtime should be then com-
pared with the downtime budget of the VM. The second factor is the resource
capacities of the analysis nodes that have to match the requirements of the VM.
The last factor is VMs dependencies in the virtual network. A typical exam-
ple of these dependencies is the communication delay among virtual machines
[20]. The dependencies might require a full or partial reconfiguration of the vir-
tual network when a VM is migrated to an analysis node. The reconfiguration



might need to migrate other VMs to keep the constraints of the virtual network
satisfied. The migration downtime and resource requirements of the these VMs
should also be considered.

The decision engine waits for the events or analysis results from the pro-
duction environment and the analysis environment respectively. On one hand,
when an event is received, the appropriate action will be performed according
to the event parameters, detected behavior, and security policies. The migration
action needs to adhere to the service requirements of the VM. It might also
require a reconfiguration of the virtual network according to its dependencies.
On the other hand, when an analysis result is received, the appropriate action is
performed depending on the VM state by either recovering the original config-
uration of the virtual network if no attack is identified, or performing a certain
action according to the policies if an attack is identified.

4 Evaluation and Future Work

Performance In order to illustrate the classification of monitoring tools as
lightweight or heavyweight, we have implemented a framework for monitoring
system calls of VMs, which supports four different monitoring configurations: (1)
without any tracing system calls (none), (2) tracing execve system calls, (3)
tracing open system calls and (4) tracing all system calls of the virtual machine.
The system call tracing is implemented by inserting software breakpoints into
the guest system and by handling the corresponding interrupts using libVMI8.
The overhead depends not only on the monitoring mechanism, but also on the
software running within the virtual machines. For this reason, we measured the
overhead for four different use cases executed within the VM: (1) the extraction
of a Linux Kernel archive, (2) the compilation of the Linux kernel, (3) writing of
1.2 GB file with zero bytes and (4) the computation of 5000 digits of the number
pi. Table 5 presents the results of the measurements.

Based on these results we can do a very basic classification: By tracing only
the execve or open system call, the additional overhead is still acceptable and
can be further decreased by a faster implementation. Tracing the execve system
call is for example useful for forensics purposes, e.g., to log the executed com-
mands of an attacker or to perform intrusion detection. Hence, tracing a small
set of system calls can be classified as lightweight.

The overhead which is required to monitor all system calls is obviously higher
but it also allows to get a better insight of the processes in a VM, e.g., in or-
der to do malware analysis. Thus, tracing all system calls can be classified as
heavyweight analysis. Another example for a heavyweight analysis is the trac-
ing of library calls, e.g., malloc in the libc library. The decision about which
tracing strategy to apply depends on the current threat level of a VM. However,
the computation of the threat level and the corresponding action needs to be
investigated in more detail in future work.
8 libVMI - http://libvmi.com/



Usecase #syscalls treal(s) overhead tuser(s) overhead tsys(s) overhead

extract none 0 11.350 6.508 1.664
execve 5 13.038 14.8% 6.560 0.80% 1.692 16.8%

open 54 11.810 4.05% 6.532 0.37% 2.384 43.3%
all 65.7k 116.664 928% 6.940 6.64% 108.936 655%

compile none 0 657.508 595.704 24.116
execve 33k 849.250 29.2% 635.556 6.69% 176.404 631%

open 4022k 1663.985 153% 651.360 9.34% 651.360 270%
all 13539k 2987.852 354% 660.120 10.8% 2248.744 922%

write none 0 10.008 0.028 0.924
execve 1 10.729 7.20% 0.044 57.1% 0.972 5.19%

open 12 10.081 0.73% 0.036 28.6% 0.928 4.32%
all 602k 94.324 842% 0.220 686% 93.220 1000%

compute none 0 20.413 20.408 0.004
execve 1 20.437 0.61% 20.428 0.1% 0.004 0%

open 5 20.460 0.23% 20.448 0.2% 0.004 0%
all 1080 20.767 1.73% 20.450 0.2% 0.100 250%

Fig. 5. Overhead generated by tracing system calls of a virtual machine. treal is the
total execution time, tuser is the time where the programming was running in user
space and tsys is the time spent in system calls (times measured with the Linux tool
time). The overhead is computed in relation to the case when no tracing is active.

Security Currently, the analysis framework runs in the XEN Dom0. Thus, if an
intruder is able to exploit it he gets full control over all other VMs. To improve
the security level and in order to increase the trustworthiness of the forensics
data we plan to start the analysis framework in a separate and very minimal
monitoring VM for each production VM. Thereby each monitoring VM shall
be restricted to access only one production VM, e.g., by applying XSM flask
policies [6].

Limitations of VMI In order to execute VMI, a priori knowledge about the
guest operating system is required in order to bridge the semantic gap and
interpret the guest memory. We assume that a cloud customer who wants to
benefit from CloudIDEA makes this information available to analysis framework.
In future work we will discuss whether malware can fool the interpretation of
the analysis framework.

5 Related work

Several researchers have addressed the problem of evidence collection in the
cloud. Zafarullah et al. [51] propose a centralized approach to analyze log files in
an IaaS environment, in which the cloud provider is responsible for forensic in-
vestigations. Martini and Choo describe an integrated conceptual digital forensic
framework for cloud computing [29]. Dykstra and Sherman [12] present FROST,



a digital forensics tool for the OpenStack cloud platform that enables the acqui-
sition of virtual disk snapshots, API logs, and guest firewall logs. While these
approaches focus on enabling interactive forensic data collection, our proposed
architecture enhances evidence collection by providing a analysis framework on
each host of a production system and by automatically deciding which detec-
tor module to activate in suspicious situations. Poisel et al. [33] they discuss the
possibility of acquiring evidence at the hypervisor level using virtual machine in-
trospection, and identify the need for extending such approaches from evidence
collection on a single host to a larger setup with multiple cloud nodes.

A second area related to CloudIDEA is the detection of malware in the cloud.
Harrison et al. [17] define a framework for detecting malware in the cloud by
identifying the symptoms of malicious behaviour. Small “Forensic Virtual Ma-
chines” (FVMs) monitor customer VMs for specific malware symptoms using
VMI and collaborate with each other by exchanging messages via secure chan-
nels. Examples for detectable symptoms are missing processes such as sysclean
and tcpview, modification of in-memory code such winlogon, absence of antivirus
software from the process table, and snippets of program code that has been ob-
fuscated or uses certain cryptographic algorithms. FVMs report to a command
& control module that collects and correlates the information so that suitable
remedial actions can take place in real-time. For mitigating the cost of monitor-
ing, the authors propose a mobility algorithm in which FVMs monitor only a
small subset of all VMs that changes in time in an unpredictable way. While the
proposed framework shares some similarities with our approach, it lacks means
for evidence preservation and it is not intended for continuous lightweight mon-
itoring of all VMs. Also, we propose a DE that automatically decides taking
appropriate actions in a more flexible way.

Schmidt et al. [37] present an architecture for malware detection and kernel
rootkit prevention in cloud environments. In this approach, all running binaries
are intercepted by a small in-kernel agent and submitted to one or more backend
units where the actual classification process happens. The in-kernel agent can be
deployed by the cloud provider by replacing the OS kernel within the customer’s
VM image. In contrast, CloudIDEA aims at detecting and analyzing malware in
the cloud without depending on modifications of the guest system.

Many researchers addressed the behavior study of both traditional malware
and virtual environment specific malware in cloud environments. For example,
Dolgikh et al. [10] propose an efficient behavioral modeling scheme to detect sus-
picious processes in client VMs by monitoring system calls. Manerides et al. [28]
describe how to detect the traditional Kelihos malware in virtual machines by
monitoring the memory usage and number of processes. According to the au-
thors, Kelihos malware causes a memory explosion for few seconds, which is not
a normal behavior for traditional applications. Zhang et al. [52] use machine
learning to deploy a lightweight mechanism in a VM to detect the behavior of
L2 cache side channel attacks performed by other VMs.

Another aspect that influences the quality of a cloud malware detection and
analysis environment is the stealthiness of analysis, i.e., the question whether



malware can detect if it is being analysed. Cobra, a framework by Vasudevan
and Yerraballi [43], is known to be one of the first malware dynamic analysis
frameworks with an explicit emphasis on stealth as a design goal, also providing
support for self-modifying, self-checking code, and any form of code obfusca-
tion. A somewhat stronger solution was proposed by Dinaburg et al. [8]. Their
framework, Ether, is based on hardware virtualization extensions, e.g., Intel VT.
The analysis functionality is facilitated by the Xen hypervisor and therefore re-
sides completely outside the target OS. Ether is capable of monitoring single
instruction executions, memory writes, and system calls. Since it does not have
any presence in the guest OS, it is immune against the most of detection meth-
ods, except some timing attacks. Spider [7] is another tool based on hardware
virtualization and provides stealth binary instrumentation and debugging capa-
bilities. Drakvuf by Lengyel et al. [26], also based on hardware virtualization,
is able to track behavior of both user- and kernel-level malware. Willems et
al. [46] proposed an approach to stealth dynamic malware analysis based on
the branch tracing feature of modern CPUs. The use of this feature can pro-
vide full execution traces, and could only be detected by ring-0 programs or by
means of timing attacks. However, with this approach neither the process mem-
ory state nor CPU registers can be revealed. Kirat et al. [24] proposed a method
of detecting Malware with analysis-evasion capabilities by executing it within
different environments, for which they have used Anubis, based on emulation,
Ether, based on Xen hypervisor, Cuckoo sandbox based on virtualization, and on
“bare metal” devices. By considering the hierarchical similarity of the obtained
behavior profiles, they were able to successfully detect evasive malware.

6 Conclusion

CloudIDEA enables cloud customers to benefit from advanced techniques for
attack detection, analysis, and evidence preservation in case of malicious attacks
against VMs running on IaaS infrastructures. CloudIDEA combines continuous
monitoring on production systems with in-depth analysis, including the possi-
bility to migrate VMs to a dedicated analysis environment.

The low-level analysis framework allows using a configurable set of tracing
and introspection plug-ins, which include lightweight techniques that are suitable
for continuous monitoring as well as heavyweight techniques that have a signifi-
cant run-time overhead and can be activated on demand. Measurements on our
prototype system illustrate the run-time cost of several monitoring techniques.

The high-level decision engine automates the dynamic selection of monitoring
plug-ins and reconfigurations of the virtual machine and virtual network deploy-
ments. Within constraints regarding quality of service (as defined in SLAs) and
security requirements (policies defined by cloud customer and cloud provider)
it takes decision about actions such as terminating a VM or isolating it in a
dedicated analysis environment.

In summary, the CloudIDEA architecture is a step forward in defending
against malware in cloud infrastructures.



References

1. Akoush, S., Sohan, R., Rice, A., Moore, A., Hopper, A.: Predicting the perfor-
mance of virtual machine migration. In: IEEE Int. Symp. on Modeling, Analysis
Simulation of Comp. and Telecomm. Systems (MASCOTS). pp. 37–46 (2010)

2. Bitdefender: Xen: Emulate with no writes (2014), http://lists.xen.org/

archives/html/xen-devel/2014-08/msg00264.html

3. Butler, J.: DKOM (direct kernel object manipulation). Black Hat Windows Secu-
rity (2004)

4. Butler, J., Silberman, P.: Raide: Rootkit analysis identification elimination. Black
Hat USA 47 (2006)

5. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proc. of the 8th
Workshop on Hot Topics in Operating Systems. pp. 133–138. IEEE (2001)

6. Coker, G.: Xen security modules (xsm). http://mail.xen.org/files/summit_3/
coker-xsm-summit-090706.pdf (March 24 2015)

7. Deng, Z., Zhang, X., Xu, D.: SPIDER: stealthy binary program instrumentation
and debugging via hardware virtualization. In: Proc. of the 29th Annual Computer
Security Applications Conference. pp. 289–298. ACSAC ’13, ACM (2013)

8. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security. pp. 51–62. CCS ’08, ACM (2008)

9. Dolan-Gavitt, B., Srivastava, A., Traynor, P., Giffin, J.: Robust signatures for
kernel data structures. In: Proceedings of the 16th ACM conference on Computer
and communications security. pp. 566–577. ACM (2009)

10. Dolgikh, A., Birnbaum, Z., Chen, Y., Skormin, V.: Behavioral modeling for suspi-
cious process detection in cloud computing environments. In: IEEE 14th Int. Conf.
on Mobile Data Management (MDM). vol. 2, pp. 177–181 (June 2013)

11. Dontu, M., Sahita, R.: Zero-footprint guest memory introspection from
xen. http://www.xenproject.org/component/allvideoshare/video/

xpds14-introspection.html (January 15 2015)

12. Dykstra, J., Sherman, A.T.: Design and implementation of FROST: Digital forensic
tools for the OpenStack cloud computing platform. Digit. Investig. 10, 87–95 (2013)

13. Florio, E.: When malware meets rootkits. Virus Bulletin (2005)

14. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: In Proc. Network and Distributed Systems Security
Symposium. pp. 191–206 (2003)

15. Gionta, J., Azab, A., Enck, W., Ning, P., Zhang, X.: Seer: practical memory virus
scanning as a service. In: Proceedings of the 30th Annual Computer Security Ap-
plications Conference. pp. 186–195. ACM (2014)

16. Gonzalez, N., Miers, C., Redigolo, F., Carvalho, T., Simplicio, M., Naslund, M.,
Pourzandi, M.: A quantitative analysis of current security concerns and solutions
for cloud computing. In: Proc. of the 2011 IEEE 3rd Int. Conf. on Cloud Computing
Technology and Science. pp. 231–238. CLOUDCOM ’11, IEEE CS (2011)

17. Harrison, K., Bordbar, B., Ali, S., Dalton, C., Norman, A.: A framework for de-
tecting malware in cloud by identifying symptoms. In: IEEE 16th Int. Enterprise
Distributed Object Computing Conference (EDOC). pp. 164–172 (Sept 2012)

18. Heller, K., Svore, K., Keromytis, A.D., Stolfo, S.: One class support vector ma-
chines for detecting anomalous windows registry accesses. In: Workshop on Data
Mining for Computer Security (DMSEC). pp. 2–9 (2003)

http://lists.xen.org/archives/html/xen-devel/2014-08/msg00264.html
http://lists.xen.org/archives/html/xen-devel/2014-08/msg00264.html
http://mail.xen.org/files/summit_3/coker-xsm-summit-090706.pdf
http://mail.xen.org/files/summit_3/coker-xsm-summit-090706.pdf
http://www.xenproject.org/component/allvideoshare/video/xpds14-introspection.html
http://www.xenproject.org/component/allvideoshare/video/xpds14-introspection.html


19. Hofmeyr, S.A., Somayaji, A., Forrest., S.: Intrusion detection using sequences of
system calls. Journal of Computer Security 6, 151–180 (1998)

20. Ivaturi, K., Wolf, T.: Mapping of delay-sensitive virtual networks. In: Int. Conf.
on Computing, Networking and Communications (ICNC). pp. 341–347 (2014)

21. Jain, B., Baig, M.B., Zhang, D., Porter, D.E., Sion, R.: Sok: Introspections on trust
and the semantic gap. In: Proc. of the 2014 IEEE Symp. on Security and Privacy.
pp. 605–620. SP ’14, IEEE CS (2014)

22. Jansen, R., Brenner, P.: Energy efficient virtual machine allocation in the cloud.
In: Int. Green Computing Conference and Workshops (IGCC). pp. 1–8 (July 2011)

23. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based "out-
of-the-box" semantic view reconstruction. In: Proc. of the 14th ACM Conference
on Computer and Communications Security. pp. 128–138. CCS ’07, ACM (2007)

24. Kirat, D., Vigna, G., Kruegel, C.: Barecloud: Bare-metal analysis-based evasive
malware detection. In: Proc.s of the 23rd USENIX Conference on Security Sym-
posium. pp. 287–301. SEC’14, USENIX Association, Berkeley, CA, USA (2014)

25. Kittel, T., Vogl, S., Lengyel, T.K., Pfoh, J., Eckert, C.: Code validation for modern
os kernels. In: Workshop on Malware Memory Forensics (MMF) (Dec 2014)

26. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.:
Scalability, fidelity and stealth in the drakvuf dynamic malware analysis system.
In: Proc. of the 30th Annual Computer Security Applications Conference (2014)

27. Lobo, D., Watters, P., Wu, X., Sun, L., et al.: Windows rootkits: Attacks and coun-
termeasures. In: 2010 Second Cybercrime and Trustworthy Computing Workshop.
pp. 69–78. IEEE (2010)

28. Marnerides, A., Watson, M., Shirazi, N., Mauthe, A., Hutchison, D.: Malware
analysis in cloud computing: Network and system characteristics. In: Globecom
Workshops (GC Wkshps), 2013 IEEE. pp. 482–487 (Dec 2013)

29. Martini, B., Choo, K.R.: An integrated conceptual digital forensic framework for
cloud computing. Digital Investigation 9(2), 71–80 (2012)

30. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architecture for secure
active monitoring using virtualization. In: Security and Privacy, 2008. SP 2008.
IEEE Symposium on. pp. 233–247. IEEE (2008)

31. Perez-Botero, D., Szefer, J., Lee, R.B.: Characterizing hypervisor vulnerabilities in
cloud computing servers. In: Proc. of the 2013 Int. Workshop on Security in Cloud
Computing. pp. 3–10. Cloud Computing ’13, ACM (2013)

32. Pfoh, J., Schneider, C., Eckert, C.: Leveraging string kernels for malware detection.
In: Proc. of the 7th Int. Conf. on Network and System Security. Springer (2013)

33. Poisel, R., Malzer, E., Tjoa, S.: Evidence and cloud computing: The virtual ma-
chine introspection approach. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications (JoWUA) 4(1), 135–152 (3 2013)

34. Rhee, J., Riley, R., Xu, D., Jiang, X.: Kernel malware analysis with un-tampered
and temporal views of dynamic kernel memory. In: Recent Advances in Intrusion
Detection. Springer (2010)

35. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. Journal of Computer Security 19(4), 639–668 (2011)

36. Salfner, F., Tröger, P., Richly, M.: Dependable Estimation of Downtime for Virtual
Machine Live Migration. Int. J. on Advances in Systems and Measurements 5
(2012)

37. Schmidt, M., Baumgartner, L., Graubner, P., Bock, D., Freisleben, B.: Malware
detection and kernel rootkit prevention in cloud computing environments. In: Par-
allel, Distributed and Network-Based Processing (PDP), 2011 19th Euromicro In-
ternational Conference on. pp. 603–610 (Feb 2011)



38. Shea, R., Liu, J.: Performance of virtual machines under networked denial of service
attacks: Experiments and analysis. Systems Journal, IEEE 7(2), 335–345 (2013)

39. Somorovsky, J., Heiderich, M., Jensen, M., Schwenk, J., Gruschka, N., Lo Iacono,
L.: All your clouds are belong to us: Security analysis of cloud management in-
terfaces. In: Proc. of the 3rd ACM Workshop on Cloud Computing Security. pp.
3–14. CCSW ’11, ACM, New York, NY, USA (2011)

40. Studnia, I., Alata, E., Deswarte, Y., Kaaniche, M., Nicomette, V.: Survey of se-
curity problems in cloud computing virtual machines. Tech. rep., CNRS, LAAS, 7
Avenue du colonel Roche, F-31400 Toulouse, France (2012)

41. Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: Eternal war in memory. In: IEEE
Symp. on Security and Privacy. pp. 48–62. IEEE (2013)

42. Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: Botfinder: Finding bots in network
traffic without deep packet inspection. In: Proc. of the 8th int. conf. on Emerging
networking experiments and technologies. pp. 349–360. ACM (2012)

43. Vasudevan, A., Yerraballi, R.: Cobra: fine-grained malware analysis using stealth
localized-executions. In: IEEE Symp. on Security and Privacy. pp. 15–279 (2006)

44. Voorsluys, W., Broberg, J., Venugopal, S., Buyya, R.: Cost of virtual machine
live migration in clouds: A performance evaluation. In: 1st Int. Conf. on Cloud
Computing (CloudCom 2009). pp. 254–265. Springer Berlin/Heidelberg (2009)

45. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
Alternative data models. In: Proc. of the IEEE Symp. on Security and Privacy.
pp. 133–145. IEEE (1999)

46. Willems, C., Hund, R., Fobian, A., Felsch, D., Holz, T., Vasudevan, A.: Down to
the bare metal: Using processor features for binary analysis. In: Proc. of the 28th
Ann. Computer Security Applications Conf. (ACSAC). pp. 189–198. ACM (2012)

47. Willems, C., Hund, R., Holz, T.: Cxpinspector: Hypervisor-based, hardware-
assisted system monitoring. Tech. rep., Ruhr-Universitat Bochum (2013)

48. Wood, T., Cecchet, E., Ramakrishnan, K.K., Shenoy, P., van der Merwe, J.,
Venkataramani, A.: Disaster recovery as a cloud service: Economic benefits & de-
ployment challenges. In: Proc. of the 2nd USENIX Conf. on Hot Topics in Cloud
Computing. p. 8. HotCloud’10, USENIX Association (2010)

49. Xiao, H., Stibor, T.: A supervised topic transition model for detecting malicious
system call sequences. In: Proceedings of the 2011 workshop on Knowledge discov-
ery, modeling and simulation. pp. 23–30. ACM (2011)

50. Yin, H., Poosankam, P., Hanna, S., Song, D.: Hookscout: Proactive binary-centric
hook detection. In: Detection of Intrusions and Malware, and Vulnerability Assess-
ment, pp. 1–20. Springer (2010)

51. Zafarullah, Anwar, F., Anwar, Z.: Digital forensics for Eucalyptus. In: Proc. of the
2011 Frontiers of Information Technology. pp. 110–116. FIT ’11, IEEE CS (2011)

52. Zhang, Y., Juels, A., Oprea, A., Reiter, M.: Homealone: Co-residency detection in
the cloud via side-channel analysis. In: IEEE Sympl. on Security and Privacy. pp.
313–328 (May 2011)

53. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-vm side channels and
their use to extract private keys. In: Proc. of the 2012 ACM Conf. on Computer
and Communications Security. pp. 305–316. CCS ’12, ACM (2012)


	CloudIDEA: A Malware Defense Architecture for Cloud Data Centers

