
CloudProphet: Towards Application Performance
Prediction in Cloud

Ang Li, Xuanran Zong, Srikanth Kandula†, Xiaowei Yang, Ming Zhang†

Duke University †Microsoft Research
Durham, NC Redmond, WA

{angl,xrz,xwy}@cs.duke.edu {srikanth,mzh}@microsoft.com

ABSTRACT

Choosing the best-performing cloud for one’s application is a crit-

ical problem for potential cloud customers. We propose Cloud-

Prophet, a trace-and-replay tool to predict a legacy application’s

performance if migrated to a cloud infrastructure. CloudProphet

traces the workload of the application when running locally, and

replays the same workload in the cloud for prediction. We discuss

two key technical challenges in designing CloudProphet, and some

preliminary results using a prototype implementation.

Categories and Subject Descriptors

C.4 [Performance of Systems]: General—measurement techniques,

performance attributes; C.2.4 [Computer-Communication Net-

works]: Distributed Systems—distributed applications

General Terms

Design, Performance, Measurement.

Keywords

Cloud computing, performance, prediction.

1. INTRODUCTION
The public cloud computing market has grown dramatically in

the recent years. Many companies, including Amazon, Microsoft,

and Rackspace, have all released their own public cloud com-

puting infrastructures, such as Amazon AWS, Microsoft Azure,

and Rackspace CloudServers. These infrastructures, albeit offer-

ing similar services, can diverge significantly in terms of perfor-

mance [3]. Hence, if a potential cloud customer is planning to mi-

grate her legacy application into cloud, it is critical to know: which

cloud does my application perform best on?

The most straightforward way is to actually migrate the appli-

cation to different clouds, so that the customer can field test her

application’s performance inside the cloud infrastructures. How-

ever, migration is not cheap. For infrastructure providers, the whole

software stack of the application needs to be deployed on the cloud

VMs, incurring huge configuration effort. The application data also

need to be migrated to ensure realistic benchmarking, raising the

data security concern.

In this work, we focus on predicting an application’s perfor-

mance running on a target cloud infrastructure, prior to any mi-

gration effort. Depending on accuracy, the prediction result can di-

Copyright is held by the author/owner(s).
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
ACM 978-1-4503-0797-0/11/08.

rectly point the customer to the best-performing provider, or at least

limit the scope for actual migration and field testing. There are two

common approaches for performance prediction. Standard bench-

marks [1, 3] can provide a baseline to compare the performance of

different providers. However, as the benchmarks are simple by de-

sign, it is challenging to map the complex and multi-tiered cloud

applications to the limited set of benchmarks. Modeling is another

widely used approach to predict the performance of simple com-

putation and I/O-intensive applications [5]. Yet it remains a chal-

lenging task to describe the complex and often distributed cloud

applications’ workload using concise model characteristics.

In this paper, we propose CloudProphet, a performance predic-

tion tool aiming to provide accurate and application-specific pre-

diction results. CloudProphet takes a trace-and-replay approach [4].

During tracing, CloudProphet records the detailed workload infor-

mation and the internal dependency of a representative application

run. During replaying, CloudProphet runs an agent in the target

cloud platform, which emulates the workload of the traced applica-

tion run by replaying the recorded workload and dependency. The

performance of the agent is then used to predict the application per-

formance after migration.

We choose this approach for several reasons. First, it does not

require any a priori knowledge of the performance characteristics

of the target cloud infrastructure, because the agent uses real work-

load to test the infrastructure’s efficiency. This is particularly suit-

able for the cloud environment, as the performance of a cloud can

change frequently due to interferences and equipment upgrades.

Second, the approach is less likely to be limited by the complexity

of the application. As long as we can trace the correct dependency,

the approach should work with applications with multiple compo-

nents and rich inter-component communication, which is essential

for the practicality of the tool.

In the following, we describe several key design challenges of

CloudProphet.

2. CHALLENGES

2.1 Non-deterministic Application Workload
For many multi-threaded applications, such as databases and sci-

entific computation tools [6], the workload on each thread depends

on the order of the synchronization events (e.g., locks), which in

turn depends on how the threads interleave with each other. Due to

the performance (e.g. CPU and I/O speed) difference in cloud, the

application threads may interleave differently if migrated, which

then leads to different workload. In this case, simply replaying the

workload events collected locally can result in poor prediction ac-

curacy.

426

We first illustrate the problem using a real example. Figure 1(a)

shows part of the request handling code of a file hosting application

UDDropBox, and (b) shows the lock and I/O events triggered by

two application threads during tracing. Note that thread T2 fails to

acquire the lock and has to sleep for a while before retrying.

A naive replay mechanism simply replays all events in each

thread’s trace one after another. This may cause the replayed

events to diverge from the real events of the application if migrated.

For instance, if the cloud VM has faster disk I/O, T1’s unlock

event may happen earlier than the first trylock event of T2 (Fig-

ure 1(c)). In this case, the first trylock of T2 would succeed,

and the application would directly trigger open instead of usleep.

However, if we replay strictly according to the event trace, T2 still

needs to replay usleep and another trylock before open. This

adds unnecessary overhead to T2.

CloudProphet introduces a novel mechanism to address this.

During replay, CloudProphet detects any synchronization event that

occurs out-of-order compared to the order in the recorded trace.

An out-of-order synchronization event may cause the future work-

load events to diverge from the events in the current trace. If such

an event is detected, CloudProphet pauses the replay process, and

starts a new application run on the local machine to update the

workload events after the diverged point. Specifically, the new

run is steered by enforcing the new synchronization events order

occurred in cloud [2]. After the application run has reached the

diverged point, CloudProphet then collects the updated workload

events, resumes the replay process, and uses those events for future

replaying. The process is repeated if new out-of-order events are

detected.

Consider again the previous example. With the new mechanism

the cloud replayer will detect that the first trylock of T2 occurs

out-of-order, because the event happens before T1’s unlock in

the trace, while during replay it occurs after. CloudProphet then

pauses the replay right after the trylock, and tries to update the

future events through a new run of the application. During the new

run, CloudProphet enforces the order between the trylock and the

unlock, so that the trylock always happens after the unlock. In

this way, the trylock is guaranteed to succeed, and therefore the

application will immediately trigger open and other I/O functions

afterwards. Finally, CloudProphet updates the event trace using the

new local events that do not contain the extra usleep and trylock,

and resumes the replay.

The mechanism does not make any assumption on the applica-

tion model, and therefore theoretically works for arbitrary applica-

tion. On the other hand, one practical limitation is that it requires

multiple runs of the application to obtain the right workload to re-

play. It is our ongoing work to adopt optimizations to reduce the

overhead.

2.2 Replay Computation Workload
To faithfully replay the computation (CPU and memory) work-

load of the original application, we need to trace the exact CPU

instructions executed and the memory footprint. However, this can

incur significant tracing overhead and increase the replayer com-

plexity. CloudProphet instead adopts a simple linear model to map

the local computation workload to the one in cloud. The model

scales the CPU time measured locally by a constant factor cali-

brated by standard CPU benchmarks. The cloud replayer then uses

a busy-loop to emulate the scaled workload. The model works rea-

sonably well for most applications we have tested (the error rate

is smaller than 30% for most cases), including memory-intensive

applications in the SPLASH-2 benchmark [6].

trylock

open

unlock
trylock

usleep

trylock

open

...

...

...

...

...

...

...

...
trylock

open

unlock

trylock

open

unlock

T1 T1T2 T2

T
im

e

(b) Events collected
locally

(c) Events replayed
in cloud

...

while (!trylock(&lock)) {

 usleep(10000);

}

open("dropbox.sqlite");

... // more file operations

unlock(&lock);

...

(a) Code snippet

Figure 1: (a) The UDDropBox code snippet that accesses the lock-

protected database file; (b) The events collected locally; (c) The events

replayed in the cloud by CloudProphet.

 0

 500

 1000

 1500

 2000

 2500

 3000

One thread Two threads Three threads
T

im
e
(m

s
)

real processing time
CloudProphet
naive replayer

Figure 2: The prediction results of the UDDropBox application.

3. PRELIMINARY RESULTS
Figure 2 shows the prediction results of UDDropBox with 1, 2,

and 3 concurrent clients. Each client uploads ten 1MB files back-

to-back. We predict the total processing time on an Amazon AWS

m1.large instance. In comparison, we also show the real process-

ing time when actually running DropBox on the cloud VM, and

the prediction results using the naive replay mechanism. The pre-

diction result of CloudProphet closely matches the real processing

time. Moreover, with multiple threads the naive mechanism pre-

dicts almost ten-fold of the real processing time, suggesting that

the workload collected on our local machine diverges significantly

from the real workload in cloud. The result shows our approach is

promising in predicting the performance of applications with non-

deterministic workload.

4. REFERENCES
[1] Cloudharmony benchmark results. http://cloudharmony.com/benchmarks.

[2] Jong-Deok Choi and Harini Srinivasan. Deterministic replay of Java

multithreaded applications. In Proceedings of the SIGMETRICS symposium on

Parallel and distributed tools - SPDT ’98, pages 48–59, New York, New York,

USA, 1998. ACM Press.

[3] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp:

Comparing Public Cloud Providers. In ACM IMC, 2010.

[4] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasivan, Julio Lopez, James

Hendricks, Gregory R. Ganger, and David O’Hallaron. //trace: parallel trace

replay with approximate causal events. In USENIX FAST, 2007.

[5] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos

Faloutsos, and Gregory R. Ganger. Storage device performance prediction with

cart models. In MASCOTS, pages 588–595, Washington, DC, USA, 2004.

[6] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The SPLASH-2 programs: characterization and methodological

considerations. In ACM ISCA, 1995.

427

http://cloudharmony.com/benchmarks

	Introduction
	Challenges
	Non-deterministic Application Workload
	Replay Computation Workload

	Preliminary Results
	References

