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ABSTRACT

Mobile augmented reality (MAR) has exploded in popular-
ity on mobile devices in various fields. However, building
a MAR application from scratch on mobile devices is com-
plicated and time-consuming. In this paper, we propose
CloudRidAR, a framework for MAR developers to facilitate
the development, deployment, and maintenance of MAR ap-
plications with little effort. Despite of advance in mobile de-
vices as a computing platform, their performance for MAR
applications is still very limited due to the poor computing
capability of mobile devices. In order to alleviate the prob-
lem, our CloudRidAR is designed with cloud computing at
the core. Computational intensive tasks are offloaded on
cloud to accelerate computation in order to guarantee run-
time performance. We also present two MAR applications
built on CloudRidAR to evaluate our design.

Categories and Subject Descriptors

H.5.1 [Information Interfaces and Presentation]: Aug-
mented and Virtual Realities

General Terms

Performance, Design, Algorithm

Keywords

Mobile Augmented Reality, Cloud Computing, Mobile Plat-
form, Software Architecture

1. INTRODUCTION
With the rapid development of mobile devices comes the

ability to create new experience that enhances the way we
acquire, interact with and display information within the
world that surrounds us. Mobile technology improvement in
built-in camera, embedded sensors, computational resources
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and power of cloud-sourced information has enabled aug-
mented reality (AR) on mobile devices. We are able to blend
information from our senses and mobile devices in myriad
ways that were not possible before. MAR has the potential
to allow users to interact with information without getting
distracted from the real world. The way to supplement the
real world other than to replace real world with an artificial
environment makes it especially preferable for applications
such as tourism, navigation, entertainment, advertisement,
and education. MAR is widely regarded as one of the most
promising technologies in the next ten years. The mobile
advertising market for MAR-based apps is estimated up to
$732 million by 2014 [6] and MAR technology within mobile
application will lead to almost 1.4 billion annual downloads
worldwide by 2015 [7].

Most MAR applications are task-centered and well-structured.
These monolithic and highly specialized applications nor-
mally choose specified architectures that are so much dif-
ferent. Hence, it is quite difficult to reuse the technologies
in these architectures even many basic functional modules,
such as tracking and rendering, are essentially the same. It
is important to design an architecture that can be used for
a variety of different MAR applications. Several MAR soft-
ware frameworks have been developed to reduce developer’s
workload, but these frameworks have several drawbacks in-
cluding low performance, hardware platform incompatibili-
ty, and poor flexibility. In addition, despite the advance in
mobile devices as a computing platform, the performance
for real-time application is still very limited. MAR applica-
tions are still constrained to the poor computational capa-
bility of mobile devices. These software frameworks cannot
fully leverage the advantage of emerging cloud computing
technology, making them ill-suited for increasingly compu-
tational intensive and power-hungry MAR applications.

In this paper, we propose CloudRidAR, a cloud-based mo-
bile augmented reality framework for prototyping, develop-
ment, and deployment of various MAR applications with
little effort. The framework is designed with consideration
of requirements from perspective of both application and
framework developers. It enables developers to focus on
high-level application logic rather than low-level implemen-
tation. To obtain best runtime performance with limited
computing capability on local mobile devices, we integrate
the cloud computing with our framework. Computational
intensive tasks are outsourced to the cloud for computing
acceleration and runtime performance improvement.



2. RELATED WORKS
Numerous MAR applications have been developed for var-

ious purposes. Columbia University built several prototypes
for MAR-supported tourism [8]. Information including la-
bels of buildings, iconic flags for important information, and
virtual presentation of former buildings on the sites that
have been demolished are superposed on users’ current view.
Elmqvist et al. [3] proposed a three-dimensional virtual nav-
igation application to support both path finding and local
features hinting. Hand gesture is used to facilitate interac-
tion with virtual world. To improve user experience in com-
puter games, Piekarski and Thomas [18] proposed MAR AR-
Quake game. The game enable users to play virtual games
in physical world. Players are able to walk around outside
and kill virtual 3D monsters with physical props. MAR is
also used in training and education applications. The Naval
Research Lab (NRL) developed a Battlefield training system
[11] to train soldiers for military operations in different en-
vironments. The battlefields are augmented with virtual 3D
goals and hazards that can be authored and deployed before-
hand or dynastically at run time. Freitas and Campos [4]
developed SMART, an education system to teach low-level
grade students. Virtual 3D models such as car and airplane
are overlaid on real time video to demonstrate concepts of
transportation. MAR is also widely used for assembly and
maintenance purposes. Billinghurst et al. [2] proposed a
MAR assembly system to help users refer to a 3D view of
step-by-step guidance for an assembly task in real world. A
virtual 3D view of next step is overlaid on current view so
that users can decide which part to use and where to place
it in the next step. Henderson and Feiner [5] developed a
prototype to track users and components in a maintenance
task. Dynamic and prescriptive instructions are overlaid on
HMD to response to users’ activity. Virtual 3D arrows, la-
bels, and aligning dash lines are displayed to facilitate the
operations. So many MAR applications are developed dur-
ing past years. Interested readers are referred to detailed
surveys [9].
It is complicated and time-consuming to build a MAR sys-

tem from scratch. Most MAR systems share several basic
functions such as tracking, graphical rendering, and human-
computer interactions. Many efforts have been directed to-
wards MAR architecture to help developers relieve their
workload. Reitmayr and Schmalstieg developed Studier-
stube ES [19], an AR framework that includes several mod-
ules such as OpenTracker for tracking, Muddleware for client-
server communication, and APRL for authoring. However,
the framework is only supported by Windows and Android
phones. Moreover, it is not available for the public. KHAR-
MA [10] is a MAR framework based on KML, a variation
of XML used to describe geo-referenced multimedia. The
framework is only suitable for development of geospatial
MAR applications. Piekarski and Bruce [17] proposed an
object-oriented framework named Tinmith-evo5. Data flow
is divided into several layers with sensor data as input and
display device as output. Layers are abstracted as class ob-
jects. All objects in the system are allocated in an object
repository to support persistent storage and run-time con-
figuration. The framework does not support handheld com-
puters yet. AndAR [1] is an open project to enable MAR on
Android platforms, but it is only tested on very few mobile
phones and the project has ceased since 2010. Metaio [14]
is a commercial toolkit that has been used to development

many MAR applications. It includes a Metaio Cloud module
to support apps and contents storage on cloud, but it can
not use cloud for computation acceleration and developers
cannot control where their tasks to run. ARtoolkit [12] is a
widely used tracking tool for AR/MAR applications, but it
is software library rather than a framework. There are al-
so several commercial AR glasses shipped with development
frameworks such that are specifically tailored for their prod-
ucts. Most frameworks run on local mobile devices. Some
are built based on client-server architecture, but the server
is only used as database to store data.

Multitier model is widely adopted in the design of MAR.
Schmalstieg et al. [20] used 3-tier model in their MAR sys-
tem. The first tier is a database. The second tier links the
database and applications. It converts raw data to the third
tier where applications reside. Nicklas and Mitschang [16]
divided the system into a client device tier, a federation tier
and a server tier. The federation tier connects the server
tier to the client tier using a register mechanism. Tonnis
[21] adopted a 4-tier model with bottom tier providing con-
nectivity and communication services, second tier including
basic functional components for MAR, third tier with high-
level modules comprised of basic components, and top layer
responsible for user interaction.

3. ARCHITECTURE DESIGN
Our primary goal is to develop a both research-oriented

and application-oriented platform for MAR applications. In
addition to research purpose, we follow Mizell’s idea [15] to
bring well-established MAR technologies into practise with a
few assumptions: 1) A prosperous MAR market in next few
years will come up with massive MAR applications; 2) Wire-
less network continues to improve on speed and broadband
connectivity; 3) Cloud infrastructure and service providers
continue to deploy innovative services at low cost. 4) Apart
from cloud computing resource, we only utilize components
on mobile devices to make the application self-contained and
little intrusive. With these assumptions we try to achieve
following objects in our CloudRidAR framework:

1. Easy to use for developers: CloudRidAR includes ready-
to-use functional modules that provide uniform and
brief interfaces for developers. Predefined task flow
simplifies workload and dynamical registration mech-
anism guarantees flexibility to any changes.

2. Real-time performance for users: Based on cloud archi-
tecture, computational intensive tasks are outsourced
to cloud for computing acceleration. It also eliminates
harsh requirements of hardware and software on mo-
bile devices. A side benefit using cloud computing is
to save power energy and prolong battery lifetime.

3. Scalable across different mobile platforms: CloudRi-
dAR introduces an abstract layer to encapsulate di-
verse hardware on mobile devices. Upper modules are
built on hardware abstraction layer to make applica-
tions portable across various mobile platforms.

For framework developers, we parallelize development tasks
to reduce both cost and time, but it requires that parallel
tasks should not be overlaid and coupled. We adapt com-
ponent design principles to realize it. Component technolo-
gy is widely used in software design to improve reusability



and integration of local and external resources. Framework
breaks down into individual components with well-defined
interfaces according to MAR functional requirements. As
components and their interface are defined, they can be im-
plemented in a parallel way. We can even make it more
flexible by combining different components to meet various
scenarios as long as we design them as general as possible.
From application developers’ point of view, they need to

take care of both the low-level implementation and high-
level application logic if they have to build a MAR appli-
cation from scratch. Our framework should be able to en-
capsulate the low-level functional units that developers can
directly reuse to define high-level logic in a flexible way. We
group the components according to reusable elasticity. The
least elastic components are common functional units in-
cluding tracking, display, and data storage, which are es-
sential parts and reusable for all MAR applications. The
less elastic are components to comprise the basic workflow
of a typical MAR applications and user interface. The most
elastic components are those to define application logic. Ap-
plication logic heavily depends on application scenarios. For
instance, application logics of a maintenance system and a
tourism system are apparently different.
The reusable components flexibly connect to compose three

high-level layers: hardware abstraction layer, basic flow lay-
er, and application container as illustrated in Figure 1. We
will give full descriptions of each layer in the following sec-
tion.

4. SYSTEM IMPLEMENTATION

4.1 Hardware Abstraction
A typical MAR application is a combination of several

necessary external hardware such as computing resources,
tracking devices, and display devices. These hardware com-
ponents vary with different mobile platforms. For instance,
mobile devices may have display screens with different size
and scale. A fixed field of view may cause rendering distor-
tion. Several mobile devices do not support native floating-
point computing. We have to use software emulation to
guarantee numerical accuracy. Traditional MAR applica-
tions built on specific hardware platform make them failure
on other platforms. A hardware abstraction layer is required
to make applications independent on hardware and portable
to various hardware platforms.
It is difficult to abstract hardware because physical limi-

tations, such as resolution of sensors and temporal update
frequency, may vary with different hardware, not to mention
the rapid change of hardware over time. Many hardware
components are not standardized yet in MAR systems, so
we adopt a least common denominator model for each type
of hardware with several common interface. For instance,
various sensors including gyro, accelerator and magnetome-
ter are used for tracking purpose in MAR. Although the sen-
sors may have different characteristics such as resolutions,
update frequencies, measurement ranges and drift, an ab-
straction to encapsulate tracking sensors may only requires
a few interfaces of initialization, calibration, and data acqui-
sition. Upper components require orientation and position
information from tracking sensors, so that the data acqui-
sition interface should be able to return pose information.
Each hardware device has a XML-based configuration file to
describe its characteristics and functions. The configuration

file can be modified to enable our framework scalable on e-
merging hardware. A typical hardware configuration file is
listed in Figure 2. Users can define additional specification-
s for new hardware devices. They are able to call specific
functions equipped with hardware driver using predefined
function prototypes.

<hardware type = �ACCELERATOR� id=�acc1� >

     <spec ification>

            <accuracy> �0.0015 0.0015 0.0015� </accuracy>

            <resolution> �0.001 0.001 0.001� </resolution>

            <update rate> �300� </update rate>

            <lag> �0.03� </lag>

     </spec ification>

     <output id = �velocity� type = �vec tor3� default = �0 0 0�>

     <output id = �acceleration� type = �vec tor3� default = �0 0 0�>

     <interface>

          <function name=�init� parameter = �void� output = �void�></function>

     </interface>

</hardware>

Figure 2: A XML-based hardware description file.

In addition to physical hardware devices, we supply a uni-
form interface to access various computing resource includ-
ing local mobile CPU, mobile GPU, and cloud. We integrate
our previous mobile cloud framework ThinkAir [13] to pro-
vide code offloading and dynamic task allocation services.
Developers only need to add an annotation to indicate which
parts could be offloaded if cloud is available. ThinkAir dy-
namically allocates annotated tasks on cloud for computing
acceleration, which is totally transparent to developers.

4.2 Data-Driven Flow
A typical MAR application includes several subroutines

such as tracking, rendering, and user interaction. These sub-
routines works together to complete the task. Compared to
traditional MAR workflows, we employ ThinkAir to dynam-
ically allocate tasks to different computing resources, which
requires synchronization between offloading threads and the
main thread in workflow. Our MAR flow for CloudRidAR
framework is designed as shown in Figure 3. In initialization

Initialization

Tracking

Rendering

Task Allocation

Display

User Interaction

Heterogeneous Computing Context

sy
n

c
h

ro
n

iza
tio

n

Figure 3: A brief workflow of our framework.

step, each registered hardware will automatically call prede-
fined function in its hardware description file (see example in
Figure 2) to initialize its status. The task allocation mech-
anism decides whether to run most computational intensive
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Figure 1: The software stack of our framework.

tasks on local device or remote cloud. As the system runs in
a distributed computing environment, all outsourced tasks
should be synchronized so that the next step can start only
if all outsourced tasks have finished. Rendering results are
mixed with real contents and ready for showing on display
devices, which users can use to interact with the system in
various ways such as gesture and voice control.
The basic workflow is abstracted as a data-driven engine,

which is the representation of a sequence of actions that will
be executed on data flow in predefined order. The data flow
to drive the entire workflow includes pose information, virtu-
al contents, and user inputs. Although the basic pipeline is
determined, procedures in the workflow are flexible to config-
ure to meet users’ requirements. For instance, sensor-based
and feature-based tracking are two typical tracking tech-
nologies for MAR applications. Generally speaking, feature-
based tracking obtains higher accurate results at the cost of
much heavier computational overhead comparing to sensor-
based tracking. We integrate both tracking technologies in
CloudRidAR framework. In addition, the feature-based im-
plementation is able to be offloaded to cloud in order to
guarantee runtime performance. The framework is respon-
sible for underlying implementation and users just need to
choose suitable version in terms of accuracy and runtime
performance requirements and availability of cloud service
for their applications. In user interaction implementation,
CloudRidAR includes several input interfaces such as screen
touch, gesture capture, and voice control. For gesture cap-
ture, the framework provides functions to recognize various
hand gestures, which can be mapped to trigger actions pre-
defined by users.

4.3 Application container
The application container is designed to be a run-time

context that is tightly coupled with the application logic.
As many MAR applications such as navigation, assembly,
maintenance, training, and game are task-driven, we can

employ abstract design method to reduce users’ workload to
develop applications for different purposes.

The task-driven applications can be abstracted as a finite
state machine (FSM). Application is switched from current
state to a new state when transition condition is satisfied.
For instance, in a typical assembly system, a user should
finish assembling current component in order to start next
component. The user may have several predefined sequences
to finish the task, which produces many transient states that
can be transited to another state. A simply flow can be rep-
resent as FSM illustrated in Figure 4. Applications are ab-
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Figure 4: A simple flow represented with FSM.

stracted as sequence of states connected by transition condi-
tions. As applications have different intermediate states, it is
up to users to define the application states. The application
state includes the transition conditions and event handlers
that can respond to user input and fire other events. A state
may also have data sheet required to be displayed when the
application transits into the state. The application contain-
er parses users’ definition of application states and executes
them according to predefined transient conditions. It also



displays any information contained in the states.
As application logic is separated from execution and dis-

play, it enables rapid development of applications with our
framework. Dynamically parsing of the states allows appli-
cations to adapt to different scenarios and even change the
task flow at runtime.

5. EXPERIMENTS AND RESULTS
We developed two MAR prototypes based on CloudRi-

dAR. Attributed to basic functions provided by our frame-
work, we are able to develop two prototypes within a few
hours. Our prototypes are built on SAMSUNG Galaxy
Nexus with 1.2GHz PowerVR SGX540.
Our first prototype is a car running application as illus-

trated in Figure 5. A virtual car on mobile phone can run
on a real path. It is an interactive game that users can plan
path dynamically to control where and how the car runs. In

Figure 5: A prototype of virtual car running on real

path.

this demonstration, the virtual car is driven along a real line
drawn by user dynamically. It is also able to run on a user’s
hand. In fact, the path can be any line features extract-
ed from view images of real world. As feature extraction
requires heavy computational overhead, it normally cannot
achieve real-time performance on mobile phones that lacks
computing capability to finish the computation in a short
period. By leveraging the cloud computing architecture, we
offload the feature extraction on cloud for computing accel-
eration. The coordinates of recognized line features are sent
back to mobile phone and assembled as geometry paths to
guide car’s movement. The real-time feature extraction on
the cloud allows user to interact with car in an interactive
way.
We also implement a collaborative MAR application. Mul-

tiple users are able to play the game in a collaborative way.
Players can use any physical rectangle planes as bats to
hit the virtual Ping-Pong ball as illustrated Figure 6. In
this prototype, we are required to track pose information
of both players and ”bats”. Players’ information is estimat-
ed by tracking position and orientation of mobile devices.
The virtual Ping-Pong ball is rendering from players’ current
poses so that players can see the virtual ball from current
viewpoints on their own mobile phones. Pose information of
physical bats are tracked to locate pre-created 3D geometry

Figure 6: A collaborative Ping-Pong game.

objects in virtual world. The virtual geometry objects are
only used for collision detection with virtual ball to simulate
the hitting and rebounding of Ping-Pong ball with bats. As
geometry objects are not required for visual rendering, we
only create coarse models to represent the bounding boxes of
physical bats. To simulate motions of virtual Ping-Pong in
a real way, we estimate velocity of physical bats and calcu-
late the rebounding velocity of virtual ball using the kinetics
and momentum conservation principle. As collision detec-
tion and physical rigid body simulation are time-consuming,
we outsource both tasks to cloud in order to improve run-
time performance. The position and velocity information of
virtual Ping-Pong ball are sent back for animation and ren-
dering. As both local applications request the results from
the same physical numerical simulator on the cloud, it guar-
antees spatial coordinate consistence of virtual ball among
client applications. In the development of both application-
s, the CloudRidAR framework allows us to prototype the
applications in a fast and direct ways. Even the application
logics are totally different, we can still share several basic
functions and services provided by our framework. In our
original design, we did not consider about the physical simu-
lation. We developed a simple physical engine for rigid body
simulation, which cost us additional time for development.
In the two applications, we employed feature tracking for
pose estimation. Thanks to the powerful cloud computing
capability, we are able to achieve real-time performance even
on mobile phones. Figure 7 gives a compassion to show the
time cost of tasks on mobile phone and cloud. Each applica-
tion is comprised of several major tasks including rendering
and feature tracking. Others are some trivial tasks such as
camera access and user input response. The second appli-
cation includes specific tasks of rigid body simulation. As
shown in the figure, feature tracking is the major perfor-
mance bottleneck on mobile device. By offloading the fea-
ture tracking task to the cloud, the total time cost drops
greatly to guarantee real-time performance. In both proto-
types, virtual content is relevant simple and does not require
too much computation, so we implement the rendering task
on mobile phone rather than cloud. In the second prototype,
we run collision detection and rigid body simulation on the
cloud.

6. CONCLUSION
In this paper we present CloudRidAR, a cloud-based frame-

work for MAR application development. The framework is
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designed from a high-level viewpoint. It is comprised of
three layers with abstraction of hardware, basic flow and
application logic to facilitate development and deployment
of MAR applications.
There are several modules that we will integrate into our

CloudRidAR framework in future. In most MAR applica-
tions, virtual scenes are relative simple comparing to pure
3D applications such as video games and virtual world. As
3D rendering is less likely to be the performance bottleneck,
it is reasonable to design a mobile 3D engine for local ren-
dering. While we believe that a MAR framework for future
applications may also require powerful rendering capability
when large-scale environmental model of an entire city or
big data from Internet of Things (IOT) is ready for use. In
order to meet future requirement of intensive rendering, we
will design a cloud rendering subsystem that leverages the
cloud for rendering acceleration. As rendering and display
are separated on cloud and local mobile device, we have to
solve the problem of remote user interaction and rendering
result retrieval. A feasible solution is to compress the ren-
dering image on cloud and decompress it on local device for
display. User interaction is parameterized, encoded, and up-
loaded to cloud for updating rendering. In addition, a scene
editor will also be developed to help users design and deploy
virtual scene in a what-you-see-is-what-you-get way.
Another future feature of CloudRidAR is authoring tool

for task flow design. We will provide several most widely
used task templates for users to implement their own ap-
plication logics. Users can select a predefined template or
design a new one with template to instantiate a task element.
The task elements are then visually linked by corresponding
interfaces to represent a task flow, which will be parsed and
executed by task flow engine in runtime.
We will develop more MAR applications to evaluate our

design in future. In addition, we can prototype and verify
any new idea about MAR with our framework. CloudRidAR
can serve as a useful foundation for both research-oriented
and application-oriented MAR systems, which we believe
will help to boost MAR applications in relevant fields.
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