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ABSTRACT: The Clouds and the Earth’s Radiant Energy System (CERES) project has provided the climate community
20 years of globally observed top of the atmosphere (TOA) fluxes critical for climate and cloud feedback studies. The
CERES Flux By Cloud Type (FBCT) product contains radiative fluxes by cloud type, which can provide more stringent
constraints when validating models and also reveal more insight into the interactions between clouds and climate. The
FBCT product provides 18 regional daily and monthly shortwave (SW) and longwave (LW) cloud-type fluxes and cloud
properties sorted by seven pressure layers and six optical depth bins. Historically, cloud-type fluxes have been computed
using radiative transfer models based on observed cloud properties. Instead of relying on radiative transfer models, the
FBCT product utilizes Moderate Resolution Imaging Spectroradiometer (MODIS) radiances partitioned by cloud type
within a CERES footprint to estimate the cloud-type broadband fluxes. The MODIS multichannel derived broadband
fluxes were compared with the CERES observed footprint fluxes and were found to be within 1% and 2.5% for LW and
SW, respectively, as well as being mostly free of cloud property dependencies. These biases are mitigated by constraining
the cloud-type fluxes within each footprint with the CERES Single Scanner Footprint (SSF) observed flux. The FBCT all-
sky and clear-sky monthly averaged fluxes were found to be consistent with the CERES SSF1deg product. Several exam-
ples of FBCT data are presented to highlight its utility for scientific applications.
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1. Introduction

One of the greatest challenges in climate model projections
of warming in response to anthropogenic forcing is the repre-
sentation of clouds and their interactions with Earth’s radia-
tion budget in climate models (Boucher et al. 2013). Cloud
processes occur over a range of time and space scales, which
makes them difficult to model. Climate models agree that
feedbacks collectively amplify the surface temperature response
to external forcing, but the strengths of the feedbacks vary
greatly among models owing to uncertainties in cloud feed-
backs (Soden and Held 2006; Webb et al. 2013; Dufresne and
Bony 2008; Zelinka et al. 2020). Given the large intermodel
spread in cloud feedbacks, it is reasonable to turn to observa-
tions to help improve the representation of clouds in climate
models.

Early attempts at using satellite observations to evaluate
climate models involve calculating monthly regional averages
of cloud radiative effect (CRE) from broadband radiometers
(Ramanathan et al. 1989; Harrison et al. 1990). Passive satel-
lite imagers have also been used to produce histograms of
cloud-top pressure and cloud optical depth (Rossow and
Schiffer 1991, 1999) that could be compared with climate

models using “simulators” designed to emulate the satellite
retrievals (Klein and Jakob 1999; Webb et al. 2001). Both
approaches have been shown to be useful in understanding
model biases related to clouds (Zhang et al. 2005; Wyant
et al. 2006) and the influence of different cloud types on
Earth’s radiation budget (Ockert-Bell and Hartmann 1992;
Hartmann et al. 1992). A logical extension to the earlier
approaches involves using a radiative transfer model initial-
ized with satellite cloud retrievals to directly determine
radiative fluxes for different cloud types (Chen et al. 2000).
This approach enables a more direct determination of the
radiative effects of individual cloud types on Earth’s radia-
tion budget by separating the effects of clouds from other
atmospheric and surface contributions. Cloud properties
and associated radiative fluxes that are stratified into differ-
ent cloud types provide more stringent constraints when
validating models and also reveal more insights into the
impact of clouds on climate. An extension to the Chen et al.
(2000) approach is described in Zhou et al. (2013), who
used radiative transfer model-based cloud radiative kernels
(Zelinka et al. 2012) to calculate the TOA flux anomaly
from the cloud fraction anomaly for clouds with a particular
cloud-top pressure and optical depth as determined from
Moderate Resolution Imaging Spectroradiometer (MODIS)
observations. Cloud radiative kernels describe the change in
overcast cloud radiative effect per unit change of cloud frac-
tion within prescribed cloud-top pressure and optical depth
ranges. This approach is much more computationally efficient
compared to making explicit radiative transfer model calcula-
tions, but uncertainties are larger.
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Cole et al. (2011) introduced a different method for deter-
mining TOA radiative fluxes by cloud type that avoids the use
of radiative transfer models altogether. Instead, coincident
CERES footprint fluxes and MODIS radiances from subfoot-
print cloud layers exposed to space are directly converted to
cloud-layer radiative fluxes. The radiative fluxes are then
sorted according to MODIS-derived cloud-top pressures and
optical depths. Radiative fluxes from a given cloud exposed to
space provide information about the integrated effect of
underlying cloudwhose details are generally unknown. Cole et al.
(2011), and later Eitzen et al. (2017), developed climate model
“flux-by-cloud-type simulators” to compare against the observed
fluxes as a function of cloud type to demonstrate the utility of
the approach.

In this study, we revisit Cole et al. (2011) and introduce sev-
eral refinements to improve both the accuracy and utility of
that approach. The updated algorithm is used to produce a
new CERES data product, called the CERES FluxByCldTyp
(FBCT) product, that is processed for the entire CERES
record and is publicly available alongside other standard
CERES data products. We present the FBCT methodology in
section 2 and highlight the refinements made to what is
described in Cole et al. (2011). Results and evaluation of the
FBCT algorithm are provided in section 3. We also provide a

discussion of various scientific applications of the FBCT prod-
uct in section 4 and provide conclusions in section 5.

2. Data and methods

The CERES FBCT product follows closely the Cole et al.
(2011) methodology. Figure 1 presents the FBCT product
flowchart and provides an overview of the inputs and algo-
rithms needed for FBCT processing. Section 2a describes the
CERES SSF instantaneous footprint product, which is the
basis for FBCT processing. Section 2b discusses the MODIS
narrowband radiance to flux conversion. Section 2c describes
how the footprint fluxes are then sorted into cloud effective
pressure (radiative cloud top) and optical depth cloud types
and spatially averaged into 18 regions. Section 2d details how
the regional instantaneous cloud-type fluxes are averaged into
daily and monthly means.

a. CERES SSF data product

The CERES Single Scanner Footprint (SSF) Edition 4A
dataset is the main input to the FBCT product. The SSF prod-
uct contains the observed CERES instrument 20-km nominal
footprint TOA radiances, fluxes, and MODIS cloud proper-
ties. The CERES instruments observe the Earth shortwave

FIG. 1. The CERES FBCT flowchart. The FBCT cloud effective pressure by optical depth
cloud types are also shown in the center-left portion and follows the ISCCP D1 product. LUT
refers to the narrowband to broadband coefficient lookup table. FluxByCldTyp-day and
FluxByCldTyp-month are the designated CERES Ed4 product names.
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reflected radiance and longwave emitted radiance. The CERES
onboard calibration systems ensure that the CERES instrument
calibration is stable while in orbit (Loeb et al. 2016). The
CERES observed radiances are converted to fluxes using empir-
ical angular directional models (ADMs) (Su et al. 2015a,b)
based on the MODIS imager cloud retrievals (Minnis et al.
2008, 2011a,b). The CERES MODIS cloud retrievals were
designed to facilitate ADM flux accuracy and are not the official
Goddard MODIS Science Team cloud properties. The CERES
cloud retrieval algorithm is designed to minimize the number of
nonretrieved pixels identified by the cloud mask in order to
avoid any possible systematic biases that can occur when cloudy
pixels from complex scenes are omitted, e.g., pixels near cloud
edges (see CERES 2021, their Fig. 3-3). The FBCT utilizes both
the Terra and Aqua SSF datasets. The Terra and Aqua satellites
are in sun-synchronous orbits having a local equator crossing
time of 1030 and 1330 LT, respectively. By combining both
morning Terra and afternoon Aqua observations, the FBCT
product provides robust daily flux estimates over diurnally vary-
ing maritime stratus and land afternoon convection regions.

The CERES clouds available on the SSF product are based
on daytime and nighttime cloud retrieval algorithms. The day-
time retrieval algorithm utilizes MODIS visible and IR chan-
nels, whereas the nighttime retrieval relies on IR channels
only. IR-only channel cloud retrievals are limited to optical
depths less than 4 (Minnis et al. 2011a), which limits the sam-
pling of the optically thick clouds at night. Due to the nature
of daytime and nighttime cloud retrieval differences, the
CERES FBCT product utilizes only daytime footprints with
solar zenith angles (SZA) less than 828 to avoid twilight condi-
tions, ensuring consistent cloud-type classification.

The SSF product also contains the Global Modeling and
Assimilation Office (GMAO)’s Goddard Earth Observing
System Data Assimilation System (GEOS-DAS; V5.4.1)
product (Rienecker et al. 2008) that provides the associated
meteorological parameters for each CERES footprint. The
effective pressure of the cloud retrieval to determine the
FBCT cloud type and the total precipitable water (PW) uti-
lized in the narrowband to broadband relationships are based
on the GMAO profile. The surface type classification used in
the FBCT narrowband to broadband relationships are deter-
mined from the 17 International Geosphere Biosphere Pro-
gramme (IGBP) static surface/biome types are used to assign
each footprint its surface type. Polar barren/desert type was
classified as tundra (type 18). In addition to the IGBP perma-
nent snow type (15), the sea ice (type 19) and daily land snow
(type 20) coverages are added based on microwave maps
from the National Snow and Ice Data Center (NSIDC)
(Brodzik and Stewart 2016). The incoming solar daily irradi-
ance is from the Solar Radiation and Climate Experiment,
Total Solar Irradiance (SORCE TSI) (Kopp et al. 2005).

b. MODIS narrowband radiance to flux conversion

The CERES footprint is divided into subregions based
upon the individual MODIS pixel-level cloud retrievals as
shown in Fig. 2. The footprint is first divided into clear and
cloudy sections. The cloud section is further divided into two

nonoverlapping cloud layers if the cloud effective pressure is
greater than 50 hPa between layers. Therefore, each CERES
footprint has the possibility of being divided into three sub-
footprint-scene types (see Fig. 2a). The mean MODIS pixel-
level cloud properties and channel radiances are averaged for
each subfootprint region.

Following Cole et al. (2011), the CERES footprint flux
(Fluxfootprint) is computed from the subfootprint-scene types
as follows:

Fluxfootprint � 1 2 flay1 2 flay2
( )

Fluxclear 1 flay1Fluxlay1
1 flay2Fluxlay2,

(1)

where flay1 and flay2 are the cloud fraction for cloud-layer 1
and 2, respectively. Fluxclear, Fluxlay1, and Fluxlay2 are the
clear-sky, layer 1, and layer 2 broadband fluxes derived from
MODIS spectral channel radiances contained in the cloud-
layer or clear-sky region of the CERES footprint. To convert
the subfootprint MODIS channel radiance into broadband
flux, Cole et al. (2011) assumed that the visible (0.65 mm) or
IR (11 mm) MODIS radiance for the footprint is equal to the
sum of the subfootprint MODIS radiance weighted by the
clear-sky and cloud-layer fractions. This is similar to Eq. (1)
but with the flux terms replaced by MODIS radiances. Their
second assumption is that the ratio of the cloud-layer fluxes
should equal the ratio of the corresponding mean MODIS
channel radiances.

The CERES FBCT product avoids these assumptions by
instead utilizing multiple MODIS spectral channel mean radi-
ances to estimate the broadband radiance and then apply the
CERES ADM to convert the broadband radiance to a flux.
The MODIS narrowband channel radiances are used to

FIG. 2. Schematic of the CERES footprint (20-km nominal reso-
lution). The MODIS pixel-level (subsetted 2-km nominal resolu-
tion) cloud retrievals determine the subfootprint- or cloud-layer
and clear-sky boundaries as denoted in the legend. The cloud layers
must have a separation of more than 50 hPa to be considered.
(a),(d),(e) Classified as multiscene footprints. (b),(c) Classified as
single-scene footprints. The narrowband to broadband coefficients
are determined from the single-scene footprints and are applied to
the corresponding subfootprint-scene type of multiscene footprints.
Note that a CERES footprint contains about 160, 305, and 345
MODIS pixels at nadir, on average, and at maximum, respectively.
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compute the subfootprint broadband radiances contained in
multiscene footprints (Figs. 2a,d,e) based on empirical nar-
rowband to broadband regressions derived from single-scene
footprints (Figs. 2b,c), which have an associated CERES
observed radiance and is described in the following section.
This approach is similar to the CERES FBCT prototype prod-
uct methodology employed by Eitzen et al. (2017) and is
based on the Loeb et al. (2009) strategy to estimate the clear-
sky fluxes from the clear-sky portion of partly cloudy foot-
prints in order to enhance the clear-sky sampling for regions
in persistent cloudy conditions. The use of empirical narrow-
band to broadband relationships to compute broadband radi-
ances were also performed by Loeb and Manalo Smith (2005),
Loeb et al. (2006), and Sun et al. (2006).

The SSF dataset parameter output only contains a subset of
the total number of available MODIS channels, which limits
the number of MODIS bands that can be used for the narrow-
band to broadband regressions. The SSF dataset provides the
MODIS 0.47-, 0.65-, 0.86-, 11-, and 12-mm daytime channel
radiances for each cloud layer within a CERES footprint and
an additional seven MODIS channels for the clear-sky por-
tion of a CERES footprint. To simplify the narrowband to
broadband regression coding, the same five MODIS channels
are used for the clear-sky and cloudy regions. The FBCT nar-
rowband to broadband algorithm uses all five visible and IR
channels to derive both SW and LW broadband radiances. As
discussed in section 3a, using all 5 channels decreases the
overall regression uncertainty from what can be achieved by
using either visible or IR channel subsets. The use of both vis-
ible and IR channels may implicitly provide cloud information
to derive the broadband radiances. We calculate the multivar-
iate linear regression coefficients (achannel) based on the 0.47-,
0.65-, 0.86-, 11-, and 12-mm MODIS channel radiances
(Radchannel) and the CERES footprint broadband radiance
(Radfootprint) as follows:

Radfootprint � a0 1
∑5

channel�1
achannelRadchannel: (2)

The Terra and Aqua MODIS coefficients were computed sep-
arately in order to take into account any calibration differ-
ences between sensors. A set of SW coefficients and LW
coefficients are placed into lookup tables (LUTs).

The FBCT LUT narrowband to broadband coefficients are
based on a 5-yr monthly climatology (2007–11) of overcast
single-layer footprints having a cloud fraction greater than
99.9% (Fig. 2b) and clear-sky footprints having a cloud frac-
tion less than 0.1% (Fig. 2c). The narrowband to broadband
coefficients are stratified by month and into clear or overcast
bins. Seven surface types are utilized: ocean, forests, savannas,
grassland/crop, dark desert and bright desert, and snow/sea
ice based on the aggregation of the IGBP types (see Table 2;
Loeb et al. 2005). The SW coefficients are stratified into nine
SZA bins in 108 increments from 08 to 828 (last bin 808 to 828),
seven view zenith angle (VZA) bins in 108 increments from 08
to 708, and nine relative azimuth angle (RAA) bins in 208
increments from 08 to 1808. The LW coefficients utilize the

seven VZA bins and include four PW bins in increments from
0 to 1, 1 to 3, 3 to 5, and 5 to 10 cm (following Loeb et al.
2018a, their Table 4).

For single-scene-type footprints, the CERES observed
footprint radiance is used directly. For the remaining multi-
scene footprints, the subfootprint MODIS radiances are con-
verted to broadband radiances using the LUT narrowband to
broadband coefficients. To avoid SW narrowband to broad-
band LUT bin discretization errors, linear interpolation
between the LUT SZA, VZA, and RAA bins is performed.
Similarly, linear interpolation between VZA and PW bins is
performed to obtain the predicted LW broadband radiance.
In case a LUT bin has insufficient sampling, neighboring well-
sampled angular bin coefficients are used to estimate the
broadband radiance.

The subfootprint MODIS broadband radiance is then con-
verted to a broadband flux using the CERES ADMs. The
subfootprint-layer (overcast) cloud or clear-sky properties,
atmospheric and surface conditions as well the observed
angles are used to select the appropriate CERES Edition 4
ADM scene type (Su et al. 2015a). The footprints with incom-
plete cloud information, where the number of nonretrieved
cloud pixels exceeds 35%, are omitted in the FBCT process-
ing. The individual subfootprint derived fluxes (Fluxi) are nor-
malized to the CERES footprint observed flux (FluxCERES) in
the same manner as Eitzen et al. (2017) as shown in Eq. (3):

Fluxnormalized
i � FluxCERES

Fluxfootprint

[ ]
3 Fluxi: (3)

Multiplying each of the subfootprint derived fluxes by the
normalization ratio yields the normalized subfootprint fluxes

Fluxnormalized
i

( )
. The normalization ratio [bracketed terms in

Eq. (3)] is the CERES footprint observed flux divided by the
sum of the individual subfootprint fluxes weighted by their
coverage (fi) as computed on the right side of Eq. (1).

c. Cloud-type sorting and spatial averaging

Each of the single-scene overcast footprints and subfoot-
print cloud layers are assigned a cloud type according to the
ISCCP DX cloud-type definitions based on cloud effective
pressure and optical depth as shown in Fig. 1 (Rossow and
Schiffer 1991, their Table 4). The 6 cloud optical depth bins
are bound by 0.0–1.27, 1.27–3.55, 3.55–9.38, 9.38–22.63,
22.63–60.36, 60.36–378.65, and the seven cloud effective pres-
sure boundaries are 1100–800, 800–680, 680–560, 560–440,
440–310, 310–180, 180–10 hPa. For each Terra or Aqua over-
pass, the cloud-type subfootprint and footprint cloud proper-
ties and fluxes located within a CERES 18 nested region are
spatially averaged by weighting by their areal extent.

d. Daily and monthly averaging

Each instantaneous CERES footprint and subfootprint SW
flux is converted into an equivalent daily mean 24-h flux by
applying diurnal albedo models that account for albedo
changes as a function of solar zenith angle (Young et al.
1998). The diurnal albedo models employed are the same as
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for the SSF1deg product, which assumes that the observed
cloud and atmospheric conditions remain constant over the
day. The 18 regional cloud-type daily mean flux (Fluxday) is
computed by averaging all of the subfootprint normalized
[Eq. (3)] and overcast footprint (Fig. 2b) observed daytime

regional Terra and Aqua fluxes Fluxnormalized
i

( )
having the

same cloud type, area weighted by their cloud-type fraction
(fi) as follows:

Fluxday �

∑Nobs

i�1
Fluxnormalized

i fi

∑Nobs

i�1
fi

, fday �

∑Nobs

i�1
fi

Nobs
, (4)

where Fluxday and fday are the FBCT daily cloud-type flux and
fraction for each cloud type, respectively, andNobs is the num-
ber of 18 regional instantaneous Terra and Aqua measure-
ments for the day. The sum of all the individual cloud-type
and clear-sky fday should equal 1.

The monthly mean individual cloud-type LW flux
(LWmon) is the summation of the cloud-type daily LW fluxes
(LWday) weighted by their daily cloud-type fraction (fday) as
follows:

LWmon �

∑Ndays

day�1
LWdayfday

∑Ndays

day�1
fday

, fmon �

∑Ndays

day�1
fday

Ndays
, (5)

where Ndays is the number of days of the month. The cloud-
type fraction for the month (fmon) is the sum of individual
daily cloud-type fractions divided by the number of days in
the month. The summation of all the individual daily cloud-
type and clear-sky fmon should equal 1. For each cloud type,
the effective temperature, effective pressure, IR emissivity,
optical depth, liquid and ice fraction, water path, and particle
size are averaged into daily and monthly means in the same
manner as the LW fluxes.

To ensure that the monthly mean cloud-type SW flux
is not skewed with the day of observation for regions
where the solar incoming flux is rapidly changing over the
month, the monthly mean cloud-type SW flux (SWmon)
is computed from the monthly mean cloud-type albedo
(albmon) and the monthly mean solar incoming flux
(Solmon) as follows:

SWmon � albmonSolmon, Solmon � 1
Ndays

∑Ndays

day�1
Solday, (6)

where the monthly mean solar incoming flux (Solmon) is the
sum of the daily solar incoming fluxes (Solday) during
the month regardless of cloud-type sampling divided by the
number of days in the month (Ndays). The monthly mean
cloud-type albedo (albmon) is the daily cloud-type SW flux
(SWday) weighted by the daily cloud-type fraction (fday) as
follows:

albmon �

∑Nobsdays

day�1
SWdayfday

∑Nobsdays

day�1
Soldayfday

, (7)

where Nobsdays is the number of days with albedo observa-
tions, whereas Ndays used in Eq. (6) includes all days of the
month, regardless of observations. Note that the albedo multi-
plied by the solar incoming flux equals the SW flux.

The clear-sky flux is computed in the same manner as if it
were a cloud type. The all-sky fluxes and clouds are computed
by weighting all 42 cloud types and clear-sky fluxes and clouds
by their respective fractions. The FBCT-day product provides
the number of cloud-type and clear-sky LW and SW observa-
tions to allow the user to determine if there is sufficient sam-
pling for their application.

3. Results and validation

In the following we validate the SW and LW narrowband
to broadband regression coefficients (section 3a) and TOA
fluxes (section 3b) and check for FBCT product flux consis-
tency across other CERES monthly averaged products (sec-
tion 3c).

a. Narrowband to broadband radiance

Here we demonstrate the benefit of using both MODIS vis-
ible (0.47, 0.65, 0.86 mm) and IR channels (11 and 12 mm) in
the SW narrowband to broadband multivariate regressions. In
Table 1 we compare the LW RMS error using a single 12-mm
IR channel (IR 1 ch), the two IR channels (IR 2 ch), and the
five visible and IR channels (IR1VIS 5 ch) as a function of
surface type across all view angles observed during January
2010. The single 12-mm channel had the lowest RMS error
across all scene types among the five channels. The additional
IR 11-mm window channel reduce the LW RMS by ∼10%
over the single 12-mm channel, except over snow. Including
the three visible channels further reduce the LW RMS error
over using the two IR channels by ∼10%, except over snow
where the reduction is ∼20%. More than likely, the addition
of the visible channels infers the cloud optical depth, which

TABLE 1. The January 2010 overcast single-layer footprint
MODIS to CERES multichannel linear regression LW radiance
RMS error (%) as a function of surface type (columns) and
MODIS channel combinations (rows) used in the multichannel
regression. IR 1 ch, IR 2 ch, and VIS 1 IR 5 ch denote the
12-mm channel; the 11-and 12-mm channels; and the 0.47-, 0.65-,
0.86-, 11-, and 12-mm channels, respectively. Note the reduction
of the LW RMS error with increasing number of MODIS
channels including adding the three visible channels with the two
IR channels.

Ocean Savannah Bright desert Snow

IR 1 ch 3.00 3.50 2.57 3.44
IR 2 ch 2.75 3.08 2.22 3.40
IR1VIS 5 ch 2.52 2.86 1.90 2.65

S U N E T A L . 307MARCH 2022

Unauthenticated | Downloaded 10/02/23 06:25 AM UTC



helps determine the IR emissivity and cloud effective pres-
sure. Unfortunately, the MODIS water vapor channel
(6.7 mm) radiances were not available for cloud layers on the
SSF product and therefore not used in Eq. (2) to compute the
cloud-type LW radiances. Any residual cloud-type LW flux
bias from not including the water vapor channel radiances
should be resolved by normalizing the predicted LW flux with
the observed footprint LW flux, since the water vapor burden
should not vary much over the 20-km nominal footprint.

Similarly in Table 2 we compare the SW narrowband to
broadband regression RMS error using a single 0.65-mm visi-
ble channel (VIS 1 ch), the three visible channels (VIS 3 ch),
and the five visible and IR channels (VIS1 IR 5 ch) as a func-
tion of surface type across all view and solar angles observed
during January 2010. For all surface types excluding snow, the
0.65-mm channel had the lowest single channel RMS error.
Adding the 0.47- and 0.86-mm channels reduces the SW RMS
error between 7% and 14% depending on surface types. The
five-channel SW RMS error is diminished between 16% and
20%, except over snow. This is in part because the IR chan-
nels provide crude cloud height information that is helpful to
estimate the SW NIR water vapor absorption. The smaller
10% SW RMS reduction over snow when including the IR
channels is probably due to that the snow reflectance is more
predictable over visible wavelengths, and the cold atmo-
spheric conditions limit the water vapor variability.

b. Narrowband to broadband flux

Here we validate the FBCT narrowband to broadband
algorithm by comparing the derived footprint flux summed
from the individual subfootprint narrowband to broadband
fluxes with the observed flux sampled from all multiscene
footprints. This comparison is made prior to applying the nor-
malization to the observed fluxes in Eq. (3), which will miti-
gate most of the flux differences discussed in this subsection.
The differences provide an indication of how large a correc-
tion is necessary during the normalization step. The LW nar-
rowband to broadband coefficients are binned by VZA, clear
or overcast, surface type, and PW, not by cloud properties. To
ensure there are no systematic cloud dependencies embedded
in the LW derived fluxes, Fig. 3 shows the LW derived and
observed footprint LW flux differences plotted as a function

of cloud fraction, cloud effective pressure, cloud effective
temperature, cloud optical depth, PW, SZA, VZA, and sur-
face type for January 2010. The derived and observed LW
flux bias and standard deviation was within 1% (2.5 W m22)
and 3% (8 W m22), respectively, for all eight parameters. The
bias and standard deviation are uniform over the range of the
eight parameters, except for PW values greater than 6 cm.
The low PW values in Fig. 3e are found over Antarctica.

Similarly, the SW narrowband to broadband derived and
observed fluxes are compared from all multiscene footprints
in Fig. 4 and plotted as a function of cloud properties, PW,
SZA, VZA, and surface type. The SW narrowband to broad-
band algorithm is binned according to SZA, VZA, RAA,
clear/overcast, and surface type. The January 2010 SW flux
bias was within 2.5% (6.25 W m22) for the parameters in Fig.
4 over the entire parameter range, except for cold cloud effec-
tive temperatures (,220 K in Fig. 4c) and for thin optical
depth clouds (,0.4 or a log optical depth , 21 in Fig. 4d).
The SW flux standard deviation was mostly within 8% or
20 W m22. Figure 4a reveals that the partly cloudy footprints
are the source of the negative bias, which suggests that the
partly cloudy or multiscene footprints, which account for two
thirds of all footprints, may contain certain cloud conditions
not found in single-scene footprints used to compute the
cloudy SW narrowband to broadband coefficients.

We note that single-scene footprints are not distributed
evenly across the globe. Figure 5 shows the January 2010
regional ratio of single-scene and total footprints and clearly
shows the uneven spatial sampling. Large parts of the tropics
contain less than 20% single-scene footprints. Figure 6a shows
the geographical distribution of the derived minus the
observed instantaneous SW flux bias for multiscene foot-
prints. The negative SW flux bias band between 108 and 308N
over ocean seems to be associated with sparse sampling of sin-
gle-scene footprints (Fig. 5). Similarly, the lack of single-scene
footprints (Fig. 5) observed over the Tibetan Plateau more
than likely explains the large negative bias in Fig. 6a. The SW
derived fluxes over land snow (Russia and Canada) and sea
ice (Hudson Bay and Antarctica) have large positive derived
fluxes, where the SW LUT coefficients were more than likely
determined over the permanent snow conditions of Antarctica
and not suitable for land snow or sea ice conditions.

The overall LW bias is smaller than the SW derived bias
and is close to zero (Fig. 6b). Unlike the SW bias, the LW
bias is not associated with partly cloudy footprints (Fig. 3a). It
is unknown why the Peruvian maritime regions have a nega-
tive LW bias given the large frequency of single-scene foot-
prints. Again, most of these prenormalized flux biases shown
in Figs. 3, 4, 5, and 6 will be mitigated after applying Eq. (3).

c. Consistency with other CERES products

When all 42 FBCT cloud-type fluxes are combined with
the clear-sky flux, they should be consistent with all-sky fluxes
in other CERES products. For this consistency check, an
SSF1deg dataset (Doelling et al. 2013) was processed with
both Terra and Aqua observed fluxes. We also highlight the
algorithm differences between the two products. For example,

TABLE 2. The January 2010 overcast single-layer footprint
MODIS to CERES multichannel linear regression SW radiance
RMS error (%) as a function of surface type (columns) and
MODIS channel combinations (rows) used in the multichannel
regression. VIS 1 ch, VIS 3 ch, and VIS 1 IR 5 ch denote the
0.65-mm channel; the 0.47-, 0.65-, and 0.86-mm channels; and the
0.47-, 0.65-, 0.86-, 11-, and 12-mm channels; respectively. Note
the reduction of the SW RMS error with increasing number of
MODIS channels including adding the two IR channels with the
three visible channels.

Ocean Savannah Bright desert Snow

VIS 1 ch 3.40 3.01 2.34 2.60
VIS 3 ch 3.17 2.82 2.13 2.23
VIS 1 IR 5 ch 2.66 2.38 1.72 1.99
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FIG. 3. The January 2010 (sampled by every third day) narrowband to broadband derived and observed LW
(multiscene) footprint flux bias (% black line), standard deviation (%; red line), and the frequency (% 3 10;
blue line; right axis) as a function of (a) cloud fraction (%), (b) cloud effective pressure (hPa), (c) cloud effective
temperature (K), (d) logarithm of the cloud optical depth, (e) total precipitable water (cm), (f) SZA (8), (g) view
zenith angle (8), (h) surface type, where 1 = ocean, 2 = forest, 3 = savannah, 4 = grass, 5 = dark desert, 6 = bright
desert, 7 = snow/ice specific to January 2010. Note that cloud-type fractions of 100% are considered single-scene
footprints.
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the FBCT product SW and LW fluxes only include footprints
with SZAs less than 828 in order to avoid twilight and night-
time cloud retrievals. The SSF1deg SW fluxes use all foot-
prints with a SZA less than 86.58. The SSF1deg LW fluxes
utilize all observed daytime and nighttime footprints. During
January 2010, there are two zonal domains where the FBCT
SZA threshold greatly limits the number of observations com-
pared with SSF1deg, located between 608 and 658N and

between 688 and 758S. The FBCT and SSF1deg total cloud
amount, effective pressure and optical depth are very similar
across all regions during January 2010, except for the zones
impacted the SZA threshold (see CERES 2021, their Fig. 5.5).

Both the FBCT and SSF1deg monthly regional all-sky SW
fluxes are based upon the same diurnal albedo models. The
FBCT product simply averages all of the 24-h SW flux obser-
vations during the day, whereas the SSF1deg product

FIG. 4. As in Fig. 3, but for SW flux.
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determines the daily mean by temporally interpolating using
the diurnal albedo models between the sequential instanta-
neous albedos observed over the day. The SW flux noise
about the date line in the difference between FBCT and
SSF1deg in Fig. 7b is due to the calendar month GMT time
boundary. At the date line, GMT midnight denotes local
noon, whereas GMT noon denotes local midnight. The
SSF1deg product utilizes nearby observed SW fluxes from the
previous month and following month in order to temporally
interpolate between sequential observations across the month
time boundary. The FBCT product only uses measurements
observed within the calendar month time boundary. The SW
flux also differs between 688 and 758S; this area is impacted by
the FBCT SZA threshold of 828.

Remarkably, whether the SW fluxes are temporally inter-
polated (SSF1deg) or the 24-h SW fluxes are simply averaged
(FBCT), the SW regional monthly mean flux is very similar
(Fig. 7b). The Terra and Aqua sun-synchronous orbits are
well-placed and symmetric about noon, allowing simple aver-
aging of the 24-h SW fluxes to compute the daily mean flux.

Also, both the FBCT and SSF1deg products compute the
monthly mean albedo from the daily albedos using the same
Eqs. (6) and (7).

The all-sky LW flux FBCT minus SSF1deg bias is displayed
in Fig. 7d. The FBCT product overestimates the regional LW
flux over land because it does not include the colder clear-sky
nighttime observations. Over oceans the FBCT and SSF1deg
regional bias is noisy because the SSF1deg product temporally
interpolates between day and night sequential measurements,
whereas the FBCT simply averages the daytime measure-
ments. The exception is over maritime stratus regions (e.g.,
off the coast of Peru) where the cloud top and clear-sky ocean
temperatures are similar and over Antarctica, where no night-
time measurements are observed during January.

The FBCT product increases the clear-sky sampling by
incorporating subfootprint clear-sky fluxes (for cloud free
areas of region) similar to the CERES EBAF product (Loeb
et al. 2018a), whereas the SSF1deg product utilizes only
completely clear footprints. The clear-sky subfootprint fluxes
are located near cloud edges and are typically more humid
and contain more aerosols than the larger 20-km nominal
CERES clear-sky footprints. The increased atmospheric
humidity near clouds tends to decrease the clear-sky LW flux,
as shown in the large negative value (blue) swaths over tropi-
cal convection areas and midlatitude storm tracks in Fig. 7c.
The increase in aerosols and 3D effects near clouds would
likely increase the clear-sky SW flux, which are the positive
values (red) shown in Fig. 7a over tropical convection and
midlatitude storm tracks. These results are in agreement with
Loeb et al. (2009, their Figs. 3e,f). A noteworthy difference
between FBCT and EBAF is that to compute the CRE,
FBCT uses the clear-sky flux derived from subfootprint clear-
sky pixels while EBAF uses the clear-sky flux for the total
region (Loeb et al. 2020b).

The FBCT, SSF1deg, and EBAF product all-sky and clear-
sky monthly global mean SW and LW flux anomalies are
compared from July 2002 to December 2018 in Fig. 8. Only
regions with valid FBCT fluxes are averaged to determine the
three products’ global monthly means in Fig. 8, which shows
excellent agreement of the products’ global mean all-sky

FIG. 5. The ratio of single-scene footprints divided by total foot-
prints during January 2010 (sampled by every third day; %). Glob-
ally the ratio of single-scene footprints is one-third of the total
footprints.

FIG. 6. The narrowband to broadband derived (multiple scene) minus observed (a) SW and (b) LW footprint
instantaneous flux bias during (every third day of) January 2010 (%). Positive values indicate more SW reflection
and LW emission to space.
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and clear-sky SW flux anomalies. It is remarkable that the
daytime-only FBCT all-sky and clear-sky LW flux anomalies
are consistent with the EBAF and SSF1deg LW flux anoma-
lies, which combine both day and night measurements. This
is in agreement with Taylor and Loeb (2013), who state that
most of the temporal LW flux variability is caused by the
mean state conditions; little comes from the diurnal variabil-
ity over time.

4. Applications and discussion

Potential applications of the FBCT product include moni-
toring cloud-type fluxes and coverage, validating climate
model energetics by cloud type through the use of cloud simu-
lators (Eitzen et al. 2017), and isolating cloud radiative effects
and cloud–climate feedbacks by cloud type (Eitzen et al.
2008; Sun et al. 2012). In this section, we present several
examples of the FBCT data to highlight its utility for scientific
applications.

a. Radiative flux kernels

Zelinka et al. (2012) produced cloud-type radiative kernels
to estimate cloud feedbacks to greenhouse warming simulated
by global climate models. When multiplied by the change in
cloud fraction associated with climate change, they provide an
estimate of the anomalous cloud-induced radiative flux at
TOA, and hence the cloud feedback. These cloud radiative
kernels were computed as the overcast-sky cloud-type radia-
tive effect (i.e., the clear-sky minus cloud-type (overcast) flux
divided by 100%) using the Fu–Liou radiative transfer model

using idealized clouds and 20-yr zonal mean atmospheric pro-
files from Coupled Model Intercomparison Project phase 3
(CMIP3) control runs. Zhou et al. (2013) later produced a
modified set of kernels to estimate the radiative impact of per-
turbations in satellite-observed cloud fields.

Here, we calculate a set of cloud radiative kernels using the
observed FBCT clear-sky and cloud-type fluxes [see Scott
et al. 2020, Eq. (6)]. Similar observation-based cloud radiative
kernels have recently been presented by Yue et al. (2016) and
Berry et al. (2019). The FBCT kernels are a function of calen-
dar month, latitude, longitude, cloud effective pressure, and
cloud optical depth. Figure 9 presents the annual and global
mean FBCT cloud radiative kernels and compares them to
those computed by Zhou et al. (2013). A positive value corre-
sponds to a cloud radiative warming effect on climate, and
vice versa. The LW kernels are positive for all cloud types,
indicating that an increase in cloud fraction reduces the emis-
sion of thermal infrared radiation to space. Such reductions
are especially pronounced for high and optically thick cloud
types, as they emit as blackbodies at temperatures much
colder than Earth’s surface. The SW kernels are negative for
all cloud types, indicating that an increase in cloud fraction
enhances the reflection of solar radiation back to space. The
net cloud radiative (LW1SW) kernels are negative for most
cloud types owing to a dominance of the SW component,
except for high thin cloud types.

While both sets of kernels show similar patterns and values,
there are several differences worth noting. First, the CERES
MODIS cloud algorithm only retrieves cloud properties for
clouds with an optical depth above 0.25 (Minnis et al. 2011a);

FIG. 7. The January 2010 FBCT-Month minus SSF1deg-Month (Terra1 Aqua) for (a) all-sky SW, (b) clear-sky SW,
(c) all-sky LW, and (d) clear-sky LW. Positive values indicate more SW reflection and LW emission to space.
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FBCT therefore does not include an optical depth bin for
0–0.3. The FBCT kernels are based on CERES MODIS
observed clouds, whereas the Zhou et al. (2013) kernels are
based on synthetic clouds and do not capture zonal flux varia-
tions. The FBCT LW kernel is based on daytime fluxes only,
whereas the Zhou et al. (2013) LW kernel is based on a full
24-h diurnal average. FBCT also stratifies clouds vertically
using cloud effective pressure instead of cloud-top pressure.
Finally, although the FBCT fluxes are constrained by CERES
observations, these fluxes are partitioned among different
cloud types in the presence of observed surface and meteoro-
logical variations. Such conditions are usually held fixed when
developing radiative kernels to isolate cloud from non–cloud
radiative perturbations (Zelinka et al. 2012).

b. Partitioning the TOA CRE by cloud type

Since the early days of monitoring Earth’s radiation budget
via satellites, estimates of the CRE, defined as the clear-sky
minus all-sky TOA radiative flux, have been used to study the
role of clouds in Earth’s climate (Ramanathan et al. 1989).
Figure 10 shows the observed CRE climatology from FBCT
computed as the clear-sky minus overcast-sky cloud-type flux
difference times the cloud fraction in each bin. The results,
summed over all 42 bins, are shown for the SW CRE
(Fig. 10a), LW CRE (Fig. 10b), and net CRE (SW 1 LW;
Fig. 10c). Subsequent panels show the relative contributions

of high-level clouds (10 , pc , 440 hPa), midlevel clouds
(440 , pc , 680 hPa), and low-level clouds (pc . 680 hPa).
Low clouds dominate over the oceans and provide a strong
radiative cooling effect on climate (Figs. 10c,l). They account
for over 90% of the CRE in the maritime subsiding branches
of the Hadley and Walker circulations and over 50% over the
midlatitude oceans in each hemisphere. In contrast, over the
world’s major deserts trapping of outgoing LW radiation and
only weak reflection of SW radiation by high-level clouds
(Figs. 10d,e) yields a positive CRE, representing a weak
warming effect on climate (Fig. 10c). In addition to climato-
logical information, FBCT provides an ability to investigate
cloud-type radiative variability associated with different cli-
matic events.

c. Tropical cloud-radiative structures during El
Niño–Southern Oscillation

The FBCT product can also be used for example to study
CRE variations during El Niño events. Previous El Niño stud-
ies have often relied on climate model simulated fluxes rather
than observations to estimate cloud-type radiative effects
(Cess et al. 2001; Sun et al. 2012; Zhang et al. 2020). To dem-
onstrate the utility of FBCT to quantify CREs during El Niño
events, cloud-type fluxes were averaged over the tropical
western Pacific (TWP) area bound by 58S–108N, 1208–1708E
for all months with a Multivariate ENSO Index version 2
(MEI.v2; https://psl.noaa.gov/enso/mei/) greater than 10.5
and the July 2002 to December 2019 record mean was sub-
tracted. Figure 11 shows histograms of cloud fraction, SW
CRE, LW CRE and net CRE anomalies during El Niño con-
ditions. As the center of deep convection shifts eastward to
the central-eastern Pacific, reductions in high-level cloud
cover in the TWP region induce positive SW CRE (Fig. 11b)
and negative LW CRE (Fig. 11c) anomalies. The high-level
net CRE anomaly shows nearly compensating SW and LW
effects (Fig. 11d).

d. Twenty-first century low-cloud and radiation variability
in the NE Pacific

Motivated by recent studies of low-cloud and climate vari-
ability in the NE Pacific (Loeb et al. 2018b, 2020a; Myers et al.
2018), as a final example of the possible scientific applications
of FBCT data, Fig. 12 presents low-level CRE anomalies in
the NE Pacific during the CERES record. Loeb et al. (2018b,
2020a) attribute an increase in TOA net downward radiation
following the so-called global warming “hiatus” to reductions
in low-level cloudiness in the Californian stratocumulus
region. This change coincided with a shift in the sign of the
Pacific decadal oscillation (PDO) from a negative to positive
phase and encompassed the 2013–15 “marine heatwave”
(Loeb et al. 2020a). During the negative PDO phase, prior to
2013/14, cool SSTs in the NE Pacific favored positive anoma-
lies of low-level cloud cover that in turn helped maintain cool
SSTs. With the emergence of the “marine heatwave,”
increases in SST promoted reductions in low-level cloud cover
and positive low-level CRE anomalies, leading to a positive
SST low-cloud feedback and an increase in SW absorption by

FIG. 8. The FBCT Ed4A (black line) and SSF1deg (Terra 1

Aqua) Ed4A (red line), and EBAF Ed4.1 (blue line) (a) all-sky
SW, (b) clear-sky SW, (c) all-sky LW, and (d) clear-sky LW near-
global mean deseasonalized flux anomalies from July 2002, com-
puted from regions having observations with SZA , 828. These are
not true global means. Positive values indicate an increase in the
SW reflection and LW emitted flux to space.
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the climate system (Myers et al. 2018). As shown in the bot-
tom panel of Fig. 12, the increase in SW absorption was
largely attributed to decreases in low-level clouds having opti-
cal depths between 3.6–9.4 and 9.4–23.

5. Conclusions

The CERES project has thus far provided the climate com-
munity with over 20 years of globally observed TOA fluxes

and cloud properties. The CERES FBCT product now pro-
vides radiative fluxes by cloud type partitioned as a function
of cloud optical depth and cloud effective pressure. This pro-
vides more stringent constraints to validate climate models
and also enables new insight into the interactions between
radiation, clouds, and climate. The FBCT fluxes utilize
MODIS radiances categorized by cloud type within a CERES
footprint to empirically determine the broadband cloud-type
fluxes, and do not rely on the use of radiative transfer models.

FIG. 9. CERES FluxByCldTyp annual and global area-weighted mean (a) LW, (b) SW, and (c) net cloud radiative kernels computed
with respect to the July 2002 to July 2020 climatology expressed in units of W m22 per percentage change in cloud fraction. (d)–(f) The
corresponding Zhou et al. (2013) cloud radiative kernels. The SW kernel in (e) was mapped using the climatological clear-sky surface
albedo (Zelinka et al. 2012) from CERES EBAF Ed4.1.

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 39314

Unauthenticated | Downloaded 10/02/23 06:25 AM UTC



To demonstrate the benefit of this approach, Cole et al.
(2011), and later Eitzen et al. (2017), incorporated “flux-by-
cloud-type simulators” in climate models and compared the
resulting cloud-type fluxes with those based on MODIS and
CERES. Here, we have improved upon the Cole et al. (2011)
approach by utilizing multiple MODIS spectral channels

similar to the strategy of Loeb et al. (2009). Cole et al. (2011)
only used a single MODIS channel to infer the cloud-type
fluxes within a CERES footprint. The FBCT uses single-scene
footprints to determine the MODIS narrowband to broad-
band radiance coefficients and applies the coefficients to the
multiscene subfootprint MODIS channel radiances. TheMODIS

FIG. 10. Annual mean climatology of the (a) SW CRE, (b) LW CRE, and (c) net CRE at the top of the atmosphere from July 2002 to July
2020, along with the relative contributions from (d)–(f) high-level clouds, (g)–(i) midlevel clouds, and (j)–(l) low-level clouds.

FIG. 11. The (a) cloud fraction and (b) SW CRE, (c) LWCRE, and (d) net CRE anomalies relative to the July 2002 to December 2019
FBCT record for composite El Niño events having MEI.v2 greater than 0.5 over the 58S–108N, 1208–1708E TWP domain.
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multichannel linear regression coefficients are computed as a
function of solar and satellite viewing geometry, surface type and
PW to predict the CERES observed radiance.

The subfootprint cloud-type derived broadband radiances
are then converted to fluxes using the CERES Edition 4 ADM.
The sum of derived subfootprint fluxes is then compared with
the CERES observed flux. The derived LW flux bias and stan-
dard deviation is 1% (2.5 W m22) and 3% (8 W m22), respec-
tively. The derived SW bias is within 2.5% (6.25 W m22) and
the standard deviation is mostly within 8% or 20 Wm22, except
for clouds with cloud effective temperatures less than 220 K
and for thin optical depth clouds (,0.4). It is found that the sin-
gle cloud-type footprints are not evenly distributed across the
globe. The negative regional SW flux biases emanate from
partly cloudy footprints and are located in regions with sparse
single-scene footprint sampling. The subfootprint fluxes are
then normalized or constrained to the observed CERES foot-
print flux to mitigate any narrowband to broadband flux biases.
The instantaneous cloud-type fluxes are then spatially and tem-
porally averaged.

The FBCT and SSF1deg monthly regional fluxes were com-
pared for consistency and to highlight the differences with the
CERES SSF1deg product. The FBCT and SSF1deg monthly
regional all-sky SW are very similar. The monthly LW fluxes
over land are greater in the FBCT than the SSF1deg product,
since the FBCT does not include nighttime measurements,

whereas over ocean the LW fluxes are more similar. The FBCT
and SSF1deg 18-yr global monthly SW and LW flux anomalies
are found to be in good agreement. These results indicate that
the FBCT and SSF1deg all-sky flux uncertainties are similar.

Finally, examples of the FBCT data were presented to high-
light its utility for scientific applications. The theoretical cloud
radiative kernels of Zhou et al. (2013) were compared to a set
of kernels computed using the observed FBCT fluxes. Differ-
ences between the kernels are attributed to differences in the
treatment of clouds, diurnal variations (LW), and how FBCT
partitions fluxes among cloud types in the presence of
observed clear-sky surface and atmospheric variability. The
contributions of different cloud types to Earth’s long-term
energy budget and their role in transient climate events were
also highlighted. For example, positive SST low-cloud radia-
tive feedbacks during the NE Pacific marine heatwave were
shown to entail reductions in low-level clouds having medium
optical depths. Studies requiring information on cloud-type
fluxes will benefit from the FBCT product fluxes (Scott et al.
2020; Myers et al. 2021). The CERES FBCT product is avail-
able at the CERES ordering, subsetting, and visualization
tool (https://ceres.larc.nasa.gov/data/).
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