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Abstract—We present CloudScan; an invoice analysis system
that requires zero configuration or upfront annotation.

In contrast to previous work, CloudScan does not rely on
templates of invoice layout, instead it learns a single global model
of invoices that naturally generalizes to unseen invoice layouts.

The model is trained using data automatically extracted
from end-user provided feedback. This automatic training data
extraction removes the requirement for users to annotate the
data precisely.

We describe a recurrent neural network model that can
capture long range context and compare it to a baseline logistic
regression model corresponding to the current CloudScan pro-
duction system.

We train and evaluate the system on 8 important fields using
a dataset of 326,471 invoices. The recurrent neural network
and baseline model achieve 0.891 and 0.887 average F1 scores
respectively on seen invoice layouts. For the harder task of unseen
invoice layouts, the recurrent neural network model outperforms
the baseline with 0.840 average F1 compared to 0.788.

I. INTRODUCTION

Invoices, orders, credit notes and similar business docu-

ments carry the information needed for trade to occur between

companies and much of it is on paper or in semi-structured

formats such as PDFs [1]. In order to manage this information

effectively, companies use IT systems to extract and digitize

the relevant information contained in these documents. Tra-

ditionally this has been achieved using humans that manually

extract the relevant information and input it into an IT system.

This is a labor intensive and expensive process [2].

The field of information extraction addresses the challenge

of automatically extracting such information and several com-

mercial solutions exists that assist in this. Here we present

CloudScan, a commercial solution by Tradeshift, free for

small businesses, for extracting structured information from

unstructured invoices.

Powerful information extraction techniques exists given that

we can observe invoices from the same template beforehand,

e.g. rule, keyword or layout based techniques. A template is a

distinct invoice layout, typically unique to each sender. A num-

ber of systems have been proposed that rely on first classifying

the template, e.g. Intellix [3], ITESOFT [4], smartFIX [5] and

others [6], [7], [8]. As these systems rely on having seen the

template beforehand, they cannot accurately handle documents

from unseen templates. Instead they focus on requiring as few

examples from a template as possible.

What is harder, and more useful, is a system that can accu-

rately handle invoices from completely unseen templates, with

no prior annotation, configuration or setup. This is the goal

of CloudScan: to be a simple, configuration and maintenance

free invoice analysis system that can convert documents from

both previously seen and unseen templates with high levels of

accuracy.

CloudScan was built from the ground up with this goal in

mind. There is no notion of template in the system. Instead

every invoice is processed by the same system built around a

single machine learning model. CloudScan does not rely on

any system integration or prior knowledge, e.g. databases of

orders or customer names, meaning there is no setup required

in order to use it.

CloudScan automatically extracts the training data from

end-user provided feedback. The end-user provided feedback

required is the correct value for each field, rather than the map

from words on the page to fields. It is a subtle difference,

but this separates the concerns of reviewing and correcting

values using a graphical user interface from concerns related to

acquiring training data. Automatically extracting the training

data this way also results in a very large dataset which allows

us to use methods that require such large datasets.

In this paper we describe how CloudScan works, and inves-

tigate how well it accomplishes the goal it aims to achieve. We

evaluate CloudScan using a large dataset of 326,471 invoices

and report competitive results on both seen and unseen tem-

plates. We establish two classification baselines using logistic

regression and recurrent neural networks, respectively.

II. RELATED WORK

The most directly related works are Intellix [3] by

DocuWare and the work by ITESOFT [4]. Both systems

require that relevant fields are annotated for a template

manually beforehand, which creates a database of templates,

fields and automatically extracted keywords and positions for

each field. When new documents are received, both systems

classify the template automatically using address lookups or

machine learning classifiers. Once the template is classified

the keywords and positions for each field are used to propose

field candidates which are then scored using heuristics such

as proximity and uniqueness of the keywords. Having scored

the candidates the best one for each field is chosen.
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Fig. 1. The CloudScan graphical user interface. Results before any correction. Disregard the selected sender and recipient as these are limited to companies
connected to the company uploading the invoice. This is an example of a perfect extraction which would give an F1 score of 1.

smartFIX [5] uses manually configured rules for each tem-

plate. Cesarini et al. [6] learns a database of keywords for each

template and fall back to a global database of keywords. Esser

et al. [7] uses a database of absolute positions of fields for each

template. Medvet et al. [8] uses a database of manually created

(field, pattern, parser) triplets for each template, designs a

probabilistic model for finding the most similar pattern in a

template, and extracts the value with the associated parser.

Unfortunately we cannot compare ourselves directly to the

works described as the datasets used are not publicly available

and the evaluation methods are substantially different. How-

ever, the described systems all rely on having an annotated

example from the same template in order to accurately extract

information.

To the best of our knowledge CloudScan is the first invoice

analysis system that is built for and capable of accurately

converting invoices from unseen templates.

The previous works described can be configured to handle

arbitrary document classes, not just invoices, as is the case for

CloudScan. Additionally, they allow the user to define which



set of fields are to be extracted per class or template, whereas

CloudScan assumes a single fixed set of fields to be extracted

from all invoices.

Our automatic training data extraction is closely related to

the idea of distant supervision [9] where relations are extracted

from unstructured text automatically using heuristics.

The field of Natural Language Processing (NLP) offers a

wealth of related work. Named Entity Recognition (NER)

is the task of extracting named entities, usually persons or

locations, from unstructured text. See Nadeau and Sekine [10]

for a survey of NER approaches. Our system can be seen as

a NER system in which we have 8 different entities. In recent

years, neural architectures have been demonstrated to achieve

state-of-the-art performance on NER tasks, e.g. Lample et

al. [11], who combine word and character level RNNs, and

Conditional Random Fields (CRFs).

Slot Filling is another related NLP task in which pre-defined

slots must be filled from natural text. Our system can be seen

as a slot filling task with 8 slots, and the text of a single

invoice as input. Neural architectures are also used here, e.g.

[12] uses bi-directional RNNs and word embedding to achieve

competitive results on the ATIS (Airline Travel Information

Systems) benchmark dataset.

In both NER and Slot Filling tasks, a commonly used

approach is to classify individual tokens with the entities or

slots of interest, an approach that we adopt in our proposed

RNN model.

III. CLOUDSCAN

A. Overview

CloudScan is a cloud based software as a service invoice

analysis system offered by Tradeshift. Users can upload their

unstructured PDF invoices and the CloudScan engine converts

them into structured XML invoices. The CloudScan engine

contains 6 steps. See Figure 2.

1) Text Extractor. Input is a PDF invoice. Extracts words

and their positions from the PDF. If the PDF has embed-

ded text, the text is extracted, otherwise a commercial

OCR engine is used. The output of this step is a

structured representation of words and lines in hOCR

format [13].

2) N-grammer. Creates N-grams of words on the same

line. Output is a list of N-grams up to length 4.

3) Feature Calculator. Calculates features for every N-

gram. Features fall in three categories: text, numeric and

boolean. Examples of text features are the raw text of

the N-gram, and the text after replacing all letters with

”x”, all numbers with ”0” and all other characters with

”.”. Examples of numeric features are the normalized

position on the page, the width and height and number

of words to the left. Boolean features include whether

the N-gram parses as a date or an amount or whether

it matches a known country, city or zip code. These

parsers and small databases of countries, cities and zip

codes are built into the system, and does not require

any configuration on the part of the user. The output is

a feature vector for every N-gram. For a complete list

of features see table V.

4) Classifier. Classifies each N-gram feature vector into 32

fields of interest, e.g. invoice number, total, date, etc. and

one additional field ’undefined’. The undefined field is

used for all N-grams that does not have a corresponding

field in the output document, e.g. terms and conditions.

The output is a vector of 33 probabilities for each N-

gram.

5) Post Processor. Decides which N-grams are to be used

for the fields in the output document. For all fields,

we first filter out N-gram candidates that does not fit

the syntax of the field after parsing with the associated

parser. E.g. the N-gram ”Foo Bar” would not fit the

Total field after parsing with the associated parser since

no amount could be extracted. The parsers can handle

simple OCR errors and various formats, e.g. ”100,0o”

would be parsed to ”100.00”. The parsers are based on

regular expressions.

For fields with no semantic connection to other fields,

e.g. the invoice number, date, etc. we use the Hungarian

algorithm [14]. The Hungarian algorithm solves the as-

signment problem, in which N agents are to be assigned

to M tasks, such that each task has exactly one agent

assigned and no agent is assigned to more than one task.

Given that each assignment has a cost, the Hungarian

algorithm finds the assignments that minimizes the total

cost. We use 1 minus the probability of an N-gram being

a field as the cost.

For the assignment of the Total, Line Total, Tax Total

and Tax Percentage we define and minimize a cost

function based on the field probabilities and whether the

candidate totals adds up.

The output is a mapping from the fields of interest to

the chosen N-grams.

6) Document Builder. Builds a Universal Business Lan-

guage (UBL) [15] invoice with the fields having the

values of the found N-grams. UBL is a XML based

invoice file format. Output is a UBL invoice.

B. Extracting training data from end-user provided feedback

The UBL invoice produced by the engine is presented to

the user along with the original PDF invoice in a graphical

user interface (GUI). The user can correct any field in the

UBL invoice, either by copy and pasting from the PDF, or by

directly typing in the correction. See figure 1.

Once the user has corrected any mistakes and accepted the

invoice we add the resulting UBL to our data collection. We

will extract training data from these validated UBL documents,

even though they might deviate from the PDF content due to

OCR error, user error or the user intentionally deviating from

the PDF content. We discuss these issues later.

The classifier is trained on N-grams and their labels, which

are automatically extracted from the validated UBL invoices

and the corresponding PDFs. For each field in the validated



Fig. 2. The CloudScan engine.

UBL document we consider all N-grams in the PDF and check

whether the text content, after parsing, matches the field value.

If it does, we extract it as a single training example of N-gram

and label equal to the field. If an N-gram does not match

any fields we assign the ’undefined’ label. For N-grams that

match multiple fields, we assign all matched fields as labels.

This ambiguity turns the multi-class problem into a multi-label

problem. See Algorithm 1 for details.

input : UBL and PDF document
output: All labeled N-grams
result ← {};
foreach field ∈ fields do

parser ← GetParser(field);
value ← GetValue(UBL, field);
maxN ← Length(value) + 2;
nGrams ← CreateNgrams(PDF, maxN);
foreach nGram ∈ nGrams do

if value = Parse(nGram, parser) then

Add(result, nGram, field);
end

end

end

nGrams ← CreateNgrams(PDF, 4);
foreach nGram ∈ nGrams do

if nGram /∈ result then

Add(result, nGram, undefined);
end

end

return result

Algorithm 1: Automatic training data extraction

Using automatically extracted pairs like this results in a

noisy, but big data set of millions of pairs. Most importantly,

however, it introduces no limitations on how users correct

potential errors, and requires no training. For instance, we

could have required users to select the word matching a

field, which would result in much higher quality training

data. However in a high volume enterprise setup, this could

reduce throughput significantly. Our automatic training data

generation decouples the concerns of reviewing and correcting

fields from creating training data, allowing the GUI to focus

solely on reviewing and correcting fields. The user would

need to review the field values and correct potential errors

regardless, so as long as we do not limit how the user does

it, we are not imposing any additional burdens. In short, the

machine learning demands have lower priority than the user

experience in this regard.

As long as we get a PDF and a corresponding UBL invoice

we can extract training data, and the system should learn and

improve for the next invoice.

IV. EXPERIMENTS

We perform two experiments meant to test 1) the expected

performance on the next invoice, and 2) the harder task of

expected performance on the next invoice from an unseen

template. These are two different measures of generalization

performance.

The data set consists of 326,471 pairs of validated UBL

invoices and corresponding PDFs from 8911 senders to 1013

receivers obtained from use of CloudScan. We assume each

sender corresponds to a distinct template.

For the first experiment we split the invoices into a training,

validation and test set randomly, using 70%, 10% and 20%

respectively. For the second experiment we split the senders

into a training, validation and test set randomly, using 70%,

10% and 20% respectively. All the invoices from the senders

in a set then comprise the documents of that set. This split

ensures that there are no invoices sharing templates between

the three sets for the second experiment.

While the system captures 32 fields we only report on eight

of them: Invoice number, Issue Date, Currency, Order ID,

Total, Line Total, Tax Total and Tax Percent. We only report

on these eight fields as they are the ones we have primarily

designed the system for. A large part of the remaining fields

are related to the sender and receiver of the invoice and used

for identifying these. We plan to remove these fields entirely

and approach the problem of sender and receiver identification

as a document classification problem instead. Preliminary

experiments based on a simple bag-of-words model show

promising results. The last remaining fields are related to

the line items and used for extracting these. Table extraction

is a challenging research question in itself, and we are not

yet ready to discuss our solution. Also, while not directly

comparable, related work [3], [4], [6] also restricts evaluation

to header fields.

Performance is measured by comparing the fields of the

generated and validated UBL. Note we are not only measuring

the classifier performance, but rather the performance of

the entire system. The end-to-end performance is what is

interesting to the user after all. Furthermore, this is the strictest

possible way to measure performance, as it will penalize errors

from any source, e.g. OCR errors and inconsistencies between

the validated UBL and the PDF. For instance, the date in the

validated UBL might not correspond to the date on the PDF.

In this case, even if the date on the PDF is found, it will

be counted as an error, as it does not match the date in the

validated UBL.

In order to show the upper limit of the system under

this measure we include a ceiling analysis where we replace

the classifier output with the correct labels directly. This

corresponds to using an oracle classifier. We use the MUC-5

definitions of recall, precision and F1, without partial matches

[16].

We perform experiments with two classifiers 1) The produc-



tion baseline system using a logistic regression classifier, and

2) a Recurrent Neural Network (RNN) model. We hypothesize

the RNN model can capture context better.

A. Baseline

The baseline is the current production system, which uses a

logistic regression classifier to classify each N-gram individ-

ually.

In order to capture some context, we concatenate the feature

vectors for the closest N-grams in the top, bottom, left and

right directions to the normal feature vectors. So if the feature

vector for an N-gram had M entries, after this it would have

5M entries.

All 5M features are then mapped to a binary vector of size

222 using the hashing trick [17]. To be specific, for each feature

we concatenate the feature name and value, hash it, take the

remainder with respect to the binary vector size and set that

index in the binary vector to 1.

The logistic regression classifier is trained using stochastic

gradient descent for 10 epochs after which we see little

improvement. This baseline system is derived from the heavily

optimized winning solution of a competition Tradeshift held1.

B. LSTM model

In order to accurately classify N-grams the context is

critical, however when classifying each N-gram in isolation, as

in the baseline model, we have to engineer features to capture

this context, and deciding how much and which context to

capture is not trivial.

A Recurrent Neural Network (RNN) can model the entire

invoice and we hypothesize that this ability to take the entire

invoice into account in a principled manner will improve the

performance significantly. Further, it frees us from having to

explicitly engineer features that capture context. As such we

only use the original M features, not the 5M features of the

baseline model. In general terms, a RNN can be described as

follows.

ht = f(ht−1, xt)

yt = g(ht)

Where ht is the hidden state at step t, f is a neural network

that maps the previous hidden state ht−1, and the input xt

to ht and g is a neural network that maps the hidden state

ht to the output of the model yt. Several variants have been

proposed, most notably the Long Short Term Memory (LSTM)

[18] which is good at modeling long term dependencies.

A RNN models a sequence, i.e. x and y are ordered and as

such we need to impose an ordering on the invoice. We chose

to model the words instead of N-grams, as they fit the RNN

sequence model more naturally and we use the standard left-

to-right reading order as the ordering. Since the labels can span

multiple words we re-label the words using the IOB labeling

1https://www.kaggle.com/c/tradeshift-text-classification

scheme [19]. The sequence of words ”Total Amount: 12 200

USD” would be labeled ”O O B-Total I-Total B-Currency”.

We hash the text of the word into a binary vector of size 218

which is embedded in a trainable 500 dimensional distributed

representation using an embedding layer [20]. Using hashing

instead of a fixed size dictionary is somewhat unorthodox but

we did not observe any difference from using a dictionary, and

hashing was easier to implement. It is possible we could have

gotten better results using more advanced techniques like byte

pair encoding [21].

We normalize the numerical and boolean features to have

zero mean and unit variance and form the final feature vector

for each word by concatenating the word embedding and the

normalized numerical features.

From input to output, the model has: two dense layers with

600 rectified linear units each, a single bidirectional LSTM

layer with 400 units, and two more dense layers with 600

rectified linear units each, and a final dense output layer with

65 logistic units (32 classes that can each be ’beginning’ or

’inside’ plus the ’outside’ class).

Fig. 3. The LSTM model.

Following Gal [22], we apply dropout on the recurrent units

and on the word embedding using a dropout fraction of 0.5

for both. Without this dropout the model severely overfits.

The model is trained with the Adam optimizer [23] using

minibatches of size 96 until the validation performance has

not improved on the validation set for 5 epochs. Model

architecture and hyper-parameters were chosen based on the

performance on the validation set. For computational reasons

we do not train on invoices with more than 1000 words, which

constitutes approximately 5% of the training set, although

we do test on them. The LSTM model was implemented in

Theano [24] and Lasagne [25].

After classification we assign each word the IOB label

with highest classification probability, and chunk the IOB

labeled words back into labeled N-grams. During chunking,

words with I labels without matching B labels are ignored.

For example, the sequence of IOB labels [B-Currency, O, B-

Total, I-Total, O, I-Total, O] would be chunked into [Currency,

O, Total, O, O]. The labeled N-grams are used as input for

the Post Processor and further processing is identical to the

baseline system.

V. RESULTS

The results of the ceiling analysis seen in Table I show that

we can achieve very competitive results with CloudScan using

an oracle classifier. This validates the overall system design,



TABLE I
CEILING ANALYSIS RESULTS. MEASURED ON ALL DOCUMENTS.

EXPECTED PERFORMANCE GIVEN AN ORACLE CLASSIFIER.

Field F1 Precision Recall

Number 0.918 0.967 0.873

Date 0.899 1.000 0.817

Currency 0.884 1.000 0.793

Order ID 0.820 0.979 0.706

Total 0.966 0.981 0.952

Line Total 0.976 0.991 0.961

Tax Total 0.959 0.961 0.957

Tax Percent 0.901 0.928 0.876

Micro avg. 0.925 0.974 0.881

including the use of automatically generated training data, and

leaves us with the challenge of constructing a good classifier.

The attentive reader might wonder why the precision is not

1 exactly for all fields, when using the oracle classifier. For the

’Number’ and ’Order ID’ fields this is due to the automatic

training data generation algorithm disregarding spaces when

finding matching N-grams, whereas the comparison during

evaluation is strict. For instance the automatic training data

generator might generate the N-gram (”16 2054”: Invoice

Number) from (Invoice Number: ”162054”) in the validated

UBL. When the oracle classifier classifies the N-gram ”16

2054” as Invoice Number the produced UBL will be (Invoice

Number: ”16 2054”). When this is compared to the expected

UBL of (Invoice Number: ”162054”) it is counted as incorrect.

This is an annoying artifact of the evaluation method and

training data generation. We could disregard spaces when com-

paring strings during evaluation, but we would risk regarding

some actual errors as correct then. For the total fields and

the tax percent, the post processor will attempt to calculate

missing numbers from found numbers, which might result in

errors.

As it stands the recall rate is the limiting factor of the

system. The low recall rate can have two explanations: 1) The

information is present in the PDF but we cannot read or parse

it, e.g. it might be an OCR error or a strange date format, in

which case the OCR engine or parsing should be improved,

or 2) the information is legitimately not present in the PDF, in

which case there is nothing to do, except change the validated

UBL to match the PDF.

Table II shows the results of experiment 1 measuring the

expected performance on the next received invoice for the

baseline and LSTM model. The LSTM model is slightly better

than the baseline system with an average F1 of 0.891 compared

to 0.887. In general the performance of the models is very

similar, and close to the theoretical maximum performance

given by the ceiling analysis. This means the classifiers both

perform close to optimally for this experiment. The gains that

can be had from improving upon the LSTM model further are

just 0.034 average F1.

More interesting are the results in Table III which measures

TABLE II
EXPECTED PERFORMANCE ON NEXT RECEIVED INVOICE. BEST RESULTS

IN BOLD.

F1 Precision Recall

Field Baseline LSTM Baseline LSTM Baseline LSTM

Number 0.863 0.860 0.883 0.877 0.844 0.843

Date 0.821 0.828 0.876 0.893 0.773 0.772

Currency 0.869 0.874 0.974 0.992 0.784 0.781

Order ID 0.776 0.760 0.936 0.930 0.663 0.642

Total 0.927 0.932 0.940 0.942 0.915 0.924

Line Total 0.923 0.936 0.936 0.945 0.911 0.927

Tax Total 0.931 0.939 0.933 0.941 0.929 0.937

Tax Percent 0.901 0.903 0.927 0.930 0.876 0.878

Micro avg. 0.887 0.891 0.924 0.930 0.852 0.855

TABLE III
EXPECTED PERFORMANCE ON NEXT INVOICE FROM UNSEEN TEMPLATE.

BEST RESULTS IN BOLD.

F1 Precision Recall

Field Baseline LSTM Baseline LSTM Baseline LSTM

Number 0.711 0.760 0.761 0.789 0.668 0.733

Date 0.693 0.774 0.759 0.847 0.637 0.712

Currency 0.907 0.905 0.977 0.983 0.847 0.838

Order ID 0.433 0.523 0.822 0.737 0.294 0.406

Total 0.840 0.896 0.864 0.907 0.818 0.884

Line Total 0.803 0.880 0.826 0.891 0.781 0.869

Tax Total 0.832 0.878 0.835 0.881 0.829 0.874

Tax Percent 0.812 0.869 0.828 0.887 0.796 0.853

Micro avg. 0.788 0.840 0.836 0.879 0.746 0.804

the expected performance on the next invoice from an unseen

template. This measures the generalization performance of the

system across templates which is a much harder task due to the

plurality of invoice layouts and reflects the experience a new

user will have the first time they use the system. On this harder

task the LSTM model clearly outperform the baseline system

with an average F1 of 0.840 compared to 0.788. Notably

the 0.840 average F1 of the LSTM model is getting close

to the 0.891 average F1 of experiment 1, indicating that the

LSTM model is largely learning a template invariant model of

invoices, i.e. it is picking up on general patterns rather than

just memorizing specific templates.

We hypothesized that it is the ability of LSTMs to model

context directly that leads to increased performance, although

there are several other possibilities given the differences be-

tween the two models. For instance, it could simply be that

the LSTM model has more parameters, the non-linear feature

combinations, or the word embedding.

To test our hypothesis we trained a third model that is

identical to the LSTM model, except that the bidirectional

LSTM layer was replaced with a feedforward layer with an

equivalent number of parameters. We trained the network



with and without dropout, with all other hyper parameters

kept equal. The best model got an average F1 of 0.702

on the experiment 2 split, which is markedly worse than

both the LSTM and baseline model. Given that the only

difference between this model and the LSTM model is the

lack of recurrent connections we feel fairly confident that our

hypothesis is true. The feedforward model is likely worse than

the baseline model because it does not have the additional

context features of the baseline model.

TABLE IV
WORD EMBEDDING EXAMPLES.

EUR GBP DKK

$ USD DKK

Total Betrag TOTAL

Number No number

Number: No Rechnung-Nr.

London LONDON Bremen

Brutto Ldm ex.Vat

Phone: code: Tel:

Table IV shows examples of words and the two closest

words in the learned word embedding. It shows that the learned

embeddings are language agnostic, e.g. the closest word to

”Total” is ”Betrag” which is German for ”Sum” or ”Amount”.

The embedding also captures common abbreviations, capital-

ization, currency symbols and even semantic similarities such

as cities. Learning these similarities versus encoding them by

hand is a major advantage as it happens automatically as it

is needed. If a new abbreviation, language, currency, etc. is

encountered it will automatically be learned.

VI. DISCUSSION

We have presented our goals for CloudScan and described

how it works. We hypothesized that the ability of a LSTM

to model context directly would improve performance. We

carried out experiments to test our hypothesis and evaluated

CloudScan’s performance on a large realistic dataset. We

validated our hypothesis and showed competitive results of

0.891 average F1 on documents from seen templates, and

0.840 on documents from unseen templates using a single

LSTM model. These numbers should be compared to a ceiling

of F1=0.925 for an ideal system baseline where an oracle

classifier is used.

Unfortunately it is hard to compare to other vendors di-

rectly as no large publicly available datasets exists due to

the sensitive nature of invoices. We sincerely wish such a

dataset existed and believe it would drive the field forward

significantly, as seen in other fields, e.g. the large effect

ImageNet [26] had on the computer vision field. Unfortunately

we are not able to release our own dataset due to privacy

restrictions.

A drawback of the LSTM model is that we have to decide

upon an ordering of the words, when there is none naturally.

We chose the left to right reading order which worked well, but

in line with the general theme of CloudScan we would prefer

a model which could learn this ordering or did not require

one.

CloudScan works only on the word level, meaning it does

not take any image features into account, e.g. the lines, logos,

background, etc. We could likely improve the performance if

we included these image features in the model.

With the improved results from the LSTM model we are

getting close to the theoretical maximum given by the ceiling

analysis. For unseen templates we can at maximum improve

the average F1 by 0.085 by improving the classifier. This

corresponds roughly to the 0.075 average F1 that can at

maximum be gained from fixing the errors made under the

ceiling analysis. An informal review of the errors made by

the system under the ceiling analysis indicates the greatest

source of errors are OCR errors and discrepancies between

the validated UBL and the PDF.

As such, in order to substantially improve CloudScan we

believe a two pronged strategy is required: 1) improve the

classifier and 2) correct discrepancies between the validated

UBL and PDF. Importantly, the second does not delay the

turnaround time for the users, can be done at our own pace

and only needs to be done for the cases where the automatic

training data generation fails. As for the OCR errors we will

rely on further advances in OCR technology.
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TABLE V
N-GRAM FEATURES.

Name Description

RawText The raw text.

RawTextLastWord The raw text of the last word in the N-gram.

TextOfTwoWordsLeft The raw text of the word two places to the
left of the N-gram.

TextPatterns The raw text, after replacing uppercase char-
acters with X, lowercase with x, numbers
with 0, repeating whitespace with single
whitespace and the rest with ?.

bottomMargin Vertical coordinate of the bottom margin of
the N-gram normalized to the page height.

topMargin Same as above, but for the top margin.

rightMargin Horizontal coordinate of the right margin of
the N-gram normalized to the page width.

leftMargin Same as above but for the left margin.

bottomMarginRelative The vertical distance to the nearest word be-
low this N-gram, normalized to page height.

topMarginRelative The vertical distance to the nearest word
above this N-gram, normalized to page
height.

rightMarginRelative The horizontal distance to the nearest word to
the right of this N-gram, normalized to page
width.

leftMarginRelative The horizontal distance to the nearest word
to the left of this N-gram, normalized to page
width.

horizontalPosition The horizontal distance between this N-gram
and the word to the left, normalized to the
horizontal distance between the word to the
left and the word to the right.

verticalPosition Same as above but vertical.

hasDigits Whether there are any digits 0-9 in the N-
gram.

isKnownCity Whether the N-gram is found in a small
database of known cities.

isKnownCountry Same as above, but for countries.

isKnownZip Same as above but for zip codes.

leftAlignment Number of words on the same page which
left margin is within 5 pixels of this N-grams
left margin.

length Number of characters in the N-gram.

pageHeight The height of the page of this N-gram.

pageWidth The width of the page of this N-gram.

positionOnLine Count of words to the left of this N-gram
normalized to the count of total words on this
line

lineSize The number of words on this line.

lineWhiteSpace The area occupied by whitespace on the line
of this N-gram normalized to the total area
of the line.

parsesAsAmount Whether the N-gram parses as a fractional
amount.

parsesAsDate Same as above but for dates.

parsesAsNumber Same as above but for integers.

LineMathFeatures.isFactor Whether this N-gram, after parsing, can take
part in an equation such that it is one of two
factors on the same line that when multiplied
equals another amount on the same line.

LineMathFeatures.isProduct Same as above, except this N-gram is the
product of the two factors.
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