
CloudStream: delivering high-quality streaming
videos through a cloud-based SVC proxy

Zixia Huang1, Chao Mei1, Li Erran Li2, Thomas Woo2

1Department of Computer Science, University of Illinois, Urbana, IL
2Bell Labs, Alcatel-Lucent, Murray Hill, NJ

1{zhuang21, chaomei2}@illinois.edu
2{erranlli, woo}@research.bell-labs.com

Abstract—Existing media providers such as YouTube and Hulu
deliver videos by turning it into a progressive download. This can
result in frequent video freezes under varying network dynamics.
In this paper, we present CloudStream: a cloud-based video proxy
that can deliver high-quality streaming videos by transcoding
the original video in real time to a scalable codec which allows
streaming adaptation to network dynamics. The key is a multi-
level transcoding parallelization framework with two mapping
options (Hallsh-based Mapping and Lateness-first Mapping) that
optimize transcoding speed and reduce the transcoding jitters
while preserving the encoded video quality. We evaluate the
performance of CloudStream on our campus cloud testbed.

I. INTRODUCTION

Users are demanding uninterrupted delivery of increasingly
higher quality videos (e.g., 720p) over the Internet, in both
wireline and wireless. Instead of tackling the video delivery
problem head on, most current Internet media providers (like
YouTube or Hulu) have taken the easy way out and changed
the problem to that of a progressive download via a content
distribution network. In such a framework, they are using a
non-adaptive codec, but ultimately, the delivery variabilities
is handled by freezing, which significantly degrades the user
experience. In this paper, we propose and study the develop-
ment of a H.264/SVC (Scalable Video Coding [1]) based video
proxy situated between the users and media servers, that can
adapt to changing network conditions using scalable layers at
different data rates. The two major functions of this proxy are:
(1) video transcoding from original formats to SVC, and (2)
video streaming to different users under Internet dynamics.

Because of codec incompatibilities, a video proxy will have
to decode an original video into an intermediate format and
re-encode it to SVC. While the video decoding overhead is
negligible, the encoding process is highly complex that the
transcoding speed is relatively slow even on a modern multi-
core processor. This results in a long duration before a user
can access the transcoded video (called video access time),
and possible video freezes during its playback because of
the unavailability of transcoded video data. Both long access
time and frequent freezes directly and negatively impact the
users’ subjective perceptions of the video. To enable real-time
transcoding and allow scalable support for multiple concurrent
videos, our video proxy employs a cluster of computers or a

cloud for its operation. Specifically, our proxy solution parti-
tions a video into clips and maps them to different compute
nodes (instances) configured with one or multiple CPUs in
order to achieve encoding parallelization. In general, video
clips with the same duration can demand different computation
time (Fig. 1) because of the video content heterogeneity. In
performing encoding parallelization in the cloud, there are
three main issues to consider. First, multiple video clips can
be mapped to compute nodes at different time (Map time) due
to the availability of the cloud computation resources and the
heterogeneity in the computation overhead of previous clips
(Fig. 2). Second, the default first-task first-serve scheme in the
cloud can introduce unbalanced computation load on different
nodes. This will lead to the deviations from the expected ar-
rival time at the Reduce application (the encoding completion
time or the Reduce time) of different video clips (Fig. 2). The
deviation is called the transcoding jitter. Third, the transcoding
component should not speed up video encoding at the expense
of degrading the encoded video quality.

Due to the transcoding jitters and the resulting mandatory
reordering buffer at the Reduce application, the SVC-encoded
video clips can arrive at the streaming component in batches
(Fig. 2). This complicates the streaming component in that
the batched arrivals can create a demand surge of network
resources due to a sudden data rate increase. Hence, some data
may not arrive at the user before the scheduled playback time
because of the Internet bandwidth variations and streaming
adaptations, which again can result in video freezes. We use
the term streaming jitter to describe the deviation from the
expected arrival time of a video clip at the user.

The video access time and video freezes are user-observable
attributes characterizing the streaming quality. The video
freezes can be reduced by increasing the buffering time at
a user. This, however, will in turn increase the access time
because the buffer size is decided before the start of an on-
demand video [2]. Hence, the minimization of jitters incurred
at both transcoding and streaming components is important in
improving the overall streaming quality.

Our contributions. We present CloudStream: a cloud-
based SVC proxy that delivers high-quality Internet streaming
videos. We focus on its transcoding component design in
this paper. To achieve this, we characterize the video content

0 10 20 30 40 50 60
15

20

25

Index of Video Clips (each include 8 pictures)

E
nc

od
in

g
tim

e
(s

ec
)

Fig. 1. Encoding time of 64 consecutive video clips (each including
eight 856x480 pictures) on a single-thread compute node.

Streaming Server

Map Time

User

1 2

t
Reduce Time

3

2 3 1

1 2 3

1 2 3

1 2 3

1 2 3
Transcoding Jitter

Streaming Jitter

Fig. 2. Transcoding and streaming jitters. Dotted lines show the
expected arrival time for each video clip at different components.

heterogeneity and identify the user-observable and system-
controllable attributes impacting the video streaming quality.
We design a multi-level parallelization framework under the
computation resource constraints with two mapping options
(Hallsh-based Mapping and Lateness-first Mapping) to in-
crease the transcoding speed and reduce the transcoding jitters
without losing the encoded video quality. We evaluate the per-
formance of CloudStream on our campus cloud testbed. Due
to the space limit, the video streaming adaptation component
is deferred to a future full-version paper, and we assume the
streaming jitters are equal to transcoding jitters for each clip
in this paper.

Because we use a campus cloud testbed, the communication
latency between the video proxy and the testbed is neglected
for simplicity. We assume all the compute nodes in the cloud
have the same computation power. We partition a video into
multiple clips with the same duration (number of pictures).
We use the SVC reference software JSVM in evaluation, but
our system can be migrated to other video codecs.

II. METRICS AFFECTING STREAMING QUALITY

A. Attributes of Streaming Quality
The streaming quality is a prerequisite for users to watch

videos smoothly without interruptions, and thus directly im-
pacts the human subjective perception.

The access time that a user experiences before the start
of an on-demand video playback represents the overall re-
sponsiveness of the video proxy. The latencies incurred at
both transcoding and streaming components can contribute to
the access time. In this paper we focus on the deterministic
system-controllable factor, and specifically minimizing the
average latency spent over encoding one video clip on the
cloud compute node, because a video cannot be accessed until
one or multiple re-encoded video clips have been returned
from the cloud and arrived at the user.

Video freezes are caused by the unavailability of new video
data at their scheduled playback time due to the combined
contribution of transcoding and streaming jitters. For the i-th
video clip, we use ci to denote the Reduce time (the actual
completion time). Each video clip has a encoding time pi. In

order to enable real-time transcoding, the expected encoding
completion time (Reduce time) of the video clips di is defined
as di = pe +(i− 1)×ΔT where pe is the expected encoding
time of a video clip (a constant) and ΔT is the duration of
the video clip in time. The term (i − 1) × ΔT computes the
temporal shift of the i-th video clip from the start of the
video. The transcoding jitter of each clip δT t

i can therefore
formally defined as: δT t

i = ci − di. In this paper, we assume
the streaming jitter δT s

i is equal to the transcoding jitter for
each clip, i.e., δT s

i = δT t
i . The user-side buffering time should

be large enough to accommodate the maximum streaming jitter
in order to avoid video freezes. The video decoding time is
negligible at both the transcoding component and the user.

B. Metrics Characterizing Video Content
The characteristics of the video content can affect the

transcoding speed which decides the streaming quality. We
use two cost-effective metrics in ITU-T P.910 [3] to describe
the video content heterogeneity: the temporal motion metric
TM and the spatial detail metric SD. TM can be captured by
the differences of pixels at the same spatial location of two
pictures, while SD is computed from the differences of all
spatially neighboring pixels within a picture. Details can be
found in [3], and will not be presented here.

Generally speaking, frequent scenery changes (large TM)
affect the computation demand on video encoding by reducing
the dependencies among the temporal successive pictures and
increasing the number of pictures being intra-coded [1] in
response to a scenery change. Pictures with large SD can
also increase the encoding computation overhead because
of a demand for greater information to describe the spatial
details [1].

III. CLOUD-BASED VIDEO TRANSCODING FRAMEWORK

A. Multi-level Encoding Parallelization
We propose our parallelization framework. Previous studies

have achieved the SVC encoding parallelization on a single
multi-core computer with and without GPU support [4], but
none of them provide the real-time support.

SVC coding structures. SVC [1] can divide a video into non-
overlapping coding-independent groups of pictures (GOP).
Each picture may include several layers with different spa-
tial resolutions and encoding qualities [1]. Each layer in a
picture can be divided into one or more coding-independent
slices. Each slice includes a sequence of non-overlapping
16x16 macro-blocks (MB) for luma components and 8x8 MB
for chroma components. There are strong interdependencies
among MBs within a slice [4]. To achieve the best qual-
ity inside a MB, the SVC encoder in JSVM compares all
independently computed partitions within a MB. Hence, the
parallelism at all levels from GOPs (the largest units) to MB
partitions (the smallest units) can lead to a corresponding
decrease in the work granularity.

Inter-node and intra-node parallelism. To exploit the com-
pute nodes returned by the cloud at full potential, we need
to parallelize the encoding scheme across different compute
nodes (inter-node parallelism) which do not share the memory

GOP 1

GOP N

Slice 1

Slice M

Slice 1

Slice M

GOP
Map

Slice
Multiplex

Slice
Multiplex

GOP
Reduce

Intra-node Parallelism

In
te

r-
no

de
Pa

ra
lle

lis
m

Intra-node Parallelism

Fig. 3. Multi-level parallelization in the cloud.

space. On the other hand, the shared-memory address space
of the parallelism inside one compute node (intra-node par-
allelism) will ease the management of sharing information or
states with the help of threads synchronization by locks or bar-
riers. However, threads synchronization causes overhead and
may serialize the whole encoding, offsetting the performance
gains from parallelization. Additionally, these two different
types of parallelism prefer different work granularity. As a
rule of thumb, the inter-node parallelism has much larger
granularity than its counterpart.

Choice of our parallelization scheme. From the above
discussions above, we propose our multi-level encoding paral-
lelization scheme. The idea of our scheme is shown in Fig. 3.
In our scheme, since the coding-independent GOPs have the
largest work granularity, encoding at the GOP level is an ideal
candidate to be parallelized across different compute nodes.
The independence among all slices and the relative larger
amount of work makes it ideal for intra-node parallelism,
which can be easily implemented using OpenMP by encoding
each slice on a different CPU within a compute node (Fig. 3).

B. Intra-node Parallelism
Because a cloud node will not return part of the encoded

SVC data until the whole GOP is encoded, the inter-node
parallelism alone is not sufficient to shorten the access time.
To set an upper bound on the average computation time spent
over the GOP encoding that decides the access time, we rely
on the intra-node parallelism and decide the minimum number
of slices encoded in parallel.

We limit TGOP(M) (using M parallel slices) within the
upper bound Tth. Each GOP includes SG pictures (each with
L spatial and quality layers in JSVM configuration), i.e.,
Tpic(M) × SG < Tth, where Tpic(M) = ΣL

i=1Tpic,i(M).
Tpic,i(M) can be computed in approximation by:

Tpic,i(M) = Tslice,i(M) × Nslice,i/M + ΔTi (1)

ΔTi is the encoding overhead which cannot be parallelized.
It includes the preprocessing overhead of the layer i and the
multiplexing overhead of the encoded slices belonging to the
same layer of a picture. Tslice,i(M) can be computed by:

Tslice,i(M) = TMB,i(M) × NMB,i/Nslice,i (2)

Hence given SG and TMB,i(M) = TMB,i(1) (because we do
not parallelize across or within MBs in a slice), the minimum
M that can satisfy Tth is:

Mmin =

⌈ ∑L
i=1 TMB,i(1) × NMB,i

Tth/SG − ∑L
i=1 ΔTi

⌉
(3)

The numerator of Eq. 3 indicates the sequential encoding time
of all MBs at all layers of one picture, while the denominator

TABLE I
NOTATIONS AND DEFINITIONS

Notations Definitions

M Number of encoded parallel slices in a picture
NMB,i, Nslice,i Number of MBs or slices in the i-th layer of

a picture
TMB,i(M), Tslice,i(M) Average encoding time of one MB or slice in

the i-th layer with M parallel slices
Tpic,i(M) Average encoding time of the i-th layer of a

picture
Tpic(M) Average encoding time of a picture

TGOP(M) Average encoding time of a GOP

is the upper bound of the target encoding time for these MBs.
Hence, Eq. 3 gives us the minimum requirement of speedup
by intra-node parallelization given the upper bound Tth, which
correspondingly implies the minimum number of slices (i.e.
number of intra-node parallelism) which should be used in
our scheme. Note that TMB,i and ΔTi can be obtained based
on the encoding time statistics of previous videos in the cloud.

C. Inter-node Parallelism
While the inter-node parallelism is adopted to achieve real-

time transcoding, the variations of GOP encoding time can
introduce the transcoding jitters. Our goal is to minimize both
transcoding jitters and the number of compute nodes (denoted
as N) used for inter-node parallelism. The optimization prob-
lem requires the estimation of the actual encoding time of
the GOPs, which can be achieved by profiling [5], [6]. In
our study, we rely on a multi-variable regression model based
upon the video content characteristics TM and SD at a given
encoding configuration E = {SG, M, L, . . .}, and along with
the profiling results, to improve the prediction accuracy. We
train videos with different TM and SD to build the regression
model. Even though there are limited number of videos used
for training, we still find that more than 90% of predicted
values of the testing data are fallen within the 10% of error,
which proves the model is creditable. We will not go into the
details due to the space limit.

Based on the approximation of each GOP’s encoding time
(denoted as p̂i as opposed to the actual encoding time pi,
because pi cannot be obtained beforehand), we formulate
the following problem. We will still use pi for illustration
simplicity in this section, but it is actually the value of p̂i.
• Problem Formulation

We are given Q jobs (1,2,...,Q). Each job i has a deadline
di, and a processing time pi. Multiple machines can do the job
in parallel, but each job must be processed without preemption
on each machine until its completion. We want to bound the
lateness of these jobs. That is, the actual completion time ci

must be smaller than di + τ for each job i. The lateness li can
be computed li = ci − di. We would like to find the minimal
number of machines N and minimize the lateness τ .

In our system, the jobs correspond to the GOP encoding
tasks. li is the positive transcoding jitter δT t

i . Hence τ is the
upper bound of both transcoding and streaming jitters.
• Computation Complexity

We show that the problem is NP-hard even if the optimal
solution may only require two machines.

Theorem 3.1: The minimum number of the machine
scheduling problem (minMS) is NP-hard.

Proof. Our reduction is from the partition problem which
asks whether a given multiset of integers can be partitioned
into two ”halves” that have the same sum. Given an instance of
the partition problem, we encode in an instance of our minMS
problem. For each integer i in the partition problem, we create
a job i. Let the total sum be S. The deadlines for all of these
jobs are the same, i.e. S/2. We set τ the maximum lateness to
zero. It is easy to see that the partition problem has a solution
iff the minMS problem outputs two machines with τ = 0.

We present it here only for completeness. We discuss two
solutions to this NP-hard problem in this paper.

• Solution I: Hallsh-based Mapping (HM)
We first set an upper bound of τ and then compute the

minimal number of N that satisfies the upper bound.
This can be achieved by a O(1) approximation algorithm [7].

However, the algorithm is complex because it involves round-
ing the solution to a linear programming. In this paper, we
present a lightweight algorithm called minMS2approx that
makes use of the algorithm in [8] as a blackbox. We refer to
the identical machine scheduling algorithm in [8] as Hallsh.

The algorithm minMS2approx runs as follows.
1. We pick ε = mini{(di − pi)/τ}.
2. We run HallSh algorithm by increasing the number of

machines k until the maximum lateness maxi{l(k)
i } among

all the Q jobs using k machines satisfies maxi{l(k)
i } < (1 +

ε)× τ . We set the machine number at this point to be K , i.e.
maxi{l(K)

i } < (1 + ε) × τ and maxi{l(K−1)
i } ≥ (1 + ε) × τ .

We flag the machines 1,2,...,K as used.
3. The HallSh algorithm returns the scheduling results of

all jobs given K . For a job with ci − di > τ on a particular
machine j, we move it, and along with all future jobs on
the same machine K , to a new machine K + j. We flag the
machine K + j as used. We then compute the new completion
time ci for all jobs on the machine K + j.

4. N is computed as the number of used machines.
We claim that the algorithm is a 2-approximation algorithm.
Lemma 3.2: The optimal number of machines Nopt for the

minMS problem is greater than K .
Proof. K is the first value that satisfies maxi{l(K)

i } < (1+
ε) × τ and maxi{l(K−1)

i } ≥ (1 + ε) × τ . We let τ
(K)
opt be the

optimal lateness with K identical machines. According to [8],
maxi{l(K−1)

i } < (1 + ε) × τopt
(K−1). Thus, τ < τopt

(K−1).
Since the maximum lateness of the optimal solution to the
minMS problem (which uses Nopt number of machines) is no
smaller than τ , this means Nopt > K − 1. Because Nopt is an
integer, Nopt ≥ K .

Theorem 3.3: The minMS2approx algorithm is a 2 approx-
imation to the minMS problem.

Proof. Let job q be the first job that exceeds the lateness
cq − dq > τ on the machine j, and sq be the job start time
on the machine j. Given sq > dq − pq and our choice of
ε = mini{(di−pi)/τ}, we obtain that sq > ε×τ . Because the
job q will be rescheduled on machine j+K , the new start time

s′q will be zero. Its completion time now becomes pq which
is within the τ maximum lateness. For all the other jobs that
exceed the maximum lateness and are scheduled after q on
the machine j, each of them is moved ahead by sq > ε × τ .
Since none of them are late by more than ε× τ , all these jobs
will satisfy the maximum lateness τ constraint when scheduled
on the machine j + K . Thus, our algorithm finds a feasible
solution. Because we use at most 2K machines, this means
2K ≥ Nopt. With Lemma 3.2, we conclude K ≤ Nopt ≤ 2K .

• Solution II: Lateness-first Mapping (LFM)
We first compute the minimal number of N based on the

deadline of each job and design a job scheduling scheme to
minimize τ given N compute nodes.

1) Deciding the minimum N : To allow real-time video
transcoding, we should satisfy:

Tpic(M) × R < SG × N (4)

The left side of Eq. 4 is the number of pictures rendered
within the video duration of Tpic(M). For example, we let
Tpic(M) = 3 sec and the frame rate R = 24 fps. In 3 sec,
a total of 72 pictures will be rendered. To allow real-time
transcoding, we should use up to N compute nodes for N
parallel GOPs so that 72 pictures can be encoded in Tpic(M).
If SG = 8, we must use a minimum of Nmin = 9. We assume
the overhead on Map and Reduce applications are negligible
compared to the video encoding time.

Hence the minimum N satisfying real-time transcoding is:
Nmin = �Tpic(M) × R/SG� = �ΣL

i=1Tpic,i(M) × R/SG� (5)

where Tpic,i(M) can be computed by Eq. 1 and 2.
2) Minimizing τ given N : Given N computed in Eq. 5, we

apply the following scheduling algorithm for every N jobs.
For the n-th (i = 1,2,...,N) job in every N jobs, we take into
account the difference in the job completion time and compute
its adjusted processing time p′i = pi−(di−d1), where d1 here
is the deadline of the first job within the N jobs. We sort the N
jobs by the reverse order of p′i. We schedule the job with the
largest p′i to the first available compute node, the second largest
p′i to the second available node, etc. Using this scheduling, we
can successfully minimize τ . We call it lateness-first mapping
because the algorithm is aimed at minimizing the lateness.

This simple algorithm is optimal in this case where we have
N jobs that we need to assign to N machines. The optimality
is established by using a simple exchange argument.

Theorem 3.4: The simple algorithm is optimal in the case
of N machines and N job cases.

Proof. We prove by contradiction. Assume we have job i
and j such that p′i > p′j . Let the machine we assign them be
k, l. Our algorithm makes sure that the available time of k
(i.e., ak) is earlier than l, i.e. si = ak < al = sj . Assume our
algorithm is not optimal. We let the job with the maximum
lateness in our algorithm be job i (it is easy to extend to the
case where there are multple jobs with the same maximum
lateness). It must be the case that, in the optimal solution, i
is scheduled to l, and there exits a job j that is scheduled
to k. Now, we swap these two jobs, and we can reduce the
maximum lateness of the optimal.

1 2 3 4
0

4

8

12

16

20

Number of CPUs (slices)

A
ve

ra
ge

 G
O

P

en
co

di
ng

 t
im

e
(s

ec
)

1 2 3 4
0

1

2

3

4

Number of CPUs (slices)

A
ve

ra
ge

 G
O

P
Sp

ee
du

p

Fig. 4. Average encoding time and speedup using up to 4 cores in
intra-node parallelism

1 2 4 8 16 32 64
0

100

200

300

400

#compute nodes

T
ot

al
 e

nc
od

in
g

ti
m

e
(s

ec
)

15 16 17 18 19 20

0

1

2

3

4

#compute nodes

L
at

en
es

s
(s

ec
)

Mean
Max

15 16 17 1818 19 20
6

8

10

12

#compute nodes

A
cc

es
s

ti
m

e
(s

ec
)

1 2 4 8 16 32 64
0

10

20

30

40

50

#compute nodes

T
ot

al
 e

nc
od

in
g

sp
ee

du
p

Fig. 5. Lateness-first mapping (LFM) for different number of
compute nodes

IV. PERFORMANCE EVALUATION

We evaluate the transcoding performance of CloudStream
on the campus cloud testbed. Each compute node in the cluster
has up to 8 cores (dual sockets with Intel Xeon E5345 2.33
GHz and 8GB of memory). We set the input as 64 480P
video GOPs, each with 8 pictures. Each picture contains 4
temporal layers, 2 spatial layers (856x480 and 428x240) and
1 quality layer. According to our parallelization scheme, each
GOP is mapped to an available compute node in the cloud for
encoding. We use up to 4 cores on each compute node, and
divide each layer to the corresponding number of slices (one
core on each slice).

Fig. 4 shows the average encoding time of all the 64 GOPs
from 1 core to 4 cores along with the corresponding average
speedup against that of one core using intra-node parallelism.
The streaming quality is improved due to the reduced encoding
time (and hence the reduced access time). We achieve an
average speedup of 1.8 times for 2 cores and 3.1 times for
4 cores for one GOP on a compute node. The deviation of the
actual scaling from the ideal one (which is in linear proportion
to M as defined in Table I) is caused by the sequential
encoding part in our scheme. According to Amdahl’s Law,
we inferred that each GOP has a sequential processing part of
around 2 sec.

To evaluate the performance of inter-node parallelism, we
set pe (defined in Section II.A) to be the maximum estimated
GOP processing time. We compute corresponding di which
will be used in both HM and LFM. We only take into account
the lateness (i.e., the positive transcoding jitter) because it
directly affects video freezes. In our evaluation, each compute
node is configured with 4 cores for intra-node parallelism.

0 1 2 3 4 5
0

5

10

15

20

25

30

tau

K
 a

nd
 N

K
N

0 1 2 3 4 5

26

28

30

32

34

tau

T
ot

al
 e

nc
od

in
g

ti
m

e
(s

ec
)

0 1 2 3 4 5
5

7

9

11

13

A
cc

es
s

ti
m

e
(s

ec
)

0 2 4
0

1

2

3

4

5

tau

L
at

en
es

s
(s

ec
)

Mean
Max

tau

Fig. 6. HallSh-based mapping (HM) for different lateness upper
bound τ = 0.5, 1, . . . , 4.5, 5.

Fig. 5 presents the LFM results using different number of
compute nodes N (from 1 to 64). Due to the video content
(and hence encoding time) heterogeneity, the actual encoding
speedup deviates from the ideal case (which is in linear
proportion to N). We set R = 24 fps and SG = 8, and
along with GOP encoding time estimation, we compute from
Eq. 5 that the minimum N is around 17-18. Fig. 5 presents
the resulting maximum and mean lateness using LFM as well
as the required minimal access time to avoid video freezes.
It proves that the reduced computation power (smaller N)
can degrade the GOP encoding lateness, and hence demands
longer initial access time to accommodate transcoding jitters.
Fig. 6 presents the HM results using different lateness upper
bound τ from 0.5 to 5 sec. We show that HM can successfully
decide the appropriate compute node number and limit the
transcoding jitters. However the algorithm is not aimed at
minimizing N . Hence its utilization of computation resources
can be lower than LFM, which means that HM may require
greater N in order to achieve the same level of lateness
constraints (as illustrated in Fig. 5 and Fig. 6).

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the H.264/AVC standard,” IEEE Transaction on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–
1120, Sep. 2007.

[2] S. Winkler, “Video quality and beyond,” in Proceedings of European
Signal Processing Conference, Sep. 2007, pp. 150–153.

[3] ITU-P.910, “Subjective video quality assessment methods for multimedia
applications,” 2008.

[4] Y.-L. Huang, Y.-C. Shen, and J.-L. Wu, “Scalable computation for
spatially scalable video coding using NVIDIA CUDA and multi-core
CPU,” in Proc. of ACM Int’l Conference on Multimedia, Oct. 2009, pp.
361–370.

[5] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu schedul-
ing for mobile multimedia systems,” in Proc. of ACM Symposium on
Operating Systems Principles, Oct. 2003, pp. 149–163.

[6] S. Sadjadi and et al, “A modeling approach for estimating execution time
of long-running scientific applications,” in Proc. of IEEE Int’l Symposium
on Parallel and Distributed Processing, Apr. 2008, pp. 1–8.

[7] J. Chuzhoy, S. Guha, S. Khanna, and J. S. Naor, “Machine minimization
for scheduling jobs with interval constraints,” in Proc. of IEEE Symposium
on Foundations of Computer Science, Oct. 2004, pp. 81–90.

[8] L. A. Hall and D. B. Shmoys, “Approximation schemes for constrained
scheduling problems,” in Proc. of IEEE Symposium on Foundations of
Computer Science, Oct. 1989, pp. 134–13.

