
CloudThings: a Common Architecture for Integrating
the Internet of Things with Cloud Computing
Jiehan Zhou, Teemu Leppänen, Erkki Harjula,

Mika Ylianttila, Timo Ojala
University of Oulu

Oulu, Finland
{firstname.lastname}@ee.oulu.fi

Chen Yu, Hai Jin, Laurence Tianruo Yang
Huazhong University of Science and Technology

Wuhan, China
yuchen@hust.edu.cn,

jinhust@hust.edu.cn,ltyang@ieee.org

Abastract—The Internet of Things presents the user with a novel
means of communicating with the Web world through ubiquitous
object-enabled networks. Cloud Computing enables a convenient,
on demand and scalable network access to a shared pool of
configurable computing resources. This paper mainly focuses on a
common approach to integrate the Internet of Things (IoT) and
Cloud Computing under the name of CloudThings architecture.
We review the state of the art for integrating Cloud Computing
and the Internet of Things. We examine an IoT-enabled smart
home scenario to analyze the IoT application requirements. We
also propose the CloudThings architecture, a Cloud-based
Internet of Things platform which accommodates CloudThings
IaaS, PaaS, and SaaS for accelerating IoT application,
development, and management. Moreover, we present our
progress in developing the CloudThings architecture, followed by
a conclusion.

Keywords – Cloud computing; Internet of Things; 6LowPAN;
CoAP; RESTful Web services

I. INTRODUCTION

In 1999, Kevin Ashton [1] predicted that future computing
would depend on more data captured by computer-enabled
objects or things, rather than on data originated by people. Thus
he brought the idea of the Internet of Things, in which objects
are identified and are able to perceive or understand surrounding
data. Objects are connected and are able to interact with servers
over the Internet. Objects are also able to make queries and
change their states and or their information programs.
Ultimately, we would be able to track and count everything in
the world, and greatly reduce waste, loss, and cost [2]. Nicholas
Negroponte (head of the Media Lab at MIT) also claimed that
the Internet of Things is about embedding intelligence so that
things become smarter and do more than they did before. This
paper takes a further step, and refers to the Internet of Things as
all IPv6 addressable things operated with Web-based services –
whether they are physical or virtual things. We use the term of
Things to refer to all computer-embedded objects which operate
on the Internet.

The Internet of Things presents widened opportunities and
applications, including smart grids to improve efficiency and
reliability of power supplies; intelligent transportation to
optimize traffic management and reduce traffic accidents,
clogged routes, and carbon dioxide emissions; environmental
monitoring to oversee drinking water sources and urban
atmospheres or supervise the transmission of dangerous wastes,
or e-health to accelerate and coordinate management of medical
information, hospital wards, patient care, and drug provision.
However, there are many challenges facing Things-related
application development, such as end user scalability, data
storage, heterogeneous resource-constrained Things, variable
geospatial deployment, or energy efficiency [3][4].

Cloud computing [5] creates a new way of designing,
developing, testing, deploying, running and maintaining
applications on the Internet. Traditionally, the application
developer needs to take care of running operating systems,
networks, load balancing, routers, firewalls, and storage, while
integrating these things and allowing them to interact with the
system. The developer also needs to take into account of
scalability, or how the application could scale many
geographically distributed users. Cloud computing applies a
utility model to produce and consume computing resources, in
which the Cloud abstracts all types of computing resources,
including storage, as services (i.e. Cloud services). The Cloud
user (either application developer or application consumer) can
access the Cloud services over the Internet, and the Cloud users
pay only for time and services they need. The Cloud can also
scale to support large numbers of service requests. Ultimately,
Cloud computing takes care of the micro-lifecycle management
of applications, and allows application managers to focus on
application development and monitoring. The Cloud computing
platform is designed to consist of a variety of services for
developing, testing, running, deploying, and maintaining
applications on the Cloud. Examples of Cloud computing
platforms are The Amazon Web Services [6], Google App
Engine [7], and Microsoft’s Windows Azure platform [8].

The Internet of Things and Cloud computing are both
emerging technologies and have their own features. Things are

651

Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design

978-1-4673-6085-2/13/$31.00 ©2013 IEEE

linked to their virtual representations on the Internet and are
accessible via the Internet (i.e. Things as services, e.g. service-
oriented pervasive computing) [9]. Cloud computing also
applies the utility model, and enables end-users to accommodate
and consume services in an efficient and pay-per-use way. In
Mammoth project,1 we raise the following question: Can we
integrate Cloud computing into the Internet of Things, and
accelerate Things application, development, and management?

To answer this question, our paper presents the state of the
art for integrating Cloud computing and the Internet of Things.
By examining a prototyped scenario, we analyze the IoT
application requirements and present CloudThings architecture
– a Cloud-based Internet of Things platform. The remainder of
the paper is organized as follows: Section 2 reviews research on
integrating Cloud computing into the Internet of Things. Section
3 examines cases of application in a typical IoT scenario.
Section 4 studies Things application system requirements.
Section 5 presents CloudThings architecture, a Cloud-based
Internet of Things platform. Section 6 presents implemented
prototypes towards CloudThings architecture, and then offers
conclusions.

II. THE CLOUD-BASED INTERNET OF THINGS: A REVIEW

In Cloud computing, most of the computing resources exist
on the Internet on servers, as opposed to client machines such as
laptops or personal computers. Cloud computing is commonly
associated with Information Technology (IT) services, but can
theoretically be extended to embedded software programming
[10]. Integrating Cloud computing with Wireless Sensor
Networks (WSNs) brings the concept of Cloud-based embedded
system programming. The Cloud-based integrated
programming environment has a common benefit, namely that
the local administrators and users don’t need to spend time with
large client and server machine installations, setups, or software
updates. With Cloud-based tools, the user can program from
anywhere that has an Internet connection. In the proposed
Cloud-based model [10], the Cloud connects devices such as
PCs, smart phones, embedded development platforms, or host
machines to Cloud-based programming tools. These tools can
include sales databases, or Integrated Development
Environments (IDE), and can compile resources hosted by
Cloud computing platforms such as Amazon.com, Microsoft,
Google, and Yahoo. The Cloud-based model [10] entails that the
Web-based tools are operating systems, and are client machine-
agnostic. A further advantage of the Cloud model is the
flexibility of implementation.

In RFID application development, Dominique et al. [11]
pointed out that the deployment of RFID applications often
remains complex and costly, since they involve the tedious
deployment and management of large and heterogeneous

1 http://www.mediateam.oulu.fi/projects/mammoth/?lang=en

distributed systems. Consequently, they are only suitable for
large organizations; rather than the limited resources of small
business applications. To address this problem, Dominique et al.
discussed a Cloud computing solution integrating virtualization
technologies and the architecture of the Web and its services.
They applied the Amazon Web Service platform and Elastic
Compute Cloud (EC2) services. The EC2 service allows the
creation and management of virtual machines (Amazon
Machine Images, or AMIs) that can then be deployed on demand
onto a pool of machines that are hosted, managed, and
configured by Amazon. The benefit of this approach is that the
server-side hardware maintenance is delegated to the Cloud
provider. Also it offers better scaling capabilities, as the
company using the Cloud AMI, can deploy additional and more
powerful instances according to the amount of requests.

The Cosm [12] (formerly Pachube) service for the Internet
of Things provides data management infrastructure for sensors,
devices, and environments. It is an on-line database service that
allows developers to connect sensor data, e.g. energy and
environment data, from objects to the Web, and to build their
own applications based on that data. The Cosm manages
millions of data points per day from thousands of individuals or
organizations around the world. The Cosm allows people to
embed real time graphs in websites. It analyzes and processes
historical data pulled from any public data source Cosm feeds
and sends real time alterations from any data stream to control
scripts, devices, or their environments.

Nimbits [13] is an open source data logging Cloud server
built on Cloud computing architecture that provides
connectivity between the Internet of Things using data points.
Users can use Nimbits to record and share sensor data on the
Cloud freely. With Nimbits, users can create data points on the
Cloud and feed changing numeric, text based, or xml values into
them. Data points can be configured to perform calculations,
generate alerts, relay data to social networks or can be connected
to spreadsheets, websites, and more. Nimbits offers a data
compression mechanism, an alert management mechanism, and
data calculation on the received sensor data, using simple
mathematic formulas.

ThingSpeak [14] is another open source Internet of Things
application and API (application programming interface) for
storing and retrieving data from Things which uses HTTP over
the Internet or via a Local Area Network. With ThingSpeak,
users can create sensor-logging applications, location tracking
applications, and a social network of Things with status updates.
The ThingSpeak API allows for numeric data processing such
as time scaling, averaging, median summing, and rounding. The
ThingSpeak channel feeds support JSON and XML formats for
integration into applications.

652

Paraimpu [15] aims to allow people to connect, use,
compose, and share Things, services, and devices to create
personalized applications in the field of the Internet of Things.
Users can work with Paraimpu connect sensors, motors, micro-
controllers such as Arduino, domestic appliances, lighting and
domotics systems, smart-phones, or other systems to talk with
the Web. Paraimpu allows users to compose and easily inter-
connect and mash-up Things to react with events, environmental
sensors, or social activities. Paraimpu is a social tool, and it not
only communicates with existing social networks, but also
allows users to share their Things with friends. This allows
avoidance of waste from buying similar objects for the same
purpose.

The iDigi Device Cloud [16] allows users to connect a
physical device to the Cloud and use an online Web application
for remote access. The iDigi Device Cloud application converts
complex device data into simple, useful information concerning
anything from refrigerator temperatures falling below a specific
threshold, to soil quality. The iDigi Platform is a machine-to-
machine (M2M) platform as a service. The iDigi Platform
manages the communication between enterprise applications
and remote device assets, regardless of location or network. The
platform includes the device connector software (called iDigi
Dia) that simplifies remote device connectivity and integration.
The application messaging engine enables broadcast and receipt
notification for application to device interaction and
confirmation. The application also has cache and permanent
storage options available for generation-based storage and on-
demand access to historical device samples.

The SensorCloud™ [17] is a sensor data storage,
visualization, and remote management platform that leverages
powerful Cloud computing technologies to provide excellent
data scalability, rapid visualization, and user programmable
analysis. The core features include OpenData API,
LiveConnect, FastGraph, and MathEngine. The OpenData API
allows users to upload sensor data from any Web-connected
source or platform, and download data sets. The FastGraph is a
sophisticated, time-series visualization and graphing tool. The
LiveConnect feature provides users full access to every function
available on their wireless sensor network, from anywhere in the
world. The MathEngine allows users to process vast quantities
of sensor data in the Cloud, and on the fly.

There are various Things development platforms such as
Wiring [18], Sun SPOT [19], mbed [20], or Arduino [21].
Wiring [18] is an open-source programming framework for
microcontrollers. Wiring allows writing software to control
devices attached to the electronics board, to create all kinds of
interactive objects, spaces, or physical experiences of feeling
and responding to the physical world [18]. Sun SPOT (Sun
Small Programmable Object Technology) [19] is a wireless
sensor network (WSN) mote. The device is built upon the IEEE
802.15.4 standard. The mbed microcontroller [20] is a single-
board microcontroller with associated tools for programming
the device. The current hardware of the mbed microcontroller is

based around an NXP microcontroller, which has an ARM
Cortex M3 core, running at 96MHz, with 512KB flash, 32KB
RAM, as well as several interfaces including Ethernet, USB
Device, controller area network, Serial Peripheral Interface
BusInter-Integrated Circuit, and other I/O. For example, an
mbed application can get an RFID tag to trigger a tweet. Arduino
[21] is a popular open-source single-board microcontroller and
a descendant of the open-source Wiring platform which is
designed to make the process of using electronics in
multidisciplinary projects more accessible. The hardware
consists of a simple open hardware design for the Arduino board
with an Atmel AVR processor, and on-board input/output
support. The software consists of a standard programming
language compiler and the boot loader that runs on the board.

III. THINGS-ENABLED SMART HOME SCENARIO: USE
CASE STUDY

The equipment used in our smart home scenario includes
appliances, stereos, televisions, toasters, microwave ovens, air
conditioners, computing equipment such as PCs, PDAs, mobile
phones, small controllers (for lights, curtains, and windows),
video intercoms, and sensors (for indoor position, temperature,
light, rain, GPS, bodies, smoke, gas, infrared microwaves, etc.).
Outdoor sensors are included in the scenario as well. Table 1
summarizes the major use cases depicted in the following
scenario.

On an early winter morning at 7 a.m., Dr. Smith wakes up as
the background music in the bedroom gently rises, and the
curtain slowly opens. As he starts washing his face, the
background music in the bedroom automatically stops, and the
morning news starts in the bathroom. In the kitchen, bread slices
and milk have been heated. When Dr. Smith sits at the kitchen
table, the TV in the kitchen automatically comes on and tunes to
a previously set program. When he stands up to leave, the TV
screen presents his memoranda, schedule, and reminder notes
for the day. When he leaves for the office, the TV and air
conditioning automatically turn off, and the anti-theft systems
such as magnetic door locks and infrared microwave detectors
start working.

By 10 a.m., the outdoor temperature sensors, light sensors,
and raindrop sensors determine it will be a sunny day. The
windows open automatically to bring fresh air into the house.
Around 4 p.m., the temperature drops, and the windows
automatically close. At 5:30 p.m. the central control system
calculates that Dr. Smith will be home in 40 minutes, based on
tracking the travel speed of his mobile phone and the traffic
status reports. Thus, the air conditioning starts and the
temperature is set to his favorite 20 degrees.

Dr. Smith leaves his office at 5:30 p.m. The sensor network
monitoring air quality reports lowered air quality along his
normal route home, so he selects a different route. As the traffic
system reports less traffic on that route, the system estimates the
effect on fuel consumption to be minimal.

653

At 6:30 p.m., Dr. Smith arrives home. The room temperature
is very comfortable, the lights come on as he enters the living
room, and the curtains close. The computer automatically
downloads and opens the Word document which Dr. Smith did
not finish at the office, and directs him to the last modified lines.
Dr. Smith works on the document for a while, then checks the
report generated by the house concerning its energy
consumption. He notices that the energy consumption has been
normal, as most devices have consumed the expected amounts
of energy. The energy share for the fridge has been quite high,
so he increases the fridge temperature by 0.5 degrees. He is
happy to see that the solar panels and the small wind mill on the
roof have actually generated so much energy that his house has
sold some energy to the smart grid during the day. However, the
report on his daily activity (based on his movements measured
by wearable sensors) advises him that he has not performed the
amount of physical activity he had planned, so he makes a
mental note to walk more.

At 7 p.m., Dr. Smith begins to prepare for dinner. His
favorite light music automatically starts in the kitchen. He would
like to change the music, so he raises and sways his left hand to
a different beat, and cheerful music starts to play. When Dr.
Smith sits down for his meal in the dining room, the kitchen
lights automatically switch off, while the music continues to
play in the dining room. When he sits on the sofa in the living
room, the TV presents him with the concluding portion of a
program he didn’t finish watching yesterday.

At 10 p.m., Dr. Smith steps into the bedroom. The lights
there slowly come on, while the lights in the living room, the
TV, and the stereo speakers all turn off. As Dr. Smith goes sleep,
all his devices work in a sleep state as well. Only the smoke, gas,
and door security systems remain alert.

TABLE 1. SUMMARY OF USE CASES.

Time Use Cases Description

7 a.m. Ubiquitous
positioning service

Locating people and
presenting services

10 a.m. to 5.30
p.m.

Physical-world Web Ability to monitor and
control home objects on the

Internet

6.30 p.m. Synchronizing data
and ambient

metering

Ability to store and
synchronize contents in

multiple devices and real-
time metering of aggregate

power consumption

7 p.m. Intelligent
interaction

Ability to respond to human
gestures

10 p.m. Energy-efficient
management

Ability to self-control

IV. THINGS FEATURES AND THINGS APPLICATION
CHARACTERISTICS

A. Things Features
The above scenario involves many Things and Things

applications. These Things present the following common
features:

Sensor Things perceive and transmit data. These Things can
collect the data on the environment and information related to it
(in this case, Dr. Smith’s indoor location, indoor/outdoor
temperature, real time traffic situation, air quality, energy
consumption, gesture commands, or lighting conditions) and
transmit them to a different Things when necessary (such as
your mobile phone or your laptop) or to the Internet.

Actuate Things are based on trigger events. Their perceived
information automatically triggers corresponding devices. For
instance in this case, Dr. Smith’s waking up triggers turning on
the background music in the bedroom and preparing his
breakfast. His leaving home triggers turning off air conditioners
and the TV, and turning on anti-theft systems.

Things obtain information from the Internet in a pull/push
way, since they are part of the Internet. For instance in this case,
the TV automatically retrieves Dr. Smith’s calendar,
memoranda, and reminder notes for the day. The air conditioner
fetches Dr. Smith’s arrival time and prepares to start; his car
obtains the traffic status and makes a routing decision, etc.

Things interact with each other and assist communication.
They interact with each other and exchange information. Things
also participate in networking and serve as routing nodes that
assist in communication, forwarding data to the endpoint.

B. Things Application Characteristics
In the above scenario, there are many Things applications.

First, music plays while the user moves around; the TV
automatically tunes to a previously set program and retrieves the
user’s calendar, memoranda, and reminder notes. Second,
outdoor temperature sensors, light sensors, and raindrop sensors
produce data frequently, and automatically interact with each
other to make windows open or close. Road sensors surrounding
the city produce data and collaborate with each other to report
real time traffic status. Third, the Things automatically fetch and
direct information files to the last modification lines. They meter
energy consumption, and present a statistic report while
initiating sales of extra energy to the smart grid during the day.

To realize the above scenario involves challenges of
integrated computing, big data storage, various development

654

environments, heterogeneous hardware infrastructure
management, security and privacy, as well as the following
issues.

 Sensors generate a lot of data that needs to be stored and
managed. Usually, embedded memory is quite limited.
Utilizing memory cards or computers to store sensor
data is an alternative way, but these are still limited in
storage capacity and require major efforts to manage.

 Things require Web-based interfaces for data exchange
and integration between other applications, so it will be
possible that the user can access and control Things
anywhere.

 Things require sufficient computational and storage
resources to handle large-scale applications on demand.

 Things require sufficient computing resources for real-
time processing of heterogeneous data, in order to make
critical decisions and provide quick response to the user.

 Things require Web-based platforms for programming,
deployment, and for updates without creating
downtime.

 Things require automatic formation of workflows, and
invocation of services to carry out complex tasks.

 Things require different interaction mechanisms,
loosely or tightly coupled, synchronized or
asynchronized for complex event processing.

 The system requires interoperability between Things, so
that the Things are agnostic from heterogeneous
hardware and standards.

 Things require use of IT resources (e. g. computer,
storage, and network) on demand in a scalable and cost-
efficient way.

 Things need to be built in such a way as to ensure an
easy and secure data exchange and users’ control, and
avoid any risks to their security and privacy.

V. CLOUDTHINGS ARCHITECTURE: CLOUD-BASED INTERNET
OF THINGS PLATFORM

What makes the Cloud-based Internet of Things different
than conventional Internet of Things is basically the ability to
develop, deploy, run, and manage Things applications online via
the Cloud. Fig. 1 illustrates the main features of the Cloud-based
IoT platform (i.e. CloudThings architecture) and their
interaction with the three Cloud computing models of
Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). Figure 1 also specifies our
technical solutions to networking Things, interacting Things,
and integrating Things with the Cloud.

 Mammoth SaaS client

 Mammoth PaaS client

 Mammoth IaaS client

 CoAP/6LowPan network

IaaS

 SaaSPaaS

Virtualization
Server/storage
Network
Load balancer
firewall
...

RESTful Web services:
Subscription
community coordination
Things connection and discovery
Data intelligence, and
Things Composition

Database
APIs
Programming language
Application server
...

Arduino-enabled Things

CoAP GET

CoAP POST

CoAP POST

CoAP GET

XML/HTTP

Arduino-enabled Things

XML/HTTP

XML/HTTP
XML/HTTP

Figure 1. CloudThings architecture: the Cloud-based IoT platform

CloudThings architecture is an online platform that allows
system integrators and solution providers to leverage a complete
Things application infrastructure for developing, deploying,
operating, and composing Things applications and services that
consist of three major modules:

The CloudThings service platform for Things is a set of
Cloud services (IaaS), allowing users to run any
applications on Cloud hardware. The CloudThings
service platform for Things dramatically simplifies the
application development, eliminates need for
infrastructure development, shortens time to market,
and reduces Things management and maintenance
costs. The CloudThings service platform offers users
unique device management capabilities. It
communicates directly with devices and provides
storage to collect Things data and transmit Things
events. Vast amount of sensor data can be processed,
analyzed, and stored using the computational and
storage resources of the Cloud. The CloudThings
service platform allows sharing of sensor resources by
different users and applications under a flexible usage
mode.

The CloudThings Developer Suite for Things is a set of
Cloud service tools (PaaS) for Things application
development. These tools include open Web service
application programming interfaces (APIs), which
provide complete development and deployment
capabilities to Things developers.

The CloudThings Operating Portal for Things is a set of
Cloud services (SaaS) that support deployment and
handle or support specialized processing services
including service subscription management, community
coordination, Things connection, Things discovery,
data intelligence, and Things composition.

655

A. Interact with Things Using Constrained Application
Protocol (CoAP)
In the CloudThings architecture, we use CoAP to interact

with Things. The CoAP [22] is a specialized Web transfer
protocol for use with constrained nodes and constrained (e.g.
low-power, or lossy) networks. The nodes often have 8-bit
microcontrollers with small amounts of ROM and RAM, while
constrained networks such as 6LoWPAN often have high packet
error rates and a typical throughput of 10s of kbit/s. The protocol
is designed for machine-to-machine (M2M) applications such as
smart energy and building automation.

CoAP provides a request/response interaction model
between application end-points. This supports built-in discovery
of services and resources, and includes key concepts of the Web
such as URIs and Internet media types. CoAP easily interfaces
with HTTP for integration with the Web, while meeting
specialized requirements such as multicast support, very low
overhead, and simplicity for constrained environments.

CoAP is based on the same client/server model as HTTP,
and represents its interaction model in a similar manner.
Resources are requested and identified by URIs using the
Representational State Transfer (REST) [23] methods of GET,
PUT, POST and DELETE. In contrast to HTTP, the CoAP
exchanges messages asynchronously over UDP (User Datagram
Protocol). The GET method is used to retrieve resources from
WSN nodes or telematic devices. The resource is identified by
the requested URI. The PUT method is used to modify an
existing resource on a sensor node or a telematic device. Both
the methods and the requested URI are carried in a confirmable
(CON) message which represents the request.

B. Networking with Things Using 6LoWPAN
In the CloudThings architecture, we use 6LoWPAN, i.e.

IPv6-based Low Power Wireless Area Networks. 6LoWPAN
[24] defines message frame formats, fragmentation methods,
and header compression techniques required to fit Ipv6/UDP
datagrams in the very limited IEEE 802.15.4 frame size. The
6LoWPAN innovations provide IP access to a wide set of
networked devices, which, being low-cost, low-power
constrained hosts, could not easily benefit from the huge
addressing space of IPv6. 6LoWPAN is able to reduce the
IPv6/UDP header while maintaining the main functionalities
and the size of the addressing space, thanks to a cross-layer
optimization approach.

Routing functionalities are provided by the Routing Protocol
for Low power and lossy networks (RPL) [25], which are
another IETF (Internet Engineering Task Force) solution
discussed in the Routing Over Low power and Lossy networks
(ROLL) working group. RPL supports different routing path
optimizations based on specific objective functions. For
instance, high priority packets can be routed to offer low
delivery delay, while delay-tolerant traffic can be handled to
minimize the energy expenditure or to maximize the network

capacity. Another important feature of RPL is its intrinsic
scalability with respect to the network density.

C. Integration with the Cloud Using RESTful Web Services
There exist two architectural styles for Web services

applications: REST [23] and SOA (Service-Oriented
Architecture) [26]. Both of these describe the methods for
designing and developing interoperable services via Web and
design principles. According to [27, 28], SOAs are not well
suited for enabling the end-users to create ad-hoc applications;
SOAs experience complex functional blocks and service
implementations; SOAs are often used to model and realize
complex business flows. The RESTful protocol is HTTP, which
uses HTTP-similar standardized methods (e.g. GET, PUT,
POST, DELETE, etc.) to deal with resources. We adopt REST
as architectural style, where Things are modeled as RESTful
resources and referred as services

VI. IMPLEMENTATION

This section presents two related prototypes. Fig. 2 shows
the smart home application based on a Cloud infrastructure. In
the application, the sensors read the home temperature and
luminosity from Arduino-enabled IoT things and the Cloud
application stores and visualizes them so that the user can view
them anywhere, anytime using a Web browser and an Internet
connection. Specifically, (1) we use LM35 temperature sensor
to sense the home environment temperature; use LDR (light
dependent resistor) analog sensor to sense the home light
luminosity; (2)we use Ethernet cable to connect Arduino to the
Internet; (3)We use HTTP (through a GET and POST request)
to send data between Arduino-enabled IoT things and the Cloud
application. (4) We use a Cloud service –Google App Engine to
host the Cloud application that stores sensor readings and
visualizes them. (5) We also use Cloud-based IoT service –
Paraimpu to connect Arduino-enabled sensors, and to share the
sensor readings with friends.

Computer

Internet

Http://Web app

Paraimpu
Configuring
sensors
Reading data

Cosm
(test)

Arduino
CO

Https/http

programming

Cloud application
platform (heroku)

Arduino
CO

Social media
(facebook)

Figure 2. IoT-based smart home scheme

656

Fig. 3 presents the Cloud architecture to accelerate service
composition and rapid application development. We extend the
conventional Cloud architecture by inserting a special
“Composition as a Service” layer for dynamic service
composition. The CM4SC middleware encapsulates sets of
fundamental services for executing the users’ service requests
and performing service composition. These services include
process planning, service discovery, process generation,
reasoning engine service, process execution, and monitoring, as
detailed in [5]. The trial implementation also demonstrates that
CM4SC middleware as a service releases the burden of costs and
risks for users and providers in using and managing those
components.

MiddlewareCM4SC Middleware

Application

Platform

Process plan, service discovery, process generation,
reasoning engine, process execution and monitoring

User tasks, business applications

End users

Software as a Service

Composition as a Service

Platform as a Service

Infrastructure

Hardware

Platform

Computation (virtual machine), storage (block)

CPU, memory, disk, bandwidth

Software framework (Windows Azure, Google AppEngine)

Infrastructure as a Service

Hardware as a Service

Figure 3. Cloud architecture for dynamic service composition

VII. CONCLUSION

The MAMMOTH project, funded by Tekes (the Finnish
Funding Agency for Technology and Innovation), aims to
facilitate information exchange and synergic performance
between Things and people via global massive-scale M2M
(machine-to-machine) networks, and provide M2M automatic
metering, embedded Web services, and universal control of
electricity or water utilities, etc. The integration of Cloud
computing into the Internet of Things presents a viable approach
to facilitate Things application development. This paper studies
a Things-enabled scenario, and designs a Cloud-based Internet
of Things platform – the CloudThings architecture, which
accommodates IaaS, PaaS, and SaaS for developing, deploying,
running, and composing Things applications. The previous
implemented prototypes establish the fundamental
developments for approaching CloudThings architecture.

ACKNOWLEDGMENT

This work was carried out through the Mammoth project,
which is funded by Tekes, the Finnish Funding Agency for
Technology and Innovation.

REFERENCES

[1] Kevin Ashton, "That 'Internet of Things' Thing". In: RFID Journal, 22 July
2009; http://www.rfidjournal.com/article/view/4986/, retrieved by 20
July 2012.

[2] Nicholas Negroponte, "Wireless: Creating Internet of 'Things': A scary, but
exciting", http://www.nytimes.com/2005/11/20/technology/20iht-
wireless21.html, retrieved by 20 July 2012.

[3] TEKES, "Internet of Things Strategic Research Agenda (IoT--SRA)," 2011,
http://www.internet-of-things-

research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2011.pdf,
retrieved by 20 July 2012.

[4] F. Kawsar, G. Kortuem and B. Altakrouri, "Supporting interaction with the
internet of things across objects, time and space," in Internet of Things
(IOT), pp. 1-8, 2010.

[5] Jiehan Zhou, Kumaripaba Athukorala, Ekaterina Gilman,Jukka Riekki &
Mika Ylianttila, "Cloud Architecture for Dynamic Service Composition,"
International Journal of Grid and High Performance Computing, vol. 4(2),
pp. 17-31, 2012.

[6] Amazon, "Amazon Web Services," Http://aws.Amazon.Com, retrieved by
20 July 2012.

[7] Google Inc., "Google apps engine," Http://www. Google.com/apps,
retrieved by 20 July 2012.

[8] Microsoft, "Windows Azure
Platform,"Http://www.Microsoft.com/windowsazure/products/default.A
spx, retrieved by 20 July 2012.

[9] G. Ekaterina, S. Xiang, O. Davidyuk, J. Zhou and J. Riekki, "Perception
framework for supporting the development of context-aware Web
services," International Journal of Pervasive Computing and
Communications, vol. 7, pp. 339-364, 2011.

[10] J. Bungo, "Embedded Systems Programming in the Cloud: A Novel
Approach for Academia," Potentials, IEEE, vol. 30, pp. 17-23, 2011.

[11] D. Guinard, C. Floerkemeier and S. Sarma, "Cloud computing, REST and
mashups to simplify RFID application development and deployment," in
Proceedings of the Second International Workshop on Web of Things,
San Francisco, California, pp. 91-96,2011.

[12] Cosm, "https://cosm.com/," retrieved by 20 July 2012.
[13] Nimbits, "http://www.nimbits.com/," retrieved by 20 July 2012.
[14]Thingspeak,"https://www.thingspeak.com/," retrieved by 20 July 2012.
[15] Paraimpu, "http://paraimpu.crs4.it/," retrieved by 20 July 2012.
[16]Device cloud, "http://www.idigi.com/devicecloud," retrieved by 20 July

2012.
[17] sensorcloud, "http://www.sensorcloud.com/," retrieved by 20 July 2012.
[18] Wiring, "http://wiring.org.co/," retrieved by 20 July 2012.
[19] sunspot, "http://www.sunspotworld.com/," retrieved by 20 July 2012.
[20] mbed, "http://mbed.org," retrieved by 20 July 2012.
[21] Arduino, "http://www.arduino.cc/," retrieved by 20 July 2012.
[22] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, "Constrained Application

Protocol (CoAP) draft-ietf-core-coap-1",
http://datatracker.ietf.org/doc/draft-ietf-core-coap/, retrieved by 20 July
2012.

[23] R. Fielding, "Architectural Styles and the Design of Network-based
Software Architectures", Ph.D. dissertation, University of California,
Irvine, 2000.

[24] Zach Shelby and Carsten Bormann, 6LoWPAN: The Wireless Embedded
Internet. Wiley, 2009.

[25] T. Winter, P. Thubert, A. Brandt, T. Clausen, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, and J. Vasseur, "RPL: IPv6 Routing Protocol for Low
power and Lossy Networks", IETF Internet Draft draft-ietf-roll-rpl-19,
2011, http://tools.ietf.org/html/draft-ietf-roll-rpl-19, retrieved by 20 July
2012.

[26] Thomas Erl, Service-Oriented Architecture (SOA): Concepts,
Technology, and Design. Prentice Hall, 2005.

[27] G. Moritz, F. Golatowski, D. Timmermann and C. Lerche, "Beyond
6LoWPAN: Web Services in Wireless Sensor Networks," Industrial
Informatics, IEEE Transactions on, vol. PP, pp. 1-1, 2012.

[28] A. Pintus, D. Carboni and A. Piras, "The anatomy of a large scale social
web for internet enabled objects," in Proceedings of the Second
International Workshop on Web of Things, San Francisco, California,
2011, pp. 6:1-6:6.

657

