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1 Introduction

Web services are undergoing an exciting transition from
in-house data centers to public clouds. Attracted by
automatic scalability and extremely low compute, stor-
age, and management costs, Web services are increas-
ingly opting for public cloud deployment over traditional
in-house datacenters. For example, Amazon’s S3 pro-
vides storage and backup services for numerous applica-
tions [12, 17], a number of mature services have recently
migrated to Amazon EC2 [18], and many startups are
adopting the cloud as their sole viable solution to achieve
scale [22]. While predictions regarding cloud computing
vary, most of the community agrees that public clouds
will continue to grow in the number and importance of
their tenants [10].

This paper focuses on a new opportunity introduced
by the cloud environment: specifically, rich data shar-
ing among independent Web services that are co-located
within the same cloud. In the future, we expect that
a small number of giant-scale shared clouds – such as
Amazon AWS, Google AppEngine, or Microsoft Azure –
will result in an unprecedented environment where thou-
sands of independent and mutually distrustful Web ser-
vices share the same runtime environment, storage sys-
tem, and cloud infrastructure. One could even imagine
that most of the Web will someday be served from a
handful of giant-scale clouds. What will that new shared-
cloud environment look like? What are the opportunities
and challenges created by this integration and consoli-
dation? While challenges raised by the multi-tenant en-
vironment, such as isolation, security, and privacy, have
received significant recent attention [20], we believe that
identifying untapped opportunities is equally important,
as it enables innovation and advancement in the new
shared-cloud world.

In particular, we argue that co-location creates an aus-
picious environment for Web service composition, which
in turn spawns immense opportunities for simplifying
Web service construction. Three key technological fea-
tures differentiate the shared-cloud world from the tra-
ditional in-house datacenter and enable these opportu-
nities: (1) free, efficient, and plentiful network band-
width that supports tighter and larger-scale Web service
integration than is possible over wide-area networks; (2)

a shared storage system that can provide powerful ab-
stractions for convenient, efficient, and large-scale inter-
service data sharing; and (3) the potential for a rich run-
time ecosystem consisting of many “utility” Web ser-
vices that act as building blocks for other services and
facilitate their implementation greatly.

This paper is divided into two parts. The next sec-
tion describes the opportunities for collaborative Web
services in the new cloud world. It also examines the
three technological features described above and both
the potentials and the challenges that they bring. Sec-
tion 3 presents CloudViews, a cloud storage system we
are developing to facilitate collaboration through pro-
tected inter-service data sharing. CloudViews is one ex-
ample of the kinds of functions public clouds must offer
to facilitate Web service development. Overall, our goal
is to provide a high-level glimpse of the potential impact
of co-location on low-level cloud infrastructure and ser-
vice development.

2 Opportunities in Public Clouds

The vision of facilitating Web service construction
through seamless integration of existing Web services
has existed since the dawn of Web 2.0. Similarly, Web
hosting has existed for years. What is new is the inter-
section of three key technological features of the public
cloud environment: a faster and cheaper network fab-
ric; a common storage infrastructure; and the potential
for a richer-than-ever runtime environment. After a brief
background on composition, we analyze each feature and
the new opportunities and challenges that it creates. Fig-
ure 2 provides a summary of these technology trends.

2.1 Web Service Composition Background
Web service composition is the defining feature of Web
2.0. The ability to combine existing Web services into
new composite services (or mashups) has proven mo-
mentous for advancing the Web and deriving new value
from it. The simplest mashup example is a map-based
mashup like toEat.com, which overlays restaurant infor-
mation on a Google map to provide the user with a con-
venient view of close-by restaurants. Such a mashup
is termed a client-side mashup, as the contents from
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Figure 1: Technological advantages of public clouds. Three Web
services seeking interaction (a) in the traditional one-datacenter-per-
server model and (b) in the public-cloud environment. In public clouds,
services enjoy a more efficient and free inter-web-service networking
fabric, a common large-scale storage infrastructure (“Communal DB”),
and a rich computing ecosystem (not shown).

the composing services are aggregated in the client’s
browser. Server-side mashups also exist. In their case,
the mashup site aggregates information from other ser-
vices and its own database and returns the result to the
client. Server-side mashups are typically data-driven.
Popular examples of server-side mashups include Face-
book applications such as iLike.com and comparison
shopping sites such as PriceGrabber.com. The focus of
this paper is on server-side, data-centric mashups.

2.2 Technological Shifts, Opportunities,
and Challenges

Figure 1 compares the traditional in-house datacenter en-
vironment to public, shared clouds, pointing out the tech-
nological advances brought on by the cloud. The figure
shows three existing photo-related Web services: Flickr
(photo sharing service storing over 3 billion photos [14]),
Photosynth [15] (3D scene re-composition from photos),
and ALIPR [1] (automatic tagging of photos using im-
age recognition). All of these services currently operate
inside their own private datacenters (Figure 1(a)). Com-
position is extremely valuable for these services. For ex-
ample, Photosynth leverages Flickr to create 3D models
from photos of tourist attractions. Similarly, Flickr could
benefit from ALIPR, which could automatically add tags
to its photos.

2.2.1 The Free and Fast Network

In the traditional in-house datacenter model (Fig-
ure 1(a)), each service runs inside its own datacenter and
stores its data within its own storage system (labeled DB
in the figure). Communications among services are done
over high-delay, low-bandwidth, and expensive WANs
(denoted by dashed lines). These impose severe con-
straints on the scale, frequency, and latency achievable
by Web service compositions. Upon their migration to a
public cloud (Figure 1(b)), the services become residents
of the same cloud environment. Consequently, services
now enjoy a largely free, fast, and high-bandwidth inter-
web-service network. For example, 10Gbps switches are
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Figure 2: Technological advantages, opportunities, and chal-
lenges in the public-cloud environment.

common in today’s datacenters [11]. Additionally, much
work is being done to ensure uniform bandwidth and la-
tency between any two machines in a datacenter [11].

We argue that this free, high-quality networking fab-
ric will enable a new generation of large-scale, finely-
intertwined Web service compositions that was infeasi-
ble over WANs. For example, in today’s world, leverag-
ing ALIPR to tag Flickr’s 3B photos or Facebook’s 10B
photos would be utterly slow and expensive. Inside the
cloud, however, these transfers can be absolutely free and
significantly faster on the parallel high-speed network.

Challenges. To take full advantage of fast cloud net-
works, we must ensure that composing services co-reside
in the same datacenter. Co-location is thus an impor-
tant problem (first row of Figure 2). We believe that the
high code mobility enabled by today’s virtualized clouds,
coupled with years of research in location-aware sched-
ulers [16], will allow the mitigation of this challenge.
Moreover, an extremely coarse-grained co-location sys-
tem, which schedules composing services within the
same region1, is enough to keep transfer costs zero.

2.2.2 The Common Storage Infrastructure

In the traditional in-house datacenter, each service stores
its data within its own database, however services in pub-
lic clouds store all of their data in the cloud’s common
storage service (e.g., S3, Bigtable, etc.). Apart from the
obvious benefit of not having to implement and man-
age an in-house, scalable, fault-tolerant storage system,
the common storage infrastructure gives way to a sec-
ond valuable opportunity. Specifically, the storage sys-
tem can simplify data-centric Web service compositions
by handling many sharing-related issues, such as protec-
tion, performance isolation, and billing. In the in-house
datacenter environment, all of these difficult functions re-
quire in-house solutions.

As an example, our CloudViews system (described in
Section 3) allows Flickr to conveniently grant access to
all or a subset of its photos, e.g., to Photosynth. From that
moment on, the storage infrastructure handles all of Pho-
tosynth’s requests, ensuring that it can only access shared
photos, that no sudden spike in its requests will disrupt
Flickr’s operation, and that Photosynth pays for the con-

1We refer here to Amazon’s continent-wide regions, inside of which
traffic is free.
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Figure 3: Simplifying Web service construction in public clouds.
Web service construction in (a) in-house and (b) public-cloud envi-
ronments. In the in-house datacenter, services cannot outsource their
modules to other services over the WAN, leading to many services
implementing entire software stacks redundantly. In public clouds, a
Web service should be able to seamlessly leverage other services liv-
ing in the cloud’s ecosystem (e.g., media indexing and search, social
networking data, etc.).

sumed data (assuming a billing contract was established).
This way, Flickr can focus on its specific functions, ig-
noring all the complexity typically associated with main-
taining an API in support of this sharing.

Several Amazon S3 offerings have similar flavors as
CloudViews. For example, with “Requester Pays” [3], an
S3 user can “rent” some of his data and have whomever
accesses that data pay a fee for it; with the “Authenti-
cated query” feature [2], a user can provide temporary
direct access to a bucket to another user. We believe that
these features are rudiments of the properties that a cloud
storage system must provide in support of mashups.

Challenges. We identify several requirements of the
cloud storage that are essential to facilitating Web ser-
vice compositions, but that receive inadequate support in
today’s clouds:

• A flexible sharing abstraction. Picking the appro-
priate abstraction is key to stimulating composition.
The abstraction must allow services to efficiently
share data at any granularity, from a few objects
(e.g., the list of friends for a user on Facebook) to
terabytes and billions of objects (e.g., Flickr shares
all of its photos with ALIPR or Photosynth). Addi-
tionally, the sharing abstraction must provide some
degree of logical independence from the specific
formats and data layouts. Today’s cloud sharing ab-
stractions (e.g., buckets in S3) fall short in this latter
requirement.

• Naming and protection. Naming and protection are
decisive yet challenging aspects of any shared sys-
tem. The protection mechanism must scale to a
huge number of sharers and sharees (tens of thou-
sands). None of today’s cloud storage systems are
equipped to handle such sharing. For example,
Bigtable has a limited protection notion based on
coarse, per-column-family ACLs. Similarly, S3’s
ACL mechanism limits the number of sharees for
each bucket to 100.

• Resource allocation. Resource allocation is another
key property of a shared system. Broadly speaking,
resource allocation in today’s cloud storage systems
is done by partitioning data by service and assign-
ing partitions evenly among storage servers [5, 9].
This works well, provided no sharing is involved.
However, when two services are operating directly
on each other’s data, how do we prevent a work-
load spike in one from disrupting the other’s perfor-
mance? Our preliminary experiments on Hadoop’s
Hbase indicate that data sharing does cause signifi-
cant performance interference due to the absence of
appropriate resource allocation.

These requirements represent important but hard chal-
lenges that the storage system must overcome. Section 3
presents the design of a system we are working on, called
CloudViews, which attempts to address these issues.

2.2.3 The Rich Runtime Ecosystem

The previous two technological features of public clouds
– a fast network and a common storage – support con-
venient, large-scale, and efficient Web service composi-
tions. This last feature paves the way for our ultimate
goal: simplifying the development of Web services. We
argue that a new generation of utility services (or build-
ing blocks for other services) is likely to emerge and
flourish in public clouds. Evidence of this trend is visi-
ble in most clouds, where the cloud providers and some-
times third-parties already provide some utility services
in support of consumer services (e.g., RightScale, Ama-
zon’s S3 and Map/Reduce, and Google’s Bigtable).

Leading this trend much further, we foresee the emer-
gence of a rich cloud ecosystem, consisting of tens of
thousands of utility services, each of which offers some
function that other services can rent and use. Figure 3
uses an example to illustrate the enormous opportunities
for simplifying Web service development hiding behind
this concept. In this example, we use two services – one
for sharing photos and the other one for sharing videos –
and identify common functions between them. We then
compare the opportunities for code reuse in the in-house
datacenter model versus in public clouds.

In-house datacenters can tolerate only limited out-
sourcing of functions to one another over the WAN. For
example, suppose the photo service opened an API to its
general media search engine, allowing other services to
plug in their own data and search for it. Would the video
service be able to use that API? As the entire video col-
lection is stored inside its local database and is separated
from the search engine by thin WAN links, this would
be prohibitively expensive. Thus, services running in the
traditional in-house environment have no choice but to
implement entire software stacks. In fact, today’s Web
as a whole is architected as a stovepiped system. This

3



CloudViews

Flickr Photo 
synth

ALIPR

ALIPR's data Flickr's data Photosynth's data

Photos Public photos

View

Figure 4: Data sharing in CloudViews. Services access their data
using views; for example, Flickr uses the view denoted “Flickr’s data,”
which contains all of its data. Services can share restricted views of
their data with other services. Flickr has shared with ALIPR the view
denoted “Photos,” which contains all of its photos, but not other data
(e.g., user information). Flickr has also shared with Photosynth the
view “Public photos,” containing only the public photos.

may well be the reason why building even an intuitively
simple service like Twitter is challenging at scale [8].
We now have a chance to correct this situation in public
clouds, where a Web service developer can seamlessly
leverage utility services from the cloud ecosystem.

Challenges. The success of the cloud ecosystem relies
on two issues. First, collaboration is highly dependent
on common or at least open data formats. For example,
if Flickr stored its photos in a private format, then ALIPR
would not be able to understand and tag them. Sec-
ond, the emergence of utility services powering the cloud
ecosystem is contingent upon the presence of incentives
for providing functions “behind the scenes.” Fortunately,
business models are receiving significant attention from
the cloud computing community [6], and unified APIs
and common data formats are seeing ever-increasing
adoption (e.g., microformats, OpenSocial, etc.).

2.3 Summary

This section described three technological shifts that
arise in public clouds: faster, cheaper networks, a com-
mon storage infrastructure, and the potential for a rich
ecosystem of utility services. These changes give rise
to a set of new opportunities for convenient, large-scale
Web service compositions within public clouds and, ul-
timately, to much simplified creation of Web services.
In the end, our hope is that creating a large-scale Web
service can be made as easy as building some service-
specific functionality (e.g., the GUI), picking out some
building blocks from the cloud’s ecosystem, and com-
bining those with a few “glue” scripts. The next section
presents CloudViews, a system we are currently building
as a first step in this direction.

3 CloudViews

We are currently designing and implementing Cloud-
Views, a storage system that addresses several of the

challenges identified in Section 2. In particular, Cloud-
Views aims at facilitating data-centric Web service com-
positions by enhancing communal cloud storage systems
with a database-style view abstraction for flexible, pro-
tected, efficient, and performance-isolated data sharing.
We are currently building a prototype of CloudViews on
top of Hadoop HBase.

The view abstraction. CloudViews facilitates composi-
tion by allowing services to create and share views over
the common storage infrastructure. Figure 4 illustrates
how services access and share views in CloudViews
using the Flickr–ALIPR–Photosynth example. Specifi-
cally, Flickr accesses its data stored within the communal
storage system via its base view, called “Flickr’s data.”
The view is a query on the underlying database select-
ing all of the data whose owner is Flickr (e.g., photos,
tags, user information, and other data). Similarly, ALIPR
and Photosynth access their data using their own views.
Views protect the data, i.e., the services cannot access
each other’s data by default.

However, services can share restricted views of their
data with other services. For example, in the figure,
Flickr has shared with ALIPR the view denoted “Pho-
tos,” which contains its photo information, but excludes
any other data, such as Flickr’s user database. ALIPR
uses this view to retrieve Flickr’s photos and update their
tags in the database. Finally, services can share different
views with different services. For example, Flickr has
shared with Photosynth the view “Public photos,” which
contains only the public photos.

Views have long been recognized by the database
community to enable flexible, scalable sharing and log-
ical data independence. CloudViews leverages the view
notion, applies it onto the cloud environment from which
they are absent, and enhances it with additional proper-
ties, such as a scalable protection scheme and a resource
management mechanism.

Protection. Protection in CloudViews is a primary goal.
A key challenge of the protection mechanism is scalabil-
ity. CloudViews aims at handling tens of thousands of
Web services sharing data through a mechanism called
signed views. A signed view is an unforgeable token con-
sisting of the view’s query plus some metadata (including
expiration, billing, and resource management informa-
tion). Unforgeability is achieved through cryptographic
signatures. A signed view is self-certifying, i.e., a ser-
vice’s mere possession of it is proof that it has the right
to access the data specified by that view. A signed view
is also self-sufficient, i.e., it carries all of the informa-
tion required to be executed, tracked, billed for, etc. In-
tuitively, self-certification and self-sufficiency eliminate
the need for centralized protection state, making protec-
tion based on signed views amenable to large scales.
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Signed views are similar in flavor to S3’s “authen-
ticated queries” [2] and, more generally, to capabili-
ties [13, 21]. Signed views differ from those mechanisms
with additional properties, which we discuss next.

Resource allocation. In a world where services can
access each other’s data directly from the database, re-
source management is vital. In CloudViews, views are
the unit of scheduling. At a conceptual level, queries
atop each view are placed in a separate queue upon their
entrance into the system. Queues are then scheduled for
execution fairly. We are currently investigating the use
of a distributed lottery scheduling scheme [19] to achieve
fairness.

Notifications. Update notifications are key when large
amounts of data are being shared. As one example, the
ALIPR or Photosynth would greatly benefit from being
able to receive notifications whenever new photos are up-
loaded into Flickr. This would save them from doing
inefficient scans of Flickr’s giant photo set. As another
example, imagine a future in which a significant portion
of the Web resides in a cloud and a search engine service
is co-located in the same cloud. What would that cloud
search engine look like? One possibility is that Web sites
share views of their public data with the search engine,
which would use those views to access their pages. A
tremendously valuable property of those views would
be to allow the search engine to register for view up-
date notifications. Although we are currently targeting
smaller scales than those imagined in this example, we
are considering leveraging techniques from pub/sub sys-
tems [4, 7] to enable update notifications for our views.

4 Conclusions

The transition to public clouds is consolidating a large
number of Web services into a few giant-scale clouds.
Consolidation creates an auspicious environment for
Web service collaboration. The cheap, high-bandwidth,
and low-latency networking fabric, the common stor-
age infrastructure, and the potential for a rich comput-
ing ecosystem enable immense opportunities for shar-
ing and composition in public clouds. This paper iden-
tified those opportunities, as well as the challenges as-
sociated with them. We argued that, through carefully
crafted abstractions, the cloud can stimulate a new gen-
eration of tightly-coupled, large-scale Web service com-
positions. We presented CloudViews, a system we are
currently designing to support convenient, efficient, and
performance-isolated data sharing in public clouds. By
doing so, we make a first step toward a new and simpli-
fied Web service construction model: seamlessly com-
posing Web services living inside the cloud’s ecosystem.
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