
Cloudy Weather for P2P, with a Chance of Gossip
Alberto Montresor

University of Trento, Italy
alberto.montresor@unitn.it

Luca Abeni
University of Trento, Italy
luca.abeni@unitn.it

Abstract—Peer-to-peer (P2P) and cloud computing, two of
the Internet trends of the last decade, hold similar promises:
the (virtually) infinite availability of computing and storage
resources. But there are important differences: the cloud provides
highly-available resources, but at a cost; P2P resources are
for free, but their availability is shaky. Several academic and
commercial projects have explored the possibility of mixing
the two, creating a large number of peer-assisted applications,
particularly in the field of content distribution, where the cloud
provides a highly-available and persistent service, while P2P
resources are exploited for free whenever possible to reduce
the economic cost. While executing active servers on elastic
computing facilities like Amazon EC2 and pairing them with
user-provided peers is definitely one way to go, this paper
proposes a novel approach that further reduces the economic cost.
Here, a passive storage service like Amazon S3 is exploited not
only to distribute content to clients, but also to build and manage
the P2P network linking them. An effort is made to guarantee
that the read/write load imposed on the storage remains constant,
regardless of the number of peers/clients. These two choices
allows us to keep the monetary cost of the cloud always under
control, in the presence of just one peer or with a million of
them. We show the feasibility of our approach by discussing two
cases studies for content distribution: the Dilbert’s comic strips
and the hourly News Update podcast from CNN.

I. INTRODUCTION

Cloud computing represents an important enabling technol-
ogy to compete in the world-wide ICT market. By provid-
ing the illusion of infinite computing resources, and more
importantly, by eliminating upfront commitment, small- and
medium-sized enterprises can play the same game as web
behemoths like Microsoft, Google and Amazon.

The rise of cloud computing has progressively dimmed the
interest in another Internet trend of the first decade of this
century: the peer-to-peer (P2P) paradigm. P2P held similar
promises with respect to cloud computing, but with important
differences: while you cannot beat P2P from an economic
point of view, the superior availability of the cloud (in the order
of 99.99%) makes it a more believable environment for those
who want to create novel web businesses and cannot afford to
lose clients due to the best-effort philosophy of P2P [1].

Several academic and commercial projects have tried to
mix the two paradigms to get the advantages of both: high-
availability and low cost. The idea is to guarantee the former
through the cloud, while aiming at the latter by exploiting,
whenever possible, the inexpensive resources of peers. Two
alternative philosophies have emerged:

This work is supported by the Italian MIUR Project Autonomous Security,
sponsored by the PRIN 2008 Programme.

• Adding peers to an existing centralized solution: to reduce
the economic cost of storage, computing resources and
more importantly bandwidth, the burden of providing the
service is off-loaded to client peers: but, if and only if
this does not affect service availability. Examples include
video-on-demand systems [2] and more generally the
field of file distribution [3].

• Augmenting P2P systems with cloud angels [4], i.e.
elastic computing nodes with the specific task of satis-
fying requirements beyond the reach of a P2P network.
Examples include bulk-synchronous content distribution
services [4] and online P2P backup services [5].

This paper assumes content distribution as target application
and proposes a third approach to peer-assisted distributed
computing, with the purpose of further reducing the monetary
cost. The approach is novel because all functionalities of our
content distribution application are supported by a passive
storage service such as Amazon S3: not only the actual
information dissemination, but also the entire management
of the P2P network (including node bootstrap, membership
management and topology maintenance). No active elastic
computing instances are required.

Having eliminated the fixed costs due to rented servers, the
only remaining monetary costs are for storage and bandwidth.
Storage consumption cannot be reduced, if durability is among
the requirements. The focus should thus go on bandwidth:
ideally, the number of accesses to the storage cloud should
remain constant, regardless of the size of the P2P network.

Our proposed architecture, called CLOUDCAST, is based on
two gossip protocols: one for topology bootstrap and member-
ship management, and one for information dissemination over
this topology. By carefully designing the former, we achieve
our desired goal at both levels: the number of cloud accesses is
one per gossip cycle, independently of the number of clients.
The resulting system has the ability of scale both up and down:
we rely on the availability of the cloud only when the P2P
network is too small to provide a reliable service, shifting
the load to the P2P network when additional resources are
available. The monetary costs becomes negligible, in the order
of few dollars per year. Adding more users does not cost a cent
more; instead, the amortized cost per user decreases. Having
few users is not a problem either: they will mostly exploit the
cloud, but being few, their aggregated cost will be small.

In order to show the feasibility of this idea, we discuss
two case studies based on content distribution: the delivery of
the Dilbert’s comic strips to 1.5M users, and the CNN News
Update podcast to 40K users.



II. SYSTEM MODEL

We consider a network consisting of a dynamic collection
of peers that communicate through message exchanges. Each
peer is uniquely identified by an ID (e.g. composed by IP
address and port), required to communicate with that peer. The
network is highly dynamic; new peers may join at any time,
and existing peers may voluntarily leave or crash. Byzantine
behavior is not considered.

Communication may incur unpredictable delays and is sub-
ject to failures. Single messages may be lost, links between
pairs of peers may break; but we assume that the integrity of
messages is not at risk.

An additional entity is the storage cloud C, which can
be seen as a (key,value) store. A storage cloud is a pas-
sive element that can be accessed through 〈GET, key〉 and
〈PUT, key , value〉 operations, but cannot autonomously initiate
communication [1].

Storing and retrieving data on the cloud is associated with
a monetary cost. We assume the pricing model of Amazon
S3 [6] on June 2011 as a reference example:

• GET/PUT operations cost 1µ$ and 10µ$ (microdollars);
• transfer-out/transfer-in data (measured in GB) cost 0.15$

and 0.10$, respectively;
• storage (measured in GB/month) costs 0.14$.
We assume that the cloud provides adequate security mecha-

nism to avoid unauthorized read/write operation. For example,
in Amazon S3 each object can be associated with an access
control list, and logging mechanisms are present to identify
who actually requested an object. Furthermore, different pay-
ment models are available: apart from owner-pays, where the
costs fall on the owner of a specific object, the requester-
pays model allows to shift the costs toward the actual users
requesting a piece of information.

III. PROBLEM STATEMENT

In this context, consider the problem of a single1 source that
wants to diffuse news updates to interested peers. Traditional
solutions are either cloud-based or P2P-based.

A P2P-based solution allows peers to access other peers
to retrieve the summary and the missing updates, thus using
an ”epidemic” diffusion mechanism that does not require
centralized services. In order to use this approach:

1) Peers must know other peers that are currently online
and could potentially help to diffuse updates; this is the
peer membership problem. Two subproblems have to be
considered:

• a bootstrap mechanism is needed to allow peers to
join the system, receiving the IDs of other peers and
advertising its presence to them;

• peers need to be organized in an overlay network to
enable communication between them.

1 We assume a single source since Amazon S3 only provides eventual
consistency and multiple sources could incur in inconsistencies; nevertheless,
this issue may be circumvented by the versioning mechanism of S3, whose
details are beyond the scope of this paper.

2) Peers must be able to pass the updates around, guaran-
teeing the eventual delivery of all updates to all partic-
ipating peers; this is the information diffusion problem.
Two separate aspects must be considered:

• whenever a new update is available, peers currently
online should receive it as soon as possible;

• peers joining the system after an off-line period
must be able to discover updates that have been
generated during their absence.

The membership problem in P2P systems could be solved
through a well-known host, which stores the IDs of all par-
ticipating peers and helps in creating the appropriate overlay
network, which can later be used for information diffusion.
However, this approach would require a continuously available
machine that could cost a relatively large amount of money,
even if rented from a computing cloud (a “small instance” VM
on Amazon EC2 costs 745$/year as of June 2011 [7]).

Cloud-based solutions are based on storing each update
in the cloud, together with a summary item describing, in a
compact way, the list of available updates (e.g., updates could
be sequentially numbered and the summary could be the total
counter). Interested peers may periodically read the summary
and retrieve missing updates. Again, this solution can have a
relevant monetary cost due to the high number of accesses to
the cloud.

In this paper, we propose a hybrid approach that mixes P2P
techniques with the usage of a storage (passive) cloud to ad-
dress the problems highlighted above. The proposed approach
takes the best of the two worlds to scale up, as well as scale
down: this means that the news feed can be provided even in
the presence of one single peer (which has no other option
than using the cloud), as well as with millions of peers (in
which case cloud operations are limited as much as possible,
to keep the monetary cost under control). In other words, the
algorithm presented in this paper is able to adapt the amount
of cloud accesses depending on the number of peers present
in the system (and on their stability/availability/reliability).

IV. BACKGROUND

To understand how the dynamic adaptation mentioned above
can be achieved, and how traditional P2P algorithms have
to be modified to work with a passive cloud, a description
of the algorithms and protocols used for P2P-based epidemic
diffusion is needed. Hence, the original protocols are shortly
recalled, starting with a quick introduction to the well-known
epidemic protocols by Demers [8]. We dedicate a little more
space to peer sampling, because it is less known and its
modifications are at the heart of the CLOUDCAST approach.
Additional details may found in the original papers [9], [8].

A. Information dissemination

The first epidemic protocols for information dissemination
have been introduced more than 20 years ago [8], inspired by
the spreading of epidemics and gossip rumors. Two styles of
epidemic protocols have been proposed: rumor mongering and
anti-entropy.



In rumor mongering, peers are initially ignorant; when an
update is learned by a peer, it becomes a hot rumor. While a
peer holds a hot rumor, it periodically (every δRUMOR time units)
chooses a random peer from the current population and pushes
(sends) the rumor to it. When a peer p has tried to push a rumor
m too many times, m stops being hot and it is retained by p
without further pushing, to prevent unbounded dissemination.
Among the variants defined by Demers et al. [8], we selected
coin and blind, meaning that a rumor stops being hot with
a probability pRUMOR after each push operation, independently
from the fact that the peers to which the update is sent is
ignorant or not. This variant is the easier to implement and it
is sufficient to demonstrate the viability of our approach.

In anti-entropy, each peer p periodically (every δENTROPY

time units) contacts a random partner q selected from the
current population; p and q engage in an information exchange
protocol where updates known to p but not to q are transferred
from p to q (push), and/or viceversa (pull). Among the variants
defined by Demers et al. [8], we selected push-pull, meaning
that the information flows in both direction.

B. Peer sampling

Both the rumor mongering and anti-entropy descriptions
make an explicit reference to the random selection of a gossip
partner. Maintaining and diffusing a complete membership
list to all participating peers from which to select may be
prohibitive, due to network size and dynamism. Instead, a peer
sampling service provides each peer with continuously up-to-
date random samples of the entire population of peers. Such
samples fulfill two purposes: they can be used by the epidemic
broadcast service to obtain random peers, and they maintain a
random topology connecting all peers, robust enough to deal
with high levels of churn and even catastrophic failures.

Two potential candidates for a cloud-enabled peer sampling
service are CYCLON [9] and NEWSCAST [10]. We adopt
CYCLON because it has proven to be easier to modify for the
inclusion of a storage cloud; NEWSCAST, on the other hand,
is not suitable because it requires each node to periodically
initiate gossip exchanges to advertise its availability. Being
the storage cloud a passive component, this has ruled out
NEWSCAST.

In CYCLON, each peer maintains a partial view of the
system, i.e. a collection of descriptors representing a subset
of the entire population of peers. Each peer periodically
selects a partner to perform an epidemic information exchange,
during which the oldest descriptors are discarded (potentially
belonging to failed nodes), existing descriptors are shuffled
between the exchange participants, and new descriptors are
created (to advertise that the peer involved in the exchange
are still active). Figure 1 contains the pseudo-code of the
algorithm run by each node p, which is modeled by means of
two distinct threads executed at each peer: the active one takes
the initiative to communicate, while the passive one accepts
incoming exchange messages.

Parameters of the CYCLON protocol are the maximum size
of the partial view (called c) and the size of the messages sent

Active thread
repeat true

wait δCYCLON time units

(1) % If space permit, re-insert old entries that have
been sent in the previous cycle

while view .size() < c and request .size() > 0 do
r ← request .get(random(request .size()))
view .put(r,min(view .get(r), request .get(r)))
request .remove(r)

(2) % Increase age of all nodes in the view
foreach r ∈ view do

view .put(r, view .get(r) + 1)

(3) % Select oldest node in the view
q ← argmaxr view .get(r)
view .remove(q)

(4) % Fill up request , add a new descriptor for itself
request .clear()
repeat min(g − 1, view .size()) times

r ← view .get(random(view .size()))
request .put(r, view .get(r))
view .remove(r)

request .put(p, 0)
res ← request .size()

(5) % Send a request message to q
send 〈REQ, p, request〉 to q

Passive thread
on receive 〈REQ, q,m〉

(6) % Fill up reply and send it
reply .clear()
repeat min(g − 1, view .size()) times

r ← view .get(random(view .size()))
if r 6= q then

reply .put(r, view .get(r))

view .remove(r)

send 〈REP, p, reply〉 to q

(7) % Insert descriptors of m in view
while view .size() < c− res and m.size() > 0 do

r ← m.get(random(m.size()))
view .put(r,min(view .get(r),m.get(r)))

on receive 〈REP, q,m〉
(8) % Insert descriptors of m in view

res ← 0
while view .size() < c and m.size() > 0 do

r ← m.get(random(m.size()))
view .put(r,min(view .get(r),m.get(r)))

Fig. 1. The CYCLON protocol executed by peer p



around (called g); they are both measured as number of de-
scriptors included in them. Descriptors are pairs composed of
a peer IDs and a timestamp representing the descriptor age. To
simplify the pseudo-code, variable view and messages request
and reply are represented by a map data structure, associating
a collection of keys (given by peer IDs) to their ages. The
names of the methods operating on this data structure are taken
from java.util.Map, and so their semantics.

The active thread is repeated periodically every δCYCLON time
units (the cycle length). We postpone the explanation of code
block (1) because depends on the rest of the algorithm. Code
block (2) increases the age of all descriptors by one; new
descriptors will be created with age 0. In code block (3),
the oldest descriptor in the view is selected (the one with
largest age; in case of multiple descriptors with the same age,
the selection is random among them) and removed from the
view. The removal action is performed to “clean” the overlay
from old descriptors which could belong to failed peers. Code
block (4) prepares message request by randomly extracting
g − 1 descriptors from the local view and finally adding a
fresh descriptor (age 0) for p which acts as a “node p is
still alive” announcement. After code blocks (3) and (4), the
view contains now c− g descriptors. Having an active request
sent out, request .size() slots of the view are reserved until
we receive a reply. This is indicated by assigning the value
request .size() to variable res . Finally, p sends this message to
q as an active request in code block (5).

The other thread passively waits for incoming messages. If
m is a request from q, a reply message is created and sent to
q in code block (6), by removing g random descriptors from
the current view. If m is a reply, res is set to 0, to indicate
that no active request is pending any more. In code block (7)
and (8), all the descriptors received from q are finally inserted
in view , paying attention to not insert two descriptors for the
same node, but instead taking the freshest one (i.e., the one
with smaller age). Note that if m is a request, no more than
c− res entries may be present in the view, to avoid to occupy
reserved slots. If m is a reply, the reserved slots can be used.

At this point, we are in the position to explain code block
(1). At the beginning of each cycle, it is possible that some
of the c slots of view are not occupied; this happens either
when duplicate peer IDs are detected between the descriptors
received and those already present in the view, or when a
request message is not answered (either because the message
is lost, or because the destination has crashed). To avoid to
permanently shrink the view, descriptors which have been
removed could be re-inserted if space permits.

Combining the two threads, the final effect is a continuous
random shuffling of the views of peers participating in the
protocol, with requests and replies exchanged among them.

The protocol provides high quality (i.e., sufficiently random)
samples and maintains a random overlay topology which is
robustly connected not only during normal operation (with
relatively low churn), but also during massive churn and even
after catastrophic failures (up to 80% peers may fail), quickly
removing failed peers from the local views of correct peers [9].

V. ARCHITECTURE

As previously stated, CLOUDCAST is based on a modifica-
tion of two basic protocols: peer sampling [11] and epidemic
broadcast [8], described in Section IV. A storage cloud is
used to allow such protocols to work even when few peers
are present in the system, to address the bootstrap problem
without having a centralized server which is always active,
and to tolerate extreme churn. Hence, the two protocols have
been opportunely modified to cope with peculiarities of our
scenario: the storage cloud participates as a member, but being
a passive component (a key/value store), its active role is
played by the peers interacting with it.

A. Basic CLOUDCAST architecture

As in traditional P2P systems, peer sampling is used to effi-
ciently address the peer membership problem, while epidemic
broadcast is used to diffuse information. Fig. 2 contains an
architectural summary of CLOUDCAST. Normal peers and the
cloud maintain the same information (updates to be diffused
and partial views of the system membership), but peers execute
active protocols (peer sampling and epidemic broadcast with
the two subprotocols rumor-mongering and anti-entropy) that
are not present in the passive storage cloud. Interactions among
the components are shown with labeled arrows.

In CLOUDCAST, rumor mongering is used to push updates
as fast as possible towards the peers currently online. A cycle
length smaller than the one used for anti-entropy can be
adopted, because rumor mongering requires fewer resources.
On the other hand, there is a non-zero chance that an update
will not reach all peers because it prematurely stops being hot.
To guarantee the eventual delivery of updates, CLOUDCAST
augments rumor mongering with a less frequent anti-entropy
protocol. Anti-entropy also enables peers joining the network
to receive updates created during their absence.

B. Storage clouds vs epidemic protocols

One of the most important requirements in CLOUDCAST
is to reduce the number of accesses to the cloud as much
as possible. This result can be achieved by ensuring that the
total number of descriptors pointing to the cloud (the cloud
in-degree) is not too high; on the other hand, the cloud in-
degree cannot be too small, otherwise references to the cloud
risk to be lost and the system works as a traditional P2P
system. By using CYCLON as a peer sampling protocol, it is
possible to ensure that the in-degree inp of each peer p (total
number of descriptors pointing to p) tends to stay around c
(note that the out-degree outp = c is constant by design).
The reason is as follows: at any given time, timestamps are
uniformly distributed. The probability for a given descriptor
of being selected by removeOldest() is 1/c. During a cycle,
the expected number of descriptors pointing to p selected
(and then removed) is thus inp/c. During the same cycle,
one new descriptor for p is created by p itself. If, during a
cycle, inp > c, the expected number of p’s descriptors that
are removed from the network is larger than 1, and inp tends
to decrease; if inp < c is smaller than c, inp tends to increase.



Local PeerRemote Peers Storage Cloud

Updates UpdatesUpdates

Rumor 
Mongering

Network View Network View

Network View
Peer 

Sampling
Peer 

Sampling

Anti 
Entropy

Rumor 
Mongering

PUSH - PULL

PUSH

PUSH

REPLAY
REQUEST

GET

PUT

GET

PUT

GET 
RANDOM

PEER

Anti 
Entropy

Fig. 2. The CLOUDCAST architecture.

Finally, if inp = c, the in-degree tends to remain stable. Hence,
if we add the cloud C as a peer to a sufficiently large network
(with the size N > c), then the expected value of inC is c.

Following the same reasoning as above, the expected num-
ber of contacts to the cloud originating from all peers is
c/c = 1 per cycle (for both peer sampling and epidemic
broadcast), independently of the size of the network. In other
words, the load per unit of time imposed on the cloud is
constant and CLOUDCAST scales up without problems. If the
number of peers is n < c, the expected number of contacts is
n/n, proving that CLOUDCAST scales down as well.

Note, however, that CYCLON cannot be used without mod-
ifications, for various reasons. The first reason is that since
the cloud is a key/value store, it cannot perform autonomous
computations; hence, a peer p interacting with the cloud must
play the cloud role as well. A second reason is that the
unmodified CYCLON protocol does not work well when only
few peers are active in the system. Moreover, the number of
cloud descriptors risk to be too small (smaller than c, and even
going to zero). This problem can be due, for example, to the
fact that references to the cloud progressively disappear (even
if CLOUDCAST never deletes a cloud descriptor after a cloud
contact) due to churn (a peer with a cloud descriptor crashes).

C. The CLOUDCAST protocol

Peer sampling. To cope with the fact that the cloud has no
active behavior, each peer p must perform a GET operation
on C to retrieve the entire view from the cloud; then p takes
the responsibility of shuffling both its view and the cloud’s
one, to finally write the new cloud on the view through a PUT
operation.

The modified cloud protocol is shown in Figure 3. The code
of block (4-5) substitutes blocks (4) and (5) of Figure 1. If the
oldest descriptor q is a reference to the cloud, a GET message
is sent to C; the cloud will eventually reply with a VIEW
message, as described in the second part of Figure 3.

Code blocks (9)–(12) emulate a gossip exchange between
peer p and the passive storage cloud. p extracts g− 1 random

elements from the local view and puts them in the emulated
request message and adds a fresh descriptor for itself. On the
other hand, one or more references to the cloud may be added
to the emulated reply message (see below when and why this
should happen) and thus random descriptors are extracted from
the view v received from the cloud and put in reply until the
message size is g. At this point, the two emulated messages
reply and request contain g descriptors each and are inserted
in v and view , respectively, with the effect of shuffling the
local view and the cloud view. At this point, the new cloud
view is written in the storage cloud in code block (13). Given
the random shuffling of the views, concurrent updates to the
cloud do not cause any particular inconsistency. This has been
confirmed experimentally.

The random shuffling performed by p when interacting with
the cloud follows the CYCLON protocol, with one notable
exception: given that new descriptors are created in the active
thread (that is absent in the cloud), existing cloud descriptors
would be progressively forgotten and inC would go to 0. To
solve this problem, peers that interact with the cloud substitute
the cloud descriptor with a fresh one, mimicking the active
thread of the cloud. We call this operation “refreshing”.

Dealing with failures. To cope with potentially disappearing
cloud references (for example, due to churn or message
losses), we exploit the fact that GET operations are associated
with metadata, including a last-modified field, which can be
used to detect whether the expected number of contacts per
cycle is respected. Approximate time synchronization between
cloud clients and the cloud is already required. Being t the time
of the last contact and k a threshold parameter, if now()− t >
δCYCLON ·k then p creates a new cloud descriptor in addition to
refreshing the existing one (low contact frequency means to a
low number of cloud descriptors); if now() − t < δCYCLON/k
the cloud descriptor is not refreshed, but simply removed (high
contact frequency means high number of cloud descriptors).

Recovery mechanism. Unfortunately, exceptional conditions
like high churn and message loss rates may still wipe all



Modifications to the active thread of CYCLON

(4–5) % Act differently weather q is the cloud ID or not
if q = C then

send 〈GET,"view"〉 to C
else

% Execute code block (4)
% Execute code block (5)

Addition to the passive thread

on receive 〈VIEW, v, t〉
(9) % Fill up request

request .clear()
request .put(p, 0)
while request .size() < g and view .size() > 0 do

r ← view .get(random(view .size()))
request .put(r, view .get(r))
view .remove(r)

(10) % Fill up reply
reply .clear()
if now()− t > k · δCYCLON then

reply .put(C, 0)

if now()− t > δCYCLON/k then
reply .put(C, 0)

while reply .size() < g and v.size() > 0 do
r ← v.get(random(v.size()))
if r 6= p then

reply .put(r, v.get(r))

v.remove(r)

(11) % Insert descriptors of reply in view
while view .size() < c and reply .size() > 0 do

r ← reply .get(random(reply .size()))
view .put(r,min(view .get(r), reply .get(r)))
reply .remove(r)

(12) % Insert descriptors of request in v
while v.size() < c and request .size() > 0 do

r ← request .get(random(request .size()))
v.put(r,min(v.get(r), request .get(r)))
request .remove(r)

(13) % Write the new view in the cloud
send 〈PUT,"view", v〉 to C

Fig. 3. The modified CYCLON protocol executed by peer p

the cloud references from the system. At that point, no one
will ever contact the cloud again. As a recovery mechanism,
each node p maintains a variable last containing the most
recent round p heard about a cloud reference. This value is
piggybacked on normal CYCLON messages; p updates last
whenever it receives a cloud reference in its view, or it receives
a value of last from another peer which is more up-to-date with
respect to its current value. If all cloud references disappear,

TABLE I
PARAMETERS USED IN THE EVALUATION.

Parameter Value Meaning
n 26–216 Total number of peers
δcyclon 10s Cycle length of CYCLON
δrumor 1s Cycle length of rumor mongering
δentropy 10s Cycle length of anti-entropy
c 20 View size
g 5 CYCLON message size
pRUMOR 0.2 Probability of becoming removed
k 4 Threshold parameter
t 20 Silent period
pRECOVERY 0.1 Recovery probability

eventually last will stop increasing at all nodes. A node whose
last variable has not changed for t rounds, creates a new cloud
reference with probability pRECOVERY.

Bootstrapping. A beneficial side effect of adopting the storage
cloud is that we can also easily solve the bootstrap problem:
when joining the system, peers perform a GET operation and
retrieve a first view, that can be later used to start the normal
CYCLON protocol. If the view retrieved from the cloud is
smaller than c, this means that n < c, and a cloud descriptor
is added.

Information diffusion. At the epidemic broadcast level, each
new update is recorded in the cloud with a PUT operation;
an update counter is also updated. The update becomes a hot
rumor, and a rumor mongering protocol is started; this protocol
never involves the cloud. In the anti-entropy protocol, on the
other hand, the peer contacting the cloud reads the update
counter and retrieves missing updates, if any. Given that in S3
keys are user-assigned, it is easy to devise a mechanism to
translate update numbers into unique keys.

VI. EVALUATION

CLOUDCAST has been evaluated through an extensive num-
ber of simulations based on the event-based version of PEER-
SIM [12]. We provide here only a few insights about the
good behavior of the protocol. Further studies are needed to
explore the parameter space at depth; for now, we set them to
reasonable values summarized in Table I, partially taken from
the original CYCLON paper [9]. If not differently stated, each
experiment is repeated 50 times, over which aggregate values
are computed. When graphically feasible, standard deviation
is represented by vertical bars.

A. Evaluating peer sampling

The first question to ask is: is our modified CYCLON
protocol capable to maintain an approximately constant in-
degree of the cloud, in spite of the network variation in size?
Fig. 4 shows what happens when the network size oscillates
between 1 and 500 peers in a 1-day period. The cloud in-
degree is shown with respect to time. When the network
grows from 1 to 20 peers, the in-degree grows accordingly;
this means that all peers have a cloud descriptor. As the size
increases up to 500 peers and then decreases, the in-degree
remains in the range [5, 35], to finally fall down to zero when



 0

 100

 200

 300

 400

 500

 0  12  24  36  48  60  72  84  96

N
u
m

b
e
r 

o
f 
n
o
d
e
s

Time (hours)

Cloud in-degree Network size

Fig. 4. Cloud in-degree in case of a network that oscillates daily between 0
and 500 peers. Four days (96 hours) are shown.

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

2
6

2
8

2
10

2
12

2
14

2
16

C
lo

u
d
 C

o
n
ta

c
ts

Network size

Average

Fig. 5. Number of GET/PUT operations per day on the cloud generated by
CYCLON, on a network with variable size between 26 and 216.

all the peers leave. This behavior repeats periodically; a single
experiment lasting four days is shown.

The choice of 500 peers is motivated by the graphical
representation; but we are interested in much larger networks.
Fig. 5 shows the total number of cloud GET/PUT operations
performed by CYCLON over the period of one day, for increas-
ing sizes of the network. These experimental results confirm
that the cloud load can be maintained under control.

The capability of dealing with failures is illustrated by
the next two figures. Fig. 6 shows the average in-degree
under different churn conditions, in network whose size varies
between 26 to 216 nodes. Each experiment last for 6 simulated
hours, for a total of 300 hours. A churn rate R of p% means
that at each second, each peer has a p% probability of abruptly
leaving the network and being substituted by a new peer.

The lines corresponding to 0.00%, 0.01% and 0.10% show
approximately the same behavior, with an average in-degree
around 15. When R = 1.00%, however, the system “goes
crazy” and the number of churn descriptors grows enormously.
This behavior is caused by the fact that the mechanism that

 0

 5

 10

 15

 20

 25

 30

2
6

2
8

2
10

2
12

2
14

2
16

C
lo

u
d
 i
n
-d

e
g
re

e

Network size

R=0.00%
R=0.01%
R=0.10%
R=1.00%

Fig. 6. Ability to maintain the correct in-degree under different levels of
churn R, on a network with variable size between 26 and 216.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2
6

2
8

2
10

2
12

2
14

2
16

C
lo

u
d
 i
n
-d

e
g
re

e

Network size

L=20%
L=15%
L=10%
L=5%
L=0%

Fig. 7. Ability to maintain the correct in-degree under different levels of
message loss L, on a network with variable size between 26 to 216.

adds a new cloud descriptor whenever a new node joins the
system creates too many new descriptors that cannot be elimi-
nated in time by the cleaning mechanism of CYCLON. It must
be noted, however, that a churn level of 1.00% corresponds
to an expected peer life time of less than 2 minutes, which
is two order of magnitudes larger than a reasonable level of
churn in P2P systems [13].

Beside churn, another source of unreliability is the loss of
messages. Given the sporadic interactions among peers, it is
perfectly reasonable to assume that communication is based
on UDP (rather than TCP) and is subject to failures. For this
reason, we have tested the behavior of CYCLON under different
levels of message loss L, from 0% to 20%. Results are shown
in Fig. 7. As before, we assumed that the cloud is reliable;
moreover, that communication with it is not subject to failures
(a reasonable assumption, as the communication with the cloud
is based on TCP). For low levels of message losses (10% or
less), there is no measurable effect on the average cloud in-
degree; the in-degree grows with the message loss rate, but
not to unreasonable levels.



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 150  155  160  165  170  175  180

C
lo

u
d
 i
n
-d

e
g
re

e

Time (Minutes)

Experiment

Fig. 8. The recovery mechanism in action. A single run is shown (message
loss rate L = 20% and network size N = 216), where inC goes to zero at
minute 165 and the correct number is recovered by minute 171.

But average values over a period of 300 hours must be taken
with care. Figure 8 shows an excerpt of a single experiment
with message loss rate L = 20% and network size N = 216.
At minute 165, the number of cloud references goes to zero;
the recovery mechanism kicks in, and in few cycles the number
of references becomes as large as 1

4 the size of the network.
By minute 171, however, the situation is back to normal. Note
that such an exceptional behavior never happens with L = 0%
and L = 5%, and happened 2, 13 and 16 times with L = 10%,
L = 15% and L = 20%, respectively (over a period of 300
simulated hours). While this behavior may hint for serious
problems in the protocol, note that message loss rates larger
than 10% are rather exceptional; furthermore,the number of
cloud GET/PUT operations is still proportional to the average
in-degree, which remains approximately constant as shown in
Fig. 5.

B. Evaluating message diffusion

To evaluate CLOUDCAST, we simulated networks of variable
sizes for the period of one simulated day, during which one
message is sent every minute. In all our experiments, all the
messages are eventually delivered by all correct peers. Fig. 9
shows the average delay of these messages. The average is
represented by a straight line, and is computed by averaging
the arrival time at each peer for all messages. The maximum
delay represents the time needed to deliver a single message
to all peers; here, each individual message is represented by
a distinct point. The larger the size, the larger the portion
of peers that receive the message through anti-entropy (cycle
length 10s) rather than rumor mongering (cycle length 1s); this
explain the black patterns around multiples of 10s. We believe
that both average and maximum represent adequate results.

Fig. 10 shows the behavior of CLOUDCAST over a dynamic
network. 48 hours are shown. Every 4 hours, an update is
generated for a total of 16 updates. The network size oscillates
between 0 and 1000 nodes (shown on the right y-axis). The
dashed lines represent the average delay of each of these

 0

 20

 40

 60

 80

 100

2
6

2
8

2
10

2
12

2
14

2
16

D
e
la

y
 (

s
)

Network Size

avg
max

Fig. 9. Average and maximum delay of messages. A total of 24 ·60 = 1440
messages sent over the period of one simulated day, on a network with variable
size between 26 and 216.

 0

 5

 10

 15

 20

 0  5  10  15  20  25  30  35  40  45
 0

 200

 400

 600

 800

 1000

D
e
la

y
 (

s
)

N
e
tw

o
rk

 s
iz

e

Time (Hours)

Delay of messages Size

Fig. 10. Behavior of CLOUDCAST in a network whose size oscillates daily
between 0 and 1000 nodes (size on the right y-axis). Updates are generated
every 4 hours and their average delays is shown (delay on the left y-axis).

updates; the delay of update m at node p is computed as the
interval between the generation of m and the receipt of m by
p, if p was operational when m has been generated; or the
time passing between p joining the system and the receipt of
m by p, if p was offline when m has been generated. Different
behaviors can be seen: updates generated when the network is
growing are quickly distributed among nodes that are online
through rumor-mongering, to be later distributed through anti-
entropy to nodes that join the system. Updates generated when
the network is shrinking are distributed just through rumor-
mongering. Updates generated when the network has size 0
(e.g., at hour 24) and is growing again are initially distributed
just through anti-entropy, so their delay is initially high, but
quickly decreases.

Another aspect of CLOUDCAST to be evaluated is the
overhead generated by P2P communication, measured as the
average number of times a single update is exchanged among
peers, shown in Fig. 11. This value is strongly dependent



 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

2
6

2
8

2
10

2
12

2
14

2
16

T
o
ta

l 
m

e
s
s
a
g
e
s
, 
p
e
r 

n
o
d
e

Size

Average
Standard deviation

Fig. 11. Average number of updates sent/received per node. A total of
24 · 60 = 1440 updates generated over the period of one simulated day.

on the selected rumor mongering strategy (e.g., blind/coin
versus feedback/counter), the values of configuration param-
eters like pRUMOR, the ratio between δRUMOR and δENTROPY, and
the maximum delay that can be tolerated. As stated before,
we selected reasonable values for all these parameters and
we obtained acceptable maximum delays and communication
overhead. Our goal is not to find the best trade-off between
delay and overhead, but rather demonstrate the feasibility of
our approach.

Some figures of merit are not reported in a graphical way,
because they are better discussed analytically. For example,
the communication overhead of CYCLON (i.e., the bandwidth
consumed by peers to run the peer sampling service) is given
by the size of view messages divided by the cycle length
δCYCLON. We assume that each descriptor takes 10B (4 for the
IP address, 2 for the port number, 4 for the timestamp). A view
with 20 entries, plus a counter, plus TCP/IP headers requires
240B. The expected number of messages to be sent every 10s
(the length δCYCLON) is 2 (one request plus one expected reply),
bringing to an overhead of 48B/s.

C. Case studies

It is time now to give concrete numbers, and understand
the monetary cost of our protocol. We consider two cases
studies: Dilbert’s comic strips and the hourly News Update
podcasts from CNN, delivered to their respective user base.
Dilbert’s is a popular comic strip read online by more than
1.5 millions unique visitors.2. One new strip (a GIF of 50KB
in size) is issued per day. No statistics are available for the
number of listeners of this podcast; as a very conservative
estimate, we use 1% of the number of followers of the CNN
Twitter account3 (1% of 4.0 millions followers = 40,000). Each
update is 1MB.

Serving the content of these feeds through Amazon S3,

2 www.thefreelibrary.com/Dilbert+at+20-a0197405344
3 www.twittercounter.com

without using the CLOUDCAST approach incurs in the fol-
lowing costs:

• Dilbert: 50KB · 365 · 1.5M = 27.375TB; at the cost of
0.15$ per GB, this corresponds to 4, 106$.

• CNN: 1MB · 365 · 24 · 40K = 350.400TB; at the cost of
0.15$ per GB, this corresponds to 52, 560$.

These costs are just for payload bandwidth and thus opti-
mistic: given that we do not want to specify how information
is accessed (how many strips/podcasts per request?), we did
not compute the overhead for each request.

Now, consider the costs associated to the peer sampling
service and to the information diffusion service. While a view
with 20 entries requires 200B, we approximate it to 1KB to
include REST API overhead, additional view data, etc. Up
to 2, 000 contacts per day (Fig. 5) times 365 days means
730, 000 GET/PUT operations per year. Given the cost model of
Section II, these corresponds to 0.73$ and 7.3$, respectively.
Transfer-in and transfer-out are equal to 1KB · 730, 000 =
0.73GB, corresponding to 0.11$ and 0.07$ respectively. The
total cost of CYCLON is thus 8.21$ per year. This amount does
not include the cost of peers joining the system; this depends
on the usage pattern. We just recall that 1$ pays 106 GET
operations ≡ 106 joins.

In CLOUDCAST, the cost depends on the number and the
size of news. The number of cloud operations is equal to
CYCLON, but obtaining the update counter only requires GET
operations, with a cost of 0.73$. A peer p downloads an
update from the cloud only if the update counter implies that
p has not received the update through rumor mongering. Since
Fig. 9 shows a maximum delay around 100s, in this period a
maximum of 10 anti-entropy cycles can be executed (given
that δENTROPY = 10s). The expected number of anti-entropy
requests in 10 cycles is 10, meaning that each update will be
downloaded 10 times from the cloud in the worst case. In our
case studies:

• Dilbert: The total number of strips read from the cloud is
365·10 = 3, 650. The transfer-out is thus 3, 650·50KB =
0.18GB, which corresponds to 0.03$.

• CNN: The total number of podcasts read from the cloud
is 365 · 24 · 10 = 87, 600. Considering 1MB per tweet,
this corresponds to a total transfer-out of 87, 6GB, which
corresponds to 13.14$.

The total yearly costs for our two case studies are less than
25$, a tiny fraction of the costs required to serve the entire
content through the cloud. Please note that the overhead as-
sumed in this figures is an extremely pessimistic overestimate
of the real value.

VII. RELATED WORK

The usage of passive peers in P2P systems is not new:
for example, the Gnutella Web Caching System [14] solves
the bootstrap problem with a set of web servers that store
the IP addresses of active peers, so that joining peers can
easily find other peers to connect with. Other systems, such
as p2pvpn [15], use a BitTorrent tracker similarly to a host



cache. Other attempts at solving the bootstrap problem without
using a centralized server are based on network scanning or
probing [16], [17], [18].

The difference between CLOUDCAST and these systems
is that the storage cloud is directly integrated in the gossip
protocol, at all levels: in the bootstrap phase, to maintain
the overlay connected in the presence of strong churn, to
provide the content of messages when only few peers are
available, etc. Moreover, CLOUDCAST keeps the number of
accesses (and hence the cost) under control. In this sense,
CLOUDCAST is more suitable for small P2P systems without
a large budget. Other systems proposed a P2P approach for
implementing a distributed storage service, or use storage
clouds to implement content delivery networks [19], but to
the authors’ best knowledge CLOUDCAST is the first protocol
that enhances storage clouds with epidemic protocols.

The modifications that CLOUDCAST applies to the tradi-
tional gossip paradigm are particularly important, because
when introducing passive and highly-available elements like
a storage cloud in a P2P system, such system is not homo-
geneous anymore, and this can affect the performance of the
gossip protocols [20].

VIII. CONCLUSIONS AND FUTURE WORK

By making a concrete example, this paper shows a novel
distributed programming paradigm that mix the dependability
of cloud computing with the low cost of P2P networks. Even
in its simplicity, the example shows the enormous potentiality
behind this approach.

CLOUDCAST has been tested in different scenarios, showing
that the proposed solution is effective in maintaining the
overlay connected, while quickly diffusing messages (even to
peer that dynamically join the system).

This paper is meant to demonstrate the viability of this
approach. We discuss here future work that could make this
application more realistic and further reduce the monetary cost
of our approach:

• Distinct epidemic broadcast strategies should be evalu-
ated. The current approach (rumor mongering blind/coin,
anti-entropy) is the simplest to implement; alternative
strategies could easily outperform the current one.

• In the case of a large network, the number of operations
performed on the cloud by the anti-entropy protocol could
be easily reduced, by waiting to receive an update from
other peers and postponing the access to the cloud itself.
The size of the network could be easily computed in a
decentralized way [21], [22].

• It is interesting to note that a largest bill in our protocol is
due to peer sampling, rather than the actual download of
updates. As above, strategies that adapt to the size of the
network could reduce enormously the number of costly
PUT operations on the cloud.

A real implementation of CLOUDCAST for GNU/Linux has
been developed, based on the GRAPES library [23]. Such
an implementation is under evaluation on realistic settings in

the Internet. Meanwhile, the source code and the configura-
tion files required to reproduce these results are available at
http://peersim.sf.net/code/Cloudcast.zip.

REFERENCES

[1] “Amazon S3 web page,” http://aws.amazon.com/s3/, Amazon Web Ser-
vices LLC.

[2] C. Huang, J. Li, and K. Ross, “Peer-assisted VoD: Making internet video
distribution cheap,” in Proc. of the 6th Int. Workshop on Peer-to-Peer
Systems (IPTPS’07), Bellevue, WA, USA, Feb. 2007.

[3] B. Cohen, “Incentives build robustness in bittorrent,” in Proc. of the 1st
Workshop on Economics of P2P Systems, 2003.

[4] R. Sweha, V. Ishakian, and A. Bestavros, “Angels in the cloud: A
peer-assisted bulk-synchronous content distribution service,” Computer
Science Department, Boston University, Tech. Rep. BUCS-TR-2010-
024, 2010.

[5] L. Toka, M. Dell’Amico, and P. Michiardi, “Online data backup: a peer-
assisted approach,” in Proc. of the IEEE Int. Conference on Peer-to-Peer
Computing (P2P’10), Delft, The Netherlands, Aug. 2010.

[6] “Amazon S3 pricing,” http://aws.amazon.com/s3/pricing, Amazon Web
Services LLC.

[7] “Amazon EC2 pricing,” http://aws.amazon.com/ec2/pricing, Amazon
Web Services LLC.

[8] A. Demers et al., “Epidemic algorithms for replicated database main-
tenance,” in Proc. of the 6th ACM Symp. on Principles of Distributed
Computing (PODC’87). Vancouver, BC, Canada: ACM Press, Aug.
1987, pp. 1–12.

[9] S. Voulgaris, D. Gavidia, and M. Van Steen, “CYCLON: Inexpensive
membership management for unstructured P2P overlays,” Journal of
Network and Systems Management, vol. 13, no. 2, pp. 197–217, 2005.

[10] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen, “The
peer sampling service: Experimental evaluation of unstructured gossip-
based implementations,” in Proc. of Middleware 2004, ser. LNCS, vol.
3231. Springer, 2004.

[11] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol. 25, no. 3, p. 8, Aug. 2007.

[12] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in
Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09), Seattle, WA,
Sep. 2009, pp. 99–100.

[13] M. Castro, M. Costa, and A. Rowstron, “Performance and dependability
of structured peer-to-peer overlays,” in Proceedings of the 2004 Inter-
national Conference on Dependable Systems and Networks (DSN’04).
IEEE Computer Society, 2004.

[14] “Gnutella web caching system,” http://www.gnucleus.com/gwebcache/
specs.html.

[15] “P2PVPN,” http://www.p2pvpn.org.
[16] C. Gauthier Dickey and C. Grothoff, “Bootstrapping of peer-to-peer

networks,” in Proc. of the Int. Symposium on Applications and the
Internet (SAINT’08), 2008, pp. 205–208.

[17] C. Cramer, K. Kutzner, and T. Fuhrmann, “Bootstrapping locality-aware
P2P networks,” in Proc. of the 12th IEEE Int. Conf. on Networks
(ICON’04), 2004.

[18] J. Dinger and O. Waldhorst, “Decentralized bootstrapping of P2P
systems: A practical view,” in Proc. of Networking 2009. Springer,
2009, pp. 703–715.

[19] J. Broberg and Z. Tari, “MetaCDN: Harnessing storage clouds for high
performance content delivery,” in Proc. of The Sixth Int. Conf. on
Service-Oriented Computing (ICSOC’08), 2008.

[20] N. Tölgyesi and M. Jelasity, “Adaptive peer sampling with Newscast,”
in Proc. of the 15th Int. Euro-Par Conf. on Parallel Processing (Euro-
Par’09). Delft, The Netherlands: Springer-Verlag, 2009, pp. 523–534.

[21] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 1,
pp. 219–252, Aug. 2005.

[22] A. Montresor and A. Ghodsi, “Towards robust peer counting,” in Proc.
of the 9th Int. Conference on Peer-to-Peer (P2P’09), Seattle, WA, Sep.
2009, pp. 143–146.

[23] L. Abeni, C. Kiraly, A. Russo, M. Biazzini, and R. L. Cigno, “Design
and implementation of a generic library for p2p streaming,” in Proc. of
the Workshop on Advanced Video Streaming Techniques for Peer-to-Peer
Networks and Social Networking, Florence, Italy, October 2010.


