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ABSTRACT
Understanding the survival, growth and dynamics of cold gas is fundamental to galaxy formation.While there has been a plethora
of work on ‘wind tunnel’ simulations that study such cold gas in winds, the infall of this gas under gravity is at least equally
important, and fundamentally different since cold gas can never entrain. Instead, velocity shear increases and remains unrelenting.
If these clouds are growing, they can experience a drag force due to the accretion of low momentum gas, which dominates over
ram pressure drag. This leads to sub-virial terminal velocities, in line with observations. We develop simple analytic theory
and predictions based on turbulent radiative mixing layers. We test these scalings in 3D hydrodynamic simulations, both for an
artificial constant background, as well as a more realistic stratified background.We find that the survival criterion for infalling gas
is more stringent than in a wind, requiring that clouds grow faster than they are destroyed (𝑡grow < 4 𝑡cc). This can be translated
to a critical pressure, which for Milky Way like conditions is 𝑃 ∼ 3000 k𝐵Kcm−3 . Cold gas which forms via linear thermal
instability (𝑡cool/𝑡ff < 1) in planar geometry meets the survival threshold. In stratified environments, larger clouds need only
survive infall until cooling becomes effective. We discuss applications to high velocity clouds and filaments in galaxy clusters.
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1 INTRODUCTION

The cycle of baryons – particularly that of cold gas, the fuel for
star formation – is absolutely fundamental to galaxy formation and
a crucial link between galactic and cosmological scales (Péroux &
Howk 2020). This cycle can take various forms: (i) Outflows due to
feedback processes (Thompson et al. 2016; Schneider et al. 2018).
Observationally, cold gas is frequently seen outflowing at velocities
comparable to virial/escape velocities (Veilleux et al. 2005; Steidel
et al. 2010; Rubin et al. 2014; Heckman & Thompson 2017). (ii)
Inflow of cold gas which forms via thermal instability in the halo
(Joung et al. 2012; Sharma et al. 2012; Fraternali et al. 2015; Voit
et al. 2019; Tripp 2022), or is supplied by direct cosmology accretion
(cold streams; Kereš et al. 2005; Dekel & Birnboim 2006), and falls
under gravity. (iii) Fountain recycling, which is a combination of
these two processes. A useful analogy is the terrestrial water cycle,
where evaporation, condensation and precipitation both play crucial
roles.
All of thesemotions involve velocity shear between cold gas clouds

and background hot gas. A long-standing problem has been to un-
derstand why clouds are not shredded by hydrodynamic instabilities,
particularly the Kelvin-Helmholtz instability. The hydrodynamic ac-
celeration time for a cloud of radius 𝑟 , overdensity 𝜒 embedded in a
wind of velocity 𝑣w is 𝑡acc ∼ 𝜒𝑟/𝑣w, the timescale for the cloud to
sweep up its own column density. By contrast, the cloud destruction
(‘cloud crushing’) time is 𝑡cc ∼ √

𝜒𝑟/𝑣w, i.e. of order the Kelvin-
Helmholtz time, implying that 𝑡acc/𝑡cc ∼

√
𝜒, i.e. clouds should be

destroyed before they can be accelerated (Klein et al. 1994; Zhang
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et al. 2017). Numerous simulation studies, including those with ra-
diative cooling, concluded that cold clouds get destroyed before they
can become entrained with the wind (e.g. Cooper et al. 2009; Scan-
napieco & Brüggen 2015; Schneider & Robertson 2016); magnetic
fields can ameliorate but do not solve the problem (McCourt et al.
2015; Gronke & Oh 2020a).
In recent years, it was realized that there are regions of parame-

ter space where the cooling efficiency of the mixed, ‘warm’ gas is
sufficiently large to contribute new comoving cold gas which can
significantly exceed the original cold gas mass, enabling the cloud
to survive. Cloud growth is thus mediated by these turbulent mixing
layers (Begelman & Fabian 1990; Ji et al. 2018; Fielding et al. 2020;
Tan et al. 2021). The criteria for this to happen is 𝑡cool,mix/𝑡cc < 1,
where 𝑡cool,mix is the cooling time of the mixed warm gas (with
𝑇mix ∼ (𝑇hot𝑇cold)1/2) and 𝑡cc is the cloud crushing time (Gronke
& Oh 2018). This criterion is always satisfied for a large enough
cloud 𝑟 > 𝑐s,cold𝑡cool,mix (where 𝑐s,cold is the sound speed of the
cold gas), which grows and entrains by gaining mass and momentum
from cooling mixed hot gas. Thus, the cloud eventually comoves
with the wind, with a cold gas mass which can be many times the
original cloud mass. These conclusions have been borne out in many
subsequent studies (e.g., Sparre et al. 2020; Li et al. 2020; Abruzzo
et al. 2022a; Girichidis et al. 2021; Farber & Gronke 2022).
However, cold gas survival and growth has only been understood

for part of the baryon cycle, galactic outflows. To date, there have
only been a handful of studies studying cold gas survival and growth
during infall, which is arguably even more fundamental to processes
such as star formation.
An important outstanding problem in galaxy evolution is that the

observed star formation rates (SFRs) in galaxies at a range of redshift
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are unsustainable - they would rapidly deplete current existing gas
reservoirs - and hence these galaxies require some form of continuous
accretion to supply the necessary fuel (Erb 2008; Hopkins et al. 2008;
Putman et al. 2009). For example, our Milky Way has a SFR of ∼ 2
M� yr−1 but only ∼ 5 × 109M� of existing fuel, and would thus
burn through this supply in just 2-3Gyrs (Chomiuk & Povich 2011;
Putman et al. 2012). Supplementary inflow must come in the form
of low-metallicity (𝑍 < 0.1 𝑍�) gas, so as to satisfy constraints from
disk stellar metallicities and chemical evolution models (Schönrich
& Binney 2009; Kubryk et al. 2013).
At the same time, we see infall in the form of ‘high-velocity’

and ‘intermediate-velocity’ clouds (HVCs and IVCs; Putman et al.
2012) with relatively low metallicities, as well as a galactic fountain
with continuous circulation of material between the disk and corona
(Shapiro & Field 1976; Fraternali & Binney 2008). Fountain-driven
accretion could supply the disk with gas for star formation, and
explain the observed kinematics of extra-planar gas (Armillotta et al.
2016; Fraternali 2017). It is tempting to speculate from the results of
wind tunnel simulations that star formation in the disk exerts a form
of positive feedback: cold gas thrown up into the halo ‘comes back
with interest’, by mixing with low metallicity halo gas which cools
and increases the cold gas mass.
HVCs are also good candidates and could provide a significant

amount of the necessary fuel for star formation, provided they sur-
vive their journey to the disk (Van Woerden et al. 2004; Putman
et al. 2012; Fox et al. 2019a). First detected in HI 21 cm emission
by Muller et al. (1963), HVCs are gas clouds observed moving at
high velocities relative to the local standard of rest. The traditional
definition for HVCs is thus those clouds with velocities in the Local
Standard of Rest frame |𝑣LSR | ≥ 90 km/s (Wakker & van Woerden
1991) (although similar clouds whose velocities significantly overlap
that of the disk may be missed; Zheng et al. 2015). They have been
observed in all regions of the sky, and come in a range of sizes (Put-
man et al. 2012). Clouds are grouped into various complexes based
on spatial and kinematic clustering but because of their proximity,
precise distances to HVCs are difficult to measure. The main method
of doing so is to use halo stars of known distances in the same sky
region to bracket the cloud distance by looking for absorption lines
(or lack thereof) in the stellar spectra. By determining if a HVC is
in front of or behind each star, the HVC’s distance can thus be effec-
tively constrained. Most HVCs with distances measured as such are
found between 2-15 kpc, with most heights above the disk < 10 kpc
(Wakker et al. 2008; Thom et al. 2008). The head-tail morphology
observed in many HVCs (Putman et al. 2011), along with observa-
tions that the majority of high velocity absorbers kinematically and
spatially lie in the vicinity of HVCs (Putman et al. 2012), strongly
suggest that the HVCs are mixing as they travel through the ambient
medium. There is a wealth of literature on observations of HVCs –
we refer the reader to reviews such as Putman et al. (2012) for a more
comprehensive account.
As we have discussed, the survival of HVCs is inherently prob-

lematic, since they are vulnerable to hydrodynamic instabilities while
travelling through the hot background (Klein et al. 1994; Zhang et al.
2017). Early theoretical efforts to model HVCs initially focused on
predicting their velocity trajectories, without taking into consider-
ation their mass evolution. These early models assumed that these
HVCs fell ballistically (Bregman 1980) or reached a terminal veloc-
ity when eventually slowed by hydrodynamic drag forces (Benjamin
& Danly 1997), and were used in evaluating the contributions of
HVCs in larger feedback models (Maller & Bullock 2004). However,
the decoupling of the velocity and mass evolution implied by this
approach has been shown to be untenable for HVCs with the advent

of high resolution hydrodynamical simulations, many of which show
that the mass andmorphology of the clouds evolve significantly (e.g.,
Kwak et al. 2011; Armillotta et al. 2017; Gritton et al. 2017; Gronke
& Oh 2020a). While wind-tunnel setups are numerous, the number
of 3D simulations of clouds falling under the influence of gravity and
including radiative cooling is more limited (Heitsch & Putman 2009;
Heitsch et al. 2022; Grønnow et al. 2022). The survival criterion for
infalling clouds has not been quantified, and analytic models for mass
and velocity evolution which match simulations do not yet exist. We
will tackle these challenges in this paper.
Presumably, similar considerations apply, with a minimum cloud

size 𝑟crit ∼ 𝑐s,cold𝑡cool,mix required for survival and growth. How-
ever, this ignores a crucial distinction between outflowing and in-
falling cold gas clouds. Outflowing gas clouds gradually entrain, so
destruction processes becomeweaker as the velocity shear is reduced.
The cloud only has to survive until it becomes comoving with the
hot gas, at which point hydrodynamic instabilities are quenched (and
mass growth peaks). Indeed, wind tunnel simulations (particularly
for clouds with sizes just above 𝑟crit) often show clouds which ini-
tially break up into small fragments, with a significant amount mixed
into the hot medium, but eventually survive as the fragments entrain
and grow. The cold fragments then coalesce – the cloud ‘rises from
the dead’ to a peaceful environment. In contrast, infalling clouds
accelerate under the action of gravity, with continually increasing
velocity shear, and consequently increasing cloud destruction rate,
which is maximized at the cloud terminal velocity. Thus, the cloud
instead is exposed to continuallyworsening conditions, and somehow
has to survive an unrelenting hot wind. Moreover, the properties of
the wind change with time, as the cloud falls through a background
stratified hot medium.
The survival and growth of a cold cloud under such conditions is

the focus of this paper. We develop simple analytic scalings which
we test in 3D hydrodynamic simulations. Unsurprisingly, several
important aspects, such as cloud survival criteria, are quite different
from the wind tunnel case.
What is at stake? As previously mentioned, if clouds can survive

and grow, the ultimate fuel supply for star formation could sim-
ply be coronal gas, whose condensation is triggered by star forma-
tion feedback and Galactic fountain recycling. During this process,
cold gas also exchanges angular momentum with coronal gas, which
links fountain circulation to the observable kinematics of coronal
gas. More broadly, the physics of radiative turbulent mixing layers
is complex, and theoretical studies demand empirical tests. Unlike
clouds embedded in galactic winds, which lie at extra-galactic dis-
tances and are difficult to resolve, there is a plethora of spatially and
kinematically resolved observational data for intermediate and high
velocity clouds in the Milky Way. There is also ample similar data
for infalling filaments in galaxy clusters (e.g. Russell et al. 2019).
Such systems can be used as laboratories for the interaction between
multiphase gas, mixing, and radiative cooling, which is also critical
to galactic winds but difficult to test there. We shall see that we pre-
dict sub-virial terminal velocities at odds with standard predictions
(which balance hydrodynamic drag with gravity) but in much better
agreement with observations. Moreover, the predicted terminal ve-
locity from the model is an observable that can be tested, at least on
a statistical basis (given observational uncertainties and degenera-
cies). Such empirical tests have thus far been sorely lacking in cloud
physics models.
The outline of this paper is as follows. In Section 2, we outline an-

alytic theory and predictions for the dynamics, growth and survival
of infalling cold clouds. In Section 3, we describe our simulation
setup. In Sections 4 and 5, we describe simulation results, both for
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an artificial constant background (which allows us to test analytic
scalings), as well as a more realistic stratified background. In Sec-
tion 6, we discuss applications to the Milky Way (HVCs) and galaxy
clusters (infalling filaments). Lastly, we summarize and conclude in
Section 7.

2 DYNAMICS OF INFALLING CLOUDS

2.1 Cloud Evolution and Terminal Velocities

A falling cloud growing via accretion can be described by the fol-
lowing set of differential equations:

d𝑧
d𝑡

= 𝑣 (1)

d(𝑚𝑣)
d𝑡

= 𝑚𝑔 − 1
2
𝜌hot𝑣

2𝐶0𝐴cross (2)

d𝑚
d𝑡

=
𝑚

𝑡grow
(3)

where 𝑧, 𝑣 and 𝑚 represent the distance fallen, velocity, and mass of
the cloud respectively, 𝑡grow ≡ 𝑚/ ¤𝑚 is the growth timescale (which
we discuss in Section 2.2), 𝑔 is the gravitational acceleration, 𝐶0 is
the drag coefficient (geometry dependent; of order unity here), 𝜌hot
is the density of the background medium, and 𝐴cross is the cross-
sectional area which the cloud presents to the background flow. We
shall see that it is important to distinguish 𝐴cross from 𝐴cloud, the
overall surface area of the cloud. We shall also see that 𝑡grow is
roughly independent of mass growth, so that from equation (3), mass
growth is nearly exponential. Note that equation (3) assumes steady
growth and omits terms which contribute to cloud destruction. Thus,
it does not apply to clouds which are losing rather than gaining
mass. In this paper, we focus on scenarios where clouds survive and
grow, which is the novel feature in our new model (previous works,
e.g. Afruni et al. 2019, have looked at scenarios with significant
mass loss). In Section 2.3 we will quantify the criterion for cloud
survival. In this work, we only consider the hydrodynamic case and
leave investigation of other factors such as magnetic fields, externally
driven turbulence, and cosmic rays to future work.
The terms on the right hand side in the momentum equation (equa-

tion (2)) represent the gravitational and hydrodynamic drag forces. In
standard models, these two terms are assumed to balance one another
in steady-state, giving the hydrodynamic drag terminal velocity

𝑣T,drag =

√︄
2𝑚𝑔

𝜌hot𝐶0𝐴cross
'

√︄
2𝜒𝐿𝑔
𝐶0

(4)

for a falling cloud with volume ∼ 𝐴cross𝐿 and 𝜒 = 𝜌cloud/𝜌hot. The
hydrodynamic drag time (momentum divided by the drag force) is
given by 𝑡drag ∼ 𝜒𝐿/𝑣. In fact, this gives the terminal velocity only if
the left hand side of equation (2) vanishes, ¤𝑝 = 𝑚 ¤𝑣+ ¤𝑚𝑣 = 0⇒ ¤𝑣 = 0,
which is correct only if cloud mass does not evolve so ¤𝑚 = 0. If
¤𝑚 > 0, i.e. the cloud grows by accreting mass from the background,
then from momentum conservation, since the background gas is at
rest and has zero initial momentum, this will slow down the cloud. In
the limit that the hydrodynamic drag term is small compared to ¤𝑚𝑣,

𝑣 =
𝑚

¤𝑚 (𝑔 − ¤𝑣). (5)

Thus, if ¤𝑣 � 𝑔, there is a second terminal velocity

𝑣T,grow =
𝑚𝑔

¤𝑚 = 𝑔𝑡grow. (6)

The two terminal velocities in equations (4) and (6) represent regimes
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Figure 1. The terminal velocity (normalized by the drag terminal velocity)
as a function of the ratio of the growth time 𝑡grow and the drag time 𝑡drag. The
dashed lines show the corresponding values for the terminal velocities when
assumed to be set by either drag or growth. As the ratio increases, there is a
smooth transition from 𝑣T,grow to 𝑣T,drag.

where the cloud acceleration under gravity is predominantly balanced
by either hydrodynamic drag or the momentum transfer from back-
ground accretion respectively. We can separate them by considering
the ratio 𝑡grow/𝑡drag. When this ratio is large, gravity is balanced
by drag. Conversely, when this ratio is small, gravity is balanced
by accretion. The transition between the two is marked by where
𝑡grow ∼ 𝑡drag. We can illustrate this by solving equations (1) – (3) nu-
merically for a constant 𝑡grow. The result is shown in Fig. 1, where we
plot the terminal velocity as a function of 𝑡grow/𝑡drag. We can see that
when 𝑡grow � 𝑡drag, the terminal velocity follows 𝑣T,grow, and when
𝑡grow � 𝑡drag, the terminal velocity follows 𝑣T,drag as expected.
Which regime is more realistic? Let us first explore this for the

idealized case of spherical clouds. For a spherical cloud, the growth
time is given by (Gronke & Oh 2020a):

𝑡grow ≡ 𝑚

¤𝑚 ∼ 𝜌cold𝑟
3

𝜌hot𝐴cloud𝑣mix
∼ 𝜒

𝑟

𝑣mix
. (7)

This seems long: if 𝑣mix ∼ 𝑐s,cold (a reasonable estimate; see Sec-
tion 2.2 of Gronke & Oh 2020a and Sections 4.6 & 5.3.3 of Tan et al.
2021), then 𝑡grow ∼ 𝜒𝑡sc, where 𝑡sc is the sound crossing time across
the cloud. By contrast, the hydrodynamic drag time for a spherical
cloud (as mentioned previously) is:

𝑡drag ∼ 𝜒
𝑟

𝑣
, (8)

which is much shorter, since 𝑡drag/𝑡grow ∼ 𝑣mix/𝑣 ∼ 𝑐s,cold/𝑐s,hot ∼
𝜒−1/2 � 1, if we assume the the virial velocity to be a characteristic
infall speed, 𝑣 ∼ 𝑣vir ∼ 𝑐s,hot. The fact that 𝑡drag � 𝑡grow makes
physical sense. The hydrodynamic drag time is also the timescale
for a cloud to sweep up its own mass in hot gas (𝜌hot𝐴cross𝑣𝑡drag ∼
𝜌hot𝑟

3𝜒 ∼ 𝑚). Even if all this mass is incorporated into the cloud,
then at best 𝑡grow ∼ 𝑡drag. In fact, only a small fraction of this gas
is actually incorporated into the cloud, so that 𝑡grow � 𝑡drag. This
suggests that hydrodynamic drag is themain drag force, which results
in a terminal velocity given by equation (4).
However, as previously mentioned, clouds in a shearing wind

do not remain spherical; they develop extended cometary tails (as
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seen both in simulations and observations). This change in ge-
ometry – and in particular the large increase in surface area – is
crucial for enabling momentum transfer via mass growth. In hy-
drodynamic drag, 𝐹drag ∼ 𝜌hot𝑣

2𝐴cross, the area 𝐴cross ≈ 𝜋𝑟2

is the cross-sectional area the cloud presents to the wind. Thus,
𝐹drag remains roughly constant during cloud evolution. By con-
trast, in ¤𝑚 ∼ 𝜌hot𝐴cloud𝑣, the area 𝐴cloud is the surface area of
the cloud available for mixing. In a cometary structure, this is dom-
inated by the sides of the cylinder, so that 𝐴cloud ∼ 2𝜋𝑟𝐿, where
𝐿 is the length of the tail. Thus, ¤𝑚 ∝ 𝐴cloud ∝ 𝐿 increases as a
cloud develops a cometary tail. It is this increase in ¤𝑚, and thus
the effective momentum transfer rate 𝐹grow ∼ ¤𝑝grow ∼ ¤𝑚𝑣, com-
pared to a constant 𝐹drag, which causes mass growth to dominate
momentum transfer: 𝑡grow ∼ 𝜒𝑟/𝑣mix is roughly constant, while
𝑡drag ∼ 𝑚𝑣/𝐹drag ∼ 𝜌cloud𝐴cross𝐿𝑣/(𝜌hot𝐴cross𝑣2) ∼ 𝜒𝐿/𝑣 in-
creases as the mass of the cloud increases. In particular,

𝑡grow
𝑡drag

∼ 𝑟

𝐿

𝑣

𝑣mix
∼ 𝑟

𝐿
𝜒1/2. (9)

In cloud crushing simulations, the tail grows during the process of
entrainment to a length 𝐿 ∼ 𝑣𝑡drag ∼ 𝜒𝑟 during the ‘tail formation’
phase (Gronke & Oh 2020a), so that 𝑡grow/𝑡drag ∼ 𝜒−1/2 � 1. The
continuous shear for infalling clouds can lead to even more extended
tails since the cloud does not entrain, so 𝑡grow/𝑡drag � 1 is easily
satisfied1.
Finally, it is important to realize that there is a third timescale in

the problem, the free-fall time 𝑡ff ∼ 𝑣vir/𝑔. This sets the evolutionary
lifetime available to clouds, before they fall to the halo center. Clouds
will not grow significantly (and reach the terminal velocity 𝑣T,grow
given by equation (6)), unless 𝑡grow < 𝑡ff . Indeed, 𝑡grow < 𝑡ff is re-
quired for a subvirial terminal velocity.We can show this by recalling
that 𝐹grav ∼ 𝑚𝑔 ∼ 𝑚𝑣vir/𝑡ff , while the drag force from mass growth
is 𝐹grow ∼ ¤𝑚𝑣 ∼ 𝑚𝑣/𝑡grow. At the terminal velocity 𝑣𝑇 , we have
𝐹grav ∼ 𝐹grow, so that:

𝑓sub−vir ≡
𝑣T,grow
𝑣vir

∼ 𝑣T
𝑐s,hot

∼
𝑡grow
𝑡ff

. (10)

This is useful because 𝑓sub−vir – infall velocities, normalized to
the virial velocity – can be measured observationally. Indeed,
𝑓sub−vir < 1, sub-virial infall velocities, is commonly observed in
LRGs (Huang et al. 2016; Zahedy et al. 2019) and galaxy clusters
(Russell et al. 2016), much lower than predicted terminal velocities
from hydrodynamic drag models (Lim et al. 2008). Our models can
explain these puzzling observations, as we describe in Section 6.2. It
also allows for testable predictions. Since 𝑓sub−vir is measured and 𝑡ff
is known from the density profile, we can predict 𝑡grow ≈ 𝑓sub−vir𝑡ff
from kinematic observations, assuming that clouds have reached
terminal velocity. This can be compared with predictions for 𝑡grow
from equations (22) and (23), given measured or inferred cloud and
background hot gas properties. Lastly, the mass growth that a cloud
experiences is 𝑚/𝑚0 ∼ exp

(
𝑡ff/𝑡grow

)
∼ exp( 𝑓 −1sub−vir). Thus, a mea-

surement of sub-virial velocities directly constrains the degree to
which mixing and cooling enhances cool gas infall to the central
galaxy. Significantly sub-virial infall implies that cold clouds grow
considerably before reaching the halo center. These analytical esti-
mates can be compared to measurements of the mass infall rate (e.g.,
Fraternali&Binney 2006; Fox et al. 2019b). In Section 5, wewill also
show the rather remarkable result that in an isothermal atmosphere

1 Shorter entrainment times than 𝑡drag have been observed in cloud crushing
simulations (e.g., Gronke & Oh 2020a; Farber & Gronke 2022).

with constant gravity, 𝑓sub−vir is fixed by geometry, specifically the
scaling between cloud mass and area (𝛼 in equation (21)), indepen-
dent of all other properties of the system. For our infalling clouds,
we find 𝑓sub−vir ≈ 0.6.

2.2 Cloud Growth

Previous models of infalling clouds have considered the interplay
between gravity and hydrodynamic drag forces, assuming a fixed
cloud mass (Benjamin & Danly 1997). However, a fixed cloud mass
is unrealistic due to various processes that trigger mixing with the hot
background gas or shred the cloud. Mass evolution therefore cannot
remain static; clouds should either be destroyed ( ¤𝑚 < 0), or grow
( ¤𝑚 > 0) over time.
In the absence of cooling, clouds moving relative to a background

medium are destroyed by hydrodynamic instabilities on the cloud
crushing timescale (Klein et al. 1994; Scannapieco & Brüggen 2015)

𝑡cc ∼
√
𝜒
𝑟

𝑣
, (11)

where 𝜒 is the ratio of the cloud density to the background density, 𝑟
is the cloud radius, and 𝑣 is the magnitude of the relative velocity be-
tween the cloud and the background. This cloud crushing timescale
reflects the destruction of the cloud via internal shocks induced in-
side the cloud due to its velocity with respect to the medium it is
moving through (assuming that this velocity is supersonic with re-
spect to the sound speed within the cloud), and is roughly the same
timescale onwhich surface instabilities such as theKelvin-Helmholtz
and Rayleigh-Taylor instabilities grow to the cloud scale (Klein et al.
1994). This destructive fate can however be counteracted by mass
growth due to cooling. In wind tunnel simulations of ‘cloud crush-
ing’, Gronke & Oh (2018) found that in order for cold gas to survive,
cooling needs to be strong enough to satisfy the criterion

𝑡cool,mix < 𝑡cc, (12)

where 𝑡cool,mix is the cooling time of the mixed gas, defined as
𝑇mix ∼

√
𝑇cloud𝑇hot (in the spirit of Begelman & Fabian 1990, see

also Hillier & Arregui 2019 for an alternative derivation). That is,
if the cooling time of the mixed gas is shorter than the initial cloud
crushing time, then cold gas survives and is eventually entrained in
the hot background wind.
However, infalling clouds have an important aspect that differen-

tiates them from clouds in a wind – gravity. Clouds encountering a
hot wind gradually entrain in the wind, so that shear eventually drops
to zero if the cloud manages to survive until entrainment. The cloud
thus encounters destructive forces for a limited period of time. By
contrast, clouds in a gravitational field will always keep falling and
shearing against the background gas. Thus, the survival criterion is
different, and more stringent; we discuss this in Section 2.3.
Assuming cloud survival, let us quantify the timescale on which

clouds grow. We first derive some scaling relations, before deriving
numerical expressions. For now, we ignore fudge factors (due to
geometry, etc.) which can be up to an order of magnitude. As in
equation (7), the mass growth rate of a cloud can be written as

¤𝑚 ∼ 𝜌hot𝐴cloud𝑣mix, (13)

where 𝜌hot is the density of the hot background medium, 𝐴cloud is
the effective surface area of the cloud2 and 𝑣mix is the the velocity

2 The effective surface area corresponds to the (smoothed) enveloping area
of the cloud and not the (non-convergent) surface area of the cold gas. See
Gronke & Oh (2020a) for further discussion of this distinction.

MNRAS 000, 1–23 (2022)
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corresponding to the mass flux from the hot background onto this
surface. As above, if we write 𝑚 ∼ 𝜌cold𝐴cloud𝑟, this gives:

𝑡grow ∼ 𝜒
𝑟

𝑣mix
. (14)

Plane parallel simulations of mixing layers (Tan et al. 2021) show:

𝑣mix ∼ 𝑢′3/4
(

𝑟

𝑡cool

)1/4
∼ 𝑣
3/5
shear𝑣

3/20
0

(
𝑟

𝑡cool

)1/4
(15)

where 𝑡cool is the cooling time in cold gas (the minimum cooling time
in the mixing layer, a convention we adopt henceforth) and 𝑢′ is the
peak turbulent velocity in the mixing layer (usually in intermediate
temperature gas). Note that while the first step in equation (15), i.e.,
𝑣mix (𝑢′), is generally valid, we have used the scaling 𝑢′ ∝ 𝑣

4/5
shear for

relating 𝑢′ to the parameters of the setup. This scaling was found
numerically in Tan et al. (2021) for plane-parallel mixing layers and
we have written it here as 𝑢′ ∼ 𝑣

4/5
shear𝑣

1/5
0 to preserve dimensionality

(𝑣0 simply encodes normalization). If we set 𝑣shear ∼ 𝑣T,grow ∼
𝑔𝑡grow, this yields:

𝑡grow ∼ 𝜒5/8
𝑟15/32𝑡5/32cool

𝑔3/8𝑣3/320

; 𝑣T,grow < 𝑐s,hot. (16)

While the above scalings focus on the subsonic and transonic cases,
large enough clouds can reach velocities exceeding the sound speed
of the hot gas. In such a case, the turbulent mixing velocity saturates
and stops scaling with the cloud velocity (Yang & Ji 2022), changing
the above scalings. In this case, from equations (14) and (15), we
obtain:

𝑡grow ∝ 𝜒𝑟3/4

c3/5s,hot𝑡
1/4
cool

. (17)

We now give numerical expressions, which are calibrated to sim-
ulations. For cooling dominated regimes (defined below), Tan et al.
(2021) found that 𝑣mix in turbulent mixing layers follows

𝑣mix ≈ 9.5 km s−1
(

𝑢′

50 km s−1

)3/4 (
𝐿turb
100 pc

)1/4 (
𝑡cool

0.03Myr

)−1/4
,

(18)
where 𝐿turb is the outer scale of the turbulence. Note that
equation (18) only applies in the ‘fast cooling’ (Damix ≡
𝐿turb/(𝑢′𝑡cool,mix) > 1, where Damix is the Damköhler number;
Tan et al. 2021) regime, where the cooling time is much smaller
than the turbulent mixing time 𝐿turb/𝑢′. As we will discuss below,
however, this is always true for surviving clouds.
Tan et al. (2021) note that 𝑢′ is geometry dependent, but find for

shearing layers that

𝑢′ ≈ 50 km s−1M4/5
(

𝑐s,hot
150 km s−1

)4/5 (
𝑡cool

0.03Myr

)−0.1
, (19)

for 𝜒 & 100 and M ≡ 𝑣shear/𝑐s,hot. From equation (18), we can
approximate 𝑣mix ∼ 𝑐s,cold for quick estimates. While Tan et al.
(2021) only considered mixing layers with subsonic to transonic
velocity shears, Yang & Ji (2022) found that beyondM = 1, 𝑢′ in the
mixing region stops scaling withM and saturates. We include this
in our model by settingM → min(1,M). We find good evidence
for this in our simulations.
Equations (18) and (19) assume fully developed turbulence. When

a cloud falls from rest however, there is a transient period when
turbulence is developing. We hence set a time dependent weight
factor 𝑤kh (𝑡) to account for the initial onset of turbulence. Turbu-
lence develops over the timescale for the development of the Kelvin-
Helmholtz instability; on the scale of the cloud 𝑡kh = 𝑓kh𝑡cc where

𝑓kh is some constant of proportionality (Klein et al. 1994). We use
the simplest ansatz that

𝑣mix → 𝑤kh (𝑡)𝑣mix; 𝑤kh (𝑡) = min
(
1,

𝑡

𝑓kh𝑡cc

)
, (20)

which amounts to 𝑣in growing linearly with time over the instability
growth time, until fully developed and capped at unity.Wewill justify
this ansatz in our simulations. Since 𝑡cc is changing over time, we
note that 𝑡/𝑡cc ∝ 𝑣𝑡 ∼ 𝑧, where 𝑧 is distance the cloud has fallen. We
find in our simulations that 𝑓kh ∼ 5 for a constant background and
∼ 1 for a stratified background. In a more realistic setting with less
idealized initial conditions, this time-dependent weight factor might
not be necessary as the initial mixing can be already seeded from
the outflowing section (assuming 𝑣 < 𝑣esc), extrinsic turbulence, or
cooling induced pulsations (Gronke & Oh 2020b, 2022).
What is an appropriate scaling relation for the effective cloud

surface area 𝐴cloud? In cloud crushing simulations, areal growth
follows two phases (Gronke & Oh 2020a; Abruzzo et al. 2022b). In
the ‘tail-formation’ phase, surface area growth is dominated by the
formation of a cometary tail, with 𝐴cloud ∝ 𝐿 ∝ 𝑚, where 𝐿 is the
length of the tail. The stretching of the cloud means that the area
to mass ratio 𝐴cloud/𝑚 ≈ constant, rather than 𝐴cloud/𝑚 ∝ 𝑚−1/3,
as for fixed geometry. Once the tail grows to a length 𝐿 ∼ 𝜒𝑟 (the
hydrodynamic drag length), the cloud becomes entrained in the wind
from efficient momentum transfer, and due to lack of shear the tail
no longer grows. The cloud surface area thereafter scales roughly as
𝐴cloud ∝ (𝑚/𝜌cloud)2/3, as one would expect for a monolithic cloud.
However, our falling clouds do not get entrained - rather the

opposite in fact, as they start at rest and accelerate until reach-
ing some terminal velocity. This means they start ‘entrained’ and
then begin to shear against background gas. They never leave the
‘tail-formation’ phase, since there is a constant velocity difference
between the cloud and background medium. The cloud sees a con-
tinuous headwind which drives turbulence, mixing, and lengthening.
Instead of 𝐴cloud ∝ 𝑚/𝜌cloud or 𝐴cloud ∝ (𝑚/𝜌cloud)2/3, we assume
that 𝐴cloud ∝ (𝑚/𝜌cloud)𝛼, where 𝛼 is a growth scaling exponent
between 2/3 and 1. Physically, this is because both mass growth onto
the surface of the cloud and a lengthening tail are concurrent pro-
cesses. We will demonstrate that this is a good assumption for the
mass growth of the falling clouds in our simulations, where we find
𝛼 ≈ 5/6. The cloud surface area is thus

𝐴cloud ≈ 𝐴cloud,0

(
𝑚

𝑚0

𝜌cloud,0
𝜌cloud

)𝛼
, (21)

where 𝐴cloud,0, 𝜌cloud,0 and 𝑚0 are the initial cloud surface area,
density and mass respectively. Note that since ¤𝑚 ∝ 𝑚𝛼 where 𝛼 =

5/6 is close to 1, the growth is close to exponential3. The cloud
density 𝜌cloud changes because the ambient pressure increases as the
cloud falls in a stratified medium, compressing the cloud.
Using equations (13), (18), (20) and (21), we can write the growth

time 𝑡grow ∼ 𝑚/ ¤𝑚 as

𝑡grow =
𝑡grow,0
𝑤kh (𝑡)

( 𝑐s,150
𝑣

)3/5 ( 𝑡cool
𝑡cool,0

)1/4 (
𝑚

𝑚0

𝜌hot,0
𝜌hot

)1−𝛼
, (22)

3 Similar scalings ¤𝑚 ∝ 𝐴 ∝ 𝑚𝛼, where 𝛼 ≈ 0.8, are seen in simulations
of cloud growth when clouds are embedded in a turbulent medium (Gronke
et al. 2022). This super-Euclidean scaling can be understood as the outcome
of the fractal nature of the mixing surface, where area 𝐴 ∝ 𝑚𝐷/3, where
𝐷 is the fractal dimension (Barenblatt & Monin 1983). In their mixing layer
simulations, Fielding et al. (2020) measure𝐷 ≈ 2.5, which gives 𝛼 ≈ 𝐷/3 =
5/6, consistent with the above.
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where 𝑐s,150 = 150 km s−1 is the sound speed of gas at 106 K and
the initial growth time 𝑡grow,0 is given by

𝑡grow,0 ≈ 35Myr
(

𝑓A
0.23

) ( 𝜒

100

) ( 𝑟

𝑟100

) (
𝐿turb
𝐿100

)−1/4 ( 𝑡cool,0
0.03Myr

)1/4
.

(23)

where 𝑟100 = 𝐿100 = 100 pc and 𝑟 is the initial cloud size. We will
assume generally that 𝐿turb ∼ 𝑟 (since the hydrodynamic instabilities
which drive turbulence and mixing have an outer scale set by cloud
size). We have included an unknown normalization factor 𝑓A to ac-
count for uncertainties arising from geometrical differences between
the single mixing layers in Tan et al. (2021) and our cloud setup
here, the use of the initial size of the sphere as a characteristic scale
(see discussion at the end of Section 6), and any other simplifying
assumptions we might have made. We find in our simulations that
𝑓A ∼ 0.23. We can simplify equations (22) and (23) by ignoring the
weak mass and hot gas density dependence, and setting 𝐿turb ∼ 𝑟, to
obtain:

𝑡grow =
35Myr
𝑤kh (𝑡)

(
𝑓A
0.23

) ( 𝑐s,150
𝑣

)3/5 ( 𝜒

100

) ( 𝑟

𝑟100

)3/4 (
𝑡cool

0.03Myr

)1/4
.

(24)

Equations (22) and (23) should be used when evaluating 𝑡grow
if the velocity 𝑣(𝑡) varies with time (i.e., when solving equations
(1) – (3). However, a key quantity is the growth time at the terminal
velocity 𝑣 = 𝑔𝑡grow, which we shall see determines whether the cloud
can survive (Section 2.3). Inserting 𝑣 = 𝑔𝑡grow into equation (22),
setting 𝑤kh (𝑡) = 1, and using 𝑓𝐴 = 0.23, we obtain the numerical
version of equation (16):

𝑡grow = 40Myr
(
𝑔

𝑔fid

)−3/8 ( 𝜒

100

)5/8 ( 𝑟

𝑟100

)15/32 (
𝑡cool

0.03Myr

)5/32
,

(25)

where 𝑔fid = 10−8 cm s−2. On the other hand, for supersonic speeds,
as we have discussed, the turbulent mixing velocity saturates and
stops scaling with the cloud velocity (Yang & Ji 2022). Setting 𝑣 ∼
𝑔𝑡grow to 𝑣 ∼ 𝑐s,hot instead in equation (24), we find the numerical
version of equation (17):

𝑡grow = 35Myr
(
𝑐s,hot
𝑐𝑠,150

)−3/5 ( 𝜒

100

) ( 𝑟

𝑟100

)3/4 (
𝑡cool

0.03Myr

)1/4
.

(26)

2.3 Cloud Survival

The model we have presented only accounts for mass growth of
the cloud and does not include processes that result in mass loss.
In addition, the initial onset and development of turbulence is only
very crudely incorporated. The absence of these refinements mean
that we should expect differences between model predictions and
simulations, certainly for clouds that are losing mass, and at early
times even for clouds that do survive and grow.We leave the inclusion
and refinement of these components for future work, as we find that
the model as presented works well for surviving clouds. Since the
key assumption of our model is that the cloud is growing, we now
discuss when this is a valid assumption.
As we previously discussed, clouds placed in a wind tunnel en-

countering a hot wind can survive if 𝑡cool,mix < 𝑡cc (equation (12)).
Physically, 𝑡cool,mix can be understood as the time it takes gas to cool
in the downstream tail region of the cloud. Even if the initial pristine
cloud material does not survive, if mixed gas can cool and survive,

then the cold gas mass will increase. Since this mixed gas in the tail is
cooling from the background, it is much more entrained in the wind
than the initial cloud and hence able to survive – once the cold gas
is entrained, it is no longer subject to destruction by shear.
The ‘usual’ survival criterion 𝑡cool,mix < 𝑡cc above is certainly

a necessary condition for survival. If no gas can cool before the
cloud is completely disrupted, the cloud cannot survive. However,
this criterion is not a sufficient one. This is because the physical
process associated with 𝑡cc is not simply surface evaporation. If this
were so, then the above criterion would indeed be sufficient as any
mixing would lead to a net increase in cloud mass. Instead, the entire
cloud is disrupted (i.e. the cloud is broken up into smaller fragments;
Klein et al. 1994; Schneider & Robertson 2017). Hence, as we shall
see, it is not enough that mixed gas can cool faster than the cloud
crushing time.
Compared to a wind tunnel setup, the considerations for an in-

falling cloud are different. Since the cloud’s velocity increases in-
stead, and there is no entrainment, 𝑡cc decreases over time. The only
way for cold gas to survive is if it is produced at a rate faster than it
is destroyed:

𝑡grow < 𝑓S𝑡cc, (27)

where 𝑓S is some constant4 factor of order unity, which we shall cali-
brate in simulations. It encodes the fact cloud destruction takes place
over several cloud crushing times (Klein et al. 1994; Scannapieco
& Brüggen 2015). In evaluating 𝑡cc ∼ 𝜒1/2𝑟/𝑣, the cloud radius is
evaluated at its initial value. As in wind tunnel experiments, this turns
out to be a very good approximation, since the cloud grows mostly in
the streamwise direction. If the velocity is evaluated at the terminal
velocity 𝑣T ∼ 𝑔𝑡grow, then equation (27) is equivalent to:

𝑔𝑡2grow

𝜒1/2𝑟
< 𝑓S. (28)

As we have seen, there are two regimes for 𝑡grow, subsonic and
supersonic infall. The criterion for subsonic infall is 𝑡grow < 𝑡ff
(equation (10)). Using equation (25), and assuming 𝑡ff ∼ 𝑐s,hot/𝑔,
this can be rewritten as 𝑟 < 𝑟sonic, where

𝑟sonic ∼ 150 pc
(

𝑡cool
0.03Myr

)−1/3 (
𝑔

𝑔fid

)−4/3 ( 𝜒

100

)−4/3 ( 𝑐s,hot
𝑐s,150

)32/15
.

(29)
Thus, clouds must be smaller than some critical radius to fall at
sub-virial velocities. In this regime, (𝑣T ∼< 𝑐s,hot), 𝑡grow is given by
equation (25), and the survival criterion, equation (28), becomes:

𝑡cool < 5 × 10−3Myr
(
𝑓S
2

)16/5 (
𝑟

𝑟100

)1/5 (
𝑔

𝑔fid

)−4/5 ( 𝜒

100

)−12/5
. (30)

Note that equation (30) is almost independent of cloud size. Indeed,
𝑡grow/𝑡cc ∝ 𝑔𝑡2grow/𝑟 ∝ 𝑟−1/16, i.e., a very weak scaling. We shall
verify this in Section 4.4.
Is it possible for clouds to survive in the supersonic regime (𝑟 >

𝑟sonic)? This requires 𝑡ff < 𝑡grow < 𝑓𝑆 𝑡cc. This in turn requires
that clouds be smaller than some critical size 𝑟SS, since 𝑡grow/𝑡cc ∝

4 Although we find that a constant factor is sufficient for our purposes,
this coefficient has been found to vary in supersonic flows. For example,
Scannapieco & Brüggen (2015) found that in the cloud crushing setup with
a supersonic wind, 𝑓S scales as

√︁
1 + Mhot whereMhot is the Mach number

of the hot medium (see also Li et al. 2020; Bustard & Gronke 2022, for
alternative scalings). However, we mostly probe the subsonic to transonic
regime.
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Figure 2.Cloud survival for subsonic and supersonic infall for different cloud
sizes and cooling times. Survival is mostly sensitive to the latter.

𝑔𝑡2grow/𝑟 ∝ 𝑟1/2 in the supersonic regime (using 𝑡grow ∝ 𝑟3/4 from
equation (26)). Thus, supersonic infall and survival requires:

𝑟sonic < 𝑟 < 𝑟SS, (31)

where 𝑟SS is given by:

𝑟SS = 100 pc
(

𝑡cool
0.03Myr

)−1 (
𝑔

𝑔fid

)−2 ( 𝜒

100

)−2 ( 𝑐s,hot
𝑐s,150

)12/5
.

(32)
Note that equation (31) can only be fulfilled if 𝑟sonic/𝑟SS < 1, where:

𝑟sonic
𝑟SS

∼ 1.5
(

𝑡cool
0.03Myr

)2/3 (
𝑔

𝑔fid

)2/3 ( 𝜒

100

)2/3 ( 𝑐s,hot
𝑐s,150

)−4/15
.

(33)
Figure 2 shows the survival criteria above (equations (30) and (32))
for 𝑔 = 𝑔fid, 𝜒 = 100, 𝑐s,hot = 𝑐s,150, and 𝑓S = 2. It is clear that
survival is mostly independent of cloud size and depends instead on
the cooling time.
In practice, the subsonic case is of most interest. There, clouds

must satisfy 𝑡grow < min(𝑡ff , 𝑡cc), which translates into a maximum
allowed cloud size (equation (29)) and a maximum allowed cooling
time in cold gas (equation (30)). The latter criterion is quite stringent.
Since the dependence on size in equation (31) is weak, under isobaric
conditions 𝑡cool ∝ 1/𝑃, we can translate equation (30) into a critical
pressure. For 𝑓S = 2, and ignoring the size dependence, equation (30)
is equivalent to:

𝑃 > 3000 k𝐵 Kcm−3
(
𝑔

𝑔fid

)4/5 ( 𝜒

100

)12/5
, (34)

where the RHS is the critical pressure 𝑃crit above which a falling
cloud can survive. We can also write equation (30) in terms of the
cooling time of the hot gas 𝑡cool,hot ∼ 𝜒2𝑡cool [Λ(𝑇cold)/Λ(𝑇hot)] and
the free fall time 𝑡ff ∼ 𝑐s,hot/𝑔 to obtain:

𝑡cool,hot
𝑡ff

. 1
( 𝜒

100

)−2/5 (Λ(𝑇cold)
Λ(𝑇hot)

)
, (35)

where we have ignored the weak dependence on 𝑔, 𝑡cool/𝑡ff ∝ 𝑔1/5.
This is similar to the criterion (𝑡cool,hot/𝑡ff < 1, where 𝑡cool is evalu-
ated at one scale height) for precipitation out of a thermally unstable

background medium in a plane parallel atmosphere5 (McCourt et al.
2012). Since all our analytics and simulations are in the framework
of plane parallel systems, the numerical factor in equation (35) will
likely change in spherical systems. Equation (35) has the very inter-
esting implication that clouds which condense via thermal instability
are able to survive subsequent infall, as long as they are below the
critical size given by equation (29). Note that the physics of stratified
thermal instability which leads to the 𝑡cool,hot/𝑡ff < 1 criterion –
overstable gravity waves driven by cooling – is quite different from
what we have discussed here, so it is non-trivial (perhaps coinci-
dental) that both thermal instability and falling cloud survival have
similar criteria.

3 METHODS

We carry out our simulations using the publicly available MHD
code Athena++ (Stone et al. 2020). All simulations are run in 3D
on regular Cartesian grids using the HLLC approximate Riemann
solver and Piecewise Linear Method (PLM) applied to primitive
variables for second order spatial reconstruction. By default, we use
the second-order accurate van Leer predictor-corrector scheme for
the time integrator, but switch to the third-order accurate Runge-
Kutta method when the former is not stable enough, in particular for
simulations with a constant background where the cooling time is
extremely short throughout the entire simulation.
Our simulation setups consist of rectangular boxes with identical

𝑥, 𝑦 dimensions and an extended vertical 𝑧 axis. They are filled with
static hot 𝑇hot = 106 K gas with initial density 𝑛0 = 10−4 cm−3 at
𝑧 = 0. A cold 𝑇cold = 104 K spherical cloud, initially at rest, is
also inserted, usually a quarter box height from the bottom. This
placement allows us to follow the development of a cometary tail
behind the cloud as it falls. The initial cloud density is perturbed at
the percent level randomly throughout the cloud to reduce numerical
artifacts arising from the initial symmetry.We use outflowing bound-
ary conditions, except at the bottom of the box (negative 𝑧) where the
background profile is enforced in the ghost cells and the velocity is set
to be that of the frame velocity. This is valid as long as cloud material
does not interact with this bottom boundary. The frame velocity is
based on a cloud-tracking scheme we implement where we continu-
ously shift into the reference frame of the center of mass of the cold
gas, defined as gas below a temperature of𝑇 ∼ 2×104 K, an approach
widely used in similar falling cloud simulations (Heitsch et al. 2022)
and wind tunnel simulations (McCourt et al. 2015; Gronke & Oh
2018, 2020a). This scheme allows our simulation box to ‘track’ the
cloud as it falls and hence reduces computational costs. The fiducial
resolution of the boxes are 2562 × 2048 (see Section 5.4 for a res-
olution test). The dimensions of the boxes are 102 × 80 𝑟cloud. This
translates to 𝑟cloud being resolved by ∼ 25 cells.
During the simulations, the clouds are allowed to fall freely under

gravity. We assume a constant gravitational acceleration 𝒈 ≡ −𝑔𝑧,
with 𝑔 = 10−8 cm s−2, as appropriate for the Milky Way, taken from
the fit in Benjamin & Danly (1997) for distances between 1 and

5 It is somewhat more stringent than the requirement for thermal instability
in spherical systems (𝑡cool,hot/𝑡ff < 10; Sharma et al. 2012), where the gravi-
tational acceleration 𝑔 and hence 𝑡ff varies as a function of radius. However, it
has been shown that there is no geometrical difference in cold gas condensa-
tion in plane parallel and spherical geometries; the apparent difference arises
from definitional differences in where 𝑡cool/𝑡ff is evaluated and cold gas is
located (Choudhury & Sharma 2016).
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10 kpc. We discuss the impact of a more realistic gravitational profile
and apply them within the scope of our model in Section 6.
In our implementation of radiative cooling, we assume colli-

sional ionization equilibrium (CIE) and solar metallicity (𝑋 = 0.7,
𝑍 = 0.02)6. We obtain our cooling curve by performing a piece-wise
power law fit to the cooling table given in Gnat & Sternberg (2007)
over 40 logarithmically spaced temperature bins, starting from a tem-
perature floor of 104 K, which we also enforce in the simulation. We
then implement the fast and robust exact cooling algorithm described
in Townsend (2009). For this cooling curve, the cooling time in the
cold gas is 𝑡cool ∼ 0.15Myr. To emulate the effect of heating and
to prevent the background medium from cooling over simulation
timescales, we cut off any cooling above 5 × 105 K. The particu-
lar choice of this value is unimportant (Gronke & Oh 2018, 2020a;
Abruzzo et al. 2022a).
We run two different sets of simulations with different static back-

ground profiles. The first set has gravity acting on a cloud which is
embedded in a constant background, i.e. constant hot gas tempera-
ture, density and pressure. This is obviously unphysical, since there
are no pressure gradients in the background to counteract gravity.
However, it is very useful for understanding the underlying physical
mechanisms which affect the cloud, without the confounding effects
of the varying background which a cloud falling through a stratified
medium experiences. To prevent the background from falling under
gravity, we introduce an artificial balancing force 𝜌hot𝑔 upwards.
The hot background thus feels a net zero force from gravity, while
the cold cloud is negligibly affected. For this set of simulations,
we also vary the cooling time by changing the normalization of the
cooling function by a constant factor Λ0. For example, Λ0 = 100
would be a case where cooling is a hundred times stronger than
the fiducial value, corresponding to cooling an environment where
𝑛hot = Λ0𝑛0 = 10−2 cm−3, or 𝑛𝑇 = 104 Kcm−3, a relatively high
pressure. For the constant background, we adopt Λ0 = 100 as a
default, so that cooling is extremely strong and cloud growth is guar-
anteed. We emphasize that the constant background is simply used
to provide a clean test of our analytic model, so that (for instance) the
cooling time is not a function of position, as in a stratified atmosphere.
The second, more realistic, setup is that of a hydrostatic isothermal

halo. The density profile of the background is thus:

𝑛(𝑧) = 𝑛0 exp
(
− 𝑔𝑚𝐻

𝑘𝐵𝑇hot
𝑧

)
, (36)

where 𝑛0 is the midplane density, 𝑧 is the height above the disk and
𝐻 ≡ 𝑘𝐵𝑇hot/𝑔𝑚𝐻 = 2.8 kpc is the isothermal scale height (assuming
the mean molecular weight ` = 1). This is a simplified model that
is likely to break down close to the disk below 2 kpc, where it likely
underestimates the background density, since the background gas is
cooler. However, this simple model allows us to study the effects
of both a changing background profile and the resultant decrease in
cooling time as the cold gas falls inwards. Besides the initial setup
of the background profile, since we are employing a cloud-tracking
scheme, the boundary cells are set accordingly throughout the course
of the simulation using this background profile and the current height
of the cloud, which we also track.
Our cloud chambers are somewhat artificial in that they are arbi-

trarily long. Thus, for instance, in the stratified case, the cloud can fall
through an unrealistically large number of scale heights (well beyond

6 We phrase our results in terms of cooling times, so they can easily be scaled
for different cooling curves. We note however, that the minimum cooling time
at 𝑇 ∼ 1.5 × 104K, which is dominated by hydrogen cooling, is relatively
insensitive to metallicity.

when the plane parallel approximation is valid). In practice, transi-
tion to a spherical gravitational potential with declining gravitational
acceleration 𝑔 means that even if clouds fall ballistically, they will
only accelerate to transonic velocities, rather than fall supersonically.
However, our setup is a clean probe of the underlying physics. In all
the cases we care about, where the cloud survives, infall is subsonic.
In order to evaluate the cold gas mass 𝑚 as well as other related

quantities such as the mass growth rate, we use a temperature thresh-
old of 𝑇 ∼ 2 × 104 K below which we define the gas to be ‘cold’.
No magnetic fields are included in our simulations. We leave the
exploration of the MHD case to future work.

4 RESULTS : CONSTANT BACKGROUND

Our first objective is to test our semi-analytic model for falling clouds
(equations (1) – (3)) against full 3D simulations. Hence, the first set
of our simulations are set up with a constant background, where
the properties of the background medium are held unchanged as
the cloud falls. We use this setup as a simple way to explore and
test our model in an environment where the cooling time is kept
constant. This allows us to test the various components of our model
by adjusting individual parameters, ceteris paribus.

4.1 Time Evolution

In order to understand the dynamical evolution of a falling cloud,
we first present the time history of various quantities of interest,
both as predicted by the model and as seen in the simulations. Note
that the model (equations (1) – (3)) predicts 𝑚(𝑡), 𝑣(𝑡), and 𝑧(𝑡)
independently, without using any input from the simulations. Figure 3
shows the evolution of these quantities over the course of a simulation
with an initial cloud radius 𝑟 = 300 pc. These are, from left to right
and top to bottom - timescales, cloud velocity, distance fallen, and
the total mass of cold gas. The simulation runs for over 200Myr,
which is between 10 to 15 cloud crushing times.
The various timescales shown in the upper left panel of Fig. 3 are

as follows: The cooling time of the mixed gas 𝑡cool,mix, where mixed
gas is defined as gas at 𝑇mix ∼

√
𝑇hot𝑇cold ∼ 105 K, the free-fall time

𝑡ff = 𝑐s,hot/𝑔, the cloud crushing time 𝑡cc =
√
𝜒𝑟/𝑣, which uses the

initial cloud radius 𝑟 and the instantaneous cloud velocity, and the
instantaneous cloud growth time 𝑡grow = 𝑚/ ¤𝑚, computed using the
mass of cold gas (defined as gas with 𝑇 < 2 × 104 K). For the latter
two timescales (𝑡cc and 𝑡grow), both model and simulation results are
shown for comparison. While wind tunnel setups define 𝑡cc using the
initial wind velocity, we use the instantaneous cloud velocity (defined
as the center of mass velocity of cold gas) instead. This changes with
time - it is initially infinitely long since the cloud starts at rest, but
decreases as the cloud accelerates. Similarly, 𝑡grow is initially infinite,
since there is no turbulence at the start of the simulation (any mixing
would be due to numerical diffusion, since we do not implement
physical diffusion). Mass growth then begins with the initial onset
of turbulence, which we have included in the model via the weight
term 𝑤kh (𝑡). Our crude model for 𝑤kh (𝑡) means that our analytic
model for 𝑡grow is less accurate at these times. However, since 𝑡grow
is in any case long in these stages, with mass increasing very slowly,
inaccuracy inmodeling the growth of turbulence fortunately has little
impact on𝑚(𝑡) (and by extension 𝑣(𝑡) and 𝑧(𝑡)). Themodel performs
well at matching the simulation results for both 𝑡cc and 𝑡grow. Since
𝑡grow ∼ 𝑡ff , the terminal velocity of the cloud here is roughly the
sound speed of the hot gas, as expected from equation (10). For all

MNRAS 000, 1–23 (2022)



Cloudy with A Chance of Rain: Accretion Braking of Cold Clouds 9

0 50 100 150 200
t (Myr)

10−2

10−1

100

101

102

103

Ti
m

es
ca

le
s (

M
yr

)

tgrow, model
tgrow, sim
tcc, sim

tcc, model
tff
tcool, mix

0 50 100 150 200
t (Myr)

101

102

103

v 
(k

m
 s

−1
)

Model
Simulation
vballistic
vT, drag
vT, grow

0 50 100 150 200
t (Myr)

0

10

20

30

40

z (
kp

c)

Model
Simulation

0 50 100 150 200
t (Myr)

10−1

100

101

102

m
/m

0

Model
Simulation

Figure 3. Time evolution of various quantities for a 𝑟 = 300 pc cloud falling in a constant background. From left to right, top to bottom, the panels compare the
growth time 𝑡grow, the velocity 𝑣 , the distance fallen 𝑧, and the cold gas mass 𝑚 of the cloud in the simulation versus the model. The upper panels also include
comparison with other quantities of interest. Model predictions are in good agreement with simulations results.

simulations, 𝑡cool,mix � 𝑡cc, as required to be in the fast cooling
regime.
The upper right panel of Fig. 3 shows the velocity evolution of

the cloud, as measured by the center of mass velocity of the cold
gas. We also show the velocity trajectory from the model, along
with three other characteristic velocities. These are the ballistic ve-
locity 𝑣ballistic = 𝑔𝑡 and the ‘terminal’ drag and growth velocities
𝑣T,drag and 𝑣T,grow respectively, as given by equations (4) and (6).
The terminal velocities8 are computed using the size of the initial
cloud, and we can see that 𝑣T,grow < 𝑣T,drag, as expected. The ram
pressure drag experienced by the cloud is thus much weaker than
the mixing-cooling induced drag due to momentum transfer as hot
surrounding gas is accreted onto the cloud (as expected from the
estimates presented in Section 2.1). The relative contribution of ram
pressure drag can be seen in the small deviation of the model (which

8 While we use the terminology of a ‘terminal’ velocity, 𝑣T,grow ≈ 𝑔𝑡grow is
in fact time dependent here since 𝑡grow has a mass dependence.

includes both effects) from 𝑣T,grow. The cloud initially accelerates
ballistically, before reaching a high enough velocity where the cool-
ing drag force kicks in and slows the cloud down. Since the cooling
drag force operates on a timescale 𝑡grow, the cloud remains ballistic
until 𝑡 ∼ 𝑡grow. This progression means that the cloud can experi-
ence a phase where its velocity is decreasing as it falls. While not
strongly apparent in this setup, this effect can be pronounced when
the background is not constant, which we discuss in the following
section. The model does an excellent job at matching the evolution of
the cloud velocity over time, and in particular the cloud reaches the
asymptotic velocity 𝑣T,grow ≈ 𝑔𝑡grow predicted by the mixing and
cooling induced accretion of hot background gas.

The remaining two lower panels of Fig. 3 show the distance the
cloud has fallen and the total mass of cold gas. Of course, the two
quantities are not independent from the upper panels: we expect to
predict 𝑧(𝑡) accurately sincewe predict 𝑣(𝑡) accurately, andwe expect
to predict 𝑚(𝑡) accurately since we could predict 𝑡grow accurately.
Overall, it is remarkable how well our simple model of ‘accretion

MNRAS 000, 1–23 (2022)



10 B. Tan, S.P. Oh and M. Gronke

100 101 102

m/m0

101

102

103

104

ṁ
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Figure 4. The mass growth rate as a function of cold gas mass for clouds
of different initial sizes. Curves are labelled by the initial cloud radius and
whether they represent model solutions (M) or simulations (S), which are
shown as dashed and solid lines respectively. Using a scaling of 𝛼 = 5/6 in
the model matches the mass growth rate in the simulations well.

braking’ matches the simulations. We now explore how it performs
in different regions of parameter space.

4.2 Area Growth Rate

We first investigate the areal growth scaling in equation (21), where
we stated that we expect the value of 𝛼 to lie between 2/3 and 1.
Equation (22) can be rewritten as

¤𝑚 =
𝑚0

𝑡grow,0

(
𝑣

𝑐s,6

)3/5 (
𝑚

𝑚0

)𝛼
. (37)

Figure 4 shows the mass growth rate of cold gas ¤𝑚 as a function
of the cold gas mass 𝑚 normalized by the initial cloud mass 𝑚0 in
three simulations with 𝑟 = 100, 300 and 1000 pc.We expect from our
model that past the turbulent onset and acceleration phases, the cloud
should reach terminal velocity and its mass growth rate should thus
follow lineswith slope𝛼. The dashed lines in Fig. 4 showmass growth
rate curves from our model with 𝑓𝐴 = 0.23 and 𝛼 = 5/6. These
choice of values give a good match to the mass growth rate curves
from simulations represented by the solid lines, which are obtained
by smoothing the instantaneous values of ¤𝑚 represented by the grey
points. The slopes are initially steeper as the cloud accelerates. As
discussed in the Section 2, we find that 𝛼 ∼ 5/6 seems to be an
good fit to simulation data – supporting the idea that both processes
of cloud growth on the surface (𝛼 ∼ 2/3) and in a lengthening tail
(𝛼 ∼ 1) are at play (or that the effective surface area scales in a fractal
manner).
As noted above, we also observe a ‘burn-in phase’, where the

mass growth is initially low because turbulence is developing around
and behind the cloud due to instabilities, then ramps up quickly due
to both turbulent onset and a rapid increase in surface area. Small
sudden drops are associated with cold mass that exits the simulation
box due to its fixed size, which are likely to occur at late times in
our simulations. The computational cost of tracking cloud growth
over longer periods of time increases significantly as the clouds keep
growing in size and length which require increasingly larger boxes
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Figure 5. Upper panel: The growth time as a function of time for clouds
of different sizes in the effective cooling regime (Λ0 = 100). All clouds
shown here are growing and survive. Solid lines show model predictions,
while colored points represent simulation results. Lower panel: The growth
time where turbulence is fully developed (𝑤kh (𝑡) = 1) as a function of
cloud size. Dashed lines show expected analytical scalings in the subsonic
(𝑡grow ∝ 𝑟15/32) and supersonic (𝑡grow ∝ 𝑟3/4) regimes, while the solid orange
line shows the model predictions. Both are in agreement.

to contain. For the large 1 kpc radius cloud, we were unable to run
the simulation for a sufficient time to see the mass growth rate reach
the same steady growth as convincingly as the smaller clouds, but
nevertheless the mass growth is in line with model predictions for all
growing clouds.

4.3 Scalings

Toverify our analytic scalings for 𝑡grow in the subsonic and supersonic
regimes, equations (25) and (26), we vary each parameter to test the
scalings explicitly. However, the parameters cannot be arbitrarily
varied – they are limited to the region of parameter space where the
clouds survive. This is given by equation (30) and (31) for subsonic
and supersonic infall respectively.

MNRAS 000, 1–23 (2022)



Cloudy with A Chance of Rain: Accretion Braking of Cold Clouds 11

101 102 103

Λ0

101

102

103

t gr
ow

 (M
yr

)

Simulation
Model
tgrow ∝ Λ−5/32

0

tgrow ∝ Λ−1/4
0

Figure 6. The growth time for different cooling strengths Λ0, which modify
the cooling time 𝑡cool ∝ Λ−1

0 . Dashed lines show expected analytical scalings,
while the solid orange line shows the model predictions. As expected, the
dependence of 𝑡grow on 𝑡cool is weak.

4.3.1 Scaling With Cloud Size

We first vary the initial cloud size 𝑟. The upper plot of Fig. 5 shows
𝑡grow as a function of time for the range of cloud sizes, while the
lower plot shows the scaling of 𝑡grow with 𝑟, measured at the times
indicated by the black circles in the upper plot where the weight
function in the model reaches unity, or in other words, turbulence
and mixing has fully developed. In the upper plot, simulation results
are represented by the small points colored by cloud size. Solid lines
show model predictions. In the lower plot, the orange line represents
the model predictions while the analytic scalings of 𝑟15/32 and 𝑟3/4
derived above (before and after saturation of turbulent velocities for
subsonic and supersonic infall respectively) are plotted as dashed
lines. The simulation results match the model and analytic scalings.

4.3.2 Scaling With Cooling

Next, we vary the cooling strength parameterΛ0 by a factor of 3 above
and below the fiducial value. Figure 6 shows the scaling of 𝑡grow
with Λ0 ∝ 1/𝑡cool, along with the simulation and model results as
before. The simulations are in agreement with the weak 𝑡cool scaling.
Despite this, as we will see later, survival is sensitive to cooling
time rather than size, and hence it is difficult to probe the scaling to
weaker cooling. Unfortunately, reducing the cooling strength further
leads to cloud destruction. Higher cooling strengths require shorter
timesteps and larger boxes, and are hence numerically challenging.
While we vary the cooling strength explicitly here, strong cooling
also corresponds to denser environments where higher densities lead
to shorter cooling times.

4.3.3 Scaling With Gravity

We also vary the gravitational strength 𝑔 from 0.1 to 3 times the
fiducial value. Figure 7 shows the scaling of 𝑡grow with 𝑔. As before,
we also plot the model and the expected 𝑔−3/8 and 𝑔0 scalings, for
subsonic and supersonic infall respectively. Simulation results are
consistent with the model in both cases.
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Figure 7.The growth time for different gravitational fields. Dashed lines show
expected analytical scalings 𝑡grow ∝ 𝑔−3/8, 𝑔0 for subsonic and supersonic
infall respectively, while the solid orange line shows the model predictions.
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Figure 8. The growth time for different overdensities. Dashed lines show
analytical scalings 𝑡grow ∝ 𝜒5/8, 𝜒 for subsonic and supersonic infall re-
spectively. At low overdensities (𝜒 ∼< 100), the simulations differ from the
expected scalings, which we attribute to lower turbulent velocities in mixing
layers. If this is taken into account, simulations andmodels (dotted green line)
match. We also test one case at high overdensity 𝜒 ∼ 1000 for cluster-like pa-
rameters, where multiple parameters were varied. The model and simulations
match well.

4.3.4 Scaling With Density Contrast/Hot Gas Temperature

Lastly we vary 𝜒 by changing the background temperature. Figure 8
shows the scaling of 𝑡grow with 𝜒. Unlike the previous sections, we
do not see the expected 𝜒5/8 scaling. This can be understood by
the scaling of the turbulent velocity 𝑢′ with 𝜒; in our derivation,
we assumed 𝑢′ is independent of 𝜒. As seen in the middle panel
of Fig. 12 of Tan et al. (2021), this is true for 𝜒 & 100, but for
𝜒 . 100, then 𝑢′ ∝ √

𝜒. If we put in this scaling 𝑢′ ∝ √
𝜒, we see

that the 𝜒 dependence of 𝑡grow becomes weaker and better matches
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Figure 9. Overview of the fate of cold gas in the ‘constant background’
case as a function of cloud size and different cooling strengths. Points denote
whether clouds in the corresponding simulations are growing inmass or losing
mass; question marks denote cases where the fate is uncertain. The breaks
correspond to where the the turbulent velocity 𝑢′ saturates when the cloud
velocity reaches the sound speed of the hot background 𝑐s,hot. This causes
𝑡grow/𝑡cc to increase with cloud size instead. In the simulations marked with
‘?’, the final fate of the cold gas is unclear.

the simulation results. We expect the our predicted 𝑡grow ∝ 𝜒5/8

scaling to hold at higher 𝜒, but the simulations required to probe
this regime in detail require very long boxes and are beyond the
numerical scope of this work. We also plot a single simulation, along
with the model expectation, where multiple parameters were varied,
not just 𝜒, so as to sample a different region of parameter space with
higher 𝜒. These are plotted as standalone points. For this particular
simulation, the parameters we have used are 𝑟 = 300 pc, 𝜒 = 1000,
𝑔 = 4 × 10−8 cm/s2 and 𝑛 = 1 cm−3. Cooling here is not boosted
since we use a high density instead (i.e. Λ0 = 1). We find that the
growth time for this simulation remains in line with the model.

4.4 Survival

Since we are primarily interested inmodeling clouds which are grow-
ing, it is useful to determine when we are in such a growth regime. In
Section 2.3, we argued that this criterion is given by 𝑡grow < 𝑓S𝑡cc,
where 𝑓𝑆 is some constant factor of order unity. We now test this
by running a number of simulations to explore the parameter space,
varying the initial cloud radius between 3 pc and 3 kpc, and the cool-
ing time between the fiducial value and 100 times shorter. Figure 9
shows7 the fate of simulated clouds for various cloud sizes and cool-
ing times. Solid lines denote a contour of constant cooling strength,
while the vertical axis shows the ratio of the growth time to the cloud

7 Question marks denote simulations where it is unclear what the fate of the
cloud is. For example, the cloudmight break up, with one portion accelerating
and getting destroyed,while leaving somemuch slower fallingmaterial behind
it that possibly survives and grows. The cold material then hits the boundary
of the box at the top or bottom and we cannot track further evolution. This
seems to happen near our survival boundary, where the long term fate of
the cloud can be sensitive to cloud dynamics. It also happens for the largest
clouds.
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Figure 10. Comparison of various survival criteria (dashed lines) to the
simulation results as a function of cloud radius and cooling strength. The
criteria are satisfied above the respective lines. The symbols indicate whether
a cloud grows or gets destroyed (as in Fig. 9).

crushing time 𝑡grow/𝑡cc. These timescales are calculated by evaluat-
ing the model where our weight factor 𝑤kh (𝑡) = 1. Physically, this is
where turbulence has fully developed and 𝑡grow stabilizes. Alterna-
tively, evaluating 𝑡grow/𝑡cc at some time 𝛼𝑡cc yields the same result,
but can change the normalization of 𝑡grow/𝑡cc (this ratio gets larger
as 𝛼 gets smaller since 𝑤kh (𝑡) < 1). The implication here is that the
threshold value of 𝑓S is depends on when 𝑡grow/𝑡cc is evaluated.
In general, the results are in line with criterion 𝑡grow/𝑡cc ∼< 𝑓S ∼ 4

for survival, and the discussion in Section 2.3. Rather than being
sensitive to cloud size, clouds get destroyed when cooling is weak,
and only survive when cooling is strong enough. Cloud size does
begin to play a role when 𝑡grow > 𝑡ff , so that infall velocities become
supersonic, and 𝑡grow/𝑡cc ∝ 𝑟1/2. As discussed in Section 2.3, this
happens when 𝑟 > 𝑟sonic, (equation (29)); 𝑟sonic ∼ 200pc in our
models, where we see the change to a 𝑡grow/𝑡cc ∝ 𝑟1/2 scaling. The
low mass growth rates at high Mach number means that it is harder
for clouds to fall supersonically and still survive; it is only possible in
a limited size range 𝑟sonic < 𝑟 < 𝑟SS (where 𝑟SS is given by equation
(32)).
To reinforce the point that 𝑡grow/𝑡cc < 𝑓S is a more stringent

survival criteria than others, in Fig. 10 we show the boundaries in
the 𝑟 − Λ0 plane for two other possible criteria: (i) 𝑡cool,mix < 𝑡cc,
which is the criterion for cloud survival in a wind, (ii) Damix ≡
𝐿/(𝑢′𝑡cool,mix) > 1, which is the criterion for a multi-phase medium
in the presence of turbulence and radiative cooling (Tan et al. 2021).
The two criterion are closely related. In Fig. 10, we see that clouds
which satisfy these criterion are nonetheless destroyed, while the
more restrictive criterion 𝑡grow/𝑡cc < 𝑓S straddles the boundary be-
tween destruction and survival. Note that for sufficiently small clouds,
𝑡grow < 𝑡cool,mix (blue dashed line) instead of the other way round.
However, this lies in the cloud destruction regime and thus is irrele-
vant.

4.5 Growth and Free-fall Timescales

In Section 2, we saw that if the drag force from mass accretion
balances gravity such that 𝐹grav ∼ 𝐹grow, then we expect that
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Figure 11.Evolution of the falling velocity of the cloud as a function of (evolv-
ing) 𝑡grow/𝑡ff for different cloud sizes. Black triangles indicate the direction
of evolution at 𝑡 = 𝑡ff . As the cloud accelerates, the growth time is decreasing
until it stabilizes at the growth terminal velocity 𝑣T,grow/𝑐s,hot ∼ 𝑡grow/𝑡ff .

𝑡grow/𝑡ff ∼ 𝑣T,grow/𝑐s,hot. We show that we do indeed see this in
our simulations in Fig. 11. The blue dotted line shows the equality,
while the colored points are simulation results for various cloud sizes
over time. Solid lines show the model values for the same time range
as the corresponding simulations. Initially, 𝑡grow is large as turbulence
develops, but once they reach the terminal velocity 𝑣T,grow ∼ 𝑔𝑡grow,
falling clouds indeed obey the scaling 𝑣grow ∼ 𝑐s,hot (𝑡grow/𝑡ff , as
seen from the fact that the clouds evolve to the blue dotted line and
stays there.

5 RESULTS : STRATIFIED BACKGROUND

In our second set of simulations, we consider a more realistic setup of
a cloud falling through an isothermal hydrostatic background. This
means that 𝑃, 𝜌 ∝ exp

( 𝑧
𝐻

)
, where 𝑧 is the vertical height the cloud

has fallen and 𝐻 is the scale height of the background medium. As
mentioned in Section 3, the density profile of the background is thus:

𝑛(𝑧) = 𝑛0 exp
( 𝑧
𝐻

)
, (38)

where 𝑛0 = 10−4 cm−3 is the initial background density, 𝑧 is the
height the cloud has fallen and 𝐻 ≡ 𝑘𝐵𝑇hot/𝑔𝑚𝐻 = 2.8 kpc is the
isothermal scale height (assuming themeanmolecular weight ` = 1).
We define our origin where the cloud begins to fall, hence density
increases rather than decreases exponentially with 𝑧. While the use
of a constant gravitational acceleration 𝑔 is not in general a realistic
assumption, this simplification helps in isolating the relevant physics.

5.1 Time Evolution

We now present the time evolution of a simulation where the cloud
comfortably survives, along with the model predictions for various
quantities. Unlike the constant background setups, we do not artifi-
cially boost the cooling function in these simulations. Instead, the
cooling time naturally varies with density and hence height. Fig. 12
shows the evolution of these quantities over the course of a simulation

with an initial cloud radius 𝑟 = 1 kpc and 𝑔 = 𝑔fid = 10−8cm s−2. As
before, these are, from left to right and top to bottom - timescales,
cloud velocity, distance fallen, and the total mass of cold gas.
The upper left panel of Fig. 12 shows the same timescales as in

Fig. 3: The cooling time of the mixed gas 𝑡cool,mix, which decreases
as the clouds falls, the free-fall time 𝑡ff = 𝑐s,hot/𝑔, the cloud crushing
time 𝑡cc =

√
𝜒𝑟/𝑣, which uses the initial cloud radius 𝑟 and the in-

stantaneous cloud velocity, and the instantaneous cloud growth time
𝑡grow = 𝑚/ ¤𝑚, computed using the mass of cold gas. For the latter
two timescales (𝑡cc and 𝑡grow), both model and simulation results
are shown for comparison. We have adjusted the value of 𝑓kh in the
weight term 𝑤kh (𝑡) to be 1 for the stratified background as that is
more in line with simulation results. The suggests a more rapid onset
of turbulence for clouds that are falling into a denser background
(this parameter is of course, only a crude approximation of the rele-
vant processes involved). The model performs well at matching the
simulation results for both 𝑡cc and 𝑡grow, although marginally less
so than for the constant background. This can be attributed to the
cloud initially travelling through a region of parameter space where
it is not in the growth regime. Since our model does not include
cloud destruction, this leads to a deviation of the simulation from the
model. The velocity evolution of the cloud is shown in the upper right
panel. The cloud initially accelerates ballistically, before the cooling
drag force kicks in and slows the cloud down. Since the cooling drag
force operates on a timescale 𝑡grow, the cloud remains ballistic until
𝑡 ∼ 𝑡grow. During this time, the cloud can reach velocities greater
than the eventual terminal velocity 𝑣T,grow = 𝑔𝑡grow. The subsequent
deceleration due to cooling slows the cloud down such that the ve-
locity turns around and starts to decrease. This has implications for
cloud survival which we discuss further on. At late times the cloud
velocity approaches a roughly constant value. We now delve into this
further.

5.2 Terminal Velocity

Previously, we argued that the terminal velocity should approach a
value 𝑣T,grow ≈ 𝑔𝑡grow (equation (6)). Indeed, it does so, after some
‘overshoot’ as described above. However, as apparent from equation
(22), 𝑡grow itself is a function of parameters such as 𝑡cool (𝑡), 𝑚(𝑡),
𝜌h (𝑡) which change with time as the cloud falls through a stratified
atmosphere. Thus, one might expect 𝑡grow and consequently 𝑣T,grow
to vary with time as the hot plasma surrounding the cloud increases
in density. Instead, what is surprising from Fig. 12 is that 𝑡grow
asymptotes to a constant value. Indeed, it does so quite early, before
𝑣 → 𝑣T,grow. How can we understand this?
From equation (22), and using 𝑡cool ∝ 1/𝑛 ∝ exp

(−𝑧
𝐻

)
, we can

write:

𝑡grow (𝑡) ∝ 𝑣(𝑡)−3/5
(
𝑚(𝑡)
𝑚0

)1−𝛼
exp

(
−( 5
4
− 𝛼) 𝑧(𝑡)

𝐻

)
. (39)

as a time-dependent quantity. The rate at which 𝑡grow changes is:

𝑑ln𝑡grow
𝑑𝑡

=
¤𝑡grow
𝑡grow

= −3
5
¤𝑣
𝑣
+ (1 − 𝛼)

𝑡grow
− ( 5
4
− 𝛼) 𝑣

𝐻
(40)

From equation (6), this can be contrasted with the rate at which 𝑣
evolves:

𝑑ln𝑣
𝑑𝑡

=
¤𝑣
𝑣
=

𝑔

𝑣
− 1
𝑡grow

(41)

We can make two observations. Firstly, equation (40) has terms of
opposing sign. Thus, it is possible that ¤𝑡grow → 0, i.e. 𝑡grow ≈ const,
rather than evolving with background quantities. Physically, this is
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Figure 12. Time evolution of various quantities for a 𝑟 = 300 pc cloud falling in a stratified background. From left to right, top to bottom, the panels compare
the growth time 𝑡grow, the velocity 𝑣 , the distance fallen 𝑧, and the cold gas mass 𝑚 of the cloud in the simulation versus the model. The upper panels also
include comparison with other quantities of interest. Model predictions are in good agreement with simulations results.

because of a negative feedback loop. Suppose 𝑡grow decreases as
a cloud falls into denser surroundings. The subsequent increase in
mass causes 𝑡grow to increase (from equation (39)). The opposite is
also true: if 𝑡grow is large, the cloud will fall faster (due to weaker
accretion drag) into denser regions, reducing 𝑡grow. Secondly, by
comparing terms on the right-hand side of equations (40) and (41),
the timescale on which 𝑡grow equilibrates to its steady-state value is
comparable to the timescale onwhich 𝑣 equilibrates to its steady-state
value9, 𝑣T,grow = 𝑔𝑡grow. Thus, ¤𝑣, ¤𝑡grow → 0 on similar timescales.
From setting equations (40) and (41) to zero, the steady-state value
of 𝑡grow, and hence 𝑣T,grow, is given by:

𝑣T,grow = 𝑔𝑡grow ≈
√︄
1 − 𝛼

5
4 − 𝛼

𝐻𝑔 ≈
√︂
2
5
𝑐s,hot, (42)

where in the last step we use 𝛼 = 5/6 and 𝑔 ≈ 𝑐2𝑠/𝐻 for an isothermal
atmosphere. This velocity is shown by the grey line in Fig 12. This

9 Indeed, because of ‘velocity overshoot’, 𝑡grow equilibrates first.

then has the remarkable implication that in an isothermal atmosphere
with constant gravity, 𝑓sub−vir = 𝑣T/𝑐s,hot = 𝑡grow/𝑡ff (equation (10))
of a cloud where accretion induced drag dominates is independent of
all properties of the system except cloud geometry, specifically 𝛼. For
our measured value of 𝛼 = 5/6 from infalling clouds with cometary
tails, we predict 𝑓sub−vir = [(1− 𝛼)/(5/4− 𝛼)]1/2 ≈ 0.6. In Fig. 13,
we compare velocity evolution in our model (equations (1) – (3)),
to the asymptotic velocities from equation (42), for different cloud
sizes and gravitational fields. Equation (42), which only depends
on 𝛼, correctly predicts the asymptotic velocity. Note, however, that
reaching the asymptotic velocity requires falling through many scale
heights, and a planar g ≈ const isothermal atmosphere may not be
realistic over such lengthscales. ‘Velocity overshoot’ also implies that
large clouds (which exhibit stronger overshoot) might be seen to fall
faster than predicted. In systems with varying 𝑔(𝑟) and 𝑇 (𝑟) (and
thus non-constant scale heights), the result can be more complex,
and the most straightforward way to arrive at predictions is to simply
integrate the set of ODEs, equations (1) – (3). We will show an
example in Section 6.2.
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Figure 13. Velocities in a stratified environment converge to a constant value
that only depends on 𝛼 (where area 𝐴 ∝ 𝑀 𝛼), independent of all other
properties such as cloud size, or gravity. Curves show velocity evolution in
ourmodel (equations (1) – (3)), while solid lines give the asymptotic velocities
from equation (42).
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Figure 14. The mass growth rate as a function of cold gas mass for clouds of
different initial sizes and different gravitational strengths. Curves are labelled
by the initial parameters and whether they represent model solutions (M) or
simulations (S), which are shown as dashed and solid lines respectively.

5.3 Scaling With Cloud Size and Gravity

In Fig. 14, we compare the mass growth rates as a function of mass
for simulations with varying initial cloud sizes and gravitational
strengths to model predictions. Varying 𝑔 allow us to test the model
for different scale heights. We can see that the model predictions
are in good agreement with simulations results. In all cases, the
simulations converge to the 1/𝑡grow slope predicted by the model.
The divergence at early time is due to the fact that for this setup, the
clouds start in a destruction regime since cooling is relatively weak.
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Figure 15. The mass growth rate as a function of cold gas mass for a 𝑟 =

300 pc cloud with 𝑔 = 𝑔fid at different resolutions (8× higher and lower
mass resolution than in the fiducial run, respectively). The simulations are
relatively well converged.
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Figure 16. The fate of clouds of different size falling in stratified backgrounds
with different gravitational strengths. Survival criterion evaluated at different
times are shown. The best survival criterion is given by the teal curve, i.e.
equation (27) evaluated at the maximum velocity, for 𝑓𝑆 = 3.

5.4 Resolution Convergence

To test if our results for mass growth rates are converged. we run
a 𝑟 = 300 pc cloud with 𝑔 = 𝑔fid at various resolutions, varying
the fiducial resolution by a factor of 2. Fig. 15 shows that the three
resolutions show little difference in mass growth rates and that the
simulation appears to be converged, although the higher resolution
simulation matches the model slightly better – the cloud is disrupted
less initially and reaches the model growth rate more rapidly.
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Figure 17. Snapshots of the projected density weighted temperature through the box (temperature here is hence just an indication of the amount of cold gas
when projected along the y-axis) for a 100 pc and a 300 pc cloud at various points in their evolution. The former is disrupted completely while the latter reaches
the survival zone and grows. 𝑥 and 𝑧 here simply reflect the size of the box along the respective axes normalized by cloud size.

5.5 Survival in a stratified background

For a cloud falling in a constant background we found that the sur-
vival criterion was given by a competition between the growth and
destruction timescales of the cloud: 𝑡grow < 𝑓S𝑡cc where 𝑓S is a con-
stant factor. We wish to ascertain if the same condition applies to
clouds falling in a stratified background.
In the case of a constant background, 𝑡grow changes very little over

time (once turbulence has developed), with only a very weak scaling
with mass, and cooling is strong enough so 𝑣 approaches 𝑔𝑡grow
without ‘overshooting’, something we noted in Fig. 12 above. For
a stratified background, both these assumptions do not hold - 𝑡grow
changes continuously with background density, and an overshoot is
often observed. Since our initial conditions are in the regime where
clouds do not survive, surviving clouds are those that are able to
survive long enough to enter the growth zone.
One ansatz would be to use the asymptotic value of 𝑡grow and 𝑣 that

we derived above in equation (42) and evaluate the survival criteria

there. This gives:

𝑟 >
𝑣2T,grow
𝑔 𝑓S

√
𝜒

(43)

This condition is given by the blue dashed line in Fig. 16. Note that
it is a lower bound on 𝑟 , since 𝑣T,grow is independent of 𝑟 . It has the
right qualitative behavior as a survival criterion, but does not seem
to match the survival thresholds seen in the simulations. Clouds have
to fall many scale heights to reach the asymptotic velocity given by
equation (42) – often survival is determined much earlier. Indeed,
the falling clouds often overshoot this asymptotic velocity as they
initially fall ballistically, as seen in Fig. 16. We can estimate the time
where gravity and cooling balance:

¤𝑚𝑣 ∼ 𝑚

𝑡grow
𝑣 ∼ 𝑚𝑔

𝑡

𝑡grow
(44)

assuming the cloud is falling ballistically in this initial phase. Hence,
𝑡 ∼ 𝑡grow is the time where the cloud is slowed from its ballistic
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free falling trajectory. If we evaluate equation (27) at this time in the
simulation, we can solve numerically for some 𝑟crit. Of course, this
only makes sense if 𝑣(𝑡 = 𝑡grow) > 𝑣T,grow, i.e. there is an overshoot
so 𝑡cc is shorter. The larger the difference in the two velocities, the
more likely the cloud is to be destroyed in this overshooting phase. In
Fig. 16, we show this limit in the orange dashed line. We see that this
matches the simulation results more closely for larger values of 𝑔,
where the clouds accelerate to higher velocities. Ultimately, it is the
maximum velocity that determines if a cloud survives. We thus show
in the red and teal curves in Fig. 16 the survival criterion evaluated
at 𝑣 = 𝑣max from the model. The red curve use 𝑓S = 4 as in the
previous section, while the teal curve has 𝑓S = 3, which seems to be
a better match to the simulation results. It is unsurprising that we find
a different value of 𝑓S here, since we are evaluating our quantities at
a different time.
In Fig. 17, we show the evolution of the 100 pc and the 300 pc

cloud for 𝑔 = 𝑔fid. The 100 pc cloud does not survive and is disrupted
completely, while the 300 pc starts to get disrupted but survives long
enough to reach the zone of growth and then grows. Note the tail
growth in the surviving case. To summarize, we have looked at
clouds that start outside the growth zone in a stratified medium, and
find that in order to survive, the cloud has to make it to the growth
zone. Since the cloud is accelerating ballistically before it reaches
high enough pressures where cooling is efficient enough for it to grow
and slow down, only large clouds can survive this infall. We explore
the implications of the survival conditions in this and the previous
section on astrophysical systems of interest in the following section.

6 DISCUSSION

6.1 High Velocity Clouds

3D simulations of clouds falling under gravity with mixing and cool-
ing processes included have only been studied to a limited extent
previously. Heitsch & Putman (2009) concluded that clouds below
104.5M� are disrupted within 10 kpc. Notable differences in setup
include a smaller box length along the tail direction and starting ini-
tially with colder clouds, as their temperature range extended down
to 100K. Heitsch et al. (2022) focused on metallicity measurements,
tracing original versus accreted cloud material. They found that most
of the original cloud material does not survive and is instead re-
placed by accreted gas which mostly happens in the tail. Grønnow
et al. (2022) observed cloud growth in MHD simulations but did
not follow the clouds for many cloud crushing times. We have fol-
lowed up by providing a model for the mass growth of such clouds
based on the underlying process of turbulent mixing and cooling,
so as to tackle the key questions of when HVCs can survive, how
much mass they accrete, and how fast they travel. We then tested the
model against a suite of numerical simulations. What then are the
implications for HVCs?
In Fig. 18, we show our estimates for cloud survival in a Milky

Way like profile in the cloud size-initial height parameter space.
Specifically, we employ the profiles from Salem et al. (2015) who
combine the density profile of Miller & Bregman (2015) with a
temperature profile mapped from a NFW halo (Navarro et al. 1997),
which we also use to set the gravitational profile. In the region of
interest, 𝑇 ∼ 106 K. Figure 18 shows the ratio of the growth time and
the cloud crushing time 𝑡grow/𝑡cc evaluated at the maximum velocity
the cloud reaches along its trajectory. We also show the threshold of
survival (equation (27)) at∼ 4 from the previous section. The analytic
expectation (equation (34)) for where cooling is strong enough for
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Figure 18. Survivability of HVCs in Milky Way conditions with a size 𝑟cl
and dropping height 𝑑0. For clouds outside the survival region given by
equation (34), the color coding corresponds to the ratio 𝑡grow/𝑡cc evaluated
at the maximum velocity along the cloud trajectory. The horizontal white
dashed line shows where the survival criterion equation (27) is satisfied for
𝑓S = 4. Large clouds that fall in from large distances can still survive as they
are not destroyed before reaching the survival region.

clouds to survive regardless is demarcated by the white dashed line.
Outside this region, larger clouds can survive falling from further
out, simply from the fact that 𝑡cc ∝ 𝑟cl.
More generally however, Fig. 18 shows that except for these larger

(& 100 pc) clouds, HVCs in the Milky Way should only survive if
they start at an initial height of 𝑑0 . 10 kpc. Most HVC complexes
detected do indeed fall within this regime –with the notable detection
of the ones associated with the LMC and its Leading Arm located at
& 20 kpc (Richter et al. 2017).
While this prediction seems to explain the observed survival of

most HVCs, we want to highlight that due to the mass transfer from
the hot to the cold medium, most surviving clouds in the Milky Way
in our model would fall at 𝑣GSR ∼ 70 km/s (equation (42)) and might
thus have velocities 𝑣LSR which are too low to be classified as HVCs.
Such a population of intermediate to low velocity clouds is of course
to be expected even from simply studying the velocity distribution
of HVCs and “filling in” the gap at 𝑣LSR ∼ 0, and has been the
subject of several theoretical studies (e.g. Peek et al. 2007; Zheng
et al. 2020) – as well as observational attempts to locate them (e.g.
Peek et al. 2009; Bish et al. 2021). Thus far, there does not seem to be
a firm conclusion on the existence of such a low-velocity population.
Our work provides a theoretical foundation for the existence of such
clouds and predicts an overabundance of them in theMilkyWay halo
at lower heights (. 10 kpc).
An interesting example of a nearbyHVC is the Smith Cloud (Smith

1963), lying only 3 kpc below the galactic plane with a metallicity of
∼ 0.5M� , and which is falling towards the galactic plane at velocity
𝑣𝑧 ∼ 70 km/s (Fox et al. 2016). A longstanding mystery has been
explaining the survival of the Smith Cloud at its current location. A
simple ballistic analysis suggests that the cloud might have already
passed through the disk (Lockman et al. 2008) and should hence have
been disrupted, in which case some mechanism is needed to explain
its survival, such as the cloud being embedded in a dark matter sub-
halo, which would shield the gas and extend its lifetime (Nichols &
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Bland-Hawthorn 2009). It is possible that the relative highmetallicity
and survival of the Smith Cloud can be potentially explained instead
by accretion of ambient material driven by turbulent mixing and
cooling. Henley et al. (2017) ran a wind tunnel simulation with the
aim of reproducing a Smith cloud like setup, and found entrainment
of the background gas largely in the tail of the cloud. Galyardt &
Shelton (2016) ran simulations of the Smith Cloud with gravity and
in a stratified background. They concluded that if the Smith Cloud
was in a dark matter sub-halo, it would comprise gas accreted only
after the sub-halo passed through the disk. Alternatively, if the Smith
Cloud was not accompanied by such a sub-halo, then it must be on
first approach, since the cloud would not survive its journey through
the Galactic disk. Our model could naturally explain the survival of
a Smith Cloud that was on first approach, as it fulfills the survival
criterion Eq. (27), i.e., it falls within the ‘survival zone’ of the Milky
Way’s halo. The trajectory in this case would be very different from
the ballistic one since the accretion dynamically affects the cloud.
Since the terminal velocity is independent of the cloud size, one

would expect no observable relationship between, for instance, cloud
column density and infall velocity, although there may be significant
scatter since this requires the cloud velocity to ‘turn around’ and reach
asymptotic terminal velocity. This is consistent with observations
(Westmeier 2018).
We have thus far considered clouds that are infalling from large

distances and potentially feed the disk. In our model, HVCs and
IVCs can continually grow in mass once they are near enough to
the disk. It therefore also gives credence to the notion that fountain-
driven accretion can supply the disk with fuel for star formation: cold
gas thrown up into the halo ‘comes back with interest’, by mixing
with low metallicity halo gas which cools and increases the cold gas
mass (Armillotta et al. 2016; Fraternali 2017). Such low metallicity
gas is required to satisfy constraints from disk stellar metallicities
and chemical evolution models (Schönrich & Binney 2009; Kubryk
et al. 2013). The equations for mass transfer and velocity derived in
this work can also be incorporated into semi-analytic ‘fountain flow’
models and checked against observations.

6.2 Clusters

Galaxy clusters are amongst the largest virial systems in the universe
and thus present opportune test beds for the comparison of observa-
tions and theoretical models of galactic properties and evolution. The
hot intracluster medium (ICM) in such environments reaches temper-
atures in the range of 107–109 Kwhich can be probed observationally
via X-ray emission originating from the thermal bremsstrahlung ra-
diation of this hot diffuse plasma (Sarazin 1986). However, the ICM
does not exist simply in a single phase. Observations from measure-
ments of carbon monoxide (CO) which traces cold molecular gas
find an abundance in these central cluster galaxies, with molecular
gas mass correlating with X-ray gas mass (Pulido et al. 2018). One
theory for the origin of the cold molecular gas is that they develop
from thermal instabilities triggered in the wakes of cooling updrafts
of radio bubbles that rise and lift low entropy X-ray gas (McNamara
et al. 2016). These form the cold filaments observed to trace the
streamlines around and behind the bubbles, which should eventually
decouple from the velocity structure of the hot flow and fall back
towards the galaxy center (Russell et al. 2019).
A particularly interesting conundrum is the low observed veloci-

ties of the molecular gas measured by CO line emission in ALMA
target systems (McNamara et al. 2014; Russell et al. 2016; Pulido
et al. 2018; Russell et al. 2019). They are significantly smaller (<
100 km s−1) than both stellar velocity dispersions (200−300 km s−1)

and galaxy escape velocities (∼ 1000 km s−1), implying that the
molecular gas is tightly bound to the galaxy and should be expected
to be infalling. Even initially outflowing gas should at some point
stall and fall back inwards. These low velocities are puzzling as mod-
els of free falling clouds in cluster potentials have estimated that
they can be accelerated to hundreds of kilometers per second after
falling just a few kpc (Lim et al. 2008; Russell et al. 2016). The large
density contrast between the molecular gas and the hot background
in the ICM means that ram pressure should do little to slow down
these falling clouds, which would rapidly accelerate to high veloc-
ities. Small velocities would require the observed cold gas to have
been falling gravitationally for only a short amount of time. While
this could be explained if the infalling cold gas observed was mostly
recently decoupled from the hot gas, there is no reason to suggest that
this should be the case. Furthermore, the rapid acceleration means
we should see steep velocity gradients in these filaments. However,
we observe shallower velocity gradients that are inconsistent with
free-fall (Russell et al. 2016, 2017). Some observations find that
free-fall models can match observations in outer filaments, but break
down for inner regions (Lim et al. 2008; Vantyghem et al. 2016). One
caveat here is that increasing the spatial resolution of observations
can reveal more complex spatial and velocity structures (Lim et al.
2008). Lastly, if the molecular gas was free-falling, we would expect
to generally detect higher velocities at smaller radii, but there is no
evidence for this. A large influx of cold gas implies that circumnu-
clear disks should be more common in comparison with filaments,
while the opposite is observed (Russell et al. 2019).
The conclusion then is that the picture of free falling clouds fails to

explain a large number of observations with regard to these filaments,
which suggest that the infalling cold gas has to be slowed by some
alternative process other than ram pressure drag. One possibility
which has been previously proposed is thatmagnetic stresses slow the
clouds’ descent, since it has been suggested that the cold filaments are
significantly magnetically supported (Fabian et al. 2008). However,
themagnetic pressure that would be required to slow such a filament’s
infall along its length requires a strong non-radial magnetic field
component with 𝛽 ∼ 0.1 (Russell et al. 2016).
Our results suggest an alternative explanation that naturally ad-

dresses the above issues. As noted above, observations of the preva-
lence ofmolecular gas are closely tied to systemswith shorter cooling
times. As shown in the previous section, the filamentary mass growth
driven by turbulent mixing and cooling of these infalling cold fila-
ments serve as a braking mechanism via accretion induced drag.
This can significantly reduce the acceleration of the cold gas when
the cooling time of mixed gas is short. To illustrate this point, we
compare our model to the free fall model used in Lim et al. (2008)
in their analysis of observed filaments in the cD galaxy NGC 1275
(Perseus A) located in the Perseus cluster. For simplicity, we follow
the approach of Lim et al. (2008) and adopt an analytic model of the
mass density and gravitational potential of the form from Hernquist
(1990). The mass density and gravitational potential as a function of
radial distance are thus given by:

𝜌(𝑟) = 𝑀

2𝜋
𝑎

𝑟

1
(𝑟 + 𝑎)3

(45)

𝜙(𝑟) = − 𝐺𝑀

𝑟 + 𝑎
(46)

where 𝑀 is the total galactic mass, 𝑟 is the radial distance, and
𝑎 is a scale length. We also use the same values they deduce from
luminosity observations of Smith et al. (1990) and an estimated mass
to light ratio, with 𝑀 = 8.3 × 1011 M� and 𝑎 = 6.8 kpc. We use
the number density profile given in Churazov et al. (2003) for the
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Figure 19. Observed velocity contours of the outer western filament in Per A
from Lim et al. (2008) are shown in purple. Ballistic trajectories are shown
by the blue and orange lines for galactic masses of 𝑀 = 8.3 × 1011 M�
(as observed) and 𝑀 = 3.4 × 1011 M� (tuned to obtain the correct infall
velocities) respectively. The red line shows the trajectory of a cloud in our
model with a galactic mass of𝑀 = 8.3× 1011 M� but which is experiencing
accretion drag. In the latter case, tuning of galactic mass is not necessary to
explain observations.

Perseus cluster, which is mostly a constant 𝑛 = 4× 10−2 cm−3 below
30 kpc and adopt a constant temperature profile of 𝑇 = 107 K.
Figure 19 shows the observational contours of velocity as a

function of radial distance from the center of Per A for the outer
western filament as shown in Figure 10 of Lim et al. (2008). In
Fig.19, we have also reproduced the free-fall trajectories used in
Lim et al. (2008), where they include one for galactic masses of
𝑀 = 8.3 × 1011M�(M8b) and 𝑀 = 3.4 × 1011M�(M3b), both
starting from a radius of 8.5 kpc. The free-fall model that assumes
the 𝑀 = 8.3× 1011M� mass deduced from luminosity observations
is unable to produce a good fit to observations, and hence the mass
needs to be tuned to 𝑀 = 3.4 × 1011M� to fit a free-fall model
to the observed contours. This tuning of mass and drop height is
sensitive to both these factors, mainly due to the rapid acceleration
by gravity in free-fall. In comparison, we show the same curve for
𝑀 = 8.3 × 1011 M� but using our model(M8c) (equations (1)-(3))
which includes the braking effect due to growth from mixing and
cooling. This shows the trajectory for a cloud where 𝑟cl = 50 pc,
assuming that 𝐿/𝑟 ∼ 100. We see that if the cloud initially falls from
even a radial distance of 15 kpc, it matches the observations well
without changing the galaxy mass. Clouds can thus fall from a fur-
ther distance out than observed. It should be noted that the conditions
here are on the boundary of the survival criterion from equation (30),
due to its strong scaling with 𝜒.
In Fig. 20, we show velocity trajectories for clouds dropped from

various heights given by solid lines, with the 8 kpc distance used
as a lower bound. We find that even clouds that are dropped much
further away do not accelerate as rapidly to high velocities as in
the ballistic case. Ballistic trajectories for clouds dropped from the
same heights are shown for comparison by the dashed lines, and can
be seen to rapidly accelerate past observed velocities. On the other
hand, the clouds in our model are slowed and stay within the range of
observed velocities for much longer times. Hence, we are much less
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Figure 20. Observed velocity contours of the outer western filament in Per
A from Lim et al. (2008) are shown in purple. Trajectories starting from
different initial heights in our model are shown by the solid lines. Dashes
lines show ballistic trajectories with the same starting point. The velocities
we predict are much less sensitive to the initial drop height compared to the
ballistic model.

sensitive to the exact distance at which the cold gas first begins to
fall. Our results are consistent with the lower velocities and shallower
velocity gradients observed relative to what would be expected from
free-fall without requiring that the observed cold gas had only just
recently cooled, or that magnetic drag from a strongly magnetized
background must be present. In addition, the survival of cold gas
and the filamentary morphology can also be naturally explained by
cooling tails.

6.3 Other Implications

We have found that it is more difficult for infalling cold material to
survive, compared to their outflowing counterparts, which are even-
tually entrained and do not experience further shear forces thereafter.
This conclusion has a range of wider implications which we will now
touch on.
Assuming isobaric conditions, our survival criterion is equivalent

to 𝑡cool,hot/𝑡ff ∼< 1 (equation (35)), which is equivalent to the crite-
rion for linear thermal instability in a plane parallel atmosphere. As
previously remarked, this has the interesting implication that cold
gas which forms via thermal instability should be able to survive
infall, though this should be re-examined in a spherical potential,
where the threshold for cold gas condensation changes, and 𝑡ff (and
gravitational acceleration) vary with radius. This is an interesting
avenue for future work.
Our results imply that clouds which grow in mass when they fall

should undergo accretion-induced braking, a prediction which can be
tested in larger scale simulations with more realistic set-ups. Nelson
et al. (2020) find an abundance of cold clouds of sizes 1 kpc and
smaller around the CGM of ‘red and dead’ intermediate redshift
elliptical galaxies in the TNG50 simulation. These clouds are mostly
infalling, with the radial velocity distribution peaking at just one third
of the virial velocity. They also find that the clouds are accreting and
growing. They are long lived, surviving for cosmological timescales.
This appears to be consistent with predictions from our model -
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that infalling cold clouds are growing and thus slowed to sub-virial
velocities. It would be interesting to directly compare growth times
𝑡grow, and infall velocities, to see if the expectation 𝑣T ∼ 𝑔𝑡grow is
fulfilled.
Similarly, our results will affect the dynamics of cosmic cold

streams feeding galaxies at high-𝑧 (Dekel & Birnboim 2006; Kereš
et al. 2005). Thus far, Mandelker et al. (2020) has found that the sur-
vival criterion for cold clouds seems to be able to translate relatively
well to stream survival10. However, in their studies they used a con-
stant hot gas velocity – similar to the outflowing cloud simulations
– which implies that their shear declines rapidly in the simulation.
Since in reality cosmic streams are also accelerated by gravity, the
situation for streams is likely closer to the setup studied here. This
would imply that (a) an equivalently more stringent survival criterion
would apply to streams, and (b) their terminal velocity is given by
∼ 𝑔𝑡grow. Indeed, unlike idealized simulations, cosmological simu-
lations find that streams reach a roughly constant terminal velocity
(Dekel et al. 2009; Goerdt & Ceverino 2015); a result which has
not been quantitatively explained. These implications directly affect
the cold gas mass supplied towards the inner galaxies in dark matter
halos.
Interestingly, coronal rain in our Sun is also observed to fall below

free-fall velocities – on average falling with only ∼ 1/3 − 1/2 of the
ballistic value (see review by Antolin & Froment 2022). While the
temperatures and resulting overdensities are for coronal rain similar
to what has mostly been considered here, the main difference is the
strong magnetic field. Thus, most studies within the solar community
have focused on magnetic fields as explanation of the slowdown and
it has in fact been shown (using mostly one and two-dimensional
simulations) that coronal rain can be efficiently decelerated due to
a buildup of pressure in front of the cold cloud (Oliver et al. 2014;
Martínez-Gómez et al. 2020). Clearly, the magnetic fields do play a
major role here and affect the dynamics. However, it is noteworthy
that mass transfer can also lead to significant slowdown. Plugging
typical values found observationally (𝑛 ∼ 1011 cm−3, 𝑇 ∼ 2 × 104,
𝑟 ∼ 1Mm, 𝜒 ∼ 100, 𝑔 = 274m s−2; Antolin & Froment 2022) into
Eq. (25) yields 𝑣term,drag/𝑣term,grow ∼ 0.45. Thus, the ‘accretion
braking’ process described in this work might be another important
drag force at play; an interesting avenue for future work.

6.4 Further Considerations

While the model we have presented explores and captures the core
physics at play, simplifications and assumptions have been made
along theway.We discuss several considerationswhich could provide
interesting avenues in order to expand and build on this model.

6.4.1 Additional Physics

There are a number of physical processes whose impact and impor-
tance we have not touched on in this work, but which could lead
to complications and should be studied in future work. One such
component is magnetic fields. Magnetic fields have been shown to
significantly affect the morphology of clouds in both the wind tunnel
and falling cloud setups, while their effect on mass growth is still
uncertain (Grønnow et al. 2017, 2018; Gronke & Oh 2020a; Grøn-
now et al. 2022; Abruzzo et al. 2022b). For example, magnetic fields

10 There is some controversy regarding the destruction timescale but for the
relevant 𝜒 ∼ 100 − 1000 the different possibilities agree (cf. discussion in
Bustard & Gronke 2022)

can suppress the KH instability, reducing mass entrainment rates (Ji
et al. 2019; Grønnow et al. 2022), although mass growth rates in
some full cloud simulations appear minimally impacted (Gronke &
Oh 2020a). Another source of non-thermal physics that could be
important to study in this context is cosmic rays (Huang et al. 2022;
Armillotta et al. 2022). Self-gravity has been found to matter for
compact HVCs (Sander & Hensler 2021). We have also not included
explicit viscosity and thermal conduction (although we point out that
for turbulent mixing layers the mass transfer is generally dominated
by turbulent diffusion, Tan et al. 2021).

6.4.2 Initial Cloud Morphology

There is some uncertainty regarding an appropriate choice for the
initial structure of the cloud. A spherical cloud is clearly an idealized
choice. Instead of a uniform density sphere, smoothly varying density
and temperature profiles connecting the two phases have been used
for more realism (Heitsch & Putman 2009; Kwak et al. 2011; Grit-
ton et al. 2014; Sander & Hensler 2021). Furthermore, Cooper et al.
(2009) found that fractal clouds were destroyed faster as compared
to uniform spheres due to more rapid cloud breakup. Schneider &
Robertson (2017) similarly found that an initially turbulent structure
within the cloud would enhance fragmentation and ultimately facil-
itate cloud destruction. However, the above are all concerned with
cloud destruction, where the clouds are in a regime where the cloud
is ultimately destroyed over time (𝑡cool,mix > 𝑡cc for wind tunnel
setups). The importance of the initial cloud structure can thus be un-
derstood in the context that it determines how the cloud is destroyed
as it fragments and breaks up. However, if we are in the regime where
one is concerned about cloud growth instead, then this dependence
on the initial setup seems to matter less. Gronke & Oh (2020a) found
that in the regime of cloud growth, there was little difference in either
the mass growth or velocity evolution between an initially turbulent
or uniform cloud. In fact, the turbulent case actually grew slightly
faster, since it had a larger surface area at the start. Still, this sug-
gests that the initial morphological evolution of the sphere does have
some dependence on the choice of the initial structure of the cold gas
cloud. In terms of numerical values, this creates some amount of un-
certainty in our model, in particular with regards to the initial values
of the cloud surface area and its initial evolution, which Heitsch et al.
(2022) refers to as the ‘burn-in’ phase. In our model, this uncertainty
is folded in by calibrating a constant prefactor of order unity to the
results from our simulations. It is possible that the precise value of
this factor might vary depending on setup and initial cloud structure.

6.4.3 Temperature Floor and Self Shielding

In our simulations, we have assumed a temperature floor of 𝑇 ∼
104 K. However, it would be useful to understand the phase structure
of cold neutral gas that provides an additional layer of structure to the
clouds (Girichidis et al. 2021; Farber & Gronke 2022) and how this
might impact cloud growth and dynamics. This is especially for com-
parison with observations, which often detect warm gas surrounding
cold cores. On a related note, we have assumed that all our clouds
are optically thin. However, self-shielding could be important for the
more massive clouds.

6.4.4 Infall Conditions

We have assumed our clouds fall directly towards the disk. How-
ever it is likely that most clouds will have some sort of rotational

MNRAS 000, 1–23 (2022)



Cloudy with A Chance of Rain: Accretion Braking of Cold Clouds 21

velocity component and hence fall inwards on some orbit trajectory.
As mentioned in Heitsch & Putman (2009), this component is more
akin to the wind tunnel setups since net acceleration is reduced. We
have also assumed a quiescent background - realistic environments
are likely subject to large scale turbulence (Gronke et al. 2022). This
could affect mixing rates or significantly lengthen infall times and
introduce a large stochastic variability in the infall velocity, much
the same way a leaf falling to the ground in a windy environment
follows a much longer trajectory. How this might affect cloud growth
and dynamics is a natural follow up to this work.

6.4.5 Metallicity

We have assumed solar metallicity everywhere in both phases. De-
pending on the origin of the cold cloud, it is possible that the metal-
licity of the original cloud and the background differ significantly.
Gritton et al. (2014) and Heitsch et al. (2022) have showed that
there is significant mixing of metals in such a case, with important
implications for observables.

7 CONCLUSIONS

The growth and survival of infalling cold clouds has received con-
siderably less attention compared to their outflowing counterparts.
While the two appear to be similar problems at first glance, they
have in fact a crucial difference between them, which is that in-
falling clouds continuously feel the force of gravity. This leads to
very different dynamical evolution of the infalling clouds, and also
a more stringent criterion for survival. Using 3D hydrodynamical
simulations, we have studied the growth and survival of such clouds,
considering both a constant background as a well as a more realistic
stratified background. We have also developed a model for the dy-
namical evolution of these clouds based on turbulent mixing layer
theory, and shown that they are able to predict the results of the sim-
ulations. These also agree well with analytical estimates. Our main
findings are:

• Not a Wind Tunnel: Infalling clouds do not correspond to wind
tunnel setups, where the velocity shear is initially large and decreases
as the cloud gets entrained. Instead, the velocity shear is initially small
but increases as the cloud accelerates. This means that criteria such
as 𝑡cool,mix < 𝑡cc for survival are not applicable.

• Modelling Cloud Growth: An important component determin-
ing how fast the cloud grows is the surface area of the cloud. We
find that 𝐴 ∝ 𝑚5/6. This is consistent with either a mix between
surface and tail growth or a fractal surface area. Combining this with
models of the inflow velocity allow us to model the growth time of
the clouds, as given in equations (22) and (23). We can hence evolve
equations (1) – (3) to model the evolution of cloud properties.

• Accretion Drag: Clouds falling due to gravity can experience an
alternative form of drag if they are growing via turbulent radiative
mixing layers, since they are effectively accreting low momentum
gas. This drag is dominant over the usual ram pressure drag as the
clouds develop long tails along the direction of infall. This leads
to much lower predicted infall velocities compared to models which
only consider ballistic trajectories or ram pressure drag. In particular,
the terminal velocity 𝑣T ≈ 𝑔𝑡grow, where 𝑡grow = 𝑚/ ¤𝑚 is given by
equation (25) for subsonic infall.

• Relationship between Speed and Growth Rates: The balance
between gravity and growth results in 𝑣T/𝑐s,hot ∼ 𝑡grow/𝑡ff . That is,
the ratio of the terminal velocity and the virial velocity is also the ratio

of the the growth time to the free-fall time. This is useful since infall
velocities are measured observationally. The growth rate of the cloud
can then be deduced. We expect sub-virial velocities (𝑣T < 𝑐s,hot)
to be indicative of considerable mass growth (𝑡grow < 𝑡ff) in clouds.
Observed sub-virial infall velocities are otherwise difficult to explain
with existing models. In an isothermal atmosphere with constant
gravity, we predict 𝑣T ≈ 0.6𝑐s,hot, independent of all other properties
of the system, although convergence to this asymptotic velocity can
be slow.

• Criterion for Cloud Survival: The criterion for clouds to survive
and grow is 𝑡grow < 4𝑡cc (equation (27)). The most important factor
in determining cloud survival is the cooling time. We find that the
ratio of 𝑡grow/𝑡cc is almost independent of cloud size (within a large
practical range of parameter space). Hence, in order to survive and
grow, clouds need only be within regions where densities/pressure
are high enough such that cooling times are sufficiently short. For
𝜒 = 100, this criterion can be written as

𝑃 > 3000 k𝐵Kcm−3
(

𝑔

10−8 cm s−2

)4/5
(47)

• Stratified Backgrounds and Cloud Size: In stratified environ-
ments, clouds that start their infall beyond such survival ‘zones’ can
still survive provided they are not completely destroyed before reach-
ing these zones. This favors larger clouds which have longer cloud
crushing times. Larger clouds are hence more likely to be observed
at distances where the above criterion is not satisfied.

In summary, we have identified a new mechanism for the decel-
eration of clouds that has not been considered in existing models,
with important bearings on cloud survival, growth, and dynamics.
We have presented a model for cloud growth (equations (1) – (3)),
evolution (equations (22) and (23)), and survival (equation (27)) that
agree well with simulations. These results can be applied to range
of systems with infalling cold gas such as HVCs and clusters, and
addresses important questions of survival, growth, and sub-virial ve-
locities that have been highlighted by observations. Future work will
refine this model with additional physics such as magnetic fields,
cosmic rays and self-shielding, as well as allowing the gas to cool
down to lower temperatures.
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