
© British Crown Owned Copyright [2013]/AWE

CloverLeaf: Preparing Hydrodynamics Codes

 for Exascale

Andrew Mallinson

Andy.Mallinson@awe.co.uk

www.awe.co.uk

2

Agenda

§  AWE & Uni. of Warwick introduction

§  Problem background and motivations

§  Mini-applications introduction

§  CloverLeaf overview

§  Aims of this work

§  Optimisations

§  Experiments and results

§  Conclusions and future work

§  Q & A

3

Agenda

§  AWE & Uni. of Warwick introduction

§  Problem background and motivations

§  Mini-applications

§  CloverLeaf overview

§  Aims of this work

§  Optimisations

§  Experiments and results

§  Conclusions and future work

§  Q & A

4

Atomic Weapons Establishment (AWE)

§  Responsible for the UK’s nuclear stock-pile

§  Conduct extensive scientific research

§  e.g. Hydro and laser facilities

§  HPC is a key enabling technology

§  conduct extensive HPC research

§  including engagements with academic institutions

5

University of Warwick

§  Performance Computing and Visualisation Group

§  Dept. of Computer Science / Centre for Scientific Computing

§  longstanding HPC research engagement with AWE

§  One of the UK’s top research universities

§  Near Birmingham
§  in historically the UK’s

 engineering heartland

§  Turnover ~ £500 M

§  ~1400 academics and

 researchers

§  ~24K students

6

Agenda

§  AWE & Uni. of Warwick introduction

§  Problem background and motivations

§  Mini-applications

§  CloverLeaf overview

§  Aims of this work

§  Optimisations

§  Experiments and results

§  Conclusions and future work

§  Q & A

7

Background & Motivation

§  Changing HPC landscape, future uncertain

§  Multi-core: slower clock, but more of them

§  Many-core: GPUs, MIC, APUs

§  massive scalability: Sequoia ~ 1.6 million cores

§  Issues for current code base:

§  future programming mode?

§  MPI, CAF, OpenMP, OpenACC, OpenCL, CUDA, Cilk, TBB, etc

§  code re-writes are not an option!

§  decades of manpower already invested

§  hardware is temporary but software is permanent

§  need to understand effort vs gains

8

AWE Current Code Base

§  Classified

§  Large applications ~ 0.5M Lines of Code (LoC)

§  Complex:

§  multi physics, utilities and libraries

§  Mostly Fortran

§  Flat MPI

§  How best to evolve for the future?

9

Option 1: Benchmarks

§  Use existing benchmarks of current algorithms

§  Still quite big (~90K LoC)

§  comms package alone is 46K LoC

§  Complex

§  Flat MPI

§  Inefficient tool to evaluate technologies / techniques

§  turnaround taking too long

§  ~18 months to convert 1 benchmark to CUDA/OpenCL

10

Option2: Mini-applications

§  Written with Computer Science in mind

§  Much smaller (~4.5 K LoC)

§  Amenable to a range of programming models and

hardware platforms

§  e.g. no “cut-offs”, etc

§  Enables efficient / rapid evaluation of new

programming models / techniques and platforms

§  Enter CloverLeaf …

11

Agenda

§  AWE & Uni. of Warwick introduction

§  Problem background and motivations

§  Mini-applications

§  CloverLeaf overview

§  Aims of this work

§  Optimisations

§  Experiments and results

§  Conclusions and future work

§  Q & A

12

CloverLeaf Intro: Physics

§  Solves the compressible Euler equations

§  Finite volume method - 2nd order accuracy

§  Equations are solved on a staggered grid

node-centred

quantities

(e.g. velocity)

cell-centred

quantities

(e.g. pressure)

13

CloverLeaf Intro: Physics

§  Single material cells

§  Predictor/corrector Lagrangian step

§  Followed by advective remap

§  System is hyperbolic:

§  can be solved with explicit numerical methods

§  without inverting a matrix

14

CloverLeaf Intro: Physics

§  Significantly simplified Physics for Computer Science

experimentation

§  Hydro is a common base to physics models of interest

§  If methodology fails or is difficult for Hydro

§  will be considerably harder for other physics models

15

CloverLeaf Intro: Computer Science

§  Computational mesh is spatially decomposed and

distributed across processes

§  Communications are mainly boundary/halo cell

exchanges of multiple fields between neighbours

§  occur frequently throughout each iteration

§  Global reduction operations within each iteration:

§  the calculation of the timestep value

§  outputting intermediate results

§  Simplified computational kernels (Fortran & C)

16

CloverLeaf Intro: Computer Science

§  14 kernels at lowest level of compute:

§  engineered to remove all loop-level dependencies

§  reduced error checking - robust problems

§  do not contain subroutine calls

§  called from driver routines allowing multiple versions of each

kernel to exist within the same codebase

§  no derived types

§  minimal pointers

§  no array syntax

§  Overall CloverLeaf is ~4.5 K LoC

17

Implementations: MPI

§  Based on a block-structure decomposition

§  one chunk (rectangular region of mesh) per process

§  All processes maintain halo of ghost cells

§  Minimises surface area between processes

§  same number of cells / process

§  Halo exchange depth varies during each iteration

§  One field exchange at once, shared comms buffers

§  One MPI message per data field

§  ISend & IRecv, followed by WaitALL

18

Implementations: CAF

§  CAF versions largely mirror the MPI version

§  MPI constructs replaced by one-sided CAF “puts”

§  host CAF process/image writes data directly into the

appropriate memory regions of neighbouring processes

§  No equivalent receive operations

§  One sub-version exchanges original comms buffers

§  Another exchanges 2D-array sections

§  Can use both local and global synchronisation

§  Utilises Cray CAF or MPI collectives

19

Implementations: Hybird (MPI+OpenMP)

§  Evolution of the MPI implementation

§  OpenMP pragmas applied to the loop blocks within the

computational kernels

§  Data parallel structure of CloverLeaf is amenable to

this style of parallelism

§  Coarser decomposition

§  reduces the amount of halo-cell data / node

§  Private constructs etc specified were necessary

20

Implementations: GPU-based

§  Based on MPI version

§  MPI+OpenACC and MPI+CUDA

§  Only GPU devices used for computational work

§  CPU coordinate computation, handle I/O etc

§  Fully resident on the GPU devices

§  Explicit (un)packing of communication buffers is carried

out on the GPUs for maximum performance

21

Implementations: OpenACC

§  Loop-level pragmas added to kernel loop blocks:

§  specify how they should be executed

§  the data dependencies etc

§  One off initial transfer to GPU using “copy” clause

§  “present” clause to indicate all input data available

§  Data transferred back to the host (for halo exchange)

using “update host” directive

§  Following exchange updated data transferred back to

the device using “update device” directive

22

Implementations: CUDA

§  The C bindings make interfacing with Fortran difficult

§  Global class implemented to coordinate data transfers

with and computation on the GPU

§  Data created and initialised on device and allowed to

reside on the GPU throughout the computation

§  New CUDA kernels implemented for the original kernels

§  each contains 2 parts: host side and device side

§  broadly each loop block within the original kernels was

converted to a CUDA device side kernel

§  majority of control code kept on the host side

23

Agenda

§  AWE & Uni. of Warwick introduction

§  Problem background and motivations

§  Mini-applications

§  CloverLeaf overview

§  Aims of this work

§  Optimisations

§  Experiments and results

§  Conclusions and future work

§  Q & A

24

Evaluate at scale:

§  Two alternative Cray architectures:

§  XK7 and XE6

§  The candidate programming models

§  The effects of different process to network topology

mappings at scale

§  Several communication focused optimisations to

improve strong-scaling performance

§  focus on the halo-exchange routine

25

Prog. Models / Techniques Examined

§  Weak scaling experiments:

§  (XE6: flat MPI) vs (XK7: MPI+OpenACC or MPI+CUDA)

§  Strong scaling experiments (XE6):

§  MPI vs Hybrid (MPI+OpenMP) vs CAF

§  MPI process to network topology mapping strategies

§  8 communication focused code optimisations

§  7 for MPI and 1 for CAF

26

Agenda

§  AWE & Uni. of Warwick introduction

§  Problem background and motivations

§  Mini-applications

§  CloverLeaf overview

§  Aims of this work

§  Optimisations

§  Experiments and results

§  Conclusions and future work

§  Q & A

27

Process to Network Topology Mappings

§  Re-order ranks within the actual application

§  4x4 blocking size used – 16 processes / node

§  Reduces number of off-node communications

MPI ranks on node 0

Node boundaries

Problem chunk boundaries

Original Modified

28

Communication Optimisations

§  Exchanging multiple fields in parallel – reduce sync

§  Diagonal communications – reduce sync further

§  Message aggregation

§  Pre-posting MPI receives

§  Dealing with messages as they arrival

§  MPI Datatypes plus utilising sequential memory

§  Overlapping communications and computation

§  CAF “gets” rather than “puts”

29

Communications Overlap Approach

§  Calculate outer region and initiate communications

§  Overlap with the cell calcs of the inner region

Cells required

for communication.

30

Agenda

§  AWE & Uni. of Warwick introduction

§  Problem background and motivations

§  Mini-applications

§  CloverLeaf overview

§  Aims of this work

§  Optimisations

§  Experiments and results

§  Conclusions and future work

§  Q & A

31

Experimental Platforms

§  Titan – ORNL (USA):

§  XK7, 200 cabinets, 20+ PF, Gemini interconnect

§  18,688 nodes / CPUs / GPUs

§  2.2 GHz AMD Opteron and Nvidia K20x

§  CCE v8.1.2, MPT v5.5.4, CUDA Toolkit v5.0.35

§  HECToR – EPCC (UK):

§  XE6, 30 cabinets, 800+ TF

§  2816 nodes, 5632 CPUs, Gemini interconnect

§  2.3 GHz AMD Opteron

§  CCE v8.1.2, MPT v5.6.1

32

Experiments: CloverLeaf Test Problem

§  Asymmetric test problem

§  Simulates a small, high-density region of ideal gas

expanding into a larger, low-density region

§  Shock front which penetrates low-density region

§  Variables: mesh resolution and simulation time

33

1) 2)

3) 4) 5)

§  and visually …

34

Experiments: Weak Scaling

§  38402 cells / node – 87 timesteps

35

Results: Weak Scaling

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

W
a

ll
-t

im
e

s
 (

s
)

Nodes

Titan:MPI+OpenACC Titan:MPI+CUDA Hector:MPI

36

Results: Weak Scaling Analysis

§  CloverLeaf weak scales extremely well

§  Wall-time increase from 1 node to max job size

§  HECToR: MPI = 2.52s (4.2%),

§  Titan: MPI+OpenACC = 4.99s (16.7%)

§  Titan: MPI+CUDA = 4.12s (27.2%)

§  GPU-based XK7 architecture consistently outperforms

the CPU-based XE6 architecture

§  node vs node comparison

§  2x (OpenACC) and 3.7x (CUDA)

37

Experiments: Strong Scaling

§  153602 cells – 2955 timesteps

§  Jobs executed within the same node allocation

38

Results: MPI vs Hybrid vs CAF

-10

0

10

20

30

40

50

60

70

80

90

64 128 256 512 1024

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e
 (

%
)

Nodes buffer ex vs array ex local vs global sync gets vs puts MPI vs CAF Hybird vs MPI

39

Analysis: “flat” MPI vs Hybrid (MPI+OMP)

§  4 MPI processes / node & 4 OMP threads / MPI process

§  Performance is broadly similar ≤ 256 nodes

§  with flat MPI slightly outperforming hybrid by <1%

§  >256 nodes hybrid significantly outperforms flat MPI

§  15.6% at 512 nodes and 29.4% at 1024 nodes

40

Analysis: CAF Performance Analysis

§  Buffer exchange based strategy outperforms the array-

section based strategy

§  ~ 81% at 1024 nodes

§  Local synchronisation vs global synchronisation:

§  3% at 64 nodes to 36% at 1024 nodes

§  “gets” vs “puts”:

§  “gets” initially delivered a modest improvement

§  at 1024 nodes “puts” version is 6.7% faster

§  “gets” are more suited for larger messages?

41

Analysis: CAF vs “flat” MPI

§  No CAF implementation was able to improve on the

performance of the flat MPI version

§  Performance disparity increase with scale

§  18% improvement at 1024 nodes

42

Results: Comms Optimisations

-10

-8

-6

-4

-2

0

2

4

6

8

64 128 256 512 1024

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e
 (

%
)

Nodes

Multiple Fields Diagonal Comms Multi Fields + Diag Comms

Multi Fields + Mess Agg Multi Fields + Mess Agg + Diag Comms Multi Fields + Mess Agg + PrePost

Multi Fields + Diag Cooms + PrePost

43

Analysis: Comms Optimisations

§  All effects were more significant at scale

§  Message aggregation most successful technique

§  Consistent 6% improvement at 1024 nodes in the

versions which employed it

§  May also be the source of the hybrid version’s speedup

§  “One synchronisation per direction” and “diagonal

comms” both had a detrimental affect on performance:

§  - 4.5%, -7% and - 6.9% at 1024 nodes

§  “Message aggregation” + “diagonal comms” eliminated

the performance improvement ~ original version

44

Results: Rank Re-ordering

-1

0

1

2

3

4

5

64 128 256 512 1024

R
e

la
ti

v
e

 P
e

rf
o

ra
m

n
c

e
 (

%
)

Nodes Rank Re-order Pre Posting Test-Unpack Datatypes

45

Analysis: MPI Rank Re-ordering

§  Outperforms the default topology mapping strategy

§  Benefits increase as job sizes increase

§  4.1% improvement at 1024 nodes

§  Important to select a mapping which reflects the

comms patterns or physical geometry of the application

46

Results: Comms/Comp Overlap

-14

-12

-10

-8

-6

-4

-2

0

2

64 128 256 512 1024

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
e

 (
%

)

Nodes
Multi Fields + Diag Comms Multi Fields + Diag Comms + Overlap

Mess Agg + Diag Comms Mess Agg + Diag Comms + Overlap

47

Analysis: Comms Optimisations

§  Performance of our comms-comp overlapping

implementations was surprisingly worse

§  approximately 5% down on equivalent versions

§  Likely due to the cache “unfriendly” access pattern

§  The following optimisations did not have a significant

affect on overall performance:

§  pre-posting of MPI recvs

§  actively checking for message arrivals

§  MPI Datatypes plus calling MPI ops on sequential memory

48

Agenda

§  AWE & Uni. of Warwick introduction

§  Problem background and motivations

§  Mini-applications

§  CloverLeaf overview

§  Aims of this work

§  Optimisations

§  Experiments and results

§  Conclusions and future work

§  Q & A

49

Conclusion

§  Minimising communications key to enabling CloverLeaf

to scale well to high node counts:

§  16384 nodes of Titan

§  Significant computational advantage of using GPU

accelerated architectures (e.g. XK7)

§  OpenACC: ~2x and CUDA: ~3.7x

§  OpenACC delivers significant programmer productivity

improvements over CUDA

§  OpenACC performance on Kepler may well improve

and come closer to CUDA as with Fermi

50

Conclusion

§  When strong-scaling the hybrid (MPI+OMP) version

outperformed “flat” MPI at high node counts

§  MPI most likely candidate for delivering inter-node

communication as we approach Exascale

§  CAF shows promise but is not yet able to match MPI

§  A hybrid approach based on open standards and able

to accommodate accelerate type technologies also

likely be required

51

Conclusion

§  Improving the mapping of application processes onto

the 3D-Torus can deliver performance benefits

§  Optimising the communications intensive parts of

applications can deliver performance benefits

§  Message aggregation to reduce comms was the most

successful technique at scale

52

Future Work

§  Integrate comms optimisations with GPU targeted

versions, utilise Nvidia’s GPUDirect

§  Generalise and improve rank reordering

§  Investigate alternative rank placements

§  Evaluate a SHMEM based version of CloverLeaf

§  MPI v3.0 Neighbourhood Collectives

§  Alternative data structures

53

Co-authors

§  David Beckingsale – Uni. of Warwick

§  dab@dcs.warwick.ac.uk

§  Andy Herdman – AWE

§  Andy.herdman@awe.co.uk

§  Wayne Gaudin – AWE

§  Wayne.gaudin@awe.co.uk

§  John Levesque – Cray

§  levesque@cray.com

§  Stephen Jarvis – Uni. of Warwick

54

Accessing CloverLeaf

§  Released as part of Sandia’s Mantevo project:

§  http://www.mantevo.org

§  Main CloverLeaf repository in GitHub:

§  http://warwick-pcav.github.com/CloverLeaf/

55

Thank You

§  Any Questions?

