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Atomic Weapons Establishment (AWE)

= Responsible for the UK’s nuclear stock-pile

= Conduct extensive scientific research
= e.g. Hydro and laser facilities
= HPC is a key enabling technology
= conduct extensive HPC research
= Including engagements with academic institutions




AT
AWE
=

THE UNIVERSITY OF

University of Warwick WARWICK

= Performance Computing and Visualisation Group
= Dept. of Computer Science / Centre for Scientific Computing
= longstanding HPC research engagement with AWE

= One of the UK's top research universities

= Near Birmingham
= in historically the UK’s
engineering heartland

= Turnover ~ £500 M
= ~1400 academics and
researchers

= ~24K students
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Background & Motivation

= Changing HPC landscape, future uncertain
= Multi-core: slower clock, but more of them
= Many-core: GPUs, MIC, APUs
= massive scalability: Sequoia ~ 1.6 million cores

= |ssues for current code base:
= future programming mode?
= MPI, CAF, OpenMP, OpenACC, OpenCL, CUDA, Cilk, TBB, etc
= code re-writes are not an option!

= decades of manpower already invested
= hardware is temporary but software is permanent

= need to understand effort vs gains




AWE Current Code Base

= Classified
= Large applications ~ 0.5M Lines of Code (LoC)
= Complex:
= multi physics, utilities and libraries
= Mostly Fortran
= Flat MPI

= How best to evolve for the future?




Option 1: Benchmarks

= Use existing benchmarks of current algorithms
= Still quite big (~90K LoC)

= comms package alone is 46K LoC
= Complex
= Flat MPI

= |nefficient tool to evaluate technologies / techniques

= turnaround taking too long
= ~18 months to convert 1 benchmark to CUDA/OpenCL




Option2: Mini-applications

Written with Computer Science in mind
Much smaller (~4.5 K LoC)

Amenable to a range of programming models and
hardware platforms

= e.g. no “cut-offs”, etc

Enables efficient / rapid evaluation of new
programming models / techniques and platforms

Enter CloverLeaf ...
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CloverLeaf Intro: Physics

= Solves the compressible Euler equations
= Finite volume method - 2" order accuracy
= Equations are solved on a staggered grid

cell-centred

quantities
(e.g. pressure)

~
node-centred \\\
quantities — | O
(e.g. velocity) T




CloverLeaf Intro: Physics

= Single material cells
= Predictor/corrector Lagrangian step
= Followed by advective remap

= System is hyperbolic:
= can be solved with explicit numerical methods
= without inverting a matrix
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CloverLeaf Intro: Physics

= Significantly simplified Physics for Computer Science
experimentation

= Hydro is a common base to physics models of interest

= |[f methodology fails or is difficult for Hydro
= will be considerably harder for other physics models
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CloverLeaf Intro: Computer Science

Computational mesh is spatially decomposed and
distributed across processes

Communications are mainly boundary/halo cell
exchanges of multiple fields between neighbours

= occur frequently throughout each iteration
Global reduction operations within each iteration:

= the calculation of the timestep value
= outputting intermediate results

Simplified computational kernels (Fortran & C)
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CloverLeaf Intro: Computer Science

= 14 kernels at lowest level of compute:
= engineered to remove all loop-level dependencies
= reduced error checking - robust problems
= do not contain subroutine calls

= called from driver routines allowing multiple versions of each

kernel to exist within the same codebase
= no derived types
= minimal pointers
" no array syntax

= Qverall CloverLeafis ~4.5 K LoC
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Implementations: MPI

Based on a block-structure decomposition
= one chunk (rectangular region of mesh) per process

All processes maintain halo of ghost cells

Minimises surface area between processes
= same number of cells / process

Halo exchange depth varies during each iteration
One field exchange at once, shared comms buffers
One MPI message per data field

ISend & IRecv, followed by WaitALL
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Implementations: CAF

= CAF versions largely mirror the MPI version

= MPI constructs replaced by one-sided CAF “puts”

= host CAF process/image writes data directly into the
appropriate memory regions of neighbouring processes

= No equivalent receive operations

= One sub-version exchanges original comms buffers
= Another exchanges 2D-array sections

= Can use both local and global synchronisation

= Utilises Cray CAF or MPI collectives
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Implementations: Hybird (MPI+OpenMP)

= Evolution of the MPI implementation

= OpenMP pragmas applied to the loop blocks within the
computational kernels

= Data parallel structure of CloverLeaf is amenable to
this style of parallelism

= Coarser decomposition
= reduces the amount of halo-cell data / node

= Private constructs etc specified were necessary
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Implementations: GPU-based

= Based on MPI version
= MPI+OpenACC and MPI+CUDA

= Only GPU devices used for computational work
= CPU coordinate computation, handle 1/O etc
= Fully resident on the GPU devices

= Explicit (un)packing of communication buffers is carried
out on the GPUs for maximum performance
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Implementations: OpenACC

= |Loop-level pragmas added to kernel loop blocks:
= specify how they should be executed
= the data dependencies etc

= One off initial transfer to GPU using “copy” clause
= “present” clause to indicate all input data available

= Data transferred back to the host (for halo exchange)
using “update host” directive

= Following exchange updated data transferred back to
the device using “update device” directive
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Implementations: CUDA

= The C bindings make interfacing with Fortran difficult

= Global class implemented to coordinate data transfers
with and computation on the GPU

= Data created and initialised on device and allowed to
reside on the GPU throughout the computation

= New CUDA kernels implemented for the original kernels
= each contains 2 parts: host side and device side

= broadly each loop block within the original kernels was
converted to a CUDA device side kernel

= maijority of control code kept on the host side
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Evaluate at scale:

= Two alternative Cray architectures:
= XK7 and XEG

= The candidate programming models

= The effects of different process to network topology
mappings at scale

= Several communication focused optimisations to
Improve strong-scaling performance

= focus on the halo-exchange routine
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Prog. Models / Techniques Examined

= Weak scaling experiments:
= (XE6: flat MPI) vs (XK7: MPI+OpenACC or MPI+CUDA)

= Strong scaling experiments (XEO):
= MPI vs Hybrid (MPI+OpenMP) vs CAF
= MPI process to network topology mapping strategies
= 8 communication focused code optimisations
= 7 for MPI and 1 for CAF
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Process to Network Topology Mappings

CCTTTTTTTTTTTTTT
Original

Modified

B MPI ranks on node 0

— Node boundaries

— Problem chunk boundaries

= Re-order ranks within the actual application
= 4x4 blocking size used — 16 processes / node
= Reduces number of off-node communications
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Communication Optimisations

= Exchanging multiple fields in parallel — reduce sync
= Diagonal communications — reduce sync further

= Message aggregation

= Pre-posting MPI receives

= Dealing with messages as they arrival

= MPI Datatypes plus utilising sequential memory

= Qverlapping communications and computation

= CAF “gets” rather than “puts”
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AWE
=

Communications Overlap Approach

n Cells required
for communication.

= Calculate outer region and initiate communications
= Overlap with the cell calcs of the inner region
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Experimental Platforms

= Titan — ORNL (USA):
= XK7, 200 cabinets, 20+ PF, Gemini interconnect
= 18,688 nodes / CPUs / GPUs
= 2.2 GHz AMD Opteron and Nvidia K20x
= CCE v8.1.2, MPT v5.5.4, CUDA Toolkit v5.0.35

= HECToR — EPCC (UK):
= XE6, 30 cabinets, 800+ TF
= 2816 nodes, 5632 CPUs, Gemini interconnect
= 2.3 GHz AMD Opteron
= CCE v8.1.2, MPT v5.6.1
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Experiments: CloverLeaf Test Problem

= Asymmetric test problem

= Simulates a small, high-density region of ideal gas
expanding into a larger, low-density region

= Shock front which penetrates low-density region
= Variables: mesh resolution and simulation time
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= and visually ...
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Experiments: Weak Scaling

= 38407 cells / node — 87 timesteps
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Results: Weak Scaling
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Results: Weak Scaling Analysis

= CloverLeaf weak scales extremely well

= Wall-time increase from 1 node to max job size
= HECToR: MPI = 2.52s (4.2%),
= Titan: MPI+OpenACC = 4.99s (16.7%)
= Titan: MPI+CUDA = 4.12s (27.2%)

= GPU-based XK7 architecture consistently outperforms
the CPU-based XEG6 architecture

= node vs node comparison
= 2X (OpenACC) and 3.7x (CUDA)
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Experiments: Strong Scaling

= 153602 cells — 2955 timesteps
= Jobs executed within the same node allocation
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Results: MPI vs Hybrid vs CAF
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Analysis: “flat” MPI vs Hybrid (MPI+OMP)

= 4 MPI processes / node & 4 OMP threads / MPI process
= Performance is broadly similar < 256 nodes
= with flat MPI slightly outperforming hybrid by <1%

= >256 nodes hybrid significantly outperforms flat MPI
= 15.6% at 512 nodes and 29.4% at 1024 nodes
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Analysis: CAF Performance Analysis

= Buffer exchange based strategy outperforms the array-
section based strategy

= ~81% at 1024 nodes

= Local synchronisation vs global synchronisation:
= 3% at 64 nodes to 36% at 1024 nodes

= “gets” vs “puts”:
= “gets” initially delivered a modest improvement

= at 1024 nodes “puts” version is 6.7% faster
= “gets” are more suited for larger messages?
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Analysis: CAF vs “flat” MPI

= No CAF implementation was able to improve on the
performance of the flat MPI version

= Performance disparity increase with scale
= 18% improvement at 1024 nodes
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Results: Comms Optimisations
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Analysis: Comms Optimisations

= All effects were more significant at scale

= Message aggregation most successful technique

= Consistent 6% improvement at 1024 nodes in the
versions which employed it

= May also be the source of the hybrid version’s speedup

= “One synchronisation per direction” and “diagonal
comms” both had a detrimental affect on performance:
= -4.5%, -7% and - 6.9% at 1024 nodes

= “Message aggregation” + “diagonal comms” eliminated
the performance improvement ~ original version

43



oA
AWE
=

Results: Rank Re-ordering
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Analysis: MP| Rank Re-ordering

= Qutperforms the default topology mapping strategy
= Benefits increase as job sizes increase
= 4.1% improvement at 1024 nodes

= |mportant to select a mapping which reflects the
comms patterns or physical geometry of the application
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Results: Comms/Comp Overlap
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Analysis: Comms Optimisations

= Performance of our comms-comp overlapping
Implementations was surprisingly worse

= approximately 5% down on equivalent versions
= Likely due to the cache “unfriendly” access pattern

= The following optimisations did not have a significant
affect on overall performance:
= pre-posting of MPI recvs
= actively checking for message arrivals
= MPI Datatypes plus calling MPI| ops on sequential memory
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Conclusion

= Minimising communications key to enabling CloverLeaf
to scale well to high node counts:

= 16384 nodes of Titan
= Significant computational advantage of using GPU
accelerated architectures (e.g. XK7)
= OpenACC: ~2x and CUDA: ~3.7x

= OpenACC delivers significant programmer productivity
improvements over CUDA

= OpenACC performance on Kepler may well improve
and come closer to CUDA as with Fermi
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Conclusion

= When strong-scaling the hybrid (MPI+OMP) version
outperformed “flat” MPI at high node counts

= MPI most likely candidate for delivering inter-node
communication as we approach Exascale

= CAF shows promise but is not yet able to match MPI

= A hybrid approach based on open standards and able
to accommodate accelerate type technologies also
likely be required
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Conclusion

* |mproving the mapping of application processes onto
the 3D-Torus can deliver performance benefits

= Optimising the communications intensive parts of
applications can deliver performance benefits

= Message aggregation to reduce comms was the most
successful technique at scale
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Future Work

Integrate comms optimisations with GPU targeted
versions, utilise Nvidia’s GPUDirect

Generalise and improve rank reordering
Investigate alternative rank placements

Evaluate a SHMEM based version of CloverLeaf
MPI v3.0 Neighbourhood Collectives

Alternative data structures
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Accessing CloverLeaf

= Released as part of Sandia’s Mantevo project:
= http://www.mantevo.org

= Main CloverLeaf repository in GitHub:
= http://warwick-pcav.github.com/CloverLeaf/

54



oA
AWE
=

Thank You

= Any Questions?
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