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Atomic Weapons Establishment (AWE) 

§  Responsible for the UK’s nuclear stock-pile 

§  Conduct extensive scientific research  

§  e.g. Hydro and laser facilities 

§  HPC is a key enabling technology  

§  conduct extensive HPC research  

§  including engagements with academic institutions 
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University of Warwick  

§  Performance Computing and Visualisation Group 

§  Dept. of Computer Science / Centre for Scientific Computing 

§  longstanding HPC research engagement with AWE 

§  One of the UK’s top research universities  

§  Near Birmingham  
§  in historically the UK’s  

    engineering heartland  

§  Turnover ~ £500 M 

§  ~1400 academics and  

    researchers  

§  ~24K students  
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Background & Motivation  

§  Changing HPC landscape, future uncertain 

§  Multi-core: slower clock, but more of them  

§  Many-core: GPUs, MIC, APUs 

§  massive scalability: Sequoia ~ 1.6 million cores  

§  Issues for current code base:  

§  future programming mode?  

§  MPI, CAF, OpenMP, OpenACC, OpenCL, CUDA, Cilk, TBB, etc 

§  code re-writes are not an option!  

§  decades of manpower already invested  

§  hardware is temporary but software is permanent 

§  need to understand effort vs gains 



8 

AWE Current Code Base  

§  Classified  

§  Large applications ~ 0.5M Lines of Code (LoC)  

§  Complex:  

§  multi physics, utilities and libraries  

§  Mostly Fortran  

§  Flat MPI 

§  How best to evolve for the future? 
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Option 1: Benchmarks 

§  Use existing benchmarks of current algorithms  

§  Still quite big (~90K LoC) 

§  comms package alone is 46K LoC 

§  Complex 

§  Flat MPI 

§  Inefficient tool to evaluate technologies / techniques  

§  turnaround taking too long  

§  ~18 months to convert 1 benchmark to CUDA/OpenCL 
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Option2: Mini-applications 

§  Written with Computer Science in mind 

§  Much smaller (~4.5 K LoC) 

§  Amenable to a range of programming models and 

hardware platforms  

§  e.g. no “cut-offs”, etc 

§  Enables efficient / rapid evaluation of new 

programming models / techniques and platforms 

  

§  Enter CloverLeaf …   
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CloverLeaf Intro: Physics  

§  Solves the compressible Euler equations  

§  Finite volume method - 2nd order accuracy 

§  Equations are solved on a staggered grid 

node-centred

quantities

(e.g. velocity)

cell-centred

quantities

(e.g. pressure)
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CloverLeaf Intro: Physics  

§  Single material cells 

§  Predictor/corrector Lagrangian step  

§  Followed by advective remap      

§  System is hyperbolic:   

§  can be solved with explicit numerical methods  

§  without inverting a matrix 
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CloverLeaf Intro: Physics  

§  Significantly simplified Physics for Computer Science 

experimentation 

§  Hydro is a common base to physics models of interest 

§  If methodology fails or is difficult for Hydro  

§  will be considerably harder for other physics models 
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CloverLeaf Intro: Computer Science   

§  Computational mesh is spatially decomposed and 

distributed across processes  

§  Communications are mainly boundary/halo cell 

exchanges of multiple fields between neighbours 

§  occur frequently throughout each iteration  

§  Global reduction operations within each iteration: 

§  the calculation of the timestep value  

§  outputting intermediate results  

§  Simplified computational kernels (Fortran & C) 
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CloverLeaf Intro: Computer Science   

§  14 kernels at lowest level of compute:  

§  engineered to remove all loop-level dependencies  

§  reduced error checking - robust problems 

§  do not contain subroutine calls  

§  called from driver routines allowing multiple versions of each 

kernel to exist within the same codebase  

§  no derived types  

§  minimal pointers  

§  no array syntax  

§  Overall CloverLeaf is ~4.5 K LoC  
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Implementations: MPI 

§  Based on a block-structure decomposition  

§  one chunk (rectangular region of mesh) per process 

§  All processes maintain halo of ghost cells 

§  Minimises surface area between processes   

§  same number of cells / process 

§  Halo exchange depth varies during each iteration 

§  One field exchange at once, shared comms buffers 

§  One MPI message per data field  

§  ISend & IRecv, followed by WaitALL   
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Implementations: CAF 

§  CAF versions largely mirror the MPI version 

§  MPI constructs replaced by one-sided CAF “puts” 

§  host CAF process/image writes data directly into the 

appropriate memory regions of neighbouring processes 

§  No equivalent receive operations  

§  One sub-version exchanges original comms buffers 

§  Another exchanges 2D-array sections 

§  Can use both local and global synchronisation 

§  Utilises Cray CAF or MPI collectives 
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Implementations: Hybird (MPI+OpenMP) 

§  Evolution of the MPI implementation  

§  OpenMP pragmas applied to the loop blocks within the 

computational kernels 

§  Data parallel structure of CloverLeaf is amenable to 

this style of parallelism  

§  Coarser decomposition  

§  reduces the amount of halo-cell data / node 

§  Private constructs etc specified were necessary  
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Implementations: GPU-based 

§  Based on MPI version  

§  MPI+OpenACC and MPI+CUDA 

§  Only GPU devices used for computational work 

§  CPU coordinate computation, handle I/O etc 

§  Fully resident on the GPU devices 

§  Explicit (un)packing of communication buffers is carried 

out on the GPUs for maximum performance    
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Implementations: OpenACC 

§  Loop-level pragmas added to kernel loop blocks: 

§  specify how they should be executed 

§  the data dependencies etc 

§  One off initial transfer to GPU using “copy” clause  

§  “present” clause to indicate all input data available  

§  Data transferred back to the host (for halo exchange) 

using “update host” directive 

§  Following exchange updated data transferred back to 

the device using “update device” directive 
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Implementations: CUDA 

§  The C bindings make interfacing with Fortran difficult  

§  Global class implemented to coordinate data transfers 

with and computation on the GPU 

§  Data created and initialised on device and allowed to 

reside on the GPU throughout the computation 

§  New CUDA kernels implemented for the original kernels  

§  each contains 2 parts: host side and device side   

§  broadly each loop block within the original kernels was 

converted to a CUDA device side kernel  

§  majority of control code kept on the host side 
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Evaluate at scale: 

§  Two alternative Cray architectures:  

§  XK7 and XE6 

§  The candidate programming models 

§  The effects of different process to network topology 

mappings at scale  

§  Several communication focused optimisations to 

improve strong-scaling performance 

§  focus on the halo-exchange routine   
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Prog. Models / Techniques Examined 

§  Weak scaling experiments: 

§  (XE6: flat MPI) vs (XK7: MPI+OpenACC or MPI+CUDA)  

§  Strong scaling experiments (XE6): 

§  MPI vs Hybrid (MPI+OpenMP) vs CAF 

§  MPI process to network topology mapping strategies  

§  8 communication focused code optimisations 

§  7 for MPI and 1 for CAF 
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Process to Network Topology Mappings  

§  Re-order ranks within the actual application  

§  4x4 blocking size used – 16 processes / node 

§  Reduces number of off-node communications  

MPI ranks on node 0

Node boundaries

Problem chunk boundaries

Original Modified 
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Communication Optimisations 

§  Exchanging multiple fields in parallel – reduce sync 

§  Diagonal communications – reduce sync further 

§  Message aggregation  

§  Pre-posting MPI receives  

§  Dealing with messages as they arrival  

§  MPI Datatypes plus utilising sequential memory  

§  Overlapping communications and computation 

§  CAF “gets” rather than “puts” 
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Communications Overlap Approach  

§  Calculate outer region and initiate communications  

§  Overlap with the cell calcs of the inner region  

Cells required

for communication.
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Experimental Platforms  

§  Titan – ORNL (USA): 

§  XK7, 200 cabinets, 20+ PF, Gemini interconnect 

§  18,688 nodes / CPUs / GPUs 

§  2.2 GHz AMD Opteron and Nvidia K20x  

§  CCE v8.1.2, MPT v5.5.4, CUDA Toolkit v5.0.35 

§  HECToR – EPCC (UK):  

§  XE6, 30 cabinets, 800+ TF 

§  2816 nodes, 5632 CPUs, Gemini interconnect 

§  2.3 GHz AMD Opteron  

§  CCE v8.1.2, MPT v5.6.1 
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Experiments: CloverLeaf Test Problem 

§  Asymmetric test problem 

§  Simulates a small, high-density region of ideal gas 

expanding into a larger, low-density region  

§  Shock front which penetrates low-density region 

§  Variables: mesh resolution and simulation time  
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1) 2) 

3) 4) 5) 

§  and visually … 
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Experiments: Weak Scaling 

§  38402 cells / node – 87 timesteps  
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Results: Weak Scaling 

0 

10 

20 

30 

40 

50 

60 

70 

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 

W
a

ll
-t

im
e

s
 (

s
) 

Nodes 

Titan:MPI+OpenACC Titan:MPI+CUDA Hector:MPI 



36 

Results: Weak Scaling Analysis 

 

§  CloverLeaf weak scales extremely well 

§  Wall-time increase from 1 node to max job size 

§  HECToR: MPI = 2.52s (4.2%),  

§  Titan: MPI+OpenACC = 4.99s (16.7%) 

§  Titan: MPI+CUDA = 4.12s (27.2%) 

§  GPU-based XK7 architecture consistently outperforms 

the CPU-based XE6 architecture 

§  node vs node comparison  

§  2x (OpenACC) and 3.7x (CUDA) 
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Experiments: Strong Scaling 

§  153602 cells – 2955 timesteps 

§  Jobs executed within the same node allocation   
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Results: MPI vs Hybrid vs CAF 
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Analysis: “flat” MPI vs Hybrid (MPI+OMP) 

§  4 MPI processes / node & 4 OMP threads / MPI process 

§  Performance is broadly similar ≤ 256 nodes 

§  with flat MPI slightly outperforming hybrid by <1% 

§  >256 nodes hybrid significantly outperforms flat MPI 

§  15.6% at 512 nodes and 29.4% at 1024 nodes 
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Analysis: CAF Performance Analysis 

§  Buffer exchange based strategy outperforms the array-

section based strategy  

§  ~ 81% at 1024 nodes 

§  Local synchronisation vs global synchronisation:  

§  3% at 64 nodes to 36% at 1024 nodes  

§  “gets” vs “puts”: 

§  “gets” initially delivered a modest improvement  

§  at 1024 nodes “puts” version is 6.7% faster 

§  “gets” are more suited for larger messages? 
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Analysis: CAF vs “flat” MPI 

§  No CAF implementation was able to improve on the 

performance of the flat MPI version 

§  Performance disparity increase with scale 

§  18% improvement at 1024 nodes  
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Results: Comms Optimisations 
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Analysis: Comms Optimisations 

§  All effects were more significant at scale 

§  Message aggregation most successful technique  

§  Consistent 6% improvement at 1024 nodes in the 

versions which employed it 

§  May also be the source of the hybrid version’s speedup 

§  “One synchronisation per direction” and “diagonal 

comms” both had a detrimental affect on performance: 

§  - 4.5%, -7% and - 6.9% at 1024 nodes 

§  “Message aggregation” + “diagonal comms” eliminated 

the performance improvement ~ original version 
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Results: Rank Re-ordering 
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Analysis: MPI Rank Re-ordering  

§  Outperforms the default topology mapping strategy 

§  Benefits increase as job sizes increase 

§  4.1% improvement at 1024 nodes  

§  Important to select a mapping which reflects the 

comms patterns or physical geometry of the application  
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Results: Comms/Comp Overlap 
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Analysis: Comms Optimisations  

§  Performance of our comms-comp overlapping 

implementations was surprisingly worse  

§  approximately 5% down on equivalent versions  

§  Likely due to the cache “unfriendly” access pattern 

§  The following optimisations did not have a significant 

affect on overall performance: 

§  pre-posting of MPI recvs  

§  actively checking for message arrivals 

§  MPI Datatypes plus calling MPI ops on sequential memory  
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Conclusion 

§  Minimising communications key to enabling CloverLeaf 

to scale well to high node counts: 

§  16384 nodes of Titan  

§  Significant computational advantage of using GPU 

accelerated architectures (e.g. XK7) 

§  OpenACC: ~2x and CUDA: ~3.7x 

§  OpenACC delivers significant programmer productivity 

improvements over CUDA 

§  OpenACC performance on Kepler may well improve 

and come closer to CUDA as with Fermi  
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Conclusion 

§  When strong-scaling the hybrid (MPI+OMP) version 

outperformed “flat” MPI at high node counts    

§  MPI most likely candidate for delivering inter-node 

communication as we approach Exascale 

§  CAF shows promise but is not yet able to match MPI 

§  A hybrid approach based on open standards and able 

to accommodate accelerate type technologies also 

likely be required 
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Conclusion 

§  Improving the mapping of application processes onto 

the 3D-Torus can deliver performance benefits 

§  Optimising the communications intensive parts of 

applications can deliver performance benefits  

§  Message aggregation to reduce comms was the most 

successful technique at scale  
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Future Work  

§  Integrate comms optimisations with GPU targeted 

versions, utilise Nvidia’s GPUDirect  

§  Generalise and improve rank reordering 

§  Investigate alternative rank placements  

§  Evaluate a SHMEM based version of CloverLeaf 

§  MPI v3.0 Neighbourhood Collectives  

§  Alternative data structures  
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Accessing CloverLeaf 

§  Released as part of Sandia’s Mantevo project: 

§  http://www.mantevo.org 

 

§  Main CloverLeaf repository in GitHub: 

§  http://warwick-pcav.github.com/CloverLeaf/ 
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Thank You 

§  Any Questions? 


