
SOFTWARE Open Access

CloVR: A virtual machine for automated and
portable sequence analysis from the desktop
using cloud computing
Samuel V Angiuoli1,2*, Malcolm Matalka1, Aaron Gussman1, Kevin Galens1, Mahesh Vangala1, David R Riley1,

Cesar Arze1, James R White1, Owen White1 and W Florian Fricke1*

Abstract

Background: Next-generation sequencing technologies have decentralized sequence acquisition, increasing the

demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for

high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure

over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged

with pre-configured software.

Results: We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated

sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual

machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole

genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer

resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In

addition CloVR supports use of remote cloud computing resources to improve performance for large-scale

sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation

sequencing data on multiple cloud computing platforms.

Conclusion: The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis

protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

Background
The cost of genome sequencing has been rapidly decreas-

ing due to the introduction of a number of new afford-

able next-generation sequencing technologies. Coupled

with the decreasing costs is an increase in the volume of

data produced by sequencing machines. As a conse-

quence, the genomics field has been rapidly changing:

Larger amounts of sequence data are not only being pro-

duced at lower costs, but also more and more often by

small to midsize research groups outside of the large

sequencing centers all over the world [1]. This is a trend,

which is likely to continue, as newer generation sequen-

cing technologies continue to drive down costs.

High-throughput sequencing technologies have decen-

tralized sequence acquisition, increasing the number of

research groups in demand of sequence analysis all over

the world. The increasing volume of data from next-

generation sequencing has led to increased computa-

tional and bioinformatics needs and concern of a bioin-

formatics bottleneck [2]. Technical challenges in use of

bioinformatics software [3,4] and difficulties in utilization

of available computational resources [5,6] impede analy-

sis, interpretation and full exploration of sequence data.

The installation, operation, and maintenance of software

tools for bioinformatics analysis can be cumbersome and

require significant technical expertise leading to efforts

that pre-package and bundle bioinformatics tools [3].

While, many bioinformatics software tools routinely used

in sequence analysis are open source and freely available,

the installation, operation, and maintenance can be cum-

bersome and require significant technical expertise [3,7].

* Correspondence: angiuoli@umiacs.umd.edu; wffricke@som.umaryland.edu
1Institute for Genome Sciences (IGS), University of Maryland School of

Medicine, Baltimore, Maryland, USA

Full list of author information is available at the end of the article

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

© 2011 Angiuoli et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:angiuoli@umiacs.umd.edu
mailto:wffricke@som.umaryland.edu
http://creativecommons.org/licenses/by/2.0

In addition, individual tools are often insufficient for

sequence analysis and, rather, need to be integrated with

others into multi-step pipelines for thorough analysis. To

aid with this, bioinformatics workflows systems and work-

benches, such as Galaxy [8], Ergatis [9], GenePattern [10],

Taverna [11] provide user interfaces to simplify execution

of tools and pipelines on centralized servers. Prior to ana-

lysis, researchers utilizing genomics approaches are faced

with a multitude of choices of analysis protocols and best

practices are often poorly documented [12]. Complexities

of analysis pipelines and lack of transparent protocols can

limit reproducibility of computed results [4]. Use of work-

benches that store pipeline metadata and track data prove-

nance can improve reproducibility [8].

Bioinformatics service providers, such as RAST [13],

MG-RAST [14], ISGA [15], and the IGS Annotation

engine [16], have attempted to address challenges in

microbial genome analysis by providing centralized ser-

vices, where users submit sequence data to a web site

for analysis using standardized pipelines. In this model,

the service provider operates the online resource, dedi-

cating the necessary personnel and computational

resources to support a community of users. Bioinfor-

matics workflow systems [8-11] also operate on central

servers, utilizing dedicated or shared network based sto-

rage, and clusters of computers for improved processing

throughput. Other efforts have bundled tools into porta-

ble software packages for installation on a local compu-

ter, including Mothur [17] and Qiime [18] for 16S

ribosomal RNA analysis and DIYA [19] for bacterial

genome annotation. A virtual machine (VM) encapsu-

lates an operating system with pre-installed and pre-

configured software in a single executable file that can

be distributed and run elsewhere. VMs provide a means

to eliminate complex software installations and adapta-

tions for portable execution, directly addressing one of

the challenges involved with using bioinformatics tools

and pipelines.

Cloud computing offers leasable computational

resources on-demand over a network [20]. The cloud

computing model can simplify access to a variety of com-

puting architectures, including large memory machines,

while eliminating the need to build or administer a local

computer network addressing challenges in access and

deployment of infrastructure for bioinformatics [6,21].

Cloud computing platforms have been emerging in the

commercial sector, including the Amazon Elastic Com-

pute Cloud (EC2) [22], and in the public sector to sup-

port research, such as Magellan [23] and DIAG [24]. In

combination with virtual machines, cloud computing can

help improve accessibility to complex bioinformatics

workflows in a reproducible fashion on a readily accessi-

ble distributed computing platform [25].

There is considerable enthusiasm in the bioinformatics

community for use of cloud computing in sequence analy-

sis [6,21,25,26]. While cloud computing platforms that

provide ready access to computing resources over the

Internet on-demand can improve processing throughput,

utilization of bioinformatics tools and pipelines on such

distributed systems requires technical expertise to achieve

robust operation and intended performance gains [6,27].

Cluster management software, workflow systems, or data-

bases may be installed, maintained, and executed across

multiple machines. Also, challenges in data storage and

transfer over the network add to the complexity of using

cloud computing systems [28].

Map-Reduce algorithms [29] using the cloud-ready fra-

mework Hadoop are available for sequence alignment and

short read mapping [30], SNP identification [31], RNA

expression analysis [32], amongst others demonstrating

the usability of cloud services to support large-scale

sequence processing. Despite emergence of methods in

cloud-ready frameworks, many bioinformatics tools, analy-

sis pipelines, and standardized methods are not readily

transferable to these frameworks but are trivially paralle-

lized using batch processing systems [8,9].

In this paper, we describe a new application, Cloud

Virtual Resource (CloVR), that relies on two enabling

technologies, virtual machines (VMs) and compute clouds,

to provide improved access to bioinformatics workflows

and distributed computing resources. CloVR provides a

single VM containing pre-configured and automated pipe-

lines, suitable for easy installation on the desktop and with

cloud support for increased analysis throughput.

In building the CloVR VM, we have addressed the fol-

lowing technical challenges in using cloud computing

platforms:

i) Elasticity and ease-of-use: clouds can be difficult to

adopt and use requiring operating system configura-

tion and monitoring; many existing tools and pipe-

lines are not designed for dynamic environments

and require re-implementation to utilize cloud-ready

frameworks such as Hadoop;

ii) Limited network bandwidth: Internet data trans-

fers and relatively slow peer-to-peer networking

bandwidth in some cloud configurations can incur

performance and scalability problems; and

iii) Portability: reliance on proprietary cloud features,

including special storage systems can hinder pipeline

portability; also, virtual machines, while portable and

able to encapsulate complex software pipelines, are

themselves difficult to build, configure, and maintain

across cloud platforms.

The architecture of CloVR addresses these challenges by

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 2 of 15

i) simplifying use of cloud computing platforms by

automatically provisioning resources during pipeline

execution;

ii) using local disk for storage and avoiding reliance

on network file systems;

iii) providing a portable machine image that executes

on both a personal computer and multiple cloud

computing platforms;

In the presented work, we evaluate four features of the

CloVR architecture: portability across different local

operating systems and remote cloud computing plat-

forms, support for elastic provisioning of local and

cloud resources, scalability of the architecture, use of

local data storage on the cloud, and built process of the

CloVR VM from base image using recipes.

Implementation
CloVR Architecture

CloVR is a VM that executes on a desktop (or laptop)

computer, providing the ability to run analysis pipelines

on local resources (Figure 1). CloVR is invoked using one

of two supported VM players, VMware [33] and Virtual-

Box [34]; at least one of which is freely available on all

major desktop platforms: Windows, Unix/Linux, and Mac

OS. On a local computer, CloVR utilizes local disk storage

and compute resources, as supported by the VM player,

including multi-core CPUs if available. To access data

stored on the local computer, users can copy files into a

“shared folder” that is accessible on both the VM and the

local desktop and uses available hard drive space on the

computer. Once inside the shared folder, CloVR can read

this data for processing. Similarly, CloVR writes output

data to this shared folder, making the pipeline output

available on the desktop. This shared folder feature is sup-

ported by both VMware and VirtualBox.

Optionally, the CloVR VM can be configured to auto-

matically access a cloud provider for additional resources.

Supported clouds include the commercial Amazon Elastic

Compute Cloud [22] and the academic platforms DIAG

[24] and Magellan [23]. In utilizing the cloud, multiple

copies of the CloVR VM execute concurrently and interact

as a cluster for parallel processing of data (Figure 2). Clus-

ters of CloVR VMs running different applications on the

CloVR
Virtual Machine

CloVR-16S

Alignment

Filtering, trimming, sorting,
clustering

Alpha- and Beta-diversity

Classification

16S rRNA amplicons

- 454 or Sanger -

Tree prediction

CloVR-Microbe

Assembly

CDS, tRNA, rRNA
prediction

Annotated genome

Single-genomic WGS

- 454 or Illumina -

Ref.: UniRef100

Ref.: Pfam/TIGRfam

CloVR-Metagenomics

Functional
composition

Alpha- and Beta-diversity

Phylogenetic
composition

Metagenomic WGS

- 454 or Illumina

Clustering

CloVR-Search

Any sequence data

- all platforms -

BLAST results

Ref.: NCBI or

user-provided

Ref.: Greengenes

Ref.: COG

Ref.: RefSeq

Raw

Sequence Data

Annotated Sequence Data
 standardized formats

Local Computer Compute Cloud

Figure 1 Schematic of the automated pipelines provided in the CloVR virtual machine. The CloVR virtual machine includes pre-packaged

automated pipelines for analyzing raw sequence data on both a local computer and cloud computing platform. The primary steps in each of

the four CloVR protocols are shown (light blue) along with input data (pink) and reference databases (green).

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 3 of 15

cloud are independent and not shared between users or

pipelines.

1.2 Components of the CloVR VM

To address technical challenges associated with software

installations and pipeline configurations, the CloVR VM

comes bundled with all required software pre-installed

and pre-configured (Figure 3). The bundled software

includes a base operating system (Ubuntu 10.04 [35] +

BioLinux [3]), job schedulers (Grid Engine [36], Hadoop

[37]), and a workflow system (Ergatis [9]). In addition,

numerous open source bioinformatics tools are pre-

installed and bundled into automated pipelines for pre-

defined analysis protocols [38-40].

Local Client VM

Master VM

Desktop Computer

Web Interface

Command Line Interface

Internet
CloVR CloVR-16S

Alignment

Filtering, trimming, sorting,
clustering

Alpha- and Beta-diversity

Classification

16S rRNA amplicons

- 454 or Sanger -

Tree prediction

CloVR-Microbe

Assembly

CDS, tRNA, rRNA
prediction

Annotated genome

Single-genomic WGS

- 454 or Illumina -

Ref.: UniRef100

Ref.: Pfam/TIGRfam

CloVR-Metagenomics

Functional
composition

Alpha- and Beta-diversity

Phylogenetic
composition

Metagenomic WGS

- 454 or Illumina

Clustering

CloVR-Search

Any sequence data

- all platforms -

BLAST results

Ref.: NCBI or

user-provided

Ref.: Greengenes

Ref.: COG

Ref.: RefSeq

CloVR CloVR-16S

Alignment

Filtering, trimming, sorting,
clustering

Alpha- and Beta-diversity

Classification

16S rRNA amplicons

- 454 or Sanger -

Tree prediction

CloVR-Microbe

Assembly

CDS, tRNA, rRNA
prediction

Annotated genome

Single-genomic WGS

- 454 or Illumina -

Ref.: UniRef100

Ref.: Pfam/TIGRfam

CloVR-Metagenomics

Functional
composition

Alpha- and Beta-diversity

Phylogenetic
composition

Metagenomic WGS

- 454 or Illumina

Clustering

CloVR-Search

Any sequence data

- all platforms -

BLAST results

Ref.: NCBI or

user-provided

Ref.: Greengenes

Ref.: COG

Ref.: RefSeq

CloVR CloVR-16S

Alignment

Filtering, trimming, sorting,
clustering

Alpha- and Beta-diversity

Classification

16S rRNA amplicons

- 454 or Sanger -

Tree prediction

CloVR-Microbe

Assembly

CDS, tRNA, rRNA
prediction

Annotated genome

Single-genomic WGS

- 454 or Illumina -

Ref.: UniRef100

Ref.: Pfam/TIGRfam

CloVR-Metagenomics

Functional
composition

Alpha- and Beta-diversity

Phylogenetic
composition

Metagenomic WGS

- 454 or Illumina

Clustering

CloVR-Search

Any sequence data

- all platforms -

BLAST results

Ref.: NCBI or

user-provided

Ref.: Greengenes

Ref.: COG

Ref.: RefSeq

CloVR CloVR-16S

Alignment

Filtering, trimming, sorting,
clustering

Alpha- and Beta-diversity

Classification

16S rRNA amplicons

- 454 or Sanger -

Tree prediction

CloVR-Microbe

Assembly

CDS, tRNA, rRNA
prediction

Annotated genome

Single-genomic WGS

- 454 or Illumina -

Ref.: UniRef100

Ref.: Pfam/TIGRfam

CloVR-Metagenomics

Functional
composition

Alpha- and Beta-diversity

Phylogenetic
composition

Metagenomic WGS

- 454 or Illumina

Clustering

CloVR-Search

Any sequence data

- all platforms -

BLAST results

Ref.: NCBI or

user-provided

Ref.: Greengenes

Ref.: COG

Ref.: RefSeq

CloVR CloVR-16S

Alignment

Filtering, trimming, sorting,
clustering

Alpha- and Beta-diversity

Classification

16S rRNA amplicons

- 454 or Sanger -

Tree prediction

CloVR-Microbe

Assembly

CDS, tRNA, rRNA
prediction

Annotated genome

Single-genomic WGS

- 454 or Illumina -

Ref.: UniRef100

Ref.: Pfam/TIGRfam

CloVR-Metagenomics

Functional
composition

Alpha- and Beta-diversity

Phylogenetic
composition

Metagenomic WGS

- 454 or Illumina

Clustering

CloVR-Search

Any sequence data

- all platforms -

BLAST results

Ref.: NCBI or

user-provided

Ref.: Greengenes

Ref.: COG

Ref.: RefSeq

CloVR CloVR-16S

Alignment

Filtering, trimming, sorting,
clustering

Alpha- and Beta-diversity

Classification

16S rRNA amplicons

- 454 or Sanger -

Tree prediction

CloVR-Microbe

Assembly

CDS, tRNA, rRNA
prediction

Annotated genome

Single-genomic WGS

- 454 or Illumina -

Ref.: UniRef100

Ref.: Pfam/TIGRfam

CloVR-Metagenomics

Functional
composition

Alpha- and Beta-diversity

Phylogenetic
composition

Metagenomic WGS

- 454 or Illumina

Clustering

CloVR-Search

Any sequence data

- all platforms -

BLAST results

Ref.: NCBI or

user-provided

Ref.: Greengenes

Ref.: COG

Ref.: RefSeq

Cloud computing platforms:

Amazon EC2 (commercial)

DIAG (academic)

Magellan (academic)

>_

Worker Node VMs

Figure 2 Architecture of the CloVR application. CloVR provides a virtual machine (VM) that is run on user’s local desktop or laptop computer.

The user interacts with the local VM via a command line or web interface to execute pipelines. Optionally, clusters of additional VM instances are

provisioned on supported cloud platforms for increased throughput. Each cluster has a master VM instance that provides services for GridEngine

[36] and Hadoop [37]. Input data and output data is transferred between the local VM and a master VM instance in the cloud over the Internet.

Cloud Middleware

EC2, Eucalyptus, Nimbus

Hypervisor

VirtualBox, VMware, Xen

Local computer Supported Clouds
Ubuntu 10.04

Linux 2.6.23

Operating

System

Biolinux Custom recipes*
Software

Installation

GridEngine Hadoop
Distributed

Processing

Ergatis

CloVR protocols and components*

Workflow

System

API
Vappio*

Simplified cloud access, data transfer, and deployment of clusters

Figure 3 Components of the CloVR virtual machine. The CloVR virtual machine (blue) includes pre-installed and pre-configured software

dependencies on an Ubuntu operating system to support execution on a local desktop computer and the cloud (yellow). Key software that is

bundled with the VM is shown. The asterisk indicates software that was developed as part of the CloVR project.

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 4 of 15

1.3 Building VM images from the CloVR skeleton VM

An automated build and configuration process is used to

generate different VM images in formats compatible with

both supported VM players and all supported cloud com-

puting platforms. A specially configured VM (CloVR build-

box, http://clovr.org/developers/) running the Hudson

continuous integration server [41] is used to schedule and

automate the build process. Building the VM begins with a

skeleton Ubuntu 10.04 disk image [42]. During the build

process, a series of recipes are applied to the skeleton image

to install all the necessary software, resulting in three bun-

dles, called “base”, “build” and “standard”, whereby the

“standard” bundle represents the CloVR disk image with all

fully installed pipelines. For simplicity and maximum flex-

ibility shells scripts are being used to build the CloVR bun-

dles. The bundles and corresponding recipes used are in

version control and freely available [43]. In order to allow

external developers to modify, extend, or exchange pipe-

lines or build custom appliances using the CloVR frame-

work, customized recipes can be written based on the

skeleton or base image. Each disk image is converted into

formats for VMWare (.vmdk files) and VirtualBox (.vdi

files). To speed up launching CloVR on the cloud, the raw

disk image is also uploaded to Amazon EC2 (AMI format)

and DIAG (Xen compatible format for cloud systems run-

ning Nimbus [44]). To support use of CloVR on Amazon

EC2, our group is permanently maintaining copies of the

latest CloVR image as well as several reference datasets on

the Amazon Simple Storage Service (S3) [45].

1.4 Components of a CloVR automated pipeline

The CloVR VM (version 0.6) includes four pre-packaged

and automated analysis protocols (Table 1 Figure 1),

which are described in detail in the referenced SOPs: (i) a

parallelized BLAST [46] search protocol (CloVR-Search

version 1.0 [47]); (ii) a comparative 16S rRNA sequence

analysis pipeline (CloVR-16S version 1.0 [39]); (iii) a com-

parative metagenomic sequence analysis pipeline (CloVR-

Metagenomics version 1.0 [40]); and (iv) a single microbial

genome assembly and annotation pipeline (CloVR-

Microbe version 1.0 [38]). For each protocol, a limited set

of configuration options and pre-defined input files are

supported, such as SFF, FASTA, QUAL and FASTQ; out-

put files are generated in standardized formats, such as

FASTA and Genbank flat files, and include summary

reports, tables and graphical visualizations of the analysis

results.

Each CloVR protocol is implemented as two discrete

pipelines: i) a worker pipeline and ii) a wrapper pipeline.

CloVR uses the Ergatis workflow engine [9] to describe

and execute each of these pipelines. The worker pipeline

implements and performs the particular analysis proto-

col, while the wrapper pipeline handles data management

and automated use of the cloud from the desktop using

the local VM client, if this execution mode is selected

(Figure 4). Each wrapper pipeline is composed of seven

primary phases: (1) pre-processing, including quality and

integrity checks of input data; (2) starting a remote clus-

ter for distributed processing; (3) data upload to the

cloud; (4) execution of the worker pipeline locally or on

the cloud; (5) monitoring of the worker pipeline; (6) data

download from the cloud and (7) post-processing. Steps

(2), (3), (6) are only executed when utilizing a remote

cloud platform.

To implement each of these steps in the wrapper pipe-

line, we built a set of utilities and a web services applica-

tion programming interface (API) in a software package

called Vappio http://vappio.sf.net. Vappio is built on top

of the Amazon EC2 API [48], which includes functions

for managing images, instances, and authentication key

pairs. By comparison, Vappio provides functions for

managing clusters, datasets, and analysis protocols. A

summary of the Vappio functions and web services

follows:

(i) Clusters

On the cloud, clusters of CloVR VM instances are config-

ured for parallel processing. CloVR utilizes these clusters

as temporary resources during pipeline processing, provi-

sioning a new cluster for each pipeline, and terminating

the cluster upon pipeline completion. Each cluster runs

an instance of both Grid Engine [36] and Hadoop [37]

for job scheduling. Clusters are composed of a single

master node and one or more worker nodes (Figure 2).

The client CloVR VM running on the user’s desktop is

also considered a cluster, named ‘local’ that is both a

master and worker type. The first VM that is started in a

cluster is designated as the master node. Subsequent

VMs are designated as worker nodes, automatically regis-

tered with the master node and added to the cluster

upon boot of the image. Worker nodes are configured in

Grid Engine queues in order to receive work units based

on the number of CPUs that are available on the

instance.

Communication between clusters

All communication and data transfer between a user’s

desktop and the cloud is managed by the client CloVR

VM running on a local computer. The local client VM

communicates with the master CloVR VM on the cloud

to transfer data, invoke worker pipelines, and monitor

the pipeline state (Figure 4). To provide security and

help ensure data privacy, each remote cluster of CloVR

VMs uses a unique, randomly generated authentication

key. This key is used to enable secure data transfer

between instances with Secure Shell (SSH) both within

the cloud and over the Internet and between the local

client VM and master cloud CloVR VMs.

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 5 of 15

http://clovr.org/developers/
http://vappio.sf.net

Cluster management

To manage the cluster on the cloud, Vappio provides

web services to dynamically start (vp-add-cluster), resize

(vp-add-instances) and terminate (vp-terminate-cluster)

clusters of VM instances. These web services in turn

utilize EC2 API calls [48], including ec2-run-instances,

ec2-terminate-instances, and ec2-describe-instances. In

addition to executing the EC2 API calls, the Vappio

web services manage the configuration of Grid Engine

and Hadoop on each instance, as the instance is started

and added to or terminated and removed from the

cluster.

Table 1 Overview of CloVR analysis protocols

Track Process Tool Input Output

CloVR-Search Database search BLAST [60] nt or pep FASTA BLAST output

CloVR-Microbe
[38]

Assembly Celera assembler [61], Velvet [51] Raw sequence data (SFF,
nt.FASTA1, nt.FASTQ1)

nt.FASTA

Gene prediction Glimmer3 [62] pep.FASTA

tRNA prediction tRNA-scan [63] GBK, SQN

rRNA prediction RNAmmer [64] GBK, SQN

Functional annotation BLASTX against UniRef100 [58] and COG [65], HMMER
[66] search against Pfam [67] and TIGRfam [68]

Annotated GBK,
SQN

CloVR-16S
[39]

Quality checking Mothur [17], Qiime [18] nt.FASTA nt.FASTA

Taxonomic
classification

RDP classifier [69] raw output,
summary reports

Multiple sequence
alignment

Mothur, Qiime (PyNAST) nt.FASTA
alignments

OTU clustering Mothur (distance matrix), Qiime (uclust [70]) OTU list/table

a-diversity analysis Mothur (collectors curves, rarefaction curves, diversity
and richness estimators)

summary reports/
diversity curves

b-diversity analysis Metastats [71], custom R scripts, Qiime summary reports/
figures

CloVR-
Metagenomics

[40]

Clustering and artificial
replicate removal

UCLUST nt.FASTA nt.FASTA

Functional
classification

BLASTX against COG raw output,
summary reports

Taxonomic
classification

BLASTN against RefSeq [72] raw output,
summary reports

Comparative analysis Metastats, custom R scripts summary reports/
figures

Abbreviations: nt, nucleotide; pep, peptide; GBK, GenBank.; SQN, Sequin (NCBI sequence submission table format);

Key bioinformatics tools utilized in each protocol are listed. For input, only the required inputs from the user for each analysis track are listed. For outputs, only

the data saved from each step is listed.
1- Inputs may require adapter and qc trimming prior to assembly

Local Client VM: Wrapper Pipeline

Phase:

Cloud VM Cluster:

Worker Pipeline

Master VM

Worker VM

Worker VM

Worker VM

(1) Pre-Processing

vp-run-metricsAPI Function:

(5) Monitor

vp-describe-pipeline

(2) Start Cluster

vp-start-cluster

(3) Upload

vp-transfer-dataset

(4) Start Pipeline

vp-run-pipeline

(7) Post-Processing

vp-run-metrics

vp-terminate-cluster

(6) Download

vp-transfer-dataset

Figure 4 Steps of an automated pipeline in CloVR. A pipeline executing on the local client VM is comprised of seven primary steps. The

primary API functions invoked during each step are shown with the prefix ‘vp-’. For cloud-based execution, a worker pipeline is executed

remotely on one or more CloVR VM instances on the cloud. The local client VM monitors the worker pipeline and VM instances on the cloud.

Upon pipeline completion, output data is automatically downloaded to the local VM for viewing or post processing.

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 6 of 15

User authentication on the cloud

In order to access the cloud, user account and authenti-

cation information is required and obtained from the

cloud provider. To simplify access to the cloud during

pipeline execution and without jeopardizing security,

Vappio provides a unique identifier, called a credential

name, for each cloud account. During an initial config-

uration, the credential name is configured and associated

with the cloud account and the authentication keys using

the Vappio web service, vp-add-credentials. This creden-

tial name is then used to refer to the account in subse-

quent Vappio web service calls during pipeline execution.

(ii) Datasets

In Vappio, datasets are described as lists of files or Uni-

form Resource Locators (URLs) that are accessible by a

cluster or the local client CloVR VM. User-provided

sequence data, reference data, and output generated by

the CloVR analysis pipelines are all managed as datasets.

Datasets are moved between a local desktop and disk

storage on the remote cluster as needed for processing

(Figure 4, Steps 3 and 6). Vappio provides utilities for 1)

registering new datasets with a cluster (vp-add-dataset), 2)

transferring datasets between the cloud and local desktop

(vp-transfer-dataset), and 3) requesting information about

a dataset (vp-describe-dataset).

(iii) Protocols

Pre-defined analysis protocols are invoked for data analysis

using a single configuration file (Figure 4, Step 4). Vappio

provides utilities for configuration and invocation of analy-

sis protocols with the services vp-describe-protocol and vp-

run-pipeline. An example of the configuration file for

CloVR-Microbe run on 454 sequence data produced by

vp-describe-protocol is shown in Figure 5. The specifica-

tion file includes references to input data sets, configurable

analysis parameters, and, optionally, references to account

credentials for accessing the cloud. Protocols are executed

with vp-run-pipeline, which accepts the specification file

as input. Once executed, the running instance of the pro-

tocol is referred to as a pipeline. The status of pipelines is

monitored with the service vp-describe-pipeline.

(iv) Transparency and reproducibility

For complex pipelines, reproducibility becomes increas-

ingly difficult and virtualization and clouds have been

recognized as ideal platforms to promote pipeline repro-

ducibility [25]. CloVR realizes this potential for reproduci-

ble research by executing all steps on a portable VM that

encapsulates the entire runtime environment, included

versioned protocols and analysis results.

To ensure transparency of the CloVR-supported analy-

sis, each CloVR protocol is described by two documents:

(1) An abstract workflow XML file that is used by the

Ergatis workflow engine to execute the protocol and (2) a

human readable standard operating procedure (SOP)

document that describes the protocol in detail and has

been published with open access elsewhere. The abstract

workflow XML is an exact description of the executions

used to perform the analysis. The SOPs describe each

step of the pipeline, including software tools, software

versions, and parameters used.

To ensure reproducibility of individual analysis results,

CloVR uses the following additional principles: 1) All

pipelines are executed using the Ergatis workflow system

that tracks process flow and exact parameters invoked at

each step in the XML file. 2) As part of the CloVR soft-

ware installation process, versioning is applied to each

analysis protocol, reference data set, and to the CloVR

VM image itself. All results generated during CloVR

pipeline runs have references to these versions.

1.5 Data storage and transfers

All input data and results generated during a CloVR pipe-

line execution are stored in the “shared folder” on the

local client VM and can be accessed from the local com-

puter. When using the cloud, input data is copied to the

cloud as needed and output data is retrieved as part of the

pipelines. To improve network transfer performance,

CloVR uses high performance Secure Shell (HPN-SSH)

[49] to transfer files. The synchronization utility rsync [50]

is used to avoid redundant data transfers. Since all net-

work transfers between the local desktop and the cloud

are managed by CloVR VMs, data transfer is automatic,

invisible to the user and does not require further software

installations or configurations by the user. Upon pipeline

completion, the final output is transferred from the master

node on the cloud to the local VM and, subsequently, the

entire cluster terminated on the cloud.

The pipelines in CloVR are configured to avoid unneces-

sary data transfers for both local and cloud-based execu-

tion modes. For example, publicly available reference

datasets used by several of the supported protocols are

either permanently hosted on the cloud or at an Internet

accessible URL [38-40]. When executing CloVR pipelines

on Amazon EC2, pipelines utilize reference datasets

hosted on Amazon S3 where configured. For local execu-

tion, reference datasets are first downloaded to the local

VM over the Internet. CloVR ensures such local transfers

happen only once, the first time the data is accessed, and

the reference data is then saved locally for subsequent

access.

For data storage of intermediate results or temporary

files during pipeline execution on the cloud, CloVR utilizes

the local ephemeral disks provided to each cloud instance

and does not require access to a shared file system, such

as a NFS server. Under this model, worker nodes must

receive copies of input data from the master node before

beginning work, which is implemented using the “job pro-

log” feature of Grid Engine. Similarly, output data is cop-

ied back to the master node using the “job epilog” feature

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 7 of 15

of Grid Engine. To provide robustness and scalability, all

data transfers to and from the master node are also sched-

uled as jobs in Grid Engine queues named staging.q and

harvesting.q. The number of slots in these queues allows

for control over how many simultaneous transfers a mas-

ter node will process. HPN-SSH and rsync are used to per-

form the transfer between instances in the cloud.

In some cases, pipelines use reference datasets or inter-

mediate outputs that need to be accessed on every

instance in a cluster. A single directory (the staging direc-

tory/mnt/staging/) is used to mirror such data to all

instances in the cluster. Rather than rely exclusively on

the master node to provide a mirror of the data, a custom

built peer-to-peer transfer scheme is used to improve

transfer throughput. Under this strategy, worker nodes

share copies of the staging directory in a peer-to-peer

fashion using rsync and HPN-SSH. Sun Grid Engine is

used to schedule these transfers and limits the number of

transfers per host, thereby avoiding overloading any sin-

gle host. Upon receiving a complete copy of the staging

directory, a worker nodes is added to a Grid Engine

queue (named stagingsub.q) indicating that they can mir-

ror copies to peers.

1.6 Automatic resource provisioning in the cloud

During execution of CloVR pipelines in the cloud, clus-

ter sizes of CloVR VM instances are configured automa-

tically, i.e. additional VM instances are automatically

provisioned, if necessary. Pipelines that are configured

to run exclusively on a local CloVR VM instance skip

resource allocation steps. To determine the number of

compute instances needed for the different CloVR

Figure 5 Example of a specification file used to configure pipeline execution.

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 8 of 15

protocols, custom scripts follow a hierarchy of the fol-

lowing factors: 1) hard-coded assumptions about

expected resource utilizations, 2) cluster size limits set

by the cloud provider, and 3) runtime estimations by

the user based on input data.

An example of a hard-coded resource provisioning is the

short-read Illumina sequence data assembly step using

Velvet [51], which is part of the CloVR-Microbe pipeline

and requires larger RAM allocations than comparable

Roche/454 sequence data assemblies. When executed on

the Amazon EC2 cloud, CloVR-Microbe starts a single

high-memory instance type (m2.xlarge) that provides 17.1

GB of RAM, which in our testing is sufficient for assembly

of single bacterial genomes. Local execution is limited by

available RAM on the machine.

For three of the pre-packaged protocols in CloVR

(Microbe, Metagenomics, and Search), BLAST searches

are the primary processing bottleneck. In these cases, an

estimation of total BLAST runtime can serve as a good

approximation to predict the overall pipeline runtime.

Based on our observations, BLAST runtimes can vary for

a particular search database depending on the length and

composition of query sequences. For the CloVR-Search

and CloVR-Metagenomics protocols, total BLAST run-

times are estimated based on the input data with the

Cunningham tool [52] and used to determine how many

instances to start prior to search. Cunningham, which

was implemented as part of the CloVR project, rapidly

estimates BLAST runtime by comparing the kmer pro-

files (k = 3 for protein, k = 11 for DNA, including reverse

complemented sequence) of a pre-calculated reference

database and the input query sequence. First, a default

minimum of five c1.xlarge instances providing a total of

40 CPUs is started to support BLAST steps in these pipe-

lines. Second, Cunningham is used to determine the

expected CPU hours required for the total BLAST search

and to allocate additional machine instances, not exceed-

ing a user configurable upper limit.

The cloud provider may impose a limit on the maxi-

mum number of instances that can be started by a user

(e.g. Amazon EC2 imposes a default limit of 20 instances

per account, which can be raised on request). For each

CloVR pipeline, users also have the option to set an

instance limit in the configuration file, which prevents

attempts to start more than the specified number of

instances for a particular pipeline.

Also impacting BLAST runtimes are the number and

size of partitions that are used for parallel processing. In

CloVR, BLAST searches are run in parallel by dividing the

input query multi-FASTA files into partitions and execut-

ing a search of each partition concurrently against the

reference database. Over-partitioning of the data leads to

very short durations of individual jobs and can result in

inefficient use of resources and increased runtimes due to

the overhead in the scheduling and invocation associated

with each job. Provided the Cunningham BLAST runtime

estimate, the partition size P for each BLAST query in the

CloVR pipeline is obtained by

P =
Nq

T/R

where Nq is the total number of query sequences, T is

the estimated CPU runtime from Cunningham, and R is

a configurable parameter for the preferred execution

time for a single data partition (default: 2 hours). The

support for runtime estimates is provided as a configur-

able module that reads the pipeline configuration and

produces an estimate. This allows for custom modules

for runtime prediction in the future using some other

logic.

Results
1.7 CloVR runs on the desktop and dynamically utilizes

cloud computing providers

To demonstrate the portability of CloVR, we executed a sin-

gle analysis protocol (CloVR-Microbe) on a local desktop

computer and two cloud computing platforms (Table 2).

The input data comprised of 250,000 454 FLX Titanium

8 kb paired-end sequencing reads of the bacterium Acineto-

bacter baylyi totaling ~89 Mbp and expected to cover the

~3.5 Mbp genome at 25-fold coverage. Identical output,

comprised of 38 contigs (N50: 262 Kbp) and 3,417 pre-

dicted coding genes was obtained on all three platforms.

For local analysis, a CloVR instance with 4 CPUs and 8 GB

of RAM was used. When using the cloud platforms, the

local client VM can be executed in as little as 2 GB of

RAM. The DIAG and EC2 platforms allowed for the paral-

lelization of several steps of the protocol offering 4-CPUs

per “medium” instance type on DIAG (8 GB RAM) and 8-

CPUs per “c1.xlarge” instance type on EC2 (7.5 GB RAM).

Our evaluation of the CloVR-Microbe protocol

demonstrates the ability to run the same genome assem-

bly and annotation protocol both locally and on the

cloud for increased throughput (Table 2). A single

Table 2 Portability and performance of the CloVR VM

Local PC
(Intel Xeon
5130)
Max No CPUs:
4

DIAG
(medium
instance)
Max No.
instances: 5
Max. No CPUs:
20

Amazon EC2
(c1.xlarge
instance)
Max No.
instances: 18
Max No. CPUs: 80

Runtime Runtime Runtime

Assembly 29 min 25 min 28 min

Annotation 2 days 6 hrs 26
min

9 hrs 30 min 7 hrs 2 min

Total 2 days 7 hr 5
min

9 hrs 55 min 7 hrs 30 min

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 9 of 15

configuration setting is changed to invoke the pipeline

on either the local desktop or the supported clouds.

1.8 CloVR provides automated resource provisioning in

the cloud

Elasticity, i.e. dynamic provisioning of resources, is a pri-

mary feature of the cloud and allows for the addition of

computational resources on-demand. Figure 6 shows the

automatic allocation of CloVR VM instances to the clus-

ter on the cloud and the subsequent termination of idle

instances upon job completion for the microbial genome

assembly and annotation steps of the CloVR-Microbe

pipeline and demonstrates dynamic capabilities provided

by CloVR. Figure 7 shows a BLASTX comparison using

CloVR-Search on clusters composed of up to 160 c1.

xlarge instances, comprising 1,280 CPUs. This BLASTX

search ran on Amazon EC2 with a throughput of ~36.9

Mbp per c1.xlarge instance, at an estimated total cost of

~$108 per hour for all 160 instances. Resource provision-

ing for CloVR-Microbe is automatic; for CloVR-Search it

is configured by the user but does not require the direct

user interaction with the remote cluster on the cloud.

1.9 CloVR uses local disks and does not rely on network

file systems during pipeline execution

Bottlenecks in reading or writing data on a shared, net-

work-based file system, such as NFS [53], can cause per-

formance problems during processing, especially when

many concurrent processes are executing against the

shared resource. To avoid data transfer bottlenecks

Start master VM instance

Celera assembly

Provisioning additional

VM instances

BLAST and

HMMer searches

Figure 6 Execution profile of an analysis with CloVR-Microbe. CloVR-Microbe was used to perform whole-genome shotgun (WGS) assembly

and annotation on 500,000 3 kbp paired-end sequence reads generated with the 454 Titanium FLX platform from a Escherichia coli whole-

genome shotgun library (unpublished data). The local VM client first started a remote (master) VM instance on the cloud. The input sequencing

reads (676 MB, compressed SFF file) were copied to this instance and assembled on a single c1.xlarge VM instance, using no more than no

more than two out of the eight available CPUs. Then, prior to the genome annotation, which involves several parallelizable search steps, 15

additional CloVR VM instances were allocated to improve processing throughput. A configurable parameter limits the number of instances that

are added. Idle instances are subsequently terminated automatically upon job completion on an hourly timer.

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 10 of 15

CloVR uses local disks space of the instance running on

the desktop or cloud, requiring input files to be trans-

ferred to each compute host within the cluster. For data

input, these file transfers between master and worker

node types are made prior to computation, for data out-

put subsequent to job completion. In addition, reference

data sets and intermediate outputs need to be accessed

by all VM instances in a cluster. To improve distribution

of these data sets, a peer-to-peer data transfer scheme is

used for sharing intermediate results and reference data

sets. Figure 8 shows data transfers within a cluster of 160

CloVR instances during a run of CloVR-Microbe on

Amazon EC2.

To evaluate the performance of data transfers, the

throughput for providing 3.1 GB of compressed reference

data to a cluster of 100 c1.xlarge CloVR VM instances

was tested (Figure 9). Instances came online in a stag-

gered fashion and received copies of the reference data

upon boot of the instance. The aggregate data through-

put exceeded 1.1 GB per second. By comparison, network

transfer speeds between a pair of c1.xlarge instance types

on the Amazon EC2 network were found to typically fall

below ~40 MB per second (data not shown).

Discussion
CloVR reduces bottlenecks in sequence analysis by using

two related technologies: virtual machines (VMs) and

cloud computing. CloVR simplifies deployment of com-

plex bioinformatics workflows by providing a single

executable (the VM) that is portable across all major

operating systems. By default, CloVR runs on a desktop

but enables seamless access to large distributed comput-

ing resources including Amazon EC2 and other cloud

computing platforms, providing a potential alternative to

building and maintaining in-house infrastructure for

computational analysis.

While genomic workbench systems focus on providing

extensive customization, i.e. choices of multiple tools for

easy integration into user-customized pipelines, many

projects instead rely on static, standardized analysis pipe-

lines. To accommodate this scenario, CloVR provides

pre-defined standard pipelines that integrate tools for

particular analysis objectives so that no additional config-

uration or expertise with individual tools by the user is

required. This level of automation is intended to enable

genomics applications for users that find choice of bioin-

formatics tools overwhelming and instead seek recom-

mendations for best practices. Ongoing work includes a

web-based user interface (Additional file 1), which will

run locally on a user’s desktop, and further simplify

execution of analysis protocols.

CloVR utilizes a recipe-driven process to build VMs for

both the desktop and cloud computing platforms, which

allows for construction of customized VMs by other soft-

ware developers. While CloVR currently includes a set of

protocols for microbial genome analysis, the CloVR VM

can serve as a general platform for the integration of

additional tools and protocols developed by the research

Figure 7 Dynamic allocation of CloVR VM instances to a cluster on the cloud running BLAST. A cluster of CloVR VMs is deployed on-the-

fly and scaled to 160 c1.xlarge Amazon EC2 instances (totaling 1280 virtualized CPUs) running BLAST of a random sample of ~100 Million

nucleotides from metagenomic whole-genome shotgun sequencing with 454 Titanium FLX of an unpublished oral microbiome project against

the NCBI non-redundant protein database.

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 11 of 15

community. To add new protocols to CloVR, developers

build recipes to install new software, deploy and test

pipelines in the Ergatis workflow system, and create new

configuration files for the CloVR API. A first step in this

direction has been made by the use of CloVR to create a

VM for the QIIME package [54]. We plan to create a

wizard to simplify this process in the future and support

custom repositories of build scripts.

In contrast to Internet-based software-as-a-service solu-

tions for sequence analysis, such as Galaxy [8] or Taverna

[11], which provide centralized that typically execute on

dedicated resources and require users to upload data

CloVR follows a decentralized model where each of multi-

ple users executes a local client VM that is independent

from other CloVR instances in a multi-user environment.

By running on the local desktop, CloVR provides the

Figure 8 Visualization of data transfers between instances over time in a cluster of CloVR VMs. Each segment of the circle represents the

lifetime of a single CloVR VM instance. Labels indicate time since bootup in wallclock hours. The red segment represents the master node CloVR

VM and the grey segments the worker VM instances. Data transfers between master and worker instances are shown as grey lines. Transfers

between worker instances are shown as blue lines.

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 12 of 15

opportunity to utilize substantial computing power pro-

vided by multi-core desktop CPUs, potentially avoiding

the need for data transfer over the Internet and for use of

the cloud entirely. The decentralized CloVR architecture

saves all pipeline outputs locally on the personal compu-

ter, providing users additional controls on maintaining

data privacy. Although CloVR transfers data to cloud ser-

vers for processing, CloVR uses the cloud as a temporary

resource and does not require that either inputs or results

are stored permanently on the cloud.

The architecture of CloVR, which utilizes Grid Engine

[36] for job scheduling and local disks for storage,

allows for migration of tools and pipelines from non-

cloud versions to the cloud without reimplementation.

This approach is in contrast to the use of tools devel-

oped for cloud-ready frameworks like Hadoop, which

are algorithms that follow MapReduce [29]. The avail-

ability of these tools is, however, still relatively limited,

since utilization of the Hadoop framework requires new

methods or reimplementation of existing tools. As more

tools that utilize MapReduce [30-32] are becoming

available, Hadoop is included on the VM for their

potential future integration.

CloVR provides utilities for building private clusters of

VM instances on-demand in the Cloud, without expect-

ing users start, manage, or resize clusters in the cloud. A

few other systems, such as Nimbus one-click clusters

[55], Galaxy CloudMan [27] and StarCluster [56], are

also designed to deploy clusters of instances in the cloud.

In contrast to these systems, CloVR pipelines include

steps to provision these resources automatically. This

enables cost savings in the case of commercial clouds, by

allocating resources only as they are needed (“just-in-

time”). To help ensure compatibility with multiple cloud

providers and support emerging cloud computing plat-

forms, CloVR avoids reliance on proprietary features of

individual cloud providers, instead utilizing only three

EC2 API calls during pipeline execution (ec2-run-

instances, ec2-terminate-instances, and ec2-describe-

instances). Such core functions of the EC2 API are

becoming a standard in middleware that provides cloud

services and are expected to be supported by public and

private clouds.

With the increasing volume of next-generation sequen-

cing data, data storage and transfer is increasingly impor-

tant component of analysis pipelines. Compute clusters

often rely on centralized, shared storage systems or file

servers to simplify access to data for users and pipelines.

As part of the design to be both portable and scalable on

cloud computing networks, CloVR does not rely on a

shared, network file system, such as NFS, for storage.

Instead, CloVR relies on local disk storage on either the

users’ desktop to store pipeline input and output, or tem-

porary disk storage available on the cloud VM instances

during pipeline execution. By using local disk for storage

rather than the network, CloVR can be expected to run on

commodity cloud systems with relatively slow networking

and without reliance on the specialized storage features of

cloud providers, such as Amazon Elastic Block Storage

[57].

Increasing data volumes can be an impediment for uti-

lizing the cloud, as this data needs to be transferred over

the Internet. A strategy for moving analysis to data,

rather than transferring data over the network, has been

raised as a potential solution to dealing with data transfer

bottlenecks [5]. The portability of the VM provides such

flexibility. The CloVR VM is 1.4 GB compressed and can

be easily transferred to computational resources that are

co-located with large data sets. Similarly, reference data-

sets can be saved on the cloud to avoid data transfers

over the Internet, such as is done for Uniref100 [58],

which is a 2.6 GB compressed reference dataset hosted in

the cloud to support the CloVR-Microbe protocol.

The CloVR pipelines are composed of multiple steps,

only some of which are computationally demanding or

support parallelization on multiple CPUs. To match pipe-

line needs with available resources, each CloVR pipeline

includes steps to automatically provision cloud resources

as needed. One strategy for efficient allocation of resources

is to estimate runtimes for steps that execute in parallel, in

order to only provision resources that can be used. The

Cunningham [52] utility, which is implemented in CloVR

currently estimates BLAST runtimes during pipeline

executions of CloVR-Search and CloVR-Metagenomics.

This strategy helps in avoiding over-partitioning of the

input data, which introduces overhead that degrades over-

all performance, and starting too many instances for small

searches or too few instances for larger searches. The

Figure 9 Network throughput on a cluster of CloVR VMs on

Amazon EC2. The aggregate network throughput as measured by

Ganglia [59] during a peer-to-peer data transfer on a cluster of 160

c1.xlarge instances on Amazon EC2.

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 13 of 15

ability to predict runtimes can also be used to provide an a

priori estimation to the user of how much an analysis will

cost or whether a particular analysis is even feasible. We

plan to explore providing such estimates as future work

and anticipate this will be of much interest to users of the

software.

Conclusion
We have designed, built, and tested a portable virtual

machine, named CloVR, that provides automated analysis

pipelines for microbial genomics. CloVR provides a stand-

alone client VM for execution on a personal computer

providing the ability to perform sophisticated analyses

using local resources and cloud computing platforms if

additional resources are needed for increased throughput.

By providing fully automated pipelines, the CloVR VM

allows users without extensive bioinformatics background

to process sequence data, lowering the barrier of entry for

microbial sequence analysis.

Availability and requirements
The CloVR VM is freely available for download from

http://clovr.org

• Project name: CloVR

• Project home page: http://clovr.org

• Operating system(s): Platform independent

• Other requirements: VMWare, VirtualBox virtual

machine players

• License: BSD

• Any restrictions to use by non-academics: none

Additional material

Additional file 1: CloVR screencast. A short screencast launching and

CloVR and using the web interface to launch an analysis.

Acknowledgements and funding

This research was supported by funds from the National Human Genome

Research Institute, NIH/NHGRI, ARRA under Grant No. RC2 HG005597-01, the

National Science Foundation, NSF, under Grant No. 0949201 and the

Amazon Web Services in Education Research Grants program. We also thank

Michelle Giglio Gwinn for help integrating the microbial annotation pipeline

and Anup Mahurkar, Dave Kemeza, Victor Felix, and Brian Cotton for IT

assistance and help using the DIAG.

Author details
1Institute for Genome Sciences (IGS), University of Maryland School of

Medicine, Baltimore, Maryland, USA. 2Center for Bioinformatics and

Computational Biology, University of Maryland, College Park, Maryland, USA.

Authors’ contributions

SVA and WFF conceived and designed the project with the help of OW.

SVA, MM, AG implemented the supporting API and custom CloVR VM. SVA,

KG, MV, DRR, CA, JRW implemented and tested the CloVR pipelines. SVA and

JRW ran experiments for the paper. SVA and WFF drafted the manuscript. All

authors read and approved the final manuscript.

Received: 7 June 2011 Accepted: 30 August 2011

Published: 30 August 2011

References

1. Next Generation Genomics: World Map of High-throughput Sequencers.

[http://pathogenomics.bham.ac.uk/hts/].

2. Kahn SD: On the future of genomic data. Science 2011, 331:728-729.

3. Field D, Tiwari B, Booth T, Houten S, Swan D, Bertrand N, Thurston M: Open

software for biologists: from famine to feast. Nat Biotechnol 2006,

24:801-803.

4. Mesirov JP: Computer science. Accessible reproducible research. Science

2010, 327:415-416.

5. Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP: Computational

solutions to large-scale data management and analysis. Nat Rev Genet

2010, 11:647-657.

6. Schatz MC, Langmead B, Salzberg SL: Cloud computing and the DNA data

race. Nat Biotechnol 2010, 28:691-693.

7. Schatz MC: The missing graphical user interface for genomics. Genome

Biol 2010, 11:128.

8. Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for

supporting accessible, reproducible, and transparent computational

research in the life sciences. Genome Biol 2010, 11:R86.

9. Orvis J, Crabtree J, Galens K, Gussman A, Inman JM, Lee E, Nampally S,

Riley D, Sundaram JP, Felix V, et al: Ergatis: a web interface and scalable

software system for bioinformatics workflows. Bioinformatics 2010,

26:1488-1492.

10. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP: GenePattern

2.0. Nat Genet 2006, 38:500-501.

11. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P, Oinn T:

Taverna: a tool for building and running workflows of services. Nucleic

Acids Res 2006, 34:W729-732.

12. Angiuoli S, Cochrane G, Field D, Garrity GM, Gussman A, Kodira CD,

Klimke W, Kyrpides N, Madupu R, Markowitz V, et al: Towards a online

repository of Standard Operating Procedures (SOPs) for (meta)genomic

annotation. OMICS: A journal of integrative biology 2008.

13. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K,

Gerdes S, Glass EM, Kubal M, et al: The RAST Server: rapid annotations

using subsystems technology. BMC Genomics 2008, 9:75.

14. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T,

Rodriguez A, Stevens R, Wilke A, et al: The metagenomics RAST server - a

public resource for the automatic phylogenetic and functional analysis

of metagenomes. BMC Bioinformatics 2008, 9:386.

15. Hemmerich C, Buechlein A, Podicheti R, Revanna KV, Dong Q: An Ergatis-

based prokaryotic genome annotation web server. Bioinformatics 2010,

26:1122-1124.

16. Annotation Engine. [http://ae.igs.umaryland.edu].

17. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,

Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al: Introducing

mothur: open-source, platform-independent, community-supported

software for describing and comparing microbial communities. Appl

Environ Microbiol 2009, 75:7537-7541.

18. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD,

Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al: QIIME allows

analysis of high-throughput community sequencing data. Nat Methods

2010, 7:335-336.

19. Stewart AC, Osborne B, Read TD: DIYA: a bacterial annotation pipeline for

any genomics lab. Bioinformatics 2009, 25:962-963.

20. NIST Cloud Computing Definition. [http://csrc.nist.gov/groups/SNS/cloud-

computing/].

21. Stein LD: The case for cloud computing in genome informatics. Genome

Biol 2010, 11:207.

22. Amazon Elastic Compute Cloud. [http://aws.amazon.com/ec2/].

23. Magellan: Argonne’s DOE Cloud Computing. [http://magellan.alcf.anl.gov/].

24. Data Intensive Academic Grid. [http://diagcomputing.org/].

25. Dudley JT, Butte AJ: In silico research in the era of cloud computing.

Nature biotechnology 2010, 28:1181-1185.

26. Bateman A, Wood M: Cloud computing. Bioinformatics 2009, 25:1475.

27. Afgan E, Baker D, Coraor N, Chapman B, Nekrutenko A, Taylor J: Galaxy

CloudMan: delivering cloud compute clusters. BMC Bioinformatics 2010,

11(Suppl 12):S4.

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 14 of 15

http://clovr.org
http://clovr.org
http://www.biomedcentral.com/content/supplementary/1471-2105-12-356-S1.M4V
http://pathogenomics.bham.ac.uk/hts/
http://www.ncbi.nlm.nih.gov/pubmed/21311016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16841067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16841067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20093459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20717155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20717155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20622843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20622843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20804568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16642009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16642009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16845108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18261238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18261238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18803844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18803844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18803844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20194626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20194626?dopt=Abstract
http://ae.igs.umaryland.edu
http://www.ncbi.nlm.nih.gov/pubmed/19801464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19801464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19801464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20383131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20383131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19254921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19254921?dopt=Abstract
http://csrc.nist.gov/groups/SNS/cloud-computing/
http://csrc.nist.gov/groups/SNS/cloud-computing/
http://www.ncbi.nlm.nih.gov/pubmed/20441614?dopt=Abstract
http://aws.amazon.com/ec2/
http://magellan.alcf.anl.gov/
http://diagcomputing.org/
http://www.ncbi.nlm.nih.gov/pubmed/21057489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19435745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21210983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21210983?dopt=Abstract

28. Trelles O, Prins P, Snir M, Jansen RC: Big data, but are we ready? Nat Rev

Genet 2011, 12:224.

29. Dean J, Ghemawat S: MapReduce: simplified data processing on large

clusters. Commun ACM 2008, 51:107-113.

30. Schatz MC: CloudBurst: highly sensitive read mapping with MapReduce.

Bioinformatics 2009, 25:1363-1369.

31. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL: Searching for SNPs

with cloud computing. Genome Biol 2009, 10:R134.

32. Langmead B, Hansen KD, Leek JT: Cloud-scale RNA-sequencing differential

expression analysis with Myrna. Genome Biol 2010, 11:R83.

33. VMware. [http://www.vmware.com/].

34. VirtualBox. [http://www.virtualbox.org/].

35. Ubuntu. [http://www.ubuntu.com/].

36. GridEngine. [http://gridengine.org].

37. Apache Hadoop. [http://hadoop.apache.org/].

38. Galens K, James White, Arze Cesar, Matalka Malcolm, Giglio Michelle Gwinn,

The CloVR Team, Angiuoli Samuel, Fricke W Florian: CloVR-Microbe:

Assembly, gene finding and functional annotation of raw sequence data

from single microbial genome projects - standard operating procedure,

version 1.0. 2011, Available from Nature Preceding .

39. White J, Arze Cesar, Matalka Malcolm, The CloVR Team, Angiuoli Samuel,

Fricke W Florian: CloVR-16S: Phylogenetic microbial community

composition analysis based on 16S ribosomal RNA amplicon sequencing

- standard operating procedure, version1.0. 2011, Available from Nature

Precedings .

40. White J, Arze Cesar, Matalka Malcolm, The CloVR Team, Samuel Angiuoli,

Fricke W Florian: CloVR-Metagenomics: Functional and taxonomic

microbial community characterization from metagenomic whole-

genome shotgun (WGS) sequences - standard operating procedure,

version 1.0. 2011, Available from Nature Preceding .

41. Hudson Continuous Integration. [http://hudson-ci.org/].

42. EC2 and Ubuntu. [http://alestic.com/].

43. CloVR developer pages. [http://clovr.org/developers].

44. Science Clouds - Nimbus Open Source IaaS Cloud Computing Software.

[http://scienceclouds.org/].

45. Amazon Simple Storage Service. [http://aws.amazon.com/s3/].

46. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. J Mol Biol 1990, 215:403-410.

47. CloVR-Search SOP v1.0. [http://clovr.org/methods/clovr-search/].

48. Amazon Elastic Compute Cloud API Reference. [http://docs.

amazonwebservices.com/AWSEC2/latest/APIReference/].

49. Rapier C, Bennett B: High speed bulk data transfer using the SSH

protocol. Book High speed bulk data transfer using the SSH protocol (Editor

ed.^eds.) City: ACM; 2008, 1-7, 1-7.

50. Tridgell A: Efficient Algorithms for Sorting and Synchronization. The

Australian National University; 1999.

51. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res 2008, 18:821-829.

52. White J, Matalka Malcolm, Fricke W Florian, Angiuoli Samuel: Cunningham:

a BLAST Runtime Estimator. 2011, Available from Nature Precedings .

53. Design and Implementation or the Sun Network Filesystem. [http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.473].

54. QIIME Virtual Box. [http://qiime.sourceforge.net/install/virtual_box.html].

55. Keahey K, Freeman T: Contextualization: Providing One-Click Virtual

Clusters. Proceedings of the 2008 Fourth IEEE International Conference on

eScience IEEE Computer Society 2008, 301-308.

56. STARDEV: Cluster. [http://web.mit.edu/stardev/cluster/].

57. Amazon Elastic Block Store. [http://aws.amazon.com/ebs/].

58. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef:

comprehensive and non-redundant UniProt reference clusters.

Bioinformatics 2007, 23:1282-1288.

59. Ganglia Monitoring System. [http://ganglia.sourceforge.net/].

60. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res 1997, 25:3389-3402.

61. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J,

Li K, Mobarry C, Sutton G: Aggressive assembly of pyrosequencing reads

with mates. Bioinformatics 2008, 24:2818-2824.

62. Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes

and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23:673-679.

63. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of

transfer RNA genes in genomic sequence. Nucleic Acids Res 1997,

25:955-964.

64. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW:

RNAmmer: consistent and rapid annotation of ribosomal RNA genes.

Nucleic Acids Res 2007, 35:3100-3108.

65. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV,

Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, et al: The COG

database: an updated version includes eukaryotes. BMC Bioinformatics

2003, 4:41.

66. Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14:755-763.

67. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A,

Marshall M, Moxon S, Sonnhammer EL, et al: The Pfam protein families

database. Nucleic Acids Res 2004, 32:D138-141.

68. Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M,

Nelson WC, Richter AR, White O: TIGRFAMs and Genome Properties: tools

for the assignment of molecular function and biological process in

prokaryotic genomes. Nucleic Acids Res 2007, 35:D260-264.

69. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-

Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM: The

Ribosomal Database Project: improved alignments and new tools for

rRNA analysis. Nucleic Acids Res 2009, 37:D141-145.

70. Edgar RC: Search and clustering orders of magnitude faster than BLAST.

Bioinformatics 2010, 26:2460-2461.

71. White JR, Nagarajan N, Pop M: Statistical methods for detecting

differentially abundant features in clinical metagenomic samples. PLoS

Comput Biol 2009, 5:e1000352.

72. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V,

Church DM, Dicuccio M, Edgar R, Federhen S, et al: Database resources of

the National Center for Biotechnology Information. Nucleic Acids Res 2008,

36:D13-21.

doi:10.1186/1471-2105-12-356
Cite this article as: Angiuoli et al.: CloVR: A virtual machine for
automated and portable sequence analysis from the desktop using
cloud computing. BMC Bioinformatics 2011 12:356.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Angiuoli et al. BMC Bioinformatics 2011, 12:356

http://www.biomedcentral.com/1471-2105/12/356

Page 15 of 15

http://www.ncbi.nlm.nih.gov/pubmed/21301474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19357099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20701754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20701754?dopt=Abstract
http://www.vmware.com/
http://www.virtualbox.org/
http://www.ubuntu.com/
http://gridengine.org
http://hadoop.apache.org/
http://hudson-ci.org/
http://alestic.com/
http://clovr.org/developers
http://scienceclouds.org/
http://aws.amazon.com/s3/
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://clovr.org/methods/clovr-search/
http://docs.amazonwebservices.com/AWSEC2/latest/APIReference/
http://docs.amazonwebservices.com/AWSEC2/latest/APIReference/
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.473
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.473
http://qiime.sourceforge.net/install/virtual_box.html
http://web.mit.edu/stardev/cluster/
http://aws.amazon.com/ebs/
http://www.ncbi.nlm.nih.gov/pubmed/17379688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17379688?dopt=Abstract
http://ganglia.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18952627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18952627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9023104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9023104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17452365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12969510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12969510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9918945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17151080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17151080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17151080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19004872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19004872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19004872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20709691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19360128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19360128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18045790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18045790?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	CloVR Architecture
	1.2 Components of the CloVR VM
	1.3 Building VM images from the CloVR skeleton VM
	1.4 Components of a CloVR automated pipeline
	(i) Clusters
	Communication between clusters
	Cluster management
	User authentication on the cloud
	(ii) Datasets
	(iii) Protocols
	(iv) Transparency and reproducibility

	1.5 Data storage and transfers
	1.6 Automatic resource provisioning in the cloud

	Results
	1.7 CloVR runs on the desktop and dynamically utilizes cloud computing providers
	1.8 CloVR provides automated resource provisioning in the cloud
	1.9 CloVR uses local disks and does not rely on network file systems during pipeline execution

	Discussion
	Conclusion
	Availability and requirements
	Acknowledgements and funding
	Author details
	Authors' contributions
	References

