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Club Guessing and the Universal Models

Mirna Džamonja

Abstract We survey the use of club guessing and other PCF constructs in the

context of showing that a given partially ordered class of objects does not have a

largest, or a universal, element.

1 Introduction

A natural question in mathematics is, given some partially ordered or a quasi-ordered

set or a class, is there the largest element in it? An aspect of this question appears

in the theory of order where one concentrates on the properties of the set and the

partial order ignoring the properties of the individual elements of the set. A very

different view of this question is obtained when one takes the viewpoint that it is the

structure of individual elements that is of interest. An instance of this is the question

of universality. For this question we are given a class or a set of objects and a notion

of embedding among them, and we ask whether there is an object in the class that

embeds all the others. To simplify our exposition here we shall always assume that

we are working with a set of objects and we shall discuss the smallest cardinality

of the subset of that set that has the property of embedding all the other objects in

the set. We shall refer to this question as the universality problem; the class and the

embedding to which the problem refers will always be clear from the context. The

number mentioned above will be then referred to as the universality number.

Instances of the universality problem have been of a continuous interest to math-

ematicians, especially those studying the mathematics of the infinite—even Cantor’s

work on the uniqueness of the rational numbers as the countable dense linear or-

der with no endpoints is a result of this type. For some more recent examples see

Argyros and Benyamini [1], Füredi and Komjáth [13], and Todorčević [45]. Apart

from its intrinsic interest, the universality problem has an application in model the-

ory, more specifically in classification theory. There it is used to distinguish among

various kinds of unstable theories. For more on this program the reader may consult
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the introduction to Džamonja and Shelah [9] and some of the main results will be

mentioned in §4 below. A good source for the classical results on universality is

the introduction to Kojman and Shelah [17]. The study of the universality problem

can naturally be divided into a “positive” part and a “negative” part. On the positive

side one tries to show that the universality number has at most the given value 1, for

example. Proofs here are often explicit constructions of universal objects or forc-

ing constructions (see Chang and Keisler [4], Shelah [28], or Džamonja and Shelah

[10]). On the negative side one does the opposite showing that the universality num-

ber is at least some given value. In this paper we shall concentrate on the negative

side of the universality problem, in particular, on the instances of it that are obtained

using a specific method that has appeared as a consequence of the discovery of the

PCF theory, namely, the club guessing method. There are several other methods that

appear in the study of the negative side of the universality problem, notably the σ -

functor of Todorčević [45], but here we shall only concentrate on the club guessing

method. This method is due to Kojman and Shelah [17]. We shall start by recalling

the basic principles behind it and then give some applications including the original

one from [17] to linear orders. Let us also note that in this subject it is often not

difficult to construct a specific universe of set theory in which the desired negative

universality result holds. For example, one can find in [17] a proof of the fact that

when one forces over a model of GCH to add λ++ Cohen subsets to a regular cardi-

nal λ, then in the resulting universe there is neither a universal graph of size λ nor

a universal linear order of size λ nor a universal model of any first-order countable

theory unstable in λ. The point of the negative universality results that are obtained

by the club guessing method is that there are implications between a certain PCF

statement and the desired negative universality result, so they hold in more than just

one specifically constructed universe.

This paper is a survey of some of the existing techniques and results on this sub-

ject. Due to the extensive literature it will not be possible to mention all the relevant

results, so our apologies go to the authors of the many deserving papers which we

fail to mention.

2 Invariants and Linear Orders

Let us start with an easy example of a negative universality result: we remind the

reader of why it is that for an infinite cardinal λ there is no well order of size λ to

which there is an order-preserving embedding from any well order of size λ. The

reason for this is that any well order of size λ is ordered in a type ζ < λ+ and hence

cannot embed ordinals larger than ζ . This simple proof has three important elements:

invariants, construction, and preservation. Specifically, to each well order we have

associated an invariant, namely, its order type, then we observed that the invariant

is preserved in the sense that it can only increase under embedding, and finally, we

have constructed a family of well orders of size λ where many different values of the

invariant are present (namely, the ordinals in [λ, λ+]), so showing that no single well

order of size λ can embed them all.

These same principles are present in many settings, for example, [1] and, in par-

ticular, in the club guessing proofs. The matters of course tend to be more complex.

We shall now show the original Kojman-Shelah example of the use of club guessing

for a universality result about linear orders (see [17]).
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Let λ be a regular cardinal and let K be the class of all linear orders whose size is

λ. By identifying the elements of K that are isomorphic to each other we obtain a set

of size at most 2λ which we shall call K again. We may without loss of generality

assume that the universe of each element of K is the λ itself. We are interested in

the universality number of K where for our notion of the embedding we take an in-

jective order-preserving function. For future purposes let us also fix a ladder system

C̄ = 〈Cδ : δ ∈ S ⊆ λ〉 such that each Cδ is a club of the corresponding δ and S is

some stationary subset of the set of limit ordinals below λ. Let Cδ = 〈αδ
i : i < i∗(δ)〉

be the increasing enumeration.

Every member L of K can be easily represented as a continuous increasing union

L =
⋃

j<λ L j of linear orders of size < λ, and such a representation is of course

not unique. Any such sequence L̄ = 〈L j : j < λ〉 is called a filtration of L. Next

we shall define invariants for elements of L, but the definition of an invariant will

depend both on the filtration L̄ and on the specified ladder system C̄ .

Definition 2.1 Suppose that L, L̄, C̄ are as above and δ ∈ S is such that the uni-

verse of Lδ is δ. We define the invariant invL̄,C̄(δ) as the set

{i < i∗(δ) : (∃β ∈ Lαδ
i+1

\ Lαδ
i
)[{x ∈ Lαδ

i
: x <L β} = {x ∈ Lαδ

i
: x <L δ}]}.

So with this notation, the invariant of δ is a subset of i∗
δ that codes the “reflections” of

δ along the places in the filtration λ̄ that are determined by C̄ . It is easy to check that

the set of δ, for which the universe of Lδ is δ, is a club of λ, so since S is stationary

there are stationary many (a club in S) ordinals δ for which invL̄,C̄ (δ) is well defined.

It is also easy to see that for any two filtrations L̄ and L̄ ′ = 〈L ′
j : j < λ〉 of L there is

a club of δ such that Lδ = L ′
δ , hence the dependence of the invariant on the filtration

is only up to a club. This is not the case with its dependence on the ladder system,

and in fact only certain ladder systems are of interest to us.

Definition 2.2 A ladder system C̄ = 〈Cδ : δ ∈ S〉 is said to be a club guessing

sequence if and only if for every club E of λ there is δ ∈ S such that Cδ ⊆ E .

Club guessing sequences were introduced by Shelah in [32] as a tool toward the

development of PCF theory and have since found many applications in various con-

texts. There is also a number of variants of this concept; for example, a number

of interesting results about various kinds of club sequences appears in Ishiu’s thesis

[14]. However, for the moment we shall concentrate on the simple club guessing

mentioned above. An interesting question is when such sequences exist, and one of

the most important theorems in this vein is the following.

Theorem 2.3 ([32]) Suppose that κ and λ are regular cardinals such that κ+ < λ.

Then there is a club guessing sequence of the form C̄ = 〈Cδ : δ ∈ Sλ
κ 〉.

We have used the notation Sλ
κ to denote the set of α < λ whose cofinality is κ . A

club guessing sequence of the form appearing in this theorem will be referred to

as an Sλ
κ -club guessing sequence. Note that for κ ≥ ℵ1 we may without loss of

generality, by intersecting with a club of order type κ if necessary, assume that each

Cδ has order type κ . In fact, a stronger theorem than Theorem 2.3 has been proved by

Shelah showing that in addition to this restriction on the order type the club guessing

sequence above may be assumed to have a squarelike property, or in the terminology

of [9], to be a truly tight (κ, λ) club guessing sequence.
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Theorem 2.4 (Shelah [31]) Suppose that κ and λ are regular cardinals such that

κ+ < λ. Then there is a stationary set S ⊆ Sλ
κ , a club guessing sequence of the form

C̄ = 〈Cδ : δ ∈ S〉, and a sequence P̄ = 〈Pα : α < λ〉 such that each Pα ⊆ P (α)

has size < λ and the sequences C̄ and P̄ interact in the sense that

α ∈ Cδ \ [sup(Cδ ∩ α) + 1] H⇒ Cδ ∩ α ∈
⋃

β<α

Pβ .

A nicely written proof of Theorem 2.3 appears in [17]. Theorem 2.4 can be read off

from the conjunction of the claims in §1 of [31], and a direct proof is given in Shelah

[25], 1.3.(a). Theorem 2.3 refers to cardinals κ, λ which have at least one successor

gap, κ+< λ. It is natural to ask what happens at λ = ℵ1. Clearly, in the presence of

♣ there is an S
ℵ1

ℵ0
-guessing sequence. A theorem of Shelah (Theorem III, 7.1 in [36])

shows that it is consistent to have 2ℵ0 = ℵ2 and that there is no S
ℵ1

ℵ0
-club guessing

sequence (in fact the theorem shows something stronger than what is being quoted

here). This also follows from the conjunction of a result of Shelah in [28] which

shows it is consistent to have the negation of CH and the existence of a universal

linear order of size ℵ1, and the Kojman-Shelah theorem (Theorem 2.5 below) which

implies that in a model in which CH fails and there is an S
ℵ1

ℵ0
-guessing sequence there

cannot be a universal linear order of size ℵ1. In the other direction, a consistency

result showing how to add club guessing sequences with strong guessing properties

was introduced by Komjáth and Foreman who, in [12], give a cardinal-preserving

forcing which, for any regular λ and a given stationary set S in λ, keeps S stationary

and adds a sequence 〈Cδ : δ ∈ S〉 such that for every club E of λ there is a club C

such that for all α ∈ C ∩ S a nonempty final segment of Cδ is included in E .

We shall now state and give a sketch of the proof of the Kojman-Shelah theorem

on linear orders using the notions of an invariant and a club guessing sequence in-

troduced above. For the case of κ = ℵ0 we only need to use an Sλ
κ -club guessing

sequence while the case κ > ℵ0 is handled using Theorem 2.4.

Theorem 2.5 ([17]) Suppose that κ and λ are regular such that λ < 2κ . Further

suppose that either

(a) κ = ℵ0, λ = ℵ1, and there is an S
ℵ1

ℵ0
-club guessing sequence; or

(b) κ+ < λ.

Then there is no universal linear order of size λ; moreover, the universality number

of the class of linear orders of size λ is at least 2κ .

Sketch of Proof The proof uses the method of Construction and Preservation. First

let us fix a club guessing sequence C̄ = 〈Cδ : δ ∈ S ⊆ Sλ
κ 〉 and if κ > ℵ0 assume

also that this sequence is chosen in conjunction with a sequence P̄ to form a truly

tight (κ, λ)-guessing sequence. In particular, we assume that the order type i∗(δ) of

Cδ is always κ . Recall the notation 〈αδ
i : i < κ〉 for the increasing enumeration of

Cδ .

Lemma 2.6 (Construction Lemma) For every A ⊆ κ , there is a linear order L A

and its filtration L̄ A such that for a club C of λ, we have

(δ ∈ C & Cδ ⊆ δ) H⇒ invL̄ A,C̄(δ) = A.
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Sketch of Proof Construction Lemma 2.6 has a simpler proof for case (2.5) of The-

orem 2.5 which is the case we shall prove. Then we shall comment on the changes

needed to cover case (2.5). So assume that κ = ℵ0, λ = ℵ1, and C̄ is an S
ℵ1

ℵ0
-club

guessing sequence. Let A ⊆ ω be given.

Recall that by a cut of a linear order we mean an initial segment of the order, and

we say that the cut is realized if it has the least upper bound. If L ⊆ L ′ are linear

orders and D is a cut of L, then a cut D′ of L ′ extends D if D′ ∩ L = D. When

speaking of a linear order (L,<L ) we may refer to cuts of L or cuts of <L as is more

convenient for the context. By η we denote the order type of the rationals.

We shall define the order <L A on ω1 by inductively defining a strictly increasing

sequence 〈γi : i < ω1〉 of countable ordinals and defining <i
def
=<L A↾ γi at the step i

of the induction. The requirements of this induction will be

(i) for every i < j there is a cut of γi realized in γ j+1 and not realized in γ j ;

(ii) if i < j < k and D is a cut of γi realized in γ j but not in γi , then there is a

cut of γk that extends D and that is realized in γk+1 but not in γk ;

(iii) if D is a cut of γi realized in γi+1 and not realized in γi , then the <i+1-order

type of {x ∈ γi+1 : x realizes D} is η.

The starting point of the induction is γ0 = ω where we let <0 be ω-ordered in the

order type of the rationals. At limit i we define γi to be the sup j<i γ j and the order

is defined as the union of the orders constructed so far.

At the stage γi+1 we ask ourselves whether i is a good point of the construction,

which would mean that i is a limit ordinal and γi = i . If so, we then ask whether

Cδ consists of good points. If the answer to both of these questions is affirmative,

we proceed to define a sequence 〈Dn : n < ω〉 of cuts such that each Dn is a cut of

αi
n not realized in <αi

n
and Dn ⊆ Dn+1. In addition, we require that Dn is realized

in <αi
n+1

if and only if n ∈ A. If A = ∅ we let D0 be a cut of <0 not realized

in i , which exists as there are 2ℵ0 cuts of <0 and i is countable. We let Dn be the

extension of D0 to αi
n , so Dn

def
= {x < αi

n : (∃y ∈ D)(x <αi
n

y)}. Otherwise, let

n0 be the first element of A and let Dn0
be a cut of αi

n0
that is realized in αi

n0+1 and

not in αi
n0

. For m < n0 let Dm = Dn0
∩ αi

m . If A = {n0} then since there is the

order type η of elements of αi
n0+1 that realize Dn0

—by requirement (ii)—there is a

cut D of i that extends Dn0
and that is not realized in i . For n > n0 we let Dn be

D ∩ αi
n . Otherwise, let n1 = min A \ (n0 + 1) and let Dn1

be a cut of αi
n1

extending

Dn0
, which is realized in αi

n1+1 and not in αn1
and which exists by (iii) above. Then

we continue similarly to the previous case. In any case, we have constructed the

increasing sequence of cuts as required, and letting D∗ be their union we then let i

realize D∗ in <L↾ (i + 1). We extend the order by transitivity.

Now we still have to assure that the requirements of the induction are preserved,

which can be done by amalgamating countably many ordinals to i + 1 in the way

requested by the requirements. The sup of all these ordinals is then defined to be

γi+1. If i is not a good point we do not have to take special care of i but instead

proceed just as in this paragraph.

At the end of the induction we let <L A be the union of the orders constructed,

L̄ A = 〈<i : i < ω1〉, and E a club of good points of the construction. The con-

struction was made so that at any δ ∈ E the required invariant is guaranteed to be

achieved only if Cδ ⊆ E .
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This finishes the proof of Construction Lemma 2.6 for the case κ = ℵ0. For

larger κ things become more complex as one also has to handle the limit points of

cofinality < κ . This is a difficulty familiar from classical constructions such as that

of a Suslin tree from a ♦, where one in addition uses a �-sequence at cardinals larger

than ℵ1. In this case the construction can be carried through thanks to the squarelike

properties of a truly tight guessing sequence. See [17] for details. �

We also need the Preservation Lemma.

Lemma 2.7 (Preservation Lemma) Suppose that L and L ′ are linear orders with

universe λ and with filtrations L̄ and L̄ ′, respectively, while f : L → L ′ is an order-

preserving injection. Then there is a club E of λ such that for every δ ∈ Sλ
κ satisfying

Cδ ⊆ E, we have

invL̄,C̄(δ) = invL̄ ′,C̄( f (δ)).

Sketch of Proof We start by defining a model M with universe λ, order relations

<L , <L ′ , and < (the ordinary order on the ordinals), and the function f . Let E be

a club of δ < λ such that δ ∈ E implies that M ↾ δ ≺ M and the universe of both

Lδ and L ′
δ is δ. Suppose that δ ∈ E is such that Cδ ⊆ E , and we shall prove that

invL̄,C̄(δ) = invL̄ ′,C̄( f (δ)). The more difficult direction of the proof is the inclusion

⊆. So suppose that i ∈ invL̄,C̄ (δ), hence there is β ∈ Lαδ
i+1

\ Lαδ
i

satisfying that

{x <L β : x ∈ Lαδ
i
} = {x <L δ : x ∈ Lαδ

i
}. We would like to claim that f (x)

witnesses that i ∈ invL̄ ′,C̄( f (δ)), and it does follow from the choice of E and the

fact that Cδ ⊆ E that

{y <L ′ f (β) : y ∈ f “(Lαδ
i
)} = {y <L ′ f (δ) : y ∈ f “(Lαδ

i
)}.

However, the problem is that f is not necessarily onto. As L ′ is a linear order we

have f (β) <L ′ f (δ) or f (δ) <L ′ f (β) (equality cannot occur by the choice of E).

Let us suppose that the former is true; the latter case is symmetric. Suppose that

f (β) does not witness that i ∈ invL̄ ′,C̄ ( f (δ)); this then means that there is γ ∈ L ′
αδ

i

(so γ < αδ
i ) such that f (β) <L ′ γ <L ′ f (δ). Observe that there is no ε ∈ Lαδ

i
such

that γ ≤L ′ f (ε) ≤L ′ f (δ), by the choice of β.

Consider T
def
= {x : (¬∃q ∈ Lαδ

i
) γ <L ′ f (q) <L ′ x}. We claim that T ∩ αδ

i is

exactly the set {ζ < αδ
i : ζ <L ′ f (δ)}. Namely, if ζ < αδ

i and ζ <L ′ f (δ) and

ζ /∈ T then there is ε ∈ Lαδ
i

such that γ <L ′ f (ε) <L ′ ζ <L ′ f (δ)—a contradiction.

On the other hand, if for some ζ < αδ
i we have f (δ) <L ′ ζ then in M it is true that

there is q such that γ <L ′ f (q) <L ′ ζ , as δ is such a q . By elementarity it is true

that there is such q ∈ Lαδ
i
, so ζ /∈ T . Hence we have shown the existence of a ξ such

that {ζ < αδ
i : ζ <L ′ ξ} is exactly

{x < αδ
i : (¬∃q ∈ Lαδ

i
) γ <L ′ f (q) <L ′ x}.

By elementarity there must be such ξ ∈ L ′
αδ

i+1

\ L ′
αδ

i

, and then this ξ shows that

i ∈ invL̄ ′,C̄( f (δ)). �

To finish the proof of Theorem 2.5, suppose that there were a family {L i : i < i∗}

of linear orders of size λ for some i∗ < 2κ such that every linear order of size λ

embeds into some L i . We may assume that the universe of each L i is λ. Let L̄ i
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be any filtration of L i and let B be the family of all B ⊆ κ such that for some x

and i we have invL̄ i ,C̄
(x) = B . Then the size of B is at most λ · |i∗|, which is

< 2κ . Hence there is A ⊆ κ with A 6∈ B and, by Construction Lemma 2.6, a linear

order L A with universe λ and its filtration L̄ A such that for a club C of λ we have

δ ∈ C H⇒ invL̄ A,C̄ (δ) = A. Suppose that f : L A → L i is an embedding and let

E be a club guaranteed to exist by Preservation Lemma 2.7. Let δ ∈ C be such that

Cδ ⊆ E . Then invL̄ i ,C̄
( f (δ)) = A—a contradiction with the choice of A. �

3 A Few More Words on Orders and Orderable Structures

The Kojman-Shelah method can be ramified to give results on cardinals λ that are not

necessarily regular. Using another PCF staple, the covering number cov(λ, µ, θ, σ ),

they were able to strap together the negative universality results on the regular car-

dinals below a given singular cardinal to obtain a negative universality result for the

singular. Note that by classical results for special models (see [4]) there is a universal

linear order (or any other first-order theory of a sufficiently small size) in any strong

limit uncountable cardinality. The question then becomes what happens if, for ex-

ample, ℵω is not a strong limit. The answer is that then there is no universal linear

order. Specifically, we have the following theorem.

Theorem 3.1 ([17]) Suppose that λ is a singular cardinal which is not a strong

limit and it satisfies that either

(a) ℵλ > λ, or

(b) ℵλ = λ but |{µ < λ : ℵµ = µ}| < λ and either cf(λ) = ℵ0 or 2<cf(λ) < λ,

then there is no universal linear order of size λ.

Linear orders are representatives of theories T that have the strict order property

which means that there is a formula ϕ(x̄; ȳ) such that in the monster model C of T

there are ān , for n < ω, such that for any m, n < ω

C |H “(∃x̄)[¬ϕ(x̄; ām) ∧ ϕ(x̄; ān)]” iff m < n.

Other examples of first-order theories that have the strict order property are Boolean

algebras, partial orders, lattices, ordered fields, ordered groups, and any unstable

complete theory that does not have the independence property (see Shelah [23]). Us-

ing the fact that the strict order property of T allows for coding of orders into models

of T and that there is a quantifier-free definable order in the above (noncomplete)

theories, §5 of [17] shows that the existence of a universal element in any of these

theories at a cardinal λ implies the existence of a universal linear order of size λ.

Therefore the negative universality results stated above also apply to these theories.

A different approach to drawing conclusions about the universality problem in one

class knowing the behavior of another class is taken by Thompson ([43] and [44])

who uses functors that preserve the embedding structure. She reproves the Kojman-

Shelah conclusion about universality of partial orders versus that of linear orders and

connects certain classes of graphs with certain classes of strict orders. This approach

is also useful when one moves from the first-order context, for example, to the class

of orders that omit chains of a certain type. The simplest case is the one of orders that

omit infinite descending sequence. Universality is resolved trivially in the class of

well orders, as follows from the example of the ordinals, but by changing the context

to that of well-founded partial orders with some extra requirements one obtains a

different situation. This type of problem is the subject of [43].
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4 Model Theory

There is a model-theoretic motivation behind an attempt to deliver a general method

of approach to the universality problem stemming from Shelah’s program of classifi-

cation theory. This is very well described in §5 of Shelah’s paper on open questions

in model theory [37]. Namely, it may be hoped that the behavior of a theory with

respect to the universality would classify the theory as “good” if it can admit a small

number of universal models even when the relevant instances of GCH fail, while a

bad theory would rule out small universal families as soon as GCH would be suffi-

ciently violated. (Recall that the situation in the presence of GCH is information-free

here, since all first-order countable theories, for example, have a universal element

in every uncountable cardinal; see [4]). Such a division would be used to classify un-

stable theories with the hope for a result similar to the classification of stable versus

unstable theories where a model-theoretic property of stability of a countable theory

was closely connected with the number of pairwise nonisomorphic models a theory

may have at an uncountable cardinal through the celebrated Shelah’s Main Gap The-

orem (see [23]). The idea of using universality in a similar manner has proved to be

quite successful, and although no precise model-theoretic equivalent has been found

as of yet, there is much information available about the existing model-theoretic

properties. One can find a rather detailed description of the present state of knowl-

edge in [9] where there is also a precise definition of the proposed division from

the set-theoretic point of view, that is, what is meant by being “good” (referred to as

amenable) and “very-bad” (highly nonamenable) from the universality point of view.

In this paper we mostly concentrate on the highly nonamenable theories which can

be defined as follows.

Definition 4.1 A theory T is said to be highly nonamenable if and only if for every

large enough regular cardinal λ and κ < λ such that there is a truly tight (κ, λ) club

guessing sequence, the smallest number of models of T of size λ needed to embed

all models of T of that size is at least 2κ . T is highly nonamenable up to κ∗ if the

above characterization is not necessarily true, but true whenever κ < κ∗.

In model theory one usually works with complete theories while our examples above

were not necessarily so (for example, we worked with the theory of a linear order).

We adopt the convention that when speaking of a complete theory by an embed-

ding we mean an elementary embedding, and otherwise we just mean an ordinary

embedding. With this clause, Definition 4.1 makes sense in both contexts, and the

work of Kojman and Shelah presented in §2 showed that linear orders and theories

with the strict order property are highly nonamenable. Shortly after this work, the

same authors in [18] proceeded to show—in Theorems 4.1 and 5.1 of that work—the

following.

Theorem 4.2 ([18]) Countable stable unsuperstable theories are highly non-

amenable up to ℵ1. In general, stable unsuperstable theories T are highly non-

amenable up to their stability cardinal κ(T ).

Here we use the notion of the stability cardinal κ(T ) defined as the minimal cardinal

κ such that for every set A ⊆ C and a type p over A there is B ⊆ A such that

|B| < κ and p does not fork over B . It is proved in Shelah’s Stability Spectrum

Theorem [23] that for any stable T we have κ(T ) ≤ |T |+ and for every λ we have

T is stable in λ if and only if λ = λ<κ(T ) and either λ ≥ 2ℵ0 or λ ≥ the number
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D(T ) of parameter-free types of T in C. A countable complete first-order theory

T is stable unsuperstable if and only if κ(T ) = ℵ1. In Theorem 4.2, as well as in

many other applications of the method, a major issue is how to define an invariant.

Suppose that T is, for simplicity, a complete countable stable unsuperstable theory.

Definition 4.3 Let λ be regular, C̄ = 〈Cδ : δ ∈ S〉 a truly tight (κ, λ) club guessing

sequence, and N a model of T of size λ given with a continuous increasing filtration

N̄ = 〈Ni : i < λ〉. We define for a δ ∈ S and a tuple ā of N ,

invN̄ ,C̄ (ā)
def
= {i < κ : the type of ā over Nαδ

i
forks over Nαδ

i+1
}.

As before, we have used the notation 〈αδ
i : i < κ〉 for the increasing enumeration of

Cδ . In the case of κ = ℵ0 it suffices to deal with ordinary club guessing sequences.

We do not have the space to introduce the notion of forking here, but the intuition

behind Definition 4.3 is similar to the idea behind the invariant for linear orders: i is

in the invariant if and only if “something new happens” at the stage αδ
i+1 , something

that “reflects” the behavior of ā with respect to
⋃

i<κ Nαδ
i
. Recalling that κ < κ(T )

is assumed may give a hint of how the (rather complex) proof in [18] proceeds.

One can also try to capture what is meant by the “good” universality behavior,

and in [9] we have tried to capture this using the notion of amenability.

Definition 4.4 A theory T is amenable if and only if whenever λ is an uncountable

cardinal larger than the size of T and satisfies λ<λ = λ and 2λ = λ+, while θ satisfies

cf(θ) > λ+, there is a λ+-cc (< λ)-closed forcing notion that forces 2λ to be θ and

assures that in the extension there is a family F of < θ models of T of size λ+ such

that every model of T of size λ+ embeds into one of the models in F . Localizing at

a specific λ we obtain the definition of amenability at λ.

The point is that no theory can be both amenable and highly nonamenable. Namely,

suppose that a theory T is both amenable and highly nonamenable, and let λ be a

large enough regular cardinal while V = L or simply λ<λ = λ and ♦(Sλ+

λ ) holds.

Let P be the forcing exemplifying that T is amenable. Clearly there is a truly tight

(λ, λ+) club guessing sequence C̄ in V , and since the forcing P is λ+-cc, every

club of λ+ in V P contains a club of λ+ in V , hence C̄ continues to be a truly tight

(λ, λ+) club guessing sequence in V P . Then, on the one hand, we have that in V P ,

the universality number of models of T of size λ, univ(T, λ+), is at least 2λ by the

high nonamenability, while univ(T, λ+) < 2λ by the choice of P—a contradiction.

In [10], building on the earlier work of Shelah in [24], we gave an axiomatization

of elementary classes that guarantees that the underlying theory is amenable. Shelah

proved in [33] that all countable simple theories are amenable at all successors of

regular κ satisfying κ<κ = κ . (Note that even though all simple theories are stable,

this is not in contradiction with Theorem 4.2 as there it is only proved that countable

stable unsuperstable theories are highly nonamenable up to ℵ1). In that same paper

Shelah introduced a hierarchy of complexity for first-order theories and showed that

high nonamenability appears as soon as a certain level on that hierarchy is passed.

Details of this hierarchy are given in the following definition.

Definition 4.5 Let n ≥ 3 be a natural number. A formula ϕ(x̄, ȳ) is said to exem-

plify the n-strong order property of T , SOPn , if lg(x̄) = lg(ȳ), and there are āk for

k < ω, each of length lg(x̄) such that

(a) |H ϕ[āk, ām] for k < m < ω,
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(b) |H ¬(∃x̄0, . . . , x̄n−1)[
∧

{ϕ(x̄ℓ, x̄k) : ℓ, k < n and k = ℓ + 1 mod n}].

The following were proved in [33]: the hierarchy above describes a sequence

SOPn (3 ≤ n < ω) of properties of strictly increasing strength such that the theory

of a dense linear order possesses all the properties, while on the other hand, no

simple theory can have the weakest among them, SOP3. The property SOP4 of a

theory T implies that T is highly nonamenable. In light of these results it might

then be asked whether SOP4 is a characterization of high nonamenability. A partial

answer appears in [9]. There we considered a property of theories that we called

oak property, as its prototypical example is a tree of the form κ≥λ equipped with

restriction where we can express that η ↾ α = ν for η ∈ κλ, α < κ and ν ∈ κ>λ.

This property is also a generalization of the theory of infinitely-many independent

equivalence relations T ∗
feq (see [9]). Following is the formal definition.

Definition 4.6 A theory T is said to satisfy the oak property as exhibited by a for-

mula ϕ(x̄, ȳ, z̄) if and only if for any infinite λ, κ there are b̄η(η ∈ κ>λ), c̄ν(ν ∈ κλ),

and āi (i < κ) such that

(a) [η ⊳ ν & ν ∈ κλ] H⇒ ϕ[ālg(η), b̄η, c̄ν],

(b) if η ∈ κ>λ and ηˆ〈α〉 ⊳ ν1 ∈ κλ and ηˆ〈β〉 ⊳ ν2 ∈ κλ, while α 6= β and

i > lg(η), then ¬∃ȳ [ϕ(āi , ȳ, c̄ν1
) ∧ ϕ(āi , ȳ, c̄ν2

)],1

and, in addition, ϕ satisfies

(c) ϕ(x̄, ȳ1, z̄) ∧ ϕ(x̄, ȳ2, z̄) H⇒ ȳ1 = ȳ2.

Shelah proved in [24] that T ∗
feq exhibits a nonamenability behavior provided that

some cardinal arithmetic assumptions close to the failure of the singular cardinal

hypothesis are satisfied. This does not necessarily imply high nonamenability as

was proved also in [24] that this theory is in fact amenable at any cardinal which

is the successor of a cardinal κ satisfying κ<κ = κ . In [9] we generalized the first

of these two results by showing that any theory with oak property satisfies the same

nonamenability results as those of T ∗
feq, and we gave some more circumstances, given

in terms of PCF theory for when such nonamenability results hold. The oak property

cannot be made a part of the SOPn hierarchy, as [9] gave a theory which has oak,

and is not SOP3, while the model completion of the theory of triangle-free graphs is

an example of a SOP3 theory which does not satisfy the oak property. On the other

hand, it is also proved in [9] that no oak theory is simple. Further considerations of

the oak property appear in Shelah [26] where it is proved that (under an interpretation

of what it means for a class to have oak) that the class of groups has this property.

That paper also gives further universality results in the context of Abelian groups.

5 Some Applications in Analysis and Topology

There is a rich literature concerning the universality problem in the various classes

of compact spaces coming from analysis, such as Corson and Eberlein compacta,

where by an embedding we usually mean the existence of a continuous surjection

(see, e.g., [1]). Many of these questions were nicely resolved by the σ -functor of

Todorčević [45] which gives for every such space K another space σ(K ) in the same

class such that σ(K ) is not a continuous image of K . The class of uniform Eber-

lein compacta (UEC), which are those compact spaces that are homeomorphic to a

weakly compact subspace of a Hilbert space, seems to be an odd one out in these

problems since neither the method of generalized Szlenk invariants as employed in
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[1] nor the σ -functor gives any results in this class. The reason is, as the authors of

[1] observed, that their invariant defined for all Eberlein spaces trivializes in the case

where the Eberlein is uniform, while σ(K ) for a uniform Eberlein compact space K

is Eberlein compact but not necessarily uniform. Bell in [2] made a major advance

in the universality problem of the uniform Eberlein compacta which had been com-

pletely open since it was posed in the 1977 paper of Benyamini, Rudin, and Wage

[3]. Namely, Bell defined a certain algebraic structure, the so-called c-algebra, and

he proved that there is a universal UEC of weight λ if and only if there is a universal

c-algebra of size λ. In the same paper Bell showed that if 2<λ = λ, there is a c-

algebra of size λ which is universal not merely under ordinary embeddings but also

under a stronger notion of a c-embedding. We shall call such algebras c-universal

(see Definition 5.1 below). He also provided negative consistency results in models

obtained by adding Cohen subsets to a regular cardinal.

Definition 5.1

(1) A subset C of a Boolean algebra B has the nice property if for no finite F ⊆ C

do we have
∨

F = 1. A Boolean algebra B is a c-algebra if and only if there

is a family 〈An : n < ω〉 of pairwise disjoint subsets of B , each consisting of

pairwise disjoint elements whose union has the nice property and generates

B .

(2) If Bl for l ∈ {0, 1} are c-algebras with fixed sequences 〈Al
n : n < ω〉 of sub-

sets exemplifying that Bl is a c-algebra, then a 1-1 Boolean homomorphism

f : B0 → B1 is a c-embedding iff f “A0
n ⊆ A1

n for all n < ω.

Note that the notion of a c-algebra is not first-order so the Kojman-Shelah results

from [17] do not directly apply. We showed in Džamonja [8] that for no regular

cardinal λ > ℵ1 with 2ℵ0 > λ can there exist < 2ℵ0 c-algebras of size λ such that

every c-algebra of size λ embeds into one of them. These results were continued in

Džamonja [7] which contains both negative and positive results about the existence

of universal c-algebras and UEC. On the other hand, we proved a positive consistency

result showing that under certain non-GCH assumptions there can be a family of

UEC of a relatively small size (λ++ < 2λ+
) each of which has weight λ+ and which

are jointly universal for UEC of weight λ+. The negative results are the ones relevant

to this paper and they were obtained using the method of Kojman-Shelah invariants.

The appropriate definition in this context turned out to be the following.

Definition 5.2 Let λ be a regular cardinal and 〈Cδ : δ ∈ S〉 a club guessing

sequence on λ with Cδ = 〈αδ
i : i < i∗〉 an increasing enumeration (so all Cδ have

the same order type). Let B be a c-algebra of size λ with a filtration B̄ , and we

assume that 〈An : n < ω〉 is a fixed sequence demonstrating that B is a c-algebra.

Suppose that δ ∈ S and define for δ ∈ S and b ∈ B \ Bδ

invB̄,C̄ (b)
def
= {i < i∗ : (∃m ≥ 1)(∃y ∈ Am ∩ Bαδ

i+1
\ Bαδ

i
) [y ≥ b]}.

A recent application of the method of invariants comes from Kojman-Shelah’s

work [15] on almost isometric embeddings between metric spaces. A map

f : X → Y between metric spaces is said to be Lipshitz with constant r > 0

if for every x, y ∈ X we have dY ( f (x), f (y)) < r · dX (x, y). X is almost-

isometrically embeddable into Y if and only if for every r > 1 there is a continuous

injection f : X → Y such that both f and f −1 are Lipshitz with constant r , which
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is called bi-Lipshitz with constant r . Among many interesting results about such

embeddings, [15] also gives the following.

Theorem 5.3 ([15]) If ℵ1 < λ < 2ℵ0 is regular then for every κ < 2ℵ0 and metric

spaces {(X, di ) : i < κ} of size λ, there exists a metric space of size λ that is not

almost-isometrically embeddable into any (X, di ).

The proof of the theorem again uses the method of invariants but with a twist.

Namely, one defines two kind of invariants, invdom and invrng, as follows, where

we are using the same notation for club guessing sequences as above.

Definition 5.4 Suppose that (X, d) is a metric space with universe λ, C̄ is an Sλ
ℵ0

club guessing sequence, δ ∈ Sλ
ℵ0

, β > δ, and K ≥ 1 is an integer. We consider X as

being given in the filtration X̄ = {α : α < λ}. Then

invdom
C̄,X,δ

(β) = {n < ω : d(β, αδ
n)/d(β, αδ

n+1) > 2K 2},

and

inv
rng

C̄,X,δ
(β) = {n < ω : d(β, αδ

n)/d(β, αδ
n+1) > 4K 4}.

The Preservation Lemma 2.7 then says, in particular, that if f : X → Y , where both

X and Y are metric spaces with universe λ, is bi-Lipshitz with constant K , then there

is a club E of λ such that for every δ ∈ E ∩ Sλ
ℵ0

and β > δ, we have f (β) > δ and

invdom
C̄,X,δ

(β) = inv
rng

C̄,Y,δ
( f (β)). Theorem 5.3 is to be contrasted with another theorem

from [15] which says that for any regular cardinal λ it is consistent that 2ℵ0 > λ+

and there are λ+ separable metric spaces of size λ such that every separable metric

space of size λ almost-isometrically embeds into one of them. Earlier results about

universality of metric spaces under different kinds of embeddings and involving the

method of invariants were obtained by Shelah in [35].

Model theory of metric spaces is also one of the subjects of Ustvyasov’s Ph.D.

thesis [46] and his joint work with Shelah in [40] where they concentrate on complete

metric spaces. A model-theoretic approach to Banach spaces pays off in the Shelah-

Ustvyasov paper [41] where they prove that the appropriately axiomatized theory

of Banach spaces has SOPn for all n ≥ 3 and hence draw the negative universality

results provided by SOP4 (see §4 above) where the notion of embedding is isometry.

Note that if λ = 2<λ > ℵ0 then there is an isometrically universal Banach space

of size λ. Universality results in Banach spaces are quite well studied classically;

maybe the most well-known result in this vein is that of Szlenk in [42] where it was

proved that there is no universal reflexive separable Banach space.

The use of club guessing in topology is discussed as part of Dow’s recent survey

article [6] where he also gives a nice application to the nonexistence of a certain em-

beddability behavior between maximal almost disjoint families of countable subsets

of ω2 (Proposition 2.2 of that work).

6 Some Applications in Algebra

A very fruitful application of the Kojman-Shelah method of invariants has been in

the theory of infinite Abelian groups which we shall take in their additive notation. In

[19], Kojman and Shelah study the problem of universality in several kinds of groups

under various kinds of embeddings. Many classes of groups simply have a universal

element under ordinary embeddings in every infinite cardinality, namely, there is
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always a universal group, a universal p-group (for any prime p), a universal torsion

group, and a universal torsion-free group (see [19]). On the other hand, there is no

universal reduced p-group. The situation becomes different when one restricts the

kind of embeddings and the kind of groups one considers. Of particular interest are

pure embeddings where a group monomorphism f : H → G is a pure embedding

if f “H satisfies that for all n < ω, n f “H = nG ∩ f “H . In other words, f “H is a

pure subgroup of G.

The following is the appropriate notion of the invariant.

Definition 6.1 Suppose that λ > ℵ0 is regular cardinal, G is an Abelian group of

size λ given with its filtration Ḡ, and 〈Cδ : δ ∈ S ⊆ λ〉 is a club guessing sequence

on λ where for each δ the increasing enumeration of Cδ is 〈αδ
i : i < i∗

δ 〉. For g ∈ G

and δ ∈ S we define

invḠ,C̄,δ(g)
def
= {i < i∗

δ : g ∈
⋃

n<ω

((Gαδ
i+1

+ nG) \ (Gαδ
i
+ nG))}.

A preservation lemma can be proved for this type of invariant and pure embedding.

The paper [19] gives a number of constructions of various types of groups with the

prescribed invariant which allows for the proof of several theorems one of which is

the following.

Theorem 6.2 ([19]) Suppose that λ is regular and that for some µ, µ+< λ < µℵ0 ,

while p is any prime. Then there is no

(a) purely universal separable p-group of size λ,

(b) universal reduced torsion-free group of size λ.

Research on the universality in various classes of groups was continued by Shelah

in [34], [35], and [38] where he considered various classes of groups under ordinary

embeddings (so they are not assumed to be pure). In [34] the class considered is that

of (< λ)-stable Abelian groups which means that for every subset A of G of size

< λ the closure in G of the subgroup 〈A〉G generated by A, defined as

clG(〈A〉G) = {x : inf
y∈〈A〉G

(min
i>1

{2−i : x − y divisible by 51< j<i n j }) = 0}

for some conveniently chosen and fixed increasing sequence 〈ni : i < ω〉 of natural

numbers > 1. This notion in particular includes strongly λ-free groups and can be

handled using the same definition of invariant as that of Definition 6.1. In [35] there

is a deep analysis of how necessary this is, and it proceeds through a series of results

about classes of trees with ω + 1 levels with the thesis that these are a prototype for

various classes of groups (deriving also some surprising results as to what kind of

trees one needs to look at here). Of particular interest in [35] are reduced torsion-free

groups and reduced separable Abelian p-groups, but the paper indeed gives a very

rich selection of results on various classes of both groups and trees. This research

was continued in [38] and Shelah [27], and as a combined result, one has almost a

complete calculation of the universality spectrum of the reduced torsion-free Abelian

groups and reduced separable p-groups.

Theorem 6.3 (Shelah) Let λ be an infinite cardinal and Kλ the class of reduced

torsion-free Abelian groups of size λ considered under ordinary embeddings.

(a) If λ = λℵ0 or λ is singular of countable cofinality and (∀θ < λ)θℵ0 < θ ,

then there is a universal member of Kλ.
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(b) If λ < 2ℵ0 , or for some µ we have 2ℵ0 < µ+< λ = cf(λ) < µℵ0 , then there

is no universal member of Kλ.

Some of the remaining cases of possible cardinal arithmetic assumptions were re-

duced to some weak PCF assumptions, the consistency of whose failure is not known.

In [35] there are also results about modules. Model theoretic properties of groups re-

lated to universality are studied in [41] where it is proved that if G is the “universal

domain” (a monster model for groups) then it has SOP3 and, surprisingly, it does not

have SOP4.

7 Some Applications in Graph Theory and a Representation Theorem

The universality problem in the class of graphs has a particularly long tradition;

see, for example, Rado’s well-known paper [22] with the construction of the Rado

graph. If one considers graphs with the ordinary notion of embedding (so the edges

are kept, but not necessarily non-edges—this is also called weak embedding), then

under GCH there is a universal object in every infinite cardinality, as follows for

uncountable cardinalities from the classical first-order model theory and which was

also proved independently by Rado. Similar results hold for the class of graphs

which omit the complete graph Kn of size n where n ≥ 3. It is a very interesting

result of Shelah’s work that even when CH fails there can be a universal graph of

size ℵ1 (see Shelah [29] and Shelah [30]). Results in [33] and [10] imply that the

theory of graphs is amenable. The situation becomes different when one restricts

the graphs to those that omit a certain structure. For example, the model completion

of the theory of triangle-free graphs is amenable but the model completion of the

theory of directed graphs which omit directed cycles of length ≤ 4 has SOP4 and

is hence highly nonamenable (see [33] where a number of similar results are given).

Passing to graphs that omit an infinite structure, so exiting the realm of the first-

order theories, the situation immediately becomes very different. For example, it

is mathematical folklore (see Komjáth and Shelah [20]) that there is no universal

Kℵ0
-free graph in any cardinality. In [20] the authors investigate the class of Kκ -free

graphs and show that under GCH such a universal graph exists in λ if and only if

κ is finite or cf(κ) > cf(λ). They also give consistency results showing how much

the universality number of this class can be when it is known that there is no one

universal element. There is a very rich literature available on the problem of the

existence of a universal member in various classes of graphs. For example, there is

a complete classification of countable homogeneous directed graphs and countable

homogeneous n-tournaments obtained by Cherlin in the memoir [5]. We cannot even

begin to do justice to this rich literature in this survey, so we shall simply concentrate

on the impact the club guessing method has had. This will also give us an opportune

way of closing this paper by a theorem which very elegantly shifts the method of

invariants from an arbitrary class of models of size < 2ℵ0 to a consideration of the

structure of the subsets of the reals, namely, a representation theorem by Kojman.

A ray in a graph is a 1-way infinite path. A tail of such a ray is any infinite

connected subgraph, and two rays are tail equivalent if they have a common ray.

Consider the class K of graphs G that satisfy that for every vertex v of G the induced

subgraph of G spanned by v has at most one ray, up to tail equivalence. This class can

also be described in terms of forbidding certain structures. Among other theorems

that Kojman proves about this class in [16] is that for a regular uncountable λ the
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smallest size of a family of graphs in K of size λ (denoted by Kλ) needed to embed

such graphs is at least 2ℵ0 . This theorem actually follows from a representation

obtained in the following.

Theorem 7.1 (Kojman’s Representation Theorem [16]) If λ > ℵ1 is regular then

there is a surjective homomorphism from the structure Kλ partially ordered by the

embedding relation to the structure [R]≤λ partially ordered by the subset relation.

The method of invariants is still used here where its construction lemma corresponds

to proving that the proposed map is surjective and its preservation lemma corre-

sponds to showing that the map is a homomorphism. The Representation Theorem

has some advantages over the construction and preservation approach because it al-

lows for a smooth way to handle singular cardinals. In an upcoming paper, Džamonja

and Thompson [11], we have used this method to consider well-founded partial or-

ders under rank-preserving embeddings and some other classes and to prove negative

universality results analogous to those in [16].

Let us finish by mentioning that guessing sequences stronger than club guessing

are used in a recent Shelah paper [39] to obtain negative results about the universality

of the class of graphs that omit complete bipartite graphs. The paper also gives a

complete characterization of the universality problem in this class under GCH.

8 Some Questions

There are many open questions in this subject, and considering instances of univer-

sality in a specific class is an interesting pursuit per se. We have selected two more

general questions that are in our view very important. The first is in model theory.

Question 8.1 Does SOP4 characterize high nonamenability? In other words, does

every highly nonamenable theory have the SOP4 property?

The interest of this question is described in §4.

The second question is in set theory and calls for a finer understanding of our

forcing iteration techniques. Namely, the reader may have noticed that Definition 4.4

does not refer to the existence of universal family F of size 1, namely, the universal

model. The reason is that all we know how to do, in the generality of the axioms of

[10] or in specific forcing proofs of universality such as Mekler and Väänänen [21]

(where the authors produced consistently with CH a family of ℵ2 trees of size ℵ1

with no uncountable branches and universal under reductions) or the Kojman-Shelah

theorem about separable metric spaces mentioned above, is to produce λ+ models of

size λ jointly universal for models of size λ. Hence we have this question.

Question 8.2 Suppose that a theory T is amenable, λ is an uncountable cardinal

larger than the size of T and satisfies λ<λ = λ and 2λ = λ+ while θ satisfies

cf(θ) > λ+. Can one find a cardinality preserving forcing extension in which 2λ = θ

and T has a universal model of size λ+?

Note

1. Here ‘⊳’ stands for being a strict initial segment.
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