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ABSTRACT 

In this paper, a software bug classification algorithm, CLUBAS (Classification of Software Bugs Using Bug Attribute 

Similarity) is presented. CLUBAS is a hybrid algorithm, and is designed by using text clustering, frequent term calcula-

tions and taxonomic terms mapping techniques. The algorithm CLUBAS is an example of classification using cluster-

ing technique. The proposed algorithm works in three major steps, in the first step text clusters are created using soft-

ware bug textual attributes data and followed by the second step in which cluster labels are generated using label induc-

tion for each cluster, and in the third step, the cluster labels are mapped against the bug taxonomic terms to identify the 

appropriate categories of the bug clusters. The cluster labels are generated using frequent and meaningful terms present 

in the bug attributes, for the bugs belonging to the bug clusters. The designed algorithm is evaluated using the perform-

ance parameters F-measures and accuracy. These parameters are compared with the standard classification techniques 

like Naïve Bayes, Naïve Bayes Multinomial, J48, Support Vector Machine and Weka’s classification using clustering 

algorithms. A GUI (Graphical User Interface) based tool is also developed in java for the implementation of CLUBAS 

algorithm. 
 
Keywords: Software Bug Mining; Software Bug Classification; Bug Clustering; Classification Using Clustering; 

Bug Attribute Similarity; Bug Classification Tool 

1. Introduction 

Software repositories are great source of knowledge. A 

software bug repository posses’ useful information about 

software defects. A software bug record consists of num- 

ber of attributes, many of which are of type text. To ex- 

tract the knowledge from bug repositories text mining 

techniques can be used effectively. Classification is one 

of the popular data mining techniques to categorize the 

objects in a database. Software bug classification is the 

process of classifying the software bugs into different ca- 

tegories. A bug is a defect in software, which indicates 

the unexpected behavior of implemented software re- 

quirements and is identified during software testing proc-

ess. Software bugs are managed and tracked using bug 

tracking tools, some example of such popular tools are 

Bugzilla [1], Perforce [2], JIRA [3], and Trac [4]. Soft-

ware repositories contains the software bug information in 

the HTML (Hyper Text Markup Language) or XML (Ex-

tensible Markup Language) formats available through 

web interface, as online repositories. A software bug is  

consists of number of attributes like title/summary, de- 

scription, reported-time, assigned-to, and user comments. 

Many of the important attributes such as summary, de- 

scription and comments are of textual type. More details 

of the bug attributes and their descriptions are provided 

in the IEEE (The Institute of Electrical and Electronics 

Engineers) standard for the classification of software ano- 

malies in 1993 [5], which was further revised on 2009 

[6]. 

Majority of the work in mining software bug reposito- 

ries includes predicting expert developers, predicting 

bugs, identifying duplicate bug reports, and classifying 

the change requests. An approach to recommend a ranked 

list of developers, to assist in performing software changes 

request is presented by Kagdi and Poshyvanyk [7]. An 

empirical evaluation of locating expertise developers is 

performed by Anvik and Murphy [8]. An approach is 

proposed by Kagdi et al. [9] that is based on Mining 

Software Repositories (MSR) to recommend a ranked list 

of candidate developers for source code change. Another 

approach named xFinder is proposed by Kagdi et al. [10] 
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to recommend expert developers by mining version ar- 

chives of a system. Some investigation and analysis on 

the bug fixing data is done by Ayewah and Pugh [11]. 

A technique for predicting latent software bugs is pro- 

posed by Kim et al. [12], which classifies the change 

requests as buggy or clean. Vijayaraghavan and Kaner 

[13] have worked on classifying the testers (software 

quality engineers) in two categories; deductive testers 

and inductive tester. Antoniol et al. [14] pointed out that 

not all bug reports are related to software problems, but 

in some cases bug, reports correspond to feature requests 

also. A bug classification technique using the program 

slicing metrics have been proposed by Pan et al. [15]. An 

iterative pattern mining of software behaviors is per- 

formed by Lo et al. [16]. A semi-automated approach is 

proposed by Fluri et al. [17] to discover patterns of 

source code change types using agglomerative hierarchi- 

cal clustering. Various discriminative models for infor- 

mation retrieval are proposed by C. Sun et al. [18] to de- 

tect duplicate bug reports in a software bug repository. 

Wang et al. [19], proposed identification of semantically 

similar terms in the bug reports, for detecting the dupli- 

cate bugs using WordNet database. A tool named CP- 

Miner is proposed by Li et al. [20], to efficiently identify 

copy-pasted code in large software and detect copy-paste 

bugs. Jalbert and Weimer [21] have proposed a system 

that automatically identifies the duplicate bug reports in 

the software bug repositories. A failure analysis of the 

Java Virtual Machine (JVM) is performed by Cotroneo et 

al. [22]. Factors, affecting the bug fixing in Windows 

Vista, and Windows 7 are explored by Guo et al. [23].  

A method of improving the bug search technique is 

proposed by Williams et al. [24]. The comparison of va- 

rious distance functions and similarity measurement te- 

chniques for text document clustering is studied by 

Huang [25]. Some of the problems of text clustering like 

high dimensionality of the data, large size of the data- 

bases and understandability of the cluster description, are 

analyzed and studied by Beil et al. [26]. An algorithm, 

Lingo is proposed by Osinski et al. [27] for clustering 

search results of text documents, Lingo uses algebraic 

transformations of the term-document matrix, and fre- 

quent phrase extraction using suffix arrays. Grouper [28] 

[29] is another snippet-based clustering engine. The main 

feature of Grouper is a phrase-analysis algorithm, called 

STC (Suffix Tree Clustering). STC is also one of the po- 

pular text clustering algorithms, which analyzes the text 

documents and extract the appropriate phrases for per- 

forming clustering of documents. Stefanowski and Weiss 

[30] proposed a dimension reduction algorithm; based on 

singular value decomposition (SVD) for text clustering. 

Since most of the software, attributes are textual for 

software bugs, text mining technique can be applied for 

bug mining. Text clustering technique is explored in this 

work for software bug mining and a new technique for 

software bug clustering is proposed. Further using the 

bug clustering information bug classification is also per-

formed and numbers of parameters are evaluated for the 

designed technique. 

2. Methodology 

The overall methodology of software bug clustering al- 

gorithm is shown in Figure 1, and is divided into the 

following steps: The first step includes retrieving the 

random software bugs from online software bug reposi- 

tories, parsing the software bugs and saving to the local 

database. Software bugs are available in the format of 

HTML (Hyper Text Markup Language) or XML (Exten- 

sible Query Language) files, which needs to be parsed 

for attributes of the software bugs. After parsing the soft- 

ware bug reports retrieved from online repositories, local 

database schemas are defined to store the software bugs 

locally in the local database. Once a software bug record  
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Figure 1. Major steps in the CLUBAS algorithm. 
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is retrieved at a local database and is available for per- 

forming data mining operation, it is transformed into the 

terms of a java object to enable its storage and further 

processing in the java collection API (Application Pro- 

gramming Interface). In the next step, the text mining 

pre-processing techniques like stop word elimination and 

stemming are performed to pre-process the software bug 

records. Stop words (useless words) do not make any 

sense in knowledge discovery and hence need to be eli- 

minated. Stemming is required in order to unify the terms 

present in a text document, so that knowledge patterns 

can be discovered effectively. 

The processed bug data is fed for the clustering, where 

bug clusters are created using weighted textual similarity 

of bug attributes. After creating the bug clusters, the clu- 

ster labels are generated for each cluster. The labels are 

generated using the frequent terms present in the pre- 

processed bug data belonging to a particular bug cluster. 

Stop words for cluster labels are identified and elimi- 

nated while generating the cluster labels. The next step is 

to map the terms present in the cluster labels to the soft- 

ware bug categories using the taxonomic terms identified 

for bug category, in order to classify the bug clusters. 

The final step is to generate the confusion matrix for the 

classified bug clusters, using which the performance pa- 

rameters like precision, recall, F-measure and accuracy 

are calculated. At last the cluster information (mapping 

of bugs to cluster labels and categories) is visually gene- 

rated for the user, using the java swing components.  

3. Objective of the Work and Applications 

The objective of the proposed work is to create the group 

of similar software bugs and then classify this group us- 

ing discriminative terms identified from various software 

bug repositories. The application of the proposed work is 

to provide the effective management of the bug informa- 

tion and faster resolution of the reported bugs. Since the 

categorization is performed using the software bug clus- 

ters, which is a group of similar software bug, the project 

managers can use this analysis for numbers of manage- 

rial tasks. Some examples of such tasks are: 

1) Creating the groups of similar set of software bugs; 

2) The groups of developers can be identified for a 

group of categorized bugs. Similar new bugs can be as- 

signed to the same group of developers for optimizing 

the fixing time;  

3) Bug clusters (or categories) can be mapped into 

software modules, using which the module complexity 

analysis can be achieved by counting the bugs for each 

module; 

4) Category wise bug distribution can be performed, 

which can help managers to understand the strength and 

weakness of the developers and software modules. 

4. The CLUBAS Algorithm 

In this section, the pseudo code and working of the 

CLUBAS algorithm is presented. CLUBAS is segmented 

into the five major steps. CLUBAS takes two parameter 

for performing the bug classification i.e. textual similar- 

ity threshold value () and number of frequent terms in 

cluster label (N). The initial step in the CLUBAS is Ex- 

tract Data, where the bug records from a particular bug 

repository is retrieved and stored in the local system. The 

bug record selection can be made in multiple ways e.g. 

randomly (generating a random number set for bug-id’s), 

by specifying the bug-id range (minimum bug-id and 

maximum bug-id) or explicitly storing the bug-id’s in a 

text file. One bug-id is selected at a time and appended to 

the URL (Uniform Resource Locator) of the software 

bug repository, and using URL network programming in 

java the specified bug record is fetched to the local sys- 

tem in the HTML (Hyper Text Markup Language) or 

XML (Extendible Markup Language) file format. 

The next step in CLUBAS is Pre-Processing Step, 

where the software bug records available locally in HTML 

or XML file formats are parsed and bug attributes and 

their corresponding values are stored in the local data- 

base. After this the stop words elimination and stemming 

is performed over the textual bug attributes summary 

(title) and description, which are used for creating the 

bug clusters. In the following step (Clustering), the pre- 

processed software bug attributes are selected for textual 

similarity measurement. Cosine similarity technique is 

used for measuring the weighted similarity between a 

pair of software bugs. The java based open source API, 

symmetric [31], which provides the implementation of 

various textual similarity implementation is used here for 

calculating the textual similarities. For all software bug 

pairs the weighted similarities are calculated and stored, 

using which the clusters are created. The clusters are 

created as follows—initially one cluster is created with a 

random bug, then if the similarity value for a paired bugs 

with this bug is less than the similarity threshold value 

(), then both of the bugs are mapped to the same clusters, 

otherwise the new cluster is created and the bug which is 

not belonging to the cluster is mapped to the new cluster. 

This similarity threshold value is one of the important 

parameters for the CLUBAS algorithm. If the value of  
(similarity threshold value) is the high, then high similar-

ity between the software bug attributes is expected for 

clustering and vice-versa. 

The next step (Cluster Label Generation) is to gener- 

ate the cluster labels using the frequent terms present in 

the bugs of a cluster. In this step the summary (title) and 

descriptions of all the software bugs belonging to a par- 

ticular clusters are aggregated and frequent terms present 

in this aggregate text data is calculated and the N (where 

N is the number of frequent terms in labels and is an user 
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supplied parameter) top most frequent terms are assigned 

to the clusters as the cluster labels. Mapping of the clus- 

ter labels to the bug categories using the taxonomic terms 

for various categories is carried out next (Mapping Clus- 

ters to Classes). In this step, the taxonomic terms for the 

entire bug categories are pre-identified and cluster label 

terms are matched with these terms. Matching of the 

terms indicates the belongingness of clusters to the cate- 

gories. The last step (Performance Evaluation and Out- 

put Representation) is generating the confusion matrix, 

using which various performance parameters like preci- 

sion, recall, and accuracy is calculated. The precision and 

recall can be combined together to calculate F-measure, 

the formulas for these parameters is mentioned in the 

next section. Finally the cluster information is visualized 

and represented as the output of the CLUBAS. 

 
ALGORITHM CLUBAS 

Returns: Clusters consisting of similar bugs  

Category of each cluster 

Arguments: —Similarity threshold  

N—Number of frequent terms in cluster labels 

Step 0 (Extract Data): 

0a. Generate the numbers set R for bug data sources (bug-id range, randomly etc.); 

0b. For each number m  R, append it to the bug repository URL; 

0c. Using URL programming, extract the HTML or XML page for the bug with the bug-id value as m. 
 
Step 1 (Pre-Processing Step): 

for-each bug record retrieved from the bug repository: 

1a. Parse and extract the bug attributes from each bug file; 

1b. Eliminate the stop words from bug summary, description and comments; 

1c. Apply stemming to the textual attributes bug summary, description and comments. 

 
Step 2 (Clustering): 

2a. For each pair of bugs Bi and Bj, calculate the textual similarity between the attributes summary and description, 

using the similarity weights WS and WD such that the similarity value is normalized to 1, i.e. WS + WD = 1; 

2b. Sim(Bi, Bj) = WS * Sim(Bi-summary, Bj-summary) + WD * Sim(Bi-description, Bj-description); 

2c. IF Sim(Bi, Bj) >  THEN Assign Bi, Bj to same cluster ELSE Create a new cluster and Assign Bj to this cluster. 
 
Step 3 (Cluster Label Generation—Using Frequent Terms for a Cluster): 

For each cluster Ci, get the lists of bugs belonging to this cluster: 

3a. Extract the summary and description of these bugs; 

3b. Concatenate this textual data to form the cluster text data; 

3c. Calculate the N frequent terms {Ti1, Ti2,…,TiN} from each cluster text data, and assign them to these clusters as cluster labels;

3d. Label(Ci)  {Ti1, Ti2,…,TiN}. 
 
Step 4 (Mapping Clusters to Classes): 

4a. For each cluster Ci, get each term TiK in the Label(Ci) (cluster label) and match it with the bug taxonomic terms. 

The match indicates the belongingness of cluster in that bug category. 
 
Step 5 (Performance Evaluation and Output Representation): 

5a. Generate the confusion matrix; 

5b. Calculation of the performance parameters Accuracy, Precision, Recall and F-Measure; 

5c. Visualized representation of bug clusters and its labels. 

 

5. Classifier Performance Evaluation 

The accuracy and performance of prediction models for 

classification problem is typically evaluated using a con-

fusion matrix. A confusion matrix contains information 

about actual and predicted classifications done by a clas-

sifier. In this work, the commonly used performance 

measures: accuracy and F-measure are used to evaluate 

and compare the algorithms. These measures are derived 

from the confusion matrix, which is shown in the Figure 

2. 

Where TP stands for true positive, which indicates a 

positive value that the system has predicted as positives, 

TN is true negatives, that is negative values the system 

identifies as negatives, FP is false positives, negative 

values the system identifies as positives and FN is false 

negatives, positive values that the system predicted as 

negative. 

5.1. Accuracy 

Accuracy, or correctness of classifiers, is defined as the 

ratio of the number of bugs correctly classified to the 

total number of bugs and is calculated using Equation (1) 

or Equation (2), given as follows: 

TP+ TN
Accuracy

TP+ TN+ FP+ FN
            (1) 

Accuracy (%)

Correctly Classifies Software Bugs
100

Total Software Bugs

  
 

 

 (2) 
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Predicted 

  Positives Negatives 

Positives TP FN 
Actual 

Negatives FP TN 

Figure 2. The confusion matrix. 

 

5.2. Precision 

Precision is the ratio of the number of correctly classified 

software bugs and the actual number of software bugs 

which was assigned to the type. Precision is the meas-

urement of correctness and is also defined as the ratio of 

the true positives (TP) to total positives (TP + FP) and is 

calculated using Equation (3). 

TP
Precision

TP+ FP
           (3) 

5.3. Recall 

Recall rate is the ratio of the number of correctly classi-

fied software bugs and the number of software bugs 

which belongs to the type. It reflects the classifier’s abil-

ity of searching extension and is calculated using Equa-

tion (4). 

TP
Recall

TP+ FN
             (4) 

5.4. F-Measure 

F1 is a combined measure of Precision and Recall para- 

meters. F-measure considers both precision and recall 

equally important by taking their harmonic mean. F- 

measure or F1-measure is derived from Fβ-measure, β 
being the weight factor which gives β times as much im- 

portance to recall as precision. Generally the value of β is 

taken as 1. The higher value of F-measure indicates higher 

quality of the classifiers. Fβ-measure is calculated using 

Equation (5), whereas F-measure or F1-measure is calcu- 

lated using Equation (6). 

   
2

2

precision recall
F 1

precision recall
 




  
 

    (5) 

1

2 precision recall
F

precision recall

 



          (6) 

6. Implementation 

Implementation is done using open source object ori- 

ented programming language Java [32], and MySql [33] 

is taken as local data base management system, Weka 

[34] API is used for implementing the stemming and 

other classification algorithms for comparison. The multi 

map data structure is also used for calculations and stor- 

ing the clusters information at run time. 

6.1. Datasets and Sampling 

The random software bug records are selected from four 

open sources online software bug repositories namely, 

Android [35], JBoss-Seam [36], Mozilla [37] and MySql 

[38]. Random sampling technique is used and the sample 

size of 200, 300, 500, 700, 1000, 1300, 1600 and 2000 is 

taken for the experiments from these four repositories for 

the comparison of the classifiers. To retrieve the random 

records from the mentioned software bug repositories, a 

random number generator source code has written in java 

to generate the random integer numbers. Using these 

numbers as the bug ids, bug records are extracted from 

the online software bug repositories using URL (Uniform 

Resource Locator) programming in java. (For example 

for the URL of MySql bug repositories [38],  

“http://bugs.mysql.com/bug.php?id=”, “id” can be appen- 

ded to retrieve a particular software bug record.) 

6.2. Pre-Processing 

After the software bug records are extracted and made 

available at local system, and then pre-processing of 

these records is performed. The pre-processing takes 

places in three stages: parsing, elimination of stop words 

and stemming. In parsing phase all the software bug at- 

tributes position is detected and their corresponding va- 

lues are parsed and stored to the local database schema 

for all of the software bug repositories. Once these par- 

sed values are available the stopping and stemming is 

performed on the textual attribute values. In stopping the 

first step is to identify the suitable stop list, which con- 

sists of the terms (words) not relevant for the classifica- 

tion of the software bugs. Terms with numeral and spe- 

cial characters are also eliminated in the process of stop- 

ping. However, the terms like “not” etc. are not removed 

during stopping, since such terms are relevant for soft- 

ware bug classification [14]. Finally, stemming is per- 

formed over the filtered values, where in stemming words 

are reduced to their root form (origin words), which can 

be performed using suffix and affix removal. In the pre- 

sent work Porter’s stemming algorithm is used for stem- 

ming, which is a part of Weka [34] API (Application Pro- 

gramming Interface). 

6.3. Mapping Bug Clusters to Categories 

The categorical terms are generated from the software 

bug clusters labels. The Table 1 is generated for 2000 

random sample software bugs selected from the four 

open source bug software projects in aggregation. Table 

1 is consisting of 10 major categories of software bugs 

with their corresponding pre-processed (after stopping 

and stemming) taxonomic terms. Terms which are not 

covered in the mentioned categories are treated as the  
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Table 1. Category discriminative terms. 

Category Name Categorical Terms 

Logical 

assertion, annotation, asynch, argument, application, attempting, break, broken, behavior, badly, call , caus, code,  

clustering, component , core, default, doesn, error, exception, edit, found, fail, file, frame, handle, host, implement,  

incorrect, integrat, incomplete, java, librar, logic, miss, mension, work, npe, null, option, propert, pointer, parameter, 

pluggable, problem, portability, redirect, remove, read, replica, run, repea, server, session, submit, search, statement, 

status, service, start, throw, validat, wrong, not, proper, should 

GUI 

button, border ,background , blank ,bundle, css, container, captcha, display, event, font, html, item, imag, list, label, line,

layout, locale, method, message, navigator, pixel ,page, render, resource , space , selection, show, tag, toolbar, typo, click,

mouse, key, resolution, table 

Datatype array, blob, binary, char, numeric, hard, real, string, text, utf, undef, variable, value 

Backend attribute, column, connection, data, db, field, insert, index, join, load, query, record , store, serial, update 

Enhancement add, enhance, ignore, improve, optimi, performance, required, support, can, may, suggest 

Build ant, build, compile, config, debug, log, make, module, patch, redeploy, syntax, warnings 

OS concurrent, path, redhat, unix, windows  

Security access, admin, grant, privileges, roles, revoke, resultset, security, user 

Memory cache, crash, flow, fault, heap, infinite, memory, segmentation, segfault, smart, threads, profil  

Analysis case, comment, diagram, doc, fig, tutorial, test , unit 

 

non-bug terms. The technique of generating these taxo- 

nomic terms from various bug repositories is given in 

[39]. Experiments in this paper are performed for binary 

classification of the bugs, where the bugs are categorized 

into the two categories-bugs and non-bugs 

7. Experimentation and Comparative  
Analysis 

The experiments was performed on four different soft- 

ware bug repositories, using Java and Weka data mining 

API and the classifiers are evaluated using 10-fold cross- 

validation technique. The proposed algorithm CLUBAS 

is compared with other standard classification algorithms 

for classifying the software bugs. CLUBAS is compared 

with Naïve Bayes (NB) [40,41], Naïve Bayes Multino-

mial [41], J48 [42], Support Vector Machine (SVM) 

[43,44] and Weka’s Classification using Clustering (CC) 

[45] algorithms. LIBSVM [46] is an open source imple- 

mentation of SVM, which can be integrated into Weka. 

The comparison is performed on the basis of two stan- 

dard classification parameters F-measure (which is the 

combine measure of precision and recall) and accuracy 

of the classifiers. 

The algorithms are first applied on the Android bug 

repository and the results for accuracy and F-measures 

for different number of samples are plotted in Figures 

3(a) and (b) respectively. From the plot Figure 3(a), it is 

observed that both NB and NBM performs better in terms 

of accuracy than the other algorithms and CLUBAS does 

not perform well accuracy wise, still it is able to maintain 

more than 80% accuracy and at certain points it performs 

better than the NBM algorithm. But from the F-measure 

point of view (Figure 3(b)), the algorithm CLUBAS shows 

stability and performs better than CC, SVM and J48, it 

maintains the F-measure values more than 0.9 for each 

experiment using different number of samples. 

Similarly, the experiments are performed on JBoss- 

Seam, Mozilla and MySql bug repositories using the six 

algorithms. The accuracy and F-measure results for these 

repositories are plotted against the different number of 

samples in Figures 4(a) and (b), Figures 5(a) and (b) 

and Figures 6(a) and (b) respectively. It is observed 

from the plots that Accuracy wise CLUBAS just per-

forms well and maintains more than 80% accuracy for 

different samples in all of the repositories, and in case of 

MySql bug repository, only NB performs better 

CLUBAS algorithm. From the F-measure point of view it 

gives the stable results, irrespective of the number of 

samples in classification and mostly it maintains more 

than 0.9 values for all the repositories. In case of 

F-measure, for all of the repositories except MySql, only 

NB and NBM perform better than CLUBAS and in case 

of MySql repositories, CLUBAS gives better results than 

any other algorithm. 

For larger F-measure, values CLUBAS algorithm pro- 

vide consistent results. However the runtimes for each 

algorithm were noted and it was found that all of the al- 

gorithms took roughly 2 to 3 minutes for a single ex-

periment up to 2000 random samples. So it can be con-

cluded from the experiments and comparison that, when 

the precision, recall and F-measures are important CLU- 

BAS gives the better and stable results irrespective of 

number of samples and software bug repositories. CLU- 

BAS is also able to maintain more than 80% accuracy for 

the different number of samples from selected four bug 

repositories. In overall, it is also better than the other 

similar algorithm, i.e. Weka’s CC algorithm in terms of 

accuracy and F-measure. 
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Figure 3. Performance of various classifiers over Android bug repository (a) Accuracy; (b) F-measures. 

 

 

Figure 4. Performance of various classifiers over JBoss-Seam bug repository (a) Accuracy; (b) F-measures. 

 

 

Figure 5. Performance of various classifiers over Mozilla bug repository (a) Accuracy; (b) F-measures. 
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Figure 6. Performance of various classifiers over Mysql bug repository (a) Accuracy; (b) F-measures. 
 

7.1. Effect of Similarity Threshold () 

The effect of similarity threshold over accuracy and F- 

measure for CLUBAS is plotted in Figures 7(a) and (b) 

respectively. 1000 random samples are taken from all the 

four bug repositories to identify the effect of similarity 

threshold value for CLUBAS. For JBoss-Seam and 

MySql bug repositories the parameters accuracy and 

F-measure values are stable, irrespective of the similarity 

threshold, however for Android and Mozilla bug reposi-

tories the same parameter decrease, with increase in the 

similarity threshold value in the algorith CLUBAS. This 

indicates that the textual similarity in software bug in-

formation stored in the Android and Mozilla is less than 

the other two bug repositories. 

7.2. Effect of Frequent Terms in Cluster Labels 
(N) 

The relationship between number of frequent terms in 

class label and accuracy/F-measure is plotted in Figures 

8(a) and (b), respectively. It is oserved from the plot that, 

as the number of frequent terms increses in the cluster la- 

bels the accuracy and F-measures also increases for all 

the bug repositories, and after a certain point (i.e. number 

of frequent terms is 10) the accuracy and F-measures 

becomes stable and are freed from the effect of number 

of frequent terms in CLUBAS. This point indicates the 

optimum number of terms in cluster label, which is iden- 

tified to be 10 in this experiment for all the four reposito- 

ries i.e. Android, JBoss-Seam, Mozilla and MySql with 

1000 random samples and similarity threshold of 0.01. 

8. GUI Based CLUBAS Tool 

The proposed algorithm is implemented in java and a  

GUI based tool is created. Some screen shots are shown 

in this section as an illustration for the implemented tool. 

The GUI for selecting the various parameters for CLU- 

BAS is shown in Figure 9. User can select the textual 

similarity technique and also can specify the similarity 

threshold value using this interface. User can also specify 

the name of output file, where the output of the algorithm 

along with various calculated parameters can be stored. 

Another GUI interface for displaying the output of the 

CLUBAS is shown in Figure 10. This interface is mainly 

consisting of three lists. The first list holds the cluster 

created with the labels assigned to it, second list shows 

the bugs belonging to the cluster selected in the first list, 

and the last list shows the category term for the selected 

cluster. Various list selection listeners are implemented 

in Figure 10, if user selects a particular cluster (shown as 

cluster-id: cluster-label) on the leftmost list, its corre-

sponding software bugs and categories will be displayed 

on the other lists. 

9. Threats to Validity 

Four software bug’s repositories namely, Android, JBoss- 

Seam, Mozilla and MySql are selected for experimenta- 

tions and comparison in this present work. Different 

numbers of random samples are selected from every re- 

pository for validation of the work. Although the experi- 

ment is performed multiple number of times and averag- 

ing is also done for the results, there is a chance that the 

calculated parameter values may differ for other samples, 

where the textual bug attribute information is poor (the 

bug information is not described in details). The other 

limitation of the work can be derived from the Zipf’s 

power distribution law [47,48]. It states that most of us- 

ers use limited number of words (terms) frequently in the 
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Figure 7. Effect of similarity threshold in CLUBAS (a) Accuracy; (b) F-measures. 
 

 

  Figure 8. Effect of frequent terms in CLUBAS (a) Accuracy; (b) F-measures. 

 

 

Figure 9. GUI snapshot for specifying various parameters in CLUBAS. 
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Figure 10. GUI screen for cluster output. 

 

documents. On one end the Zipf’s law supports the algo-

rithm CLUBAS, since it is also derived from the frequent 

terms, however on the other end in few cases where the 

developers from different places are working and using 

the different set of vocabularies to represents the bug 

information, the accuracy values may drop.  

10. Conclusion & Future Scope 

In this paper, a text clustering and classification algo- 

rithm is developed and a GUI based tool for software bug 

classification CLUBAS is presented. The algorithm 

CLUBAS is designed using the technique of classifica- 

tion by clustering, in which first clustering is done using 

textual similarity of bug attributes and then proper labels 

are generated and assigned to each cluster. The cluster 

labels are further mapped to the bug classes using the 

cluster label and bug taxonomic terms matching. The 

algorithm uses two input parameters; similarity threshold 

value and number of terms in cluster label. The effect of 

these parameters for performance evaluation is also 

studied and graphs are plotted to visualize their effects. 

The algorithm CLUBAS is compared with number of 

standard classification algorithms for performance 

evaluation. The comparison is performed using the per-

formance parameters; accuracy and F-measure (com-

bined measure of precision and recall). From the experi-

ments it is observed that CLUBAS is able to maintain 

more than 80% accuracy for all the bug repositories at 

different sampling points (number of samples), and al-

ways gives more than 0.9 as F-measure. From compara-

tive analysis, it is found that accuracy wise, only algo-

rithms NB and NBM performs better than CLUBAS, 

however F-measure wise, it the best algorithm, since it 

gives stable and higher values of F-measure, irrespective 

of the bug repositories and number of samples in classi-

fication. The future scope related to the proposed work 

can be applying advanced text pre-processing techniques 

for optimizing the clustering and classification work, and 

also modern text clustering and classification algorithms 

can be implemented and compared with the proposed 

algorithm. The validity of the Zipf’s law can also be 

verified in the future work. 
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