
Journal of Software Engineering and Applications, 2012, 5, 436-447

http://dx.doi.org/10.4236/jsea.2012.56050 Published Online June 2012 (http://www.SciRP.org/journal/jsea)

CLUBAS: An Algorithm and Java Based Tool for

Software Bug Classification Using Bug Attributes

Similarities

Naresh Kumar Nagwani
1
, Shrish Verma

2

1Department of Computer Science & Engineering, National Institute of Technology Raipur, Raipur, India; 2Department of Electron-

ics & Telecommunication Engineering, National Institute of Technology Raipur, Raipur, India.

Email: {nknagwani.cs, shrishverma}@nitrr.ac.in

Received April 5th, 2012; revised May 1st, 2012; accepted May 10th, 2012

ABSTRACT

In this paper, a software bug classification algorithm, CLUBAS (Classification of Software Bugs Using Bug Attribute

Similarity) is presented. CLUBAS is a hybrid algorithm, and is designed by using text clustering, frequent term calcula-

tions and taxonomic terms mapping techniques. The algorithm CLUBAS is an example of classification using cluster-

ing technique. The proposed algorithm works in three major steps, in the first step text clusters are created using soft-

ware bug textual attributes data and followed by the second step in which cluster labels are generated using label induc-

tion for each cluster, and in the third step, the cluster labels are mapped against the bug taxonomic terms to identify the

appropriate categories of the bug clusters. The cluster labels are generated using frequent and meaningful terms present

in the bug attributes, for the bugs belonging to the bug clusters. The designed algorithm is evaluated using the perform-

ance parameters F-measures and accuracy. These parameters are compared with the standard classification techniques

like Naïve Bayes, Naïve Bayes Multinomial, J48, Support Vector Machine and Weka’s classification using clustering

algorithms. A GUI (Graphical User Interface) based tool is also developed in java for the implementation of CLUBAS

algorithm.

Keywords: Software Bug Mining; Software Bug Classification; Bug Clustering; Classification Using Clustering;

Bug Attribute Similarity; Bug Classification Tool

1. Introduction

Software repositories are great source of knowledge. A

software bug repository posses’ useful information about

software defects. A software bug record consists of num-

ber of attributes, many of which are of type text. To ex-

tract the knowledge from bug repositories text mining

techniques can be used effectively. Classification is one

of the popular data mining techniques to categorize the

objects in a database. Software bug classification is the

process of classifying the software bugs into different ca-

tegories. A bug is a defect in software, which indicates

the unexpected behavior of implemented software re-

quirements and is identified during software testing proc-

ess. Software bugs are managed and tracked using bug

tracking tools, some example of such popular tools are

Bugzilla [1], Perforce [2], JIRA [3], and Trac [4]. Soft-

ware repositories contains the software bug information in

the HTML (Hyper Text Markup Language) or XML (Ex-

tensible Markup Language) formats available through

web interface, as online repositories. A software bug is

consists of number of attributes like title/summary, de-

scription, reported-time, assigned-to, and user comments.

Many of the important attributes such as summary, de-

scription and comments are of textual type. More details

of the bug attributes and their descriptions are provided

in the IEEE (The Institute of Electrical and Electronics

Engineers) standard for the classification of software ano-

malies in 1993 [5], which was further revised on 2009

[6].

Majority of the work in mining software bug reposito-

ries includes predicting expert developers, predicting

bugs, identifying duplicate bug reports, and classifying

the change requests. An approach to recommend a ranked

list of developers, to assist in performing software changes

request is presented by Kagdi and Poshyvanyk [7]. An

empirical evaluation of locating expertise developers is

performed by Anvik and Murphy [8]. An approach is

proposed by Kagdi et al. [9] that is based on Mining

Software Repositories (MSR) to recommend a ranked list

of candidate developers for source code change. Another

approach named xFinder is proposed by Kagdi et al. [10]

Copyright © 2012 SciRes. JSEA

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities 437

to recommend expert developers by mining version ar-

chives of a system. Some investigation and analysis on

the bug fixing data is done by Ayewah and Pugh [11].

A technique for predicting latent software bugs is pro-

posed by Kim et al. [12], which classifies the change

requests as buggy or clean. Vijayaraghavan and Kaner

[13] have worked on classifying the testers (software

quality engineers) in two categories; deductive testers

and inductive tester. Antoniol et al. [14] pointed out that

not all bug reports are related to software problems, but

in some cases bug, reports correspond to feature requests

also. A bug classification technique using the program

slicing metrics have been proposed by Pan et al. [15]. An

iterative pattern mining of software behaviors is per-

formed by Lo et al. [16]. A semi-automated approach is

proposed by Fluri et al. [17] to discover patterns of

source code change types using agglomerative hierarchi-

cal clustering. Various discriminative models for infor-

mation retrieval are proposed by C. Sun et al. [18] to de-

tect duplicate bug reports in a software bug repository.

Wang et al. [19], proposed identification of semantically

similar terms in the bug reports, for detecting the dupli-

cate bugs using WordNet database. A tool named CP-

Miner is proposed by Li et al. [20], to efficiently identify

copy-pasted code in large software and detect copy-paste

bugs. Jalbert and Weimer [21] have proposed a system

that automatically identifies the duplicate bug reports in

the software bug repositories. A failure analysis of the

Java Virtual Machine (JVM) is performed by Cotroneo et

al. [22]. Factors, affecting the bug fixing in Windows

Vista, and Windows 7 are explored by Guo et al. [23].

A method of improving the bug search technique is

proposed by Williams et al. [24]. The comparison of va-

rious distance functions and similarity measurement te-

chniques for text document clustering is studied by

Huang [25]. Some of the problems of text clustering like

high dimensionality of the data, large size of the data-

bases and understandability of the cluster description, are

analyzed and studied by Beil et al. [26]. An algorithm,

Lingo is proposed by Osinski et al. [27] for clustering

search results of text documents, Lingo uses algebraic

transformations of the term-document matrix, and fre-

quent phrase extraction using suffix arrays. Grouper [28]

[29] is another snippet-based clustering engine. The main

feature of Grouper is a phrase-analysis algorithm, called

STC (Suffix Tree Clustering). STC is also one of the po-

pular text clustering algorithms, which analyzes the text

documents and extract the appropriate phrases for per-

forming clustering of documents. Stefanowski and Weiss

[30] proposed a dimension reduction algorithm; based on

singular value decomposition (SVD) for text clustering.

Since most of the software, attributes are textual for

software bugs, text mining technique can be applied for

bug mining. Text clustering technique is explored in this

work for software bug mining and a new technique for

software bug clustering is proposed. Further using the

bug clustering information bug classification is also per-

formed and numbers of parameters are evaluated for the

designed technique.

2. Methodology

The overall methodology of software bug clustering al-

gorithm is shown in Figure 1, and is divided into the

following steps: The first step includes retrieving the

random software bugs from online software bug reposi-

tories, parsing the software bugs and saving to the local

database. Software bugs are available in the format of

HTML (Hyper Text Markup Language) or XML (Exten-

sible Query Language) files, which needs to be parsed

for attributes of the software bugs. After parsing the soft-

ware bug reports retrieved from online repositories, local

database schemas are defined to store the software bugs

locally in the local database. Once a software bug record

Online

Software Bug

Repositories

Random

Record

Retriever

Bug Data

Bug Data

Bug Data

Bug Data

Bug Data

Parsing Data and

Saving to DB

Generating

Category Terms

Software Bug Clusters

with Categories

Local

Bug

Database

Eliminating

Stop Words

Applying Stemming

Text

Clustering
Generating Labels Using

Frequent Terms

Category Term Matching
Software Bug

Clusters

Figure 1. Major steps in the CLUBAS algorithm.

Copyright © 2012 SciRes. JSEA

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities 438

is retrieved at a local database and is available for per-

forming data mining operation, it is transformed into the

terms of a java object to enable its storage and further

processing in the java collection API (Application Pro-

gramming Interface). In the next step, the text mining

pre-processing techniques like stop word elimination and

stemming are performed to pre-process the software bug

records. Stop words (useless words) do not make any

sense in knowledge discovery and hence need to be eli-

minated. Stemming is required in order to unify the terms

present in a text document, so that knowledge patterns

can be discovered effectively.

The processed bug data is fed for the clustering, where

bug clusters are created using weighted textual similarity

of bug attributes. After creating the bug clusters, the clu-

ster labels are generated for each cluster. The labels are

generated using the frequent terms present in the pre-

processed bug data belonging to a particular bug cluster.

Stop words for cluster labels are identified and elimi-

nated while generating the cluster labels. The next step is

to map the terms present in the cluster labels to the soft-

ware bug categories using the taxonomic terms identified

for bug category, in order to classify the bug clusters.

The final step is to generate the confusion matrix for the

classified bug clusters, using which the performance pa-

rameters like precision, recall, F-measure and accuracy

are calculated. At last the cluster information (mapping

of bugs to cluster labels and categories) is visually gene-

rated for the user, using the java swing components.

3. Objective of the Work and Applications

The objective of the proposed work is to create the group

of similar software bugs and then classify this group us-

ing discriminative terms identified from various software

bug repositories. The application of the proposed work is

to provide the effective management of the bug informa-

tion and faster resolution of the reported bugs. Since the

categorization is performed using the software bug clus-

ters, which is a group of similar software bug, the project

managers can use this analysis for numbers of manage-

rial tasks. Some examples of such tasks are:

1) Creating the groups of similar set of software bugs;

2) The groups of developers can be identified for a

group of categorized bugs. Similar new bugs can be as-

signed to the same group of developers for optimizing

the fixing time;

3) Bug clusters (or categories) can be mapped into

software modules, using which the module complexity

analysis can be achieved by counting the bugs for each

module;

4) Category wise bug distribution can be performed,

which can help managers to understand the strength and

weakness of the developers and software modules.

4. The CLUBAS Algorithm

In this section, the pseudo code and working of the

CLUBAS algorithm is presented. CLUBAS is segmented

into the five major steps. CLUBAS takes two parameter

for performing the bug classification i.e. textual similar-

ity threshold value () and number of frequent terms in

cluster label (N). The initial step in the CLUBAS is Ex-

tract Data, where the bug records from a particular bug

repository is retrieved and stored in the local system. The

bug record selection can be made in multiple ways e.g.

randomly (generating a random number set for bug-id’s),

by specifying the bug-id range (minimum bug-id and

maximum bug-id) or explicitly storing the bug-id’s in a

text file. One bug-id is selected at a time and appended to

the URL (Uniform Resource Locator) of the software

bug repository, and using URL network programming in

java the specified bug record is fetched to the local sys-

tem in the HTML (Hyper Text Markup Language) or

XML (Extendible Markup Language) file format.

The next step in CLUBAS is Pre-Processing Step,

where the software bug records available locally in HTML

or XML file formats are parsed and bug attributes and

their corresponding values are stored in the local data-

base. After this the stop words elimination and stemming

is performed over the textual bug attributes summary

(title) and description, which are used for creating the

bug clusters. In the following step (Clustering), the pre-

processed software bug attributes are selected for textual

similarity measurement. Cosine similarity technique is

used for measuring the weighted similarity between a

pair of software bugs. The java based open source API,

symmetric [31], which provides the implementation of

various textual similarity implementation is used here for

calculating the textual similarities. For all software bug

pairs the weighted similarities are calculated and stored,

using which the clusters are created. The clusters are

created as follows—initially one cluster is created with a

random bug, then if the similarity value for a paired bugs

with this bug is less than the similarity threshold value

(), then both of the bugs are mapped to the same clusters,

otherwise the new cluster is created and the bug which is

not belonging to the cluster is mapped to the new cluster.

This similarity threshold value is one of the important

parameters for the CLUBAS algorithm. If the value of
(similarity threshold value) is the high, then high similar-

ity between the software bug attributes is expected for

clustering and vice-versa.

The next step (Cluster Label Generation) is to gener-

ate the cluster labels using the frequent terms present in

the bugs of a cluster. In this step the summary (title) and

descriptions of all the software bugs belonging to a par-

ticular clusters are aggregated and frequent terms present

in this aggregate text data is calculated and the N (where

N is the number of frequent terms in labels and is an user

Copyright © 2012 SciRes. JSEA

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities 439

supplied parameter) top most frequent terms are assigned

to the clusters as the cluster labels. Mapping of the clus-

ter labels to the bug categories using the taxonomic terms

for various categories is carried out next (Mapping Clus-

ters to Classes). In this step, the taxonomic terms for the

entire bug categories are pre-identified and cluster label

terms are matched with these terms. Matching of the

terms indicates the belongingness of clusters to the cate-

gories. The last step (Performance Evaluation and Out-

put Representation) is generating the confusion matrix,

using which various performance parameters like preci-

sion, recall, and accuracy is calculated. The precision and

recall can be combined together to calculate F-measure,

the formulas for these parameters is mentioned in the

next section. Finally the cluster information is visualized

and represented as the output of the CLUBAS.

ALGORITHM CLUBAS

Returns: Clusters consisting of similar bugs

Category of each cluster

Arguments: —Similarity threshold

N—Number of frequent terms in cluster labels

Step 0 (Extract Data):

0a. Generate the numbers set R for bug data sources (bug-id range, randomly etc.);

0b. For each number m R, append it to the bug repository URL;

0c. Using URL programming, extract the HTML or XML page for the bug with the bug-id value as m.

Step 1 (Pre-Processing Step):

for-each bug record retrieved from the bug repository:

1a. Parse and extract the bug attributes from each bug file;

1b. Eliminate the stop words from bug summary, description and comments;

1c. Apply stemming to the textual attributes bug summary, description and comments.

Step 2 (Clustering):

2a. For each pair of bugs Bi and Bj, calculate the textual similarity between the attributes summary and description,

using the similarity weights WS and WD such that the similarity value is normalized to 1, i.e. WS + WD = 1;

2b. Sim(Bi, Bj) = WS * Sim(Bi-summary, Bj-summary) + WD * Sim(Bi-description, Bj-description);

2c. IF Sim(Bi, Bj) > THEN Assign Bi, Bj to same cluster ELSE Create a new cluster and Assign Bj to this cluster.

Step 3 (Cluster Label Generation—Using Frequent Terms for a Cluster):

For each cluster Ci, get the lists of bugs belonging to this cluster:

3a. Extract the summary and description of these bugs;

3b. Concatenate this textual data to form the cluster text data;

3c. Calculate the N frequent terms {Ti1, Ti2,…,TiN} from each cluster text data, and assign them to these clusters as cluster labels;

3d. Label(Ci) {Ti1, Ti2,…,TiN}.

Step 4 (Mapping Clusters to Classes):

4a. For each cluster Ci, get each term TiK in the Label(Ci) (cluster label) and match it with the bug taxonomic terms.

The match indicates the belongingness of cluster in that bug category.

Step 5 (Performance Evaluation and Output Representation):

5a. Generate the confusion matrix;

5b. Calculation of the performance parameters Accuracy, Precision, Recall and F-Measure;

5c. Visualized representation of bug clusters and its labels.

5. Classifier Performance Evaluation

The accuracy and performance of prediction models for

classification problem is typically evaluated using a con-

fusion matrix. A confusion matrix contains information

about actual and predicted classifications done by a clas-

sifier. In this work, the commonly used performance

measures: accuracy and F-measure are used to evaluate

and compare the algorithms. These measures are derived

from the confusion matrix, which is shown in the Figure

2.

Where TP stands for true positive, which indicates a

positive value that the system has predicted as positives,

TN is true negatives, that is negative values the system

identifies as negatives, FP is false positives, negative

values the system identifies as positives and FN is false

negatives, positive values that the system predicted as

negative.

5.1. Accuracy

Accuracy, or correctness of classifiers, is defined as the

ratio of the number of bugs correctly classified to the

total number of bugs and is calculated using Equation (1)

or Equation (2), given as follows:

TP+ TN
Accuracy

TP+ TN+ FP+ FN
 (1)

Accuracy (%)

Correctly Classifies Software Bugs
100

Total Software Bugs

 (2)

Copyright © 2012 SciRes. JSEA

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities 440

Predicted

 Positives Negatives

Positives TP FN
Actual

Negatives FP TN

Figure 2. The confusion matrix.

5.2. Precision

Precision is the ratio of the number of correctly classified

software bugs and the actual number of software bugs

which was assigned to the type. Precision is the meas-

urement of correctness and is also defined as the ratio of

the true positives (TP) to total positives (TP + FP) and is

calculated using Equation (3).

TP
Precision

TP+ FP
 (3)

5.3. Recall

Recall rate is the ratio of the number of correctly classi-

fied software bugs and the number of software bugs

which belongs to the type. It reflects the classifier’s abil-

ity of searching extension and is calculated using Equa-

tion (4).

TP
Recall

TP+ FN
 (4)

5.4. F-Measure

F1 is a combined measure of Precision and Recall para-

meters. F-measure considers both precision and recall

equally important by taking their harmonic mean. F-

measure or F1-measure is derived from Fβ-measure, β
being the weight factor which gives β times as much im-

portance to recall as precision. Generally the value of β is

taken as 1. The higher value of F-measure indicates higher

quality of the classifiers. Fβ-measure is calculated using

Equation (5), whereas F-measure or F1-measure is calcu-

lated using Equation (6).

2

2

precision recall
F 1

precision recall

 (5)

1

2 precision recall
F

precision recall

 (6)

6. Implementation

Implementation is done using open source object ori-

ented programming language Java [32], and MySql [33]

is taken as local data base management system, Weka

[34] API is used for implementing the stemming and

other classification algorithms for comparison. The multi

map data structure is also used for calculations and stor-

ing the clusters information at run time.

6.1. Datasets and Sampling

The random software bug records are selected from four

open sources online software bug repositories namely,

Android [35], JBoss-Seam [36], Mozilla [37] and MySql

[38]. Random sampling technique is used and the sample

size of 200, 300, 500, 700, 1000, 1300, 1600 and 2000 is

taken for the experiments from these four repositories for

the comparison of the classifiers. To retrieve the random

records from the mentioned software bug repositories, a

random number generator source code has written in java

to generate the random integer numbers. Using these

numbers as the bug ids, bug records are extracted from

the online software bug repositories using URL (Uniform

Resource Locator) programming in java. (For example

for the URL of MySql bug repositories [38],

“http://bugs.mysql.com/bug.php?id=”, “id” can be appen-

ded to retrieve a particular software bug record.)

6.2. Pre-Processing

After the software bug records are extracted and made

available at local system, and then pre-processing of

these records is performed. The pre-processing takes

places in three stages: parsing, elimination of stop words

and stemming. In parsing phase all the software bug at-

tributes position is detected and their corresponding va-

lues are parsed and stored to the local database schema

for all of the software bug repositories. Once these par-

sed values are available the stopping and stemming is

performed on the textual attribute values. In stopping the

first step is to identify the suitable stop list, which con-

sists of the terms (words) not relevant for the classifica-

tion of the software bugs. Terms with numeral and spe-

cial characters are also eliminated in the process of stop-

ping. However, the terms like “not” etc. are not removed

during stopping, since such terms are relevant for soft-

ware bug classification [14]. Finally, stemming is per-

formed over the filtered values, where in stemming words

are reduced to their root form (origin words), which can

be performed using suffix and affix removal. In the pre-

sent work Porter’s stemming algorithm is used for stem-

ming, which is a part of Weka [34] API (Application Pro-

gramming Interface).

6.3. Mapping Bug Clusters to Categories

The categorical terms are generated from the software

bug clusters labels. The Table 1 is generated for 2000

random sample software bugs selected from the four

open source bug software projects in aggregation. Table

1 is consisting of 10 major categories of software bugs

with their corresponding pre-processed (after stopping

and stemming) taxonomic terms. Terms which are not

covered in the mentioned categories are treated as the

Copyright © 2012 SciRes. JSEA

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities

Copyright © 2012 SciRes. JSEA

441

Table 1. Category discriminative terms.

Category Name Categorical Terms

Logical

assertion, annotation, asynch, argument, application, attempting, break, broken, behavior, badly, call , caus, code,

clustering, component , core, default, doesn, error, exception, edit, found, fail, file, frame, handle, host, implement,

incorrect, integrat, incomplete, java, librar, logic, miss, mension, work, npe, null, option, propert, pointer, parameter,

pluggable, problem, portability, redirect, remove, read, replica, run, repea, server, session, submit, search, statement,

status, service, start, throw, validat, wrong, not, proper, should

GUI

button, border ,background , blank ,bundle, css, container, captcha, display, event, font, html, item, imag, list, label, line,

layout, locale, method, message, navigator, pixel ,page, render, resource , space , selection, show, tag, toolbar, typo, click,

mouse, key, resolution, table

Datatype array, blob, binary, char, numeric, hard, real, string, text, utf, undef, variable, value

Backend attribute, column, connection, data, db, field, insert, index, join, load, query, record , store, serial, update

Enhancement add, enhance, ignore, improve, optimi, performance, required, support, can, may, suggest

Build ant, build, compile, config, debug, log, make, module, patch, redeploy, syntax, warnings

OS concurrent, path, redhat, unix, windows

Security access, admin, grant, privileges, roles, revoke, resultset, security, user

Memory cache, crash, flow, fault, heap, infinite, memory, segmentation, segfault, smart, threads, profil

Analysis case, comment, diagram, doc, fig, tutorial, test , unit

non-bug terms. The technique of generating these taxo-

nomic terms from various bug repositories is given in

[39]. Experiments in this paper are performed for binary

classification of the bugs, where the bugs are categorized

into the two categories-bugs and non-bugs

7. Experimentation and Comparative
Analysis

The experiments was performed on four different soft-

ware bug repositories, using Java and Weka data mining

API and the classifiers are evaluated using 10-fold cross-

validation technique. The proposed algorithm CLUBAS

is compared with other standard classification algorithms

for classifying the software bugs. CLUBAS is compared

with Naïve Bayes (NB) [40,41], Naïve Bayes Multino-

mial [41], J48 [42], Support Vector Machine (SVM)

[43,44] and Weka’s Classification using Clustering (CC)

[45] algorithms. LIBSVM [46] is an open source imple-

mentation of SVM, which can be integrated into Weka.

The comparison is performed on the basis of two stan-

dard classification parameters F-measure (which is the

combine measure of precision and recall) and accuracy

of the classifiers.

The algorithms are first applied on the Android bug

repository and the results for accuracy and F-measures

for different number of samples are plotted in Figures

3(a) and (b) respectively. From the plot Figure 3(a), it is

observed that both NB and NBM performs better in terms

of accuracy than the other algorithms and CLUBAS does

not perform well accuracy wise, still it is able to maintain

more than 80% accuracy and at certain points it performs

better than the NBM algorithm. But from the F-measure

point of view (Figure 3(b)), the algorithm CLUBAS shows

stability and performs better than CC, SVM and J48, it

maintains the F-measure values more than 0.9 for each

experiment using different number of samples.

Similarly, the experiments are performed on JBoss-

Seam, Mozilla and MySql bug repositories using the six

algorithms. The accuracy and F-measure results for these

repositories are plotted against the different number of

samples in Figures 4(a) and (b), Figures 5(a) and (b)

and Figures 6(a) and (b) respectively. It is observed

from the plots that Accuracy wise CLUBAS just per-

forms well and maintains more than 80% accuracy for

different samples in all of the repositories, and in case of

MySql bug repository, only NB performs better

CLUBAS algorithm. From the F-measure point of view it

gives the stable results, irrespective of the number of

samples in classification and mostly it maintains more

than 0.9 values for all the repositories. In case of

F-measure, for all of the repositories except MySql, only

NB and NBM perform better than CLUBAS and in case

of MySql repositories, CLUBAS gives better results than

any other algorithm.

For larger F-measure, values CLUBAS algorithm pro-

vide consistent results. However the runtimes for each

algorithm were noted and it was found that all of the al-

gorithms took roughly 2 to 3 minutes for a single ex-

periment up to 2000 random samples. So it can be con-

cluded from the experiments and comparison that, when

the precision, recall and F-measures are important CLU-

BAS gives the better and stable results irrespective of

number of samples and software bug repositories. CLU-

BAS is also able to maintain more than 80% accuracy for

the different number of samples from selected four bug

repositories. In overall, it is also better than the other

similar algorithm, i.e. Weka’s CC algorithm in terms of

accuracy and F-measure.

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities 442

Figure 3. Performance of various classifiers over Android bug repository (a) Accuracy; (b) F-measures.

Figure 4. Performance of various classifiers over JBoss-Seam bug repository (a) Accuracy; (b) F-measures.

Figure 5. Performance of various classifiers over Mozilla bug repository (a) Accuracy; (b) F-measures.

Copyright © 2012 SciRes. JSEA

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities 443

Figure 6. Performance of various classifiers over Mysql bug repository (a) Accuracy; (b) F-measures.

7.1. Effect of Similarity Threshold ()

The effect of similarity threshold over accuracy and F-

measure for CLUBAS is plotted in Figures 7(a) and (b)

respectively. 1000 random samples are taken from all the

four bug repositories to identify the effect of similarity

threshold value for CLUBAS. For JBoss-Seam and

MySql bug repositories the parameters accuracy and

F-measure values are stable, irrespective of the similarity

threshold, however for Android and Mozilla bug reposi-

tories the same parameter decrease, with increase in the

similarity threshold value in the algorith CLUBAS. This

indicates that the textual similarity in software bug in-

formation stored in the Android and Mozilla is less than

the other two bug repositories.

7.2. Effect of Frequent Terms in Cluster Labels
(N)

The relationship between number of frequent terms in

class label and accuracy/F-measure is plotted in Figures

8(a) and (b), respectively. It is oserved from the plot that,

as the number of frequent terms increses in the cluster la-

bels the accuracy and F-measures also increases for all

the bug repositories, and after a certain point (i.e. number

of frequent terms is 10) the accuracy and F-measures

becomes stable and are freed from the effect of number

of frequent terms in CLUBAS. This point indicates the

optimum number of terms in cluster label, which is iden-

tified to be 10 in this experiment for all the four reposito-

ries i.e. Android, JBoss-Seam, Mozilla and MySql with

1000 random samples and similarity threshold of 0.01.

8. GUI Based CLUBAS Tool

The proposed algorithm is implemented in java and a

GUI based tool is created. Some screen shots are shown

in this section as an illustration for the implemented tool.

The GUI for selecting the various parameters for CLU-

BAS is shown in Figure 9. User can select the textual

similarity technique and also can specify the similarity

threshold value using this interface. User can also specify

the name of output file, where the output of the algorithm

along with various calculated parameters can be stored.

Another GUI interface for displaying the output of the

CLUBAS is shown in Figure 10. This interface is mainly

consisting of three lists. The first list holds the cluster

created with the labels assigned to it, second list shows

the bugs belonging to the cluster selected in the first list,

and the last list shows the category term for the selected

cluster. Various list selection listeners are implemented

in Figure 10, if user selects a particular cluster (shown as

cluster-id: cluster-label) on the leftmost list, its corre-

sponding software bugs and categories will be displayed

on the other lists.

9. Threats to Validity

Four software bug’s repositories namely, Android, JBoss-

Seam, Mozilla and MySql are selected for experimenta-

tions and comparison in this present work. Different

numbers of random samples are selected from every re-

pository for validation of the work. Although the experi-

ment is performed multiple number of times and averag-

ing is also done for the results, there is a chance that the

calculated parameter values may differ for other samples,

where the textual bug attribute information is poor (the

bug information is not described in details). The other

limitation of the work can be derived from the Zipf’s

power distribution law [47,48]. It states that most of us-

ers use limited number of words (terms) frequently in the

Copyright © 2012 SciRes. JSEA

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities 444

Figure 7. Effect of similarity threshold in CLUBAS (a) Accuracy; (b) F-measures.

 Figure 8. Effect of frequent terms in CLUBAS (a) Accuracy; (b) F-measures.

Figure 9. GUI snapshot for specifying various parameters in CLUBAS.

Copyright © 2012 SciRes. JSEA

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities 445

Figure 10. GUI screen for cluster output.

documents. On one end the Zipf’s law supports the algo-

rithm CLUBAS, since it is also derived from the frequent

terms, however on the other end in few cases where the

developers from different places are working and using

the different set of vocabularies to represents the bug

information, the accuracy values may drop.

10. Conclusion & Future Scope

In this paper, a text clustering and classification algo-

rithm is developed and a GUI based tool for software bug

classification CLUBAS is presented. The algorithm

CLUBAS is designed using the technique of classifica-

tion by clustering, in which first clustering is done using

textual similarity of bug attributes and then proper labels

are generated and assigned to each cluster. The cluster

labels are further mapped to the bug classes using the

cluster label and bug taxonomic terms matching. The

algorithm uses two input parameters; similarity threshold

value and number of terms in cluster label. The effect of

these parameters for performance evaluation is also

studied and graphs are plotted to visualize their effects.

The algorithm CLUBAS is compared with number of

standard classification algorithms for performance

evaluation. The comparison is performed using the per-

formance parameters; accuracy and F-measure (com-

bined measure of precision and recall). From the experi-

ments it is observed that CLUBAS is able to maintain

more than 80% accuracy for all the bug repositories at

different sampling points (number of samples), and al-

ways gives more than 0.9 as F-measure. From compara-

tive analysis, it is found that accuracy wise, only algo-

rithms NB and NBM performs better than CLUBAS,

however F-measure wise, it the best algorithm, since it

gives stable and higher values of F-measure, irrespective

of the bug repositories and number of samples in classi-

fication. The future scope related to the proposed work

can be applying advanced text pre-processing techniques

for optimizing the clustering and classification work, and

also modern text clustering and classification algorithms

can be implemented and compared with the proposed

algorithm. The validity of the Zipf’s law can also be

verified in the future work.

REFERENCES

[1] http://www.bugzilla.org

[2] http://www.perforce.com

[3] http://www.atlassian.com/software/jira/

[4] http://trac.edgewall.org

[5] IEEE Standard, Classification for Software Anomalies
Working Group (IEEE 1044 WG Std), No. 1044, 1993,
pp. 1-15.

[6] IEEE Standard, Classification for Software Anomalies

Working Group (IEEE 1044 WG Std), No. 1044, (Revi-

sion), 2009, pp. 1-15.

[7] H. Kagdi and D. Poshyvanyk, “Who Can Help Me with
This Change Request?” IEEE International Conference
on Program Comprehension, Vancouver, 17-19 May 2009,
pp. 273-277. doi:10.1109/ICPC.2009.5090056

[8] J. Anvik and G. C. Murphy, “Determining Implementa-
tion Expertise from Bug Reports,” 4th International Work-
shop on Mining Software Repositories, Minneapolis, 20-
26 May 2007, pp. 9-16. doi:10.1109/MSR.2007.7

[9] H. Kagdi, M. L. Collard and J. I. Maletic, “A Survey and

Taxonomy of Approaches for Mining Software Reposito-

ries in the Context of Software Evolution,” Journal of Soft-

ware Maintenance and Evolution: Research and Practice,

Vol. 19, No. 2, 2007, pp. 77-131. doi:10.1002/smr.344

[10] H. Kagdi, M. Hammad and J. I. Maletic, “Who Can Help

Me with this Source Code Change?” IEEE International

Conference on Software Maintenance, Beijing, 28 Septem-

ber-4 October 2008, pp. 157-166.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/ICPC.2009.5090056
http://dx.doi.org/10.1109/MSR.2007.7
http://dx.doi.org/10.1002/smr.344

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities 446

doi:10.1109/ICSM.2008.4658064

[11] N. Ayewah and W. Pugh, “Learning from Defect Remov-

als,” 6th IEEE International Working Conference on Min-

ing Software Repositories, Vancouver, Canada, 16-17 May

2009, pp. 179-182. doi:10.1109/MSR.2009.5069500

[12] S. Kim, E. J. Whitehead Jr. and Y. Zhang, “Classifying

Software Changes: Clean or Buggy?” IEEE Transactions
on Software Engineering, Vol. 34, No. 2, 2008, pp. 181-

196. doi:10.1109/TSE.2007.70773

[13] G. Vijayaraghavan and C. Kaner, “Bug Taxonomies: Use

Them to Generate Better Tests,” Software Testing Analy-
sis and Review Conference (STAR EAST 2003), Orlando,
2003, pp. 1-40.

[14] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh and Y. G.
Guéhéneuc, “Is It a Bug or an Enhancement? A Text-

Based Approach to Classify Change Requests,” Procee-
dings of the 2008 Conference of the Center for Advanced
Studies on Collaborative Research, New York, 2008, pp.

304-318.

[15] K. Pan, S. Kim and E. J. Whitehead Jr., “Bug Classifica-
tion Using Program Slicing Metrics,” 6th IEEE Interna-
tional Workshop on Source Code Analysis and Manipula-
tion (SCAM), Philadelphia, 2006, pp. 31-42.

doi:10.1109/SCAM.2006.6

[16] D. Lo, H. Cheng, J. W. Han, S. C. Khoo and C. N. Sun,

“Classification of Software Behaviors for Failure Detec-

tion: A Discriminative Pattern Mining Approach,” ACM

Knowledge Discovery in Databases, Paris, 2009, pp. 557-

565.

[17] B. Fluri, E. Giger and H. C. Gall, “Discovering Patterns

of Change Types,” Proceedings of the 23rd International
Conference on Automated Software Engineering (ASE),

L’Aquila, 15-19 September 2008, pp. 463-466.

[18] C. N. Sun, D. Lo, X. Y. Wang, J. Jiang and S. C. Khoo,

“A Discriminative Model Approach for Accurate Dupli-

cate Bug Report Retrieval,” ACM International Confer-
ence on Software Engineering, Cape Town, 1-8 May 2010,

pp. 45-54.

[19] X. Y. Wang, L. Zhang, T. Xie, J. Anvik and J. Sun, “An

Approach to Detecting Duplicate Bug Reports Using

Natural Language and Execution Information,” ACM In-

ternational Conference Software Engineering, Leipzig,

10-18 May 2008, pp. 461-470.

[20] Z. Li, S. Lu, S. Myagmar and Y. Zhou, “CP-Miner: Find-

ing Copy-Paste and Related Bugs in Large-Scale Soft-

ware Code,” IEEE Transactions on Software Engineering,

Vol. 32, No. 3, 2006, pp. 176-192.

[21] N. Jalbert and W. Weimer, “Automated Duplicate Detec-

tion for Bug Tracking Systems,” IEEE International Con-

ference on Dependable Systems & Networks, Anchorage,

24-27 June 2008, pp. 52-61.

[22] D. Cotroneo, S. Orlando and S. Russo, “Failure Classifi-

cation and Analysis of the Java Virtual Machine,” Pro-

ceedings of the 26th IEEE International Conference on

Distributed Computing Systems, Lisboa, 4-7 July 2006,

pp. 1-10.

[23] P. J. Guo, T. Zimmermann, N. Nagappan and B. Murphy,

“Characterizing and Predicting which Bugs Get Fixed:

An Empirical Study of Microsoft Windows,” ACM Inter-

national Conference on Software Engineering, Cape Town,

1-8 May 2010, pp. 495-504.

[24] C. C. Williams and J. K. Hollingsworth, “Automatic Min-

ing of Source Code Repositories to Improve Bug Finding

Techniques,” IEEE Transactions on Software Engineer-

ing, Vol. 31, No. 6, 2005, pp. 466-480.

doi:10.1109/TSE.2005.63

[25] A. Huang, “Similarity Measures for Text Document Clus-

tering,” 6th New Zealand Computer Science Research Stu-

dent Conference, Christchurch, 14-18 April 2008, pp. 49-

56.

[26] F. Beil, M. Ester and X. Xu, “Frequent Term-Based Text

Clustering,” ACM Special Interest Group—Knowledge Dis-

covery in Databases, Edmonton, 23-25 July 2002, pp. 436-

442.

[27] S. Osinski, J. Stefanowski and D. Weiss, “Lingo: Search

Results Clustering Algorithm Based on Singular Value

Decomposition,” Proceedings of the Springer Interna-

tional Intelligent Information Processing and Web Mining

Conference, Zakopane, 17-20 May 2004, pp. 359-368.

[28] O. Zamir and O. Etzioni, “Grouper: A Dynamic Cluster-

ing Interface for Web Search Results,” Computer Net-

works, Vol. 31, No. 11-16, 1999, pp. 1361-1374.

doi:10.1016/S1389-1286(99)00054-7

[29] O. Zamir and O. Etzioni, “Web Document Clustering: A

Feasibility Demonstration,” Proceedings of the ACM

SIGIR Conference on Research and Development in In-

formation Retrieval (SIGIR), Melbourne, 1998, pp. 46-54.

doi:10.1145/290941.290956

[30] J. Stefanowski and D. Weiss, “Comprehensible and Ac-

curate Cluster Labels in Text Clustering,” Proceedings of

the 8th Conference on Information Retrieval and Its Appli-

cations, Pittsburgh, 2007, pp. 198-209.

[31] http://www.dcs.shef.ac.uk /~sam/simmetrics.html

[32] http://www.java.com/

[33] http://mysql.com

[34] www.cs.waikato.ac.nz/ml/weka

[35] http://code.google.com/p/android/issues

[36] https://issues.jboss.org/browse/JBSEAM

[37] https://bugzilla.mozilla.org

[38] http://bugs.mysql.com

[39] N. K. Nagwani and S. Verma, “A Frequent Term Based

Approach for Generating Discriminative Terms in Soft-

ware Bug Repositories,” IEEE 1st International Confer-

ence on Recent Advances in Information Technology,

Dhanbad, 15-17 March 2012, pp. 433-435.

[40] G. H. John and P. Langley, “Estimating Continuous Dis-

tributions in Bayesian Classifiers,” Proceedings of 11th

Conference on Uncertainty in Artificial Intelligence, San

Mateo, 18-20 August 1995, pp. 338-345.

[41] A. Mccallum and K. Nigam, “A Comparison of Event

Models for Naive Bayes Text Classification,” Proceedings

of AAAI-98 Workshop on Learning for Text Categoriza-

tion, Madison, 26-27 July 1998, pp. 41-48.

[42] R. Quinlan, “C4.5: Programs for Machine Learning,” Mor-

gan Kaufmann Publishers, San Mateo, 1993.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/MSR.2009.5069500
http://dx.doi.org/10.1109/TSE.2007.70773
http://dx.doi.org/10.1109/SCAM.2006.6
http://dx.doi.org/10.1109/TSE.2005.63
http://dx.doi.org/10.1016/S1389-1286(99)00054-7
http://dx.doi.org/10.1145/290941.290956

CLUBAS: An Algorithm and Java Based Tool for Software Bug Classification Using Bug Attributes Similarities

Copyright © 2012 SciRes. JSEA

447

[43] V. N. Vapnik, “The Nature of Statistical Learning The-

ory,” Springer-Verlag, New York, 1995.

[44] http://www.cs.iastate.edu/~yasser/wlsvm/

[45] A. Kyriakopoulou and T. Kalamboukis, “Text Classifica-

tion Using Clustering,” Proceedings of ECML-PKDD, Dis-

covery Challenge Workshop, Burlin, 18-22 September 2006,

pp. 28-38.

[46] http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[47] W. Li, “Random Texts Exhibit Zipf’s-Law-Like Word Fre-
quency Distribution,” IEEE Transactions on Information
Theory, Vol. 38, No. 6, 1992, pp. 1842-1845.
doi:10.1109/18.165464

[48] W. J. Reed, “The Pareto, Zipf and Other Power Laws,” Eco-

nomics Letters, Vol. 74, No. 1, 2001, pp. 15-19.

doi:10.1016/S0165-1765(01)00524-9

http://dx.doi.org/10.1109/18.165464
http://dx.doi.org/10.1016/S0165-1765(01)00524-9

