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Abstract The release of long‐stored carbon from thawed permafrost could fuel increased
methanogenesis in northern lakes, but it remains unclear whether old carbon substrates released from
permafrost are metabolized as rapidly by methanogenic microbial communities as recently produced
organic carbon. Here, we apply methane (CH4) clumped isotope (Δ18) and

14Cmeasurements to test whether
rates of methanogenesis are related to carbon substrate age. Results from culture experiments indicate that
Δ18 values are negatively correlated with CH4 production rate. Measurements of ebullition samples from
thermokarst lakes in Alaska and glacial lakes in Sweden indicate strong negative correlations between CH4

Δ18 and the fraction modern carbon. These correlations imply that CH4 derived from older carbon
substrates is produced relatively slowly. Relative rates of methanogenesis, as inferred from Δ18 values, are
not positively correlated with CH4 flux estimates, highlighting the likely importance of environmental
variables other than CH4 production rates in controlling ebullition fluxes.

Plain Language Summary There is concern that carbon from thawed permafrost will be emitted
to the atmosphere as methane (CH4). It is currently uncertain whether old organic carbon from thawed
permafrost can be converted to CH4 as rapidly as organic carbon recently fixed by primary producers. We
address this question by combining radiocarbon and clumped isotope measurements of CH4 from lakes in
permafrost landscapes. Radiocarbon (14C) measurements indicate the age of CH4 carbon sources. We
present data from culture experiments that support the hypothesis that clumped isotope values are
dependent on microbial CH4 production rate. In lake bubble samples, we observe a strong correlation
between these two measurements, which implies that CH4 formed from older carbon is produced relatively
slowly.We also find that higher rates of CH4 production, as inferred from clumped isotopes, are not linked to
higher rates of CH4 emissions, implying that variables other than CH4 production rate strongly influence
emission rates.

1. Introduction

Thawing of permafrost provides previously frozen organic carbon to anaerobic microbial communities
whose respiration releases CO2 and CH4. The release of these greenhouse gases constitutes a positive feed-
back to global warming, with a potential contribution of 174 Pg of carbon to the atmosphere by 2100 (Koven
et al., 2011; Schuur et al., 2015). Specific attention has been directed to the potential for lakes in permafrost
regions to act as CH4 emissions sources (Walter Anthony et al., 2018; Wik et al., 2016). Much of this CH4

could be derived from carbon reservoirs that have been frozen and unavailable for microbial respiration
for thousands of years (Walter Anthony et al., 2016), which represents a net input of carbon into the active
Earth surface carbon cycle (Archer et al., 2009). 14C measurements of CH4 are an excellent tracer for the age
of carbon sources for methanogenesis. However, 14C measurements of CH4 in northern lakes span a large
range (modern to >50,000 years old) (Bouchard et al., 2015; Elder et al., 2018; Walter et al., 2008), and our
understanding of the mechanisms that control this variability remains limited.
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If old organic carbon released from permafrost is less reactive than recently fixed carbon, this may limit
microbial metabolisms fueled by older carbon, including methanogenesis. This premise is based on the
observation that in sediments and soils, older organic carbon is generally less reactive with respect to micro-
bial degradation (Middelburg, 1989; Trumbore, 2000). Recent studies have found, however, that
14C‐depleted organic carbon from permafrost can be highly reactive (Ewing et al., 2015; Heslop et al., 2019;
Mann et al., 2015; Vonk et al., 2013).

CH4 stable isotope measurements have the potential to identify differences in CH4 production rates and how
they relate to carbon substrate age. In particular, measurements of multiply substituted isotopologues, or
clumped isotopes (Ono et al., 2014; Stolper, Sessions, et al., 2014; Young et al., 2017), in microbial CH4 are
hypothesized to be controlled by the enzymatic reversibility of CH4 production (Gruen et al., 2018; Stolper
et al., 2015; Wang et al., 2015). Enzymatic reversibility of methanogenesis is a function of the forward and
reverse reaction rates of methanogenesis (Stolper et al., 2015) and is therefore directly related to the net rate
of CH4 production.

In this study, we combined analyses of clumped isotopes (Δ18; see definition in Section 2) and 14C in samples
of CH4 emitted in bubbles from eight lakes associated with permafrost in Alaska and Sweden to test whether
there is a linkage between relative rates of microbial methanogenesis and the age of carbon substrates. The
five lakes from Alaska are thermokarst lakes formed by the thaw of ice‐rich permafrost (Douglas et al., 2016;
Elder et al., 2019; Walter et al., 2008), while the three Swedish lakes are postglacial lakes surrounded by
thawing discontinuous permafrost (Wik et al., 2013). To support this analysis, we also present a compilation
of new and published Δ18 and Δ13CH3D measurements from culture experiments to provide empirical evi-
dence that clumped isotope values are related to CH4 production rate. Finally, we compare Δ18 and

14Cmea-
surements with CH4 ebullition flux estimates to inform conceptual models of how CH4 production rate
relates to lake ebullition fluxes.

2. Methods
2.1. Lake Ebullition Sampling

Ebullition gas samples from the Alaskan lakes (Qalluruq, Cake Eater, Goldstream, Doughnut, and Smith)
were collected from submerged, umbrella‐style bubble traps, following methods described by Walter
et al. (2008), between 2009 and 2013. Bubble traps were fixed in place over identified bubble seeps.
Ebullition gas samples from the Stordalen lakes (Inre Harrsjön, Mellersta Harrsjön, and Villasjön) were col-
lected using submerged inverted funnels, as described by Wik et al. (2013), in 2013 and 2014. The Stordalen
traps were distributed evenly across the lakes since no coherent bubble seeps were identified. Lake locations
and classifications are described in more detail in previous studies (Douglas et al., 2016; Walter et al., 2008;
Wik et al., 2013).

2.2. Pure Culture Experiments

Pure cultures of Methanosarcina acetivorans (Sowers et al., 1984) (Strain DSM 2834; DSMZ GmbH) were
grown on a carbon substrate of methanol (MeOH) or trimethylamine (TMA). Cultures in Batch 1 and
Batch 2 (Table S1 in the supporting information) were grown in 1 L glass vials in 350 mL of sterile media,
while cultures for Batch 3 were grown in 40 mL glass vials in 20 mL of sterile media (Text S1). All cultures
were grown under a headspace of N2 gas at a pressure of 150 kPa. Batch 1 and 2 cultures included 5 mL of
either 99.9% MeOH or TMA as a carbon substrate, while Batch 3 cultures included 0.25 mL of 99.9% MeOH
(Table S2). The culture bottles were kept in an incubator at 28°C and shaken at 35 rpm. Headspace CH4 con-
centrations were either measured prior to sampling for isotopic analysis using an Agilent HP
5890GC‐5972MSD (gas chromatograph‐mass selective detector; Batch 2) or were measured manometrically
during CH4 preparation for isotopic analysis (Batches 1 and 3). Immediately following CH4 concentration
measurements, aliquots of headspace gas were sampled using a 5 mL gas tight syringe for isotope measure-
ments (see Section 2.6). Culture incubation times are listed in Table S2.

2.3. Enrichment Culture Experiments

Enrichment cultures were established using sediments from two aquatic environments in Southern
California: Baxter Pond, an artificial pond on the Caltech campus (Stolper et al., 2015); and the Ballona
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wetlands, a coastal marsh. Cultures were grown in a headspace of 80:20 H2:CO2, in a sterile media (Text S1),
with 180 μL of 1 M sodium acetate. The cultures were transferred every 5 days, with an additional 180 μL of
1 M sodium acetate added at each transfer. Twenty days after the fifth transfer, the cultures were analyzed
for headspace CH4 concentrations using an Agilent HP 5890GC‐5972MSD and sampled for isotopic analysis.

2.4. Estimation of CH4 Production Rates in Culture Experiments

We estimated the net CH4 production rate (rnet; mg CH4 hr
−1 ml media−1) using the following equation:

rnet ¼ f CH4VHSPMCH4

RTtVm
; (1)

where fCH4 is the fractional concentration of CH4 in the culture headspace, VHS is the volume of the head-
space (in L), P is the headspace pressure (kPa),MCH4 is the molar mass of CH4 (mg mol−1), R is the ideal gas
constant, T is temperature (K), t is the time from culture inoculation to sampling (hours), and Vm is the
volume of the culture media (ml). CH4 production rates for experiments performed at MIT were calculated
from data reported by Gruen et al. (2018).

2.5. CH4 Radiocarbon Measurements

CH4
14C/12C ratios for the Alaskan lake samples were measured at the National Ocean Sciences Accelerator

Mass Spectrometry facility, as described by Brosius et al. (2012) and Walter Anthony et al. (2012). 14C/12C
analysis for the samples from Stordalen mire was analyzed at the A.E. Lalonde Accelerator Mass
Spectrometry Laboratory (University of Ottawa), using a preparation procedure based on that of Pack
et al. (2015). Radiocarbon data are expressed in fraction modern (Fm) as defined by Stuiver and
Polach (1977). Blank tests were conducted alongside all sample 14C analyses, and no evidence for significant
blank carbon was found.

2.6. Clumped Isotope and Other Stable Isotope Measurements

CH4 was purified from mixed gas samples using a vacuum line cryotrapping method described previously
(Douglas et al., 2016; Stolper, Lawson, et al., 2014; Stolper, Sessions, et al., 2014), resulting in CH4 purity
of ~99.9%.

CH4 δD, δ
13C, and Δ18 for all samples, except the Batch 3 pure culture experiments, were measured using a

prototype Thermo 253 Ultra (Eiler et al., 2013) at Caltech, as described in detail previously (Stolper, Sessions,
et al., 2014). The Batch 3 pure culture experiments were analyzed for CH4 δD, δ

13C, and Δ13CH3D and for
three samples Δ12CH2D2, using a production model Thermo 253 Ultra at the University of California,
Berkeley, as described by Eldridge et al. (2019). δD and δ13C values are expressed using delta notation rela-
tive to Vienna Standard Mean Ocean Water and Vienna Pee Dee Belemnite, respectively.

Most (90%) of the clumped isotope compositions presented here are expressed using Δ18 notation as
described by Stolper, Sessions, et al. (2014), where

Δ18 ¼ 18R=18R*− 1
� �

; (2)

and

18R ¼ 13CH3D
� �þ 12CH2D2

� �� �
= 12CH4
� �

: (3)

18R* is the 18R value expected for a random internal distribution of isotopologues, given the δ13C and δD
values of the sample (Stolper, Sessions, et al., 2014) and is expressed as

18R* ¼ 6 × 2R
� �2� �

þ 4 × 2R × 13R
� �

: (4)

Δ18 data are reported as per mil (‰), where 0‰ refers to a random distribution of CH4 isotopologues (i.e.,
18R = 18R*). All samples are referenced against a laboratory standard with a Δ18 value of 2.981 ± 0.015‰
(Stolper, Sessions, et al., 2014). External reproducibility for Δ18, δD, and δ13C values (1σ) was 0.38 ‰,
0.22 ‰, and 0.06 ‰ respectively.
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CH4 samples from the Batch 3 culture experiments were measured for δD, δ13C, and Δ13CH3D and for three
samples Δ12CH2D2. A complete description of the analytical methods used for this measurement is found in
Eldridge et al. (2019). The equations for these measurements (corresponding to Equations 2–4), and details
on standards and reproducibility are listed in the Text S1. Where both Δ13CH3D and Δ18 measurements are
discussed together we use the term Δ18, as this is the more general term (Stolper, Sessions, et al., 2014).

δ13C of CO2 from the Alaskan gas samples were measured at Florida State University, as described byWalter
Anthony et al. (2012).

2.7. Gas Concentration and Flux Measurements

The concentrations of CH4 and other gases in the Alaskan lake samples were measured at the University of
Alaska‐Fairbanks, as described inWalter Anthony et al. (2012). For most Alaskan samples, bubble gas fluxes
are estimated using the average flux measurements of seeps from a given seep classification (Lindgren
et al., 2016; Walter Anthony & Anthony, 2013) (Table S1). In the Alaskan data set, all samples were collected
from identified point source seeps, and flux estimates were not dependent on the area of the traps.

CH4 concentrations in the Stordalen lake samples were measured at the Abisko Scientific Research Station
as described byWik et al. (2013). Gas fluxes were estimated by measuring gas volume accumulations in bub-
ble traps manually. To account for scaling effects related to the area of the traps, for these samples, we report
flux in terms of L CH4 day

−1 m−2 (Table S1). In one case where a sample‐specific flux was not available, we
adopted the 6‐year average flux for that trap. In all samples, CH4 flux was calculated by multiplying the esti-
mated gas flux by the measured CH4 concentration.

2.8. Model of CH4 Kinetic Isotope Effects

Predicted CH4 kinetic isotope effects are based on the model of Stolper et al. (2015), with modifications of
two model parameters. First, we reduced κf‐

13CH3D (the ratio of rate constants that describe the relative rate
of formation of two isotopologues from amethyl precursor for 13CH3D/

12CH4) from 1.935 to 1.934 to account
for low Δ18 and Δ13CH3D values (~−5‰) observed in some culture experiments. Second, we reduced
κf‐

12CH2D2 (as above but for
12CH2D2/

12CH4) from 1.89 to 1.63 to account for measurements of Δ13CH3D
and Δ12CH2D2 in CH4 from pure culture experiments (Young et al., 2017) that indicate negative
Δ12CH2D2 corresponding to negative Δ13CH3D values.

The kinetic isotope effect model relates CH4 isotopologue ratios to the degree of reversibility of CH4 genera-
tion (ρ). In order to relate modeled Δ18 and Δ13CH3D values to net CH4 production rates (rnet), we used the
following equation from Stolper et al. (2015):

ρ ¼
12CH4 krev

12CH4 krevþ12CH4 knet
(5)

where krev and knet are the first‐order rate constants of reverse methanogenesis and net extracellular 12CH4

production, respectively. These reaction constants are related to the net (rnet) and reverse (rrev) reaction rates
of methanogenesis by the following relationships:

rnet ¼ knet CH4½ �; (6)

rrev ¼ krev CH4½ �; (7)

where [CH4] is the intracellular concentration of CH4.

Combining Equations 5–7, it follows that

rnet ¼ rrev
ρ

− rrev: (8)

To compare themodeled relationship betweenΔ18/Δ
13CH3D values and rnet with empirical estimates of CH4

production rates from culture experiments, we made three assumptions. First, we assumed a constant value
for rrev (Timmers et al., 2017; Vavilin, 2013; Vavilin & Rytov, 2013), specifically 4 × 10−4 mg CH4 hr

−1 ml−1.
This value was chosen because it produces the best fit, as defined by the lowest root mean square error
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(RMSE = 0.87‰), between observed and predicted Δ13CH3D and Δ18

values. Second, the model describes cell‐specific values for rrev and rnet,
but we did not measure cell density for the pure and enrichment culture
experiments. This means that when comparing to the empirical results,
the assumed value of rrev and modeled values of rnet are instead expressed
per volume of culture media. Third, the model was specifically developed
for hydrogenotrophic methanogenesis (Stolper et al., 2015), but we are
comparing it to CH4 produced using four different substrates. See Text
S1 for a detailed rationale for these assumptions.

3. Results and Discussion
3.1. Clumped Isotope Values in Culture Experiments Reflect CH4

Production Rates

CH4 sampled from freshwater ecosystems and from methanogen culture
experiments exhibits low or negative Δ18 values that indicate strong
kinetic isotope effects (Douglas et al., 2016; Giunta et al., 2019; Gruen
et al., 2018; Stolper et al., 2015; Wang et al., 2015; Young et al., 2017).
Isotopic models of hydrogenotrophic methanogenesis predict that this
kinetic isotope effect is controlled by the reversibility of the enzymatic
reactions of methanogenesis (Stolper et al., 2015; Valentine et al., 2004;
Wang et al., 2015). In pure culture experiments where CH4 production
rate was measured, using four different carbon substrates, there is a non-
linear negative relationship between CH4 production rate and Δ18

(Figure 1). This finding supports the hypothesis that Δ18 in microbial
CH4 varies as a function of the rate of methanogenesis.

Assuming a constant value for rrev (see Section 2.8), the relationship
between rnet and Δ18 predicted by a model of kinetic isotope effects
(Stolper et al., 2015) provides a good fit to the shape of the empirical rela-
tionship seen in the pure culture experiments. The two enrichment cul-
tures derived from wetland sediments indicate higher Δ18 values for a
given CH4 production rate than the pure culture experiments, possibly

as a result of higher values of rrev or the occurrence of anaerobic CH4 oxidation (Figure S1). The modeled
relationship between rnet and Δ18 from the pure cultures spans a plausible range of values for northern lakes,
based on CH4 production rates from incubation experiments of thermokarst lake sediments (Heslop
et al., 2015) (Figure 1). Although there is uncertainty in quantitatively relating Δ18 to CH4 production rates
in environmental samples, we propose that Δ18 values can be used as an indicator of relative differences in
CH4 production rates between samples.

3.2. Linkages Between Carbon Substrate Age and Rates of Methanogenesis

There is a significant positive correlation (p < 0.05) between Δ18 and Fm for both the Alaskan and Stordalen
lakes (Figure 2), although the relationship is offset to higher Fm values in the Stordalen lakes. Based on our
working hypothesis described above, the observed correlations imply that the rate of methanogenesis within
these environments is lower when CH4‐producing microbial communities metabolize older
carbon substrates.

Other biogeochemical variables, including variation in methanogenic pathways, methane oxidation, and
substrate depletion could also potentially influence Δ18 values in these environments, although the effects
of these variables on Δ18 are not well defined (Ash et al., 2019; Giunta et al., 2019; Gruen et al., 2018;
Wang et al., 2016; Young et al., 2017). However, the relationship between Δ18 and CH4 production rate in
pure culture experiments appears to be consistent across different methanogenic pathways (Figure 1).
Furthermore, the absence of a significant correlation between CH4 Fm and δ13C values in these samples
(Figure S4) implies that variation in methane oxidation or substrate depletion is probably not controlling
the observed relationship between Δ18 and Fm (Hayes, 2001; Whiticar, 1999). Lake Qalluruq on the north

Figure 1. Plot of the natural log of CH4 production rate (rnet) vs. Δ18 or
Δ13CH3D in pure and enrichment culture experiments. Data are from
Douglas et al. (2016), Gruen et al. (2018), and this study (new data indicated
by black dots). Solid and dashed lines indicate predicted values based on a
model of methanogenesis kinetic isotope effects (Stolper et al., 2015)
(Section 2.8). The gray rectangle indicates the empirical ranges of these two
variables observed in Alaskan thermokarst lakes, specifically the Δ18 values
of ebullition gas samples (this study), and CH4 production rates of
incubated thermokarst lake sediments and thawed permafrost (Heslop
et al., 2015). Analytical errors for Δ18 or Δ

13CH3D measurements (1σ) are
smaller than the symbols. MeOH, methanol; TMA, trimethylamine.
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slope of Alaska may be anomalous because isotopic and gas composition
data imply its CH4 emissions are derived from microbial methanogenesis
in subpermafrost coal deposits that underlie the lake (Douglas et al., 2016;
Walter Anthony et al., 2012). If this lake is excluded, we still observe a sig-
nificant relationship between Δ18 and Fm for the Alaskan samples
(Figure 2).

A plausible mechanism linking Δ18 values and Fm is that older carbon
reservoirs have undergone a greater degree of microbial decomposition
(Middelburg, 1989; Trumbore, 2000) and therefore contain a greater pro-
portion of recalcitrant organic molecules that limit microbial metabo-
lisms. The range of Δ18 values in the Alaskan and Stordalen samples
overlaps, implying a similar range of CH4 production rates in these eco-
systems despite the large difference in carbon substrate ages. The mean
age of organic carbon in the Stordalen lake catchments is significantly
younger than that in the Alaskan lakes, largely due to the Stordalen lakes
catchments history ofHolocene deglaciation (Walter Anthony et al., 2016).
Differences in organic matter reactivity could explain the different
Δ18‐Fm relationships between the Alaskan and Stordalen sample sets. In
the Alaskan thermokarst lakes, old organic matter has largely been stored
frozen and was therefore subject to limited decomposition and could
remain relatively reactive (Ewing et al., 2015). In contrast, the organic
matter in the Stordalen lake sediments is not predominantly derived from
thawed permafrost (Kokfelt et al., 2010) and therefore is more likely to
become increasingly refractory with time. The reactivity of organic carbon
is also likely influenced by active layer dynamics prior to freezing. For
example, yedoma is composed of eolian deposits (Schuur et al., 2015)
and undergoes different soil formation processes than other
terrestrial permafrost.

It is noteworthy that organic matter in thawed permafrost has been shown to be highly available for micro-
bial degradation regardless of its 14C age (Ewing et al., 2015; Mann et al., 2015; Vonk et al., 2013). In addition,
deep yedoma permafrost (>12 m depth) from Central Alaska contains a high proportion of labile organic
compounds (reduced and saturated OC compounds), and in laboratory incubations produces CH4 more
rapidly than shallower permafrost or active layer soils (Heslop et al., 2019). We consider reduced reactivity
of organic carbon to be the simplest mechanism linking older carbon substrates to slower rates of methano-
genesis, but other environmental variables such as the concentration of alternate electron acceptors or tem-
perature could also explain this linkage. Both thawing and intact permafrost often contain relatively high
concentrations of iron oxides, nitrate, or sulfate that can be reduced to respire organic carbon, thereby inhi-
biting methanogenesis. (Herndon et al., 2017; Heslop et al., 2019; Keuper et al., 2012; Winkel et al., 2019).
Additionally, rates of methanogenesis have been shown to increase at higher temperatures
(Yvon‐Durocher et al., 2014). Deep thawed permafrost does not warm substantially in the summer as com-
pared to shallower sediments or soils, and warm summer temperatures could cause higher rates of metha-
nogenesis in shallow lake sediments relative to deeper environments (Wik et al., 2014).

3.3. Relative Rates of Methanogenesis Are Not Positively Related to CH4 Ebullition Flux

In the Alaskan thermokarst lakes, we also observe that Δ18 is positively correlated with the logarithm of CH4

flux (Figure 3b). This relationship is counterintuitive, as it implies that CH4 produced more slowly, from
older carbon substrates, is released with a higher flux. Our proposed explanation for this result relies on a
conceptual model for thermokarst lake ebullition seeps proposed by Walter et al. (2007) (Figure 3a). In this
model, small “point‐source” seeps release CH4 from relatively young lake sediments. In contrast, large “hot-
spot” seeps release CH4 from old thawed permafrost that is concentrated along preferential flow pathways at
depth before being emitted near the active thermokarst erosion zone. The Δ18 data set implies that
point‐source seeps are fed by relatively rapid production of CH4 but are limited in the volume of sediment
across which they integrate gas, resulting in relatively low CH4 fluxes. Conversely, hotspot seeps are

Figure 2. Plot of Δ18 vs. Fm for both sets of CH4 samples. The dashed red
line indicates the equilibrium Δ18 value at 4°C. Dotted lines indicate the
95% confidence interval for linear regression fits. The dashed black line
indicates the Alaskan regression fit excluding Lake Qalluruq
(y = −0.11x + 0.59; R2 = 0.64; p = 0.03). Horizontal error bars indicate the
analytical error (2σ) for Δ18 measurements. Analytical errors for Fm values
are smaller than the symbols.
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fueled by relatively slow production of CH4 and as such must integrate gas across a much larger volume of
thawed permafrost to result in the observed higher CH4 fluxes. While hotspot seeps occur less frequently
than point‐source seeps, their large fluxes mean they can emit a large proportion of the total lake
ebullition CH4 flux. At Goldstream Lake, which has been intensively studied in terms of seep densities,
hotspot seeps emit 50–70% of total lake ebullition CH4 fluxes (Walter Anthony & Anthony, 2013).

In contrast, in the Stordalen lakes, we do not observe a significant correlation (p< 0.05) between CH4 ebulli-
tion flux and either Δ18 (Figure 3e) or Fm (Figure 3f), although there is much less variation in CH4 flux rela-
tive to the Alaskan lakes. This suggests that in the Stordalen lakes variation in CH4 ebullition flux is not
dependent on either the rate of methanogenesis or the age of carbon substrates. We propose that these bub-
ble fluxes are controlled primarily by vertical displacement through low density sediments once gases
achieve sufficient pressure in porewaters (Langenegger et al., 2019) and that concentration of gas along pre-
ferential flow pathways is minimal. Therefore, while methanogenesis in deeper and older sediments appears
to proceed at slower rates (Figure 2), the dominant controls on observed CH4 ebullition fluxes are likely
other physical and chemical variables such as the overall concentration of organic matter and sediment por-
osity and tortuosity (Ramirez et al., 2015).

Figure 3. (a) Conceptual model of CH4 ebullition fluxes in the Alaskan thermokarst lakes; (b) plot of CH4 flux vs. Δ18 for the Alaskan lakes. Dashed black
line: regression fit excluding Lake Qalluruq (y= 0.39x− 0.95; R2 = 0.66; p< 0.01). (c) Plot of CH4 flux vs. Fm for the Alaskan lakes. Dashed black line: regression fit
excluding Lake Qalluruq (y = −3x + 1.07; R2 = 0.47; p = 0.09). Dotted lines in (b) and (c) indicate 95% confidence intervals for regression fits. Error bars in (b) and
(c) indicate standard deviations for average fluxes for different seep types (Walter Anthony & Anthony, 2013). (d) Conceptual model of CH4 ebullition fluxes
in Stordalen glacial lakes; (e) plot of CH4 flux vs. Δ18 for the Stordalen lakes; (f) plot of CH4 flux vs. Fm for the Stordalen lakes. Horizontal error bars in (b) and
(e) indicate analytical error (2σ) for Δ18. Panels (b), (e), and (f) include data that do not have paired 14C and Δ18 measurements (Table S1).
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The two different models of CH4 ebullition fluxes discussed above reflect the different sedimentary and geo-
morphological environments in the Alaskan and Stordalen lakes. The Alaskan thermokarst lakes form in
ice‐rich permafrost. It is possible that voids produced by melting ice wedges and heterogeneities in thawed
permafrost soils enhance the formation of preferential gas flow pathways (Heslop et al., 2015; Rowland
et al., 2011; Walter et al., 2008). In contrast, the Stordalen lake basins contain relatively homogenous
organic‐rich mud overlying bedrock (Kokfelt et al., 2010; Wik et al., 2013), which likely minimizes preferen-
tial gas flow pathways. These differences are consistent with studies suggesting that the flux and age of CH4

emitted from permafrost‐associated lakes is influenced by their geological and geomorphological setting
(Elder et al., 2018).

This study only considered ebullition fluxes of CH4, and there are no studies comparing Δ18 with
14C or flux

for dissolved CH4. Where comparison is possible, dissolved CH4 tends to contain younger carbon than ebul-
lition CH4 (Elder et al., 2019) and is more likely to have its stable isotope composition influenced bymethane
oxidation (Elder et al., 2019; Jansen et al., 2019). Further study will be needed to assess whether the patterns
observed here for ebullition CH4 also apply to diffusive CH4 fluxes. However, for the studied lakes, ebullition
fluxes are estimated to be the dominant source of CH4 emissions in the ice‐free season (Jansen et al., 2019;
Sepulveda‐Jauregui et al., 2015).

4. Conclusions

As permafrost thaws, increasing quantities of long‐stored carbon will be made available to anaerobic,
CH4‐producing microbial communities in lakes. Our data from two different types of northern lakes, sup-
ported by results from culture experiments, suggest that methanogenesis using these old carbon substrates
will proceed at slower rates than methanogenesis fueled by modern carbon in similar environments.
When combined with flux estimates, these results also imply that the inferred relative rates of methanogen-
esis are not a strong determinant of observed CH4 ebullition fluxes. More research is needed to constrain the
mechanism behind this apparent limitation on the rate of CH4 production from older carbon, to determine
whether these results are representative of other northern lakes and other emissions pathways, and to better
understand the relationship between rates of methanogenesis and CH4 fluxes. If found to be a widespread
phenomenon, relatively slow rates of CH4 production from old carbon substrates could prove to be impor-
tant in modeling and predicting the emission of CH4 produced from thawed permafrost.

References
Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., et al. (2009). Atmospheric lifetime of fossil fuel carbon dioxide.

Annual Review of Earth and Planetary Sciences, 37, 117–134.
Ash, J., Egger, M., Treude, T., Kohl, I., Cragg, B., Parkes, R., et al. (2019). Exchange catalysis during anaerobic methanotrophy revealed by

12CH2D2 and
13CH3D in methane. Geochemical Perspectives Letters, 10, 26–30.

Bouchard, F., Laurion, I., Preskienis, V., Fortier, D., Xu, X., & Whiticar, M. (2015). Modern to millennium‐old greenhouse gases emitted
from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut). Biogeosciences, 12, 7279–7298.

Brosius, L., Walter Anthony, K., Grosse, G., Chanton, J., Farquharson, L., Overduin, P. P., & Meyer, H. (2012). Using the deuterium isotope
composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation.
Journal of Geophysical Research, 117, G01022. https://doi.org/10.1029/2011JG001810

Douglas, P., Stolper, D. A., Smith, D. A., Anthony, K. M. W., Paull, C. K., Dallimore, S., et al. (2016). Diverse origins of Arctic and subarctic
methane point source emissions identified with multiply‐substituted isotopologues. Geochimica et Cosmochimica Acta, 188, 163–188.
https://doi.org/10.1016/j.gca.2016.05.031

Eiler, J. M., Clog, M., Magyar, P., Piasecki, A., Sessions, A., Stolper, D., et al. (2013). A high‐resolution gas‐source isotope ratio mass
spectrometer. International Journal of Mass Spectrometry, 335, 45–56.

Elder, C., Xu, X., Walker, J., Schnell, J. L., Hinkel, K. M., Townsend‐Small, A., et al. (2018). Greenhouse gas emissions from diverse Arctic
Alaskan lakes are dominated by young carbon. Nature Climate Change, 8, 166.

Elder, C. D., Schweiger, M., Lam, B., Crook, E. D., Xu, X., Walker, J., et al. (2019). Seasonal sources of whole‐Lake CH4 and CO2 emissions
from interior Alaskan Thermokarst Lakes. Journal of Geophysical Research: Biogeosciences, 124, 1209–1229. https://doi.org/10.1029/
2018JG004735

Eldridge, D. L., Korol, R., Lloyd, M. K., Turner, A. C., Webb, M. A., Miller, T. F., & Stolper, D. (2019). Comparison of experimental vs.
theoretical abundances of 13CH3D and 12CH2D2 for isotopically equilibrated systems from 1‐500°C. ACS Earth and Space Chemistry, 3,
2747–2764.

Ewing, S. A., O'Donnell, J. A., Aiken, G. R., Butler, K., Butman, D., Windham‐Myers, L., & Kanevskiy, M. Z. (2015). Long‐term anoxia and
release of ancient, labile carbon upon thaw of Pleistocene permafrost. Geophysical Research Letters, 42, 10,730–10,738. https://doi.org/
10.1002/2015GL066296

Giunta, T., Young, E. D., Warr, O., Kohl, I., Ash, J. L., Martini, A., et al. (2019). Methane sources and sinks in continental sedimentary
systems: New insights from paired clumped isotopologues 13CH3D and 12CH2D2. Geochimica et Cosmochimica Acta, 245, 327–351.

10.1029/2019GL086756Geophysical Research Letters

DOUGLAS ET AL. 8 of 10

Acknowledgments
We thank Nami Kitchen for help with
Δ18 analyses, Sarah Murseli for help
with 14C analyses, and Nathan Dalleska
for help with CH4 concentration
measurements. Victoria Orphan and
Jared Leadbetter provided laboratory
facilities for culture experiments. This
research was partially supported by
funds from the Trottier Institute for
Science and Public Policy to PMJD,
from Royal Dutch Shell to JME and
ALS, from the Agouron Institute to
MKL, from the Heising‐Simons
Foundation to DA Stolper, and from
Vetenskapsrådet 2013‐5562 to PC. Data
supporting this article are available at
https://doi.org/10.6084/m9.fig-
share.11831340.v1.

https://doi.org/10.1029/2011JG001810
https://doi.org/10.1016/j.gca.2016.05.031
https://doi.org/10.1029/2018JG004735
https://doi.org/10.1029/2018JG004735
https://doi.org/10.1002/2015GL066296
https://doi.org/10.1002/2015GL066296
https://doi.org/10.6084/m9.figshare.11831340.v1
https://doi.org/10.6084/m9.figshare.11831340.v1


Gruen, D. S., Wang, D. T., Könneke, M., Topçuoğlu, B. D., Stewart, L. C., Goldhammer, T., et al. (2018). Experimental investigation on the
controls of clumped isotopologue and hydrogen isotope ratios in microbial methane. Geochimica et Cosmochimica Acta, 237, 339–356.

Hayes, J. M. (2001). Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Reviews in Mineralogy and Geochemistry, 43,
225–277.

Herndon, E., AlBashaireh, A., Singer, D., Chowdhury, T. R., Gu, B., & Graham, D. (2017). Influence of iron redox cycling on
organo‐mineral associations in Arctic tundra soil. Geochimica et Cosmochimica Acta, 207, 210–231.

Heslop, J., Anthony, W., Katey, M., Sepulveda‐Jauregui, A., Martinez‐Cruz, K., Bondurant, A., et al. (2015). Thermokarst lake methano-
genesis along a complete talik profile. Biogeosciences, 12, 4317–4331.

Heslop, J., Winkel, M., Walter Anthony, K., Spencer, R., Podgorski, D., Zito, P., et al. (2019). Increasing organic carbon biolability with
depth in yedoma permafrost: Ramifications for future climate change. Journal of Geophysical Research: Biogeosciences, 124, 2021–2038.
https://doi.org/10.1029/2018JG004712

Jansen, J., Thornton, B. F., Jammet, M. M., Wik, M., Cortés, A., Friborg, T., et al. (2019). Climate‐sensitive controls on large spring emis-
sions of CH4 and CO2 from Northern Lakes. Journal of Geophysical Research: Biogeosciences, 124, 2379–2399. https://doi.org/10.1029/
2019JG005094

Keuper, F., Van Bodegom, P. M., Dorrepaal, E., Weedon, J. T., Van Hal, J., Van Logtestijn, R. S., & Aerts, R. (2012). A frozen feast: Thawing
permafrost increases plant‐available nitrogen in subarctic peatlands. Global Change Biology, 18, 1998–2007.

Kokfelt, U., Reuss, N., Struyf, E., Sonesson, M., Rundgren, M., Skog, G., et al. (2010). Wetland development, permafrost history and nutrient
cycling inferred from Late Holocene peat and lake sediment records in subarctic Sweden. Journal of Paleolimnology, 44, 327–342.

Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., et al. (2011). Permafrost carbon‐climate feedbacks
accelerate global warming. Proceedings of the National Academy of Sciences, 108, 14,769–14,774.

Langenegger, T., Vachon, D., Donis, D., &McGinnis, D. (2019). What the bubble knows: Lake methane dynamics revealed by sediment gas
bubble composition. Limnology and Oceanography, 64, 1526–1544.

Lindgren, R., Grosse, G., Walter Anthony, K., & Meyer, F. (2016). Detection and spatiotemporal analysis of methane ebullition on ther-
mokarst lake ice using high‐resolution optical aerial imagery. Biogeosciences, 13, 27–44.

Mann, P. J., Eglinton, T. I., McIntyre, C. P., Zimov, N., Davydova, A., Vonk, J. E., et al. (2015). Utilization of ancient permafrost carbon in
headwaters of Arctic fluvial networks. Nature Communications, 6, 7856.

Middelburg, J. J. (1989). A simple rate model for organic matter decomposition in marine sediments. Geochimica et Cosmochimica Acta, 53,
1577–1581.

Ono, S., Wang, D. T., Gruen, D. S., Sherwood Lollar, B., Zahniser, M., McManus, B. J., & Nelson, D. D. (2014). Measurement of a
doubly‐substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy. Analytical Chemistry,
86(13), 6487–6494. https://doi.org/10.1021/ac5010579

Pack, M. A., Xu, X., Lupascu, M., Kessler, J. D., & Czimczik, C. I. (2015). A rapid method for preparing low volume CH4 and CO2 gas
samples for 14C AMS analysis. Organic Geochemistry, 78, 89–98.

Ramirez, J. A., Baird, A. J., Coulthard, T. J., & Waddington, J. M. (2015). Testing a simple model of gas bubble dynamics in porous media.
Water Resources Research, 51, 1036–1049. https://doi.org/10.1002/2014WR015898

Rowland, J. C., Travis, B. J., & Wilson, C. (2011). The role of advective heat transport in talik development beneath lakes and ponds in
discontinuous permafrost. Geophysical Research Letters, 38, L17504. https://doi.org/10.1029/2011GL048497

Schuur, E., McGuire, A., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., et al. (2015). Climate change and the permafrost carbon
feedback. Nature, 520(7546), 171–179. https://doi.org/10.1038/nature14338

Sepulveda‐Jauregui, A., Walter Anthony, K. M., Martinez‐Cruz, K., Greene, S., & Thalasso, F. (2015). Methane and carbon dioxide emis-
sions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences, 12, 3197–3223.

Sowers, K. R., Baron, S. F., & Ferry, J. G. (1984). Methanosarcina acetivorans sp. nov., an acetotrophic methane‐producing bacterium
isolated from marine sediments. Applied and Environmental Microbiology, 47(5), 971–978.

Stolper, D., Lawson, M., Davis, C. L., Ferreira, A. A., Santos Neto, E. V., Ellis, G. S., et al. (2014). Formation temperatures of thermogenic
and biogenic methane. Science, 344(6191), 1500–1503. https://doi.org/10.1126/science.1254509

Stolper, D., Martini, A., Clog, M., Douglas, P., Shusta, S., Valentine, D., et al. (2015). Distinguishing and understanding thermogenic and
biogenic sources of methane using multiply substituted isotopologues. Geochimica et Cosmochimica Acta, 161, 219–247.

Stolper, D., Sessions, A., Ferreira, A., Santos Neto, E., Schimmelmann, A., Shusta, S., et al. (2014). Combined 13C–D and D–D clumping in
methane: Methods and preliminary results. Geochimica et Cosmochimica Acta, 126, 169–191.

Stuiver, M., & Polach, H. A. (1977). Discussion; reporting of 14C data. Radiocarbon, 19, 355–363.
Timmers, P. H., Welte, C. U., Koehorst, J. J., Plugge, C. M., Jetten, M. S., & Stams, A. J. (2017). Reverse methanogenesis and respiration in

methanotrophic archaea. Archaea, 2017.
Trumbore, S. (2000). Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological

Applications, 10, 399–411.
Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S., & Tyler, S. C. (2004). Carbon and hydrogen isotope fractionation by mod-

erately thermophilic methanogens. Geochimica et Cosmochimica Acta, 68, 1571–1590.
Vavilin, V. (2013). Estimating changes of isotopic fractionation based on chemical kinetics and microbial dynamics during anaerobic

methane oxidation: Apparent zero‐and first‐order kinetics at high and low initial methane concentrations. Antonie Van Leeuwenhoek,
103(2), 375–383. https://doi.org/10.1007/s10482‐012‐9818‐8

Vavilin, V., & Rytov, S. (2013). Non‐linear dynamics of carbon and hydrogen isotopic signatures based on a biological kinetic model of
nitrite‐dependent methane oxidation by “Candidatus Methylomirabilis oxyfera”. Antonie Van Leeuwenhoek, 104(6), 1097–1108. https://
doi.org/10.1007/s10482‐013‐0031‐1

Vonk, J. E., Mann, P. J., Davydov, S., Davydova, A., Spencer, R. G., Schade, J., et al. (2013). High biolability of ancient permafrost carbon
upon thaw. Geophysical Research Letters, 40, 2689–2693. https://doi.org/10.1002/grl.50348

Walter Anthony, K., & Anthony, P. (2013). Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point
process models. Journal of Geophysical Research: Biogeosciences, 118, 1015–1034. https://doi.org/10.1002/jgrg.20087

Walter Anthony, K., Anthony, P., Grosse, G., & Chanton, J. (2012). Geologic methane seeps along boundaries of Arctic permafrost thaw
and melting glaciers. Nature Geoscience, 5, 419–426.

Walter Anthony, K., Daanen, R., Anthony, P., von Deimling, T. S., Ping, C.‐L., Chanton, J. P., & Grosse, G. (2016). Methane emissions
proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience, 9, 679.

10.1029/2019GL086756Geophysical Research Letters

DOUGLAS ET AL. 9 of 10

https://doi.org/10.1029/2018JG004712
https://doi.org/10.1029/2019JG005094
https://doi.org/10.1029/2019JG005094
https://doi.org/10.1021/ac5010579
https://doi.org/10.1002/2014WR015898
https://doi.org/10.1029/2011GL048497
https://doi.org/10.1038/nature14338
https://doi.org/10.1126/science.1254509
https://doi.org/10.1007/s10482-012-9818-8
https://doi.org/10.1007/s10482-013-0031-1
https://doi.org/10.1007/s10482-013-0031-1
https://doi.org/10.1002/grl.50348
https://doi.org/10.1002/jgrg.20087


Walter Anthony, K., von Deimling, T. S., Nitze, I., Frolking, S., Emond, A., Daanen, R., et al. (2018). 21st‐century modeled permafrost
carbon emissions accelerated by abrupt thaw beneath lakes. Nature Communications, 9(1), 3262. https://doi.org/10.1038/
s41467‐018‐05738‐9

Walter, K., Chanton, J., Chapin, F., Schuur, E., & Zimov, S. (2008). Methane production and bubble emissions from arctic lakes: Isotopic
implications for source pathways and ages. Journal of Geophysical Research, 113, G00A08. https://doi.org/10.1029/2007JG000569

Walter, K., Smith, L. C., & Chapin, F. S. (2007). Methane bubbling from northern lakes: Present and future contributions to the global
methane budget. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 1657–1676.

Wang, D. T., Gruen, D. S., Lollar, B. S., Hinrichs, K. U., Stewart, L. C., Holden, J. F., et al. (2015). Nonequilibrium clumped isotope signals in
microbial methane. Science, 348(6233), 428–431. https://doi.org/10.1126/science.aaa4326

Wang, D. T., Welander, P. V., & Ono, S. (2016). Fractionation of the methane isotopologues 13CH4,
12CH3D, and

13CH3D during aerobic
oxidation of methane by Methylococcus capsulatus (bath). Geochimica et Cosmochimica Acta, 192, 186–202.

Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161,
291–314.

Wik, M., Crill, P. M., Varner, R. K., & Bastviken, D. (2013). Multiyear measurements of ebullitive methane flux from three subarctic lakes.
Journal of Geophysical Research: Biogeosciences, 118, 1307–1321. https://doi.org/10.1002/jgrg.20103

Wik, M., Thornton, B. F., Bastviken, D., MacIntyre, S., Varner, R. K., & Crill, P. M. (2014). Energy input is primary controller of methane
bubbling in subarctic lakes. Geophysical Research Letters, 41, 555–560. https://doi.org/10.1002/2013GL058510

Wik, M., Varner, R. K., Walter Anthony, K. M., MacIntyre, S., & Bastviken, D. (2016). Climate‐sensitive northern lakes and ponds are
critical components of methane release. Nature Geoscience, 9, 99–105.

Winkel, M., Sepulveda‐Jauregui, A., Martinez‐Cruz, K., Heslop, J., Rijkers, R., Horn, F., et al. (2019). First evidence for cold‐adapted
anaerobic oxidation of methane in deep sediments of thermokarst lakes. Environmental Research Communications, 1, 021002.

Young, E., Kohl, I. E., Lollar, B. S., Etiope, G., Rumble, D. III, Li, S., et al. (2017). The relative abundances of resolved CH2D2 and
13CH3D

and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. Geochimica et Cosmochimica Acta, 203,
235–264. https://doi.org/10.1016/j.gca.2016.12.041

Yvon‐Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St‐Pierre, A., et al. (2014). Methane fluxes show consistent tem-
perature dependence across microbial to ecosystem scales. Nature, 507(7493), 488–491. https://doi.org/10.1038/nature13164

10.1029/2019GL086756Geophysical Research Letters

DOUGLAS ET AL. 10 of 10

https://doi.org/10.1038/s41467-018-05738-9
https://doi.org/10.1038/s41467-018-05738-9
https://doi.org/10.1029/2007JG000569
https://doi.org/10.1126/science.aaa4326
https://doi.org/10.1002/jgrg.20103
https://doi.org/10.1002/2013GL058510
https://doi.org/10.1016/j.gca.2016.12.041
https://doi.org/10.1038/nature13164

