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Let O be the category of representations of the Borel subalgebra of a quan-

tum affine algebra introduced by Jimbo and the first author. We show that the

Grothendieck ring of a certain monoidal subcategory of O has the structure of a

cluster algebra of infinite rank, with an initial seed consisting of prefundamental

representations. In particular, the celebrated Baxter relations for the 6-vertex

model get interpreted as Fomin–Zelevinsky mutation relations.
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1. Introduction

Let Uq(g) be an untwisted quantum affine algebra (we assume throughout this

paper that q ∈ C∗ is not a root of unity). M. Jimbo and Hernandez [2012] in-

troduced a category O of representations of a Borel subalgebra Uq(b) of Uq(g).

Finite-dimensional representations of Uq(g) are objects in this category as well as

the infinite-dimensional prefundamental representations of Uq(b) constructed in
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[Hernandez and Jimbo 2012]. They are obtained as asymptotic limits of Kirillov–

Reshetikhin modules, which form a family of simple finite-dimensional representa-

tions of Uq(g). These prefundamental representations, denoted by L+
i,a and L−

i,a , are

simple Uq(b)-modules parametrized by a complex number a ∈ C∗ and 1 ≤ i ≤ n,

where n is the rank of the underlying finite-dimensional simple Lie algebra. Such

prefundamental representations were first constructed explicitly for g = ŝl2 by

Bazhanov, Lukyanov, and Zamolodchikov [Bazhanov et al. 1997], for ŝl3 by

Bazhanov, Hibberd, and Khoroshkin [Bazhanov et al. 2002] and for ŝln with i = 1

by Kojima [2008].

The category O and the prefundamental representations were used by E. Frenkel

and Hernandez [2015] to prove a conjecture of Frenkel–Reshetikhin on the spectra

of quantum integrable systems. Let us recall that the partition function Z of a

quantum integrable system is crucial to understanding its physical properties. It

may be written in terms of the eigenvalues λ j of the transfer matrix T. Therefore,

to compute Z one needs to find the spectrum of T. In his seminal paper, Baxter

[1972] tackled this question for the 6-vertex and 8-vertex models. He observed

moreover that the eigenvalues λ j of T have the very remarkable form

λ j = A(z)
Q j (zq2)

Q j (z)
+ D(z)

Q j (zq−2)

Q j (z)
, (1-1)

where q, z are parameters of the model (quantum and spectral), the functions

A(z), D(z) are universal (in the sense that they are the same for all eigenvalues),

and Q j is a polynomial. The above relation is now called Baxter’s relation (or

Baxter’s TQ relation). Frenkel and Reshetikhin [1999] conjectured that the spectra

of more general quantum integrable systems constructed from a representation V of

a quantum affine algebra Uq(g) have a similar form. (In this framework, the 6-vertex

model is the particular case when g = ŝl2 and V is irreducible of dimension 2.)

One of the main steps in the proof of this conjecture, given in [Frenkel and Her-

nandez 2015], is to interpret the expected generalized Baxter relations as algebraic

identities in the Grothendieck ring of the category O for Uq(b) (see [Hernandez

2015] for a short overview). For example, if g = ŝl2 and V is the 2-dimensional

simple representation of Uq(g) with q-character χq(V ) = Y1,a + Y −1

1,aq2 , one gets

the following categorical version of Baxter’s relation (1-1):

[V ⊗ L+
1,aq ] = [ω1][L

+
1,aq−1] + [−ω1][L

+
1,aq3]. (1-2)

(Here, [ω1] and [−ω1] denote the classes of certain one-dimensional representations

of Uq(b); see Definition 3.4 below.)

In another direction, the notion of monoidal categorification of cluster algebras

was introduced in [Hernandez and Leclerc 2010]. The cluster algebra A(Q) attached

to a quiver Q is a commutative Z-algebra with a distinguished set of generators called
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cluster variables and obtained inductively via the Fomin–Zelevinsky procedure of

mutation [2002]. By definition, the rank of A(Q) is the number of vertices of Q
(finite or infinite). A monoidal category C is said to be a monoidal categorification
of A(Q) if there exists a ring isomorphism

A(Q)−→∼ K0(C)

which induces a bijection between cluster variables and classes of simple modules

which are prime (without nontrivial tensor factorization) and real (with simple tensor

square). Various examples of monoidal categorifications have been established in

terms of quantum affine algebras [Hernandez and Leclerc 2010; 2016], perverse

sheaves on quiver varieties [Nakajima 2011; Kimura and Qin 2014; Qin 2015], and

Khovanov–Lauda–Rouquier algebras [Kang et al. 2014; 2015].

In this paper, we propose new monoidal categorifications of cluster algebras

in terms of the category O of a Borel subalgebra Uq(b) of an untwisted quantum

affine algebra Uq(g). More precisely, in [Hernandez and Leclerc 2016] we attached

to g a semi-infinite quiver G− and we proved that the cluster algebra A(G−) is

isomorphic to the Grothendieck ring of a monoidal category C−
Z

of finite-dimensional

representations of Uq(g). Moreover, the classes of the Kirillov–Reshetikhin modules

in C
−
Z

are the images under this isomorphism of a subset of the cluster variables.

Let Ŵ be the doubly infinite quiver corresponding to G−, as defined in [Hernandez

and Leclerc 2016, Section 2.1.2]. The main result of this paper (Theorem 4.2)

is that the completed cluster algebra A(Ŵ) attached to this doubly infinite quiver

is isomorphic to the Grothendieck ring of a certain monoidal subcategory O
+
2Z

of O. This subcategory O
+
2Z

is generated by finite-dimensional representations

and positive prefundamental representations whose spectral parameters satisfy an

integrality condition (see Definitions 3.8 and 4.1 and Proposition 5.16). Moreover,

the classes of the positive prefundamental representations form the cluster variables

of an initial seed of A(Ŵ). In particular, when g = ŝl2 the counterparts (1-2) of

Baxter’s relations (1-1) get interpreted as instances of Fomin–Zelevinsky mutation

relations.1 For general types, the one-step mutation relations are interpreted as other

remarkable relations in the Grothendieck ring K0(O
+) (Formula (6-14)).

Along the way we get interesting additional results, for instance, (i) the con-

struction of new asymptotic representations beyond the case of prefundamental

representations (Theorem 7.6), and (ii) the tensor factorization of arbitrary simple

modules of O+ into prime modules when g = ŝl2 (Theorem 7.9). We conjecture

that the category O
+
2Z

is a monoidal categorification of the cluster algebra A(Ŵ)

(Conjecture 7.2). We prove this conjecture for g= ŝl2 (Theorem 7.11). An essential

1The generalized Baxter relations of [Frenkel and Hernandez 2015] can also be regarded as

relations in the cluster algebra, but not as mutation relations since they involve more than 2 terms in

general.
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tool in several of our proofs is a duality D between the Grothendieck rings of

certain subcategories O+ and O− of O (Theorem 5.17), which maps classes of

simple objects to classes of simple objects (Theorem 7.7).

The paper is organized as follows. In Section 2 we give some background

on quantum affine (or loop) algebras and their Borel subalgebras. In Section 3

we review the main properties of the category O introduced in [Hernandez and

Jimbo 2012] and we introduce the subcategories O+ and O− of interest for this

paper (Definition 3.9). In Section 4 we state the main result on the isomorphism

between A(Ŵ) and the Grothendieck ring of O+
2Z

. In Section 5 we establish relevant

properties of O+; in particular, we introduce and study the duality D between O+

and O−. The proof of Theorem 4.2 is given in Section 6. In Section 7 we present the

conjecture on monoidal categorifications and we give various evidence supporting it,

in particular the existence of asymptotic representations (Section 7B). To conclude

we present additional conjectural relations in K0(O
+), extending the generalized

Baxter relations of [Frenkel and Hernandez 2015] (Conjecture 7.15).

The main results of this paper were presented in several conferences (the

Oberwolfach workshop “Enveloping algebras and geometric representation theory”

in May 2015, “Categorical representation theory and combinatorics” in Seoul

in December 2015, and “A bridge between representation theory and physics”

in Canterbury in January 2016). An announcement was also published in the

Oberwolfach Report [Hernandez 2015].

2. Quantum loop algebra and Borel algebras

2A. Quantum loop algebra. Let C = (Ci, j )0≤i, j≤n be an indecomposable Cartan

matrix of nontwisted affine type. We denote by g the Kac–Moody Lie algebra

associated with C . Set I ={1, . . . , n}, and denote by ġ the finite-dimensional simple

Lie algebra associated with the Cartan matrix (Ci, j )i, j∈I . Let {αi }i∈I , {α∨
i }i∈I ,

{ωi }i∈I , {ω∨
i }i∈I , ḣ be the simple roots, the simple coroots, the fundamental weights,

the fundamental coweights and the Cartan subalgebra of ġ, respectively. We set

Q =
⊕

i∈I

Zαi , Q+ =
⊕

i∈I

Z≥0αi , P =
⊕

i∈I

Zωi .

We will also use PQ = P ⊗Q with its partial ordering defined by ω≤ω′ if and only

if ω′ −ω ∈ Q+. Let D = diag(d0, . . . , dn) be the unique diagonal matrix such that

B = DC is symmetric and the di are relatively prime positive integers. We denote

by ( , ) : Q × Q → Z the invariant symmetric bilinear form such that (αi , αi )= 2di .

We use the numbering of the Dynkin diagram as in [Kac 1990]. Let a0, . . . , an be

the Kac labels as on pages 55–56 of the same work. We have a0 = 1 and we set

α0 = −(a1α1 + a2α2 + · · · + anαn).
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Throughout this paper, we fix a nonzero complex number q which is not a root

of unity. We set qi = qdi. We fix once and for all h ∈ C such that q = eh, and we

define qr = erh for any r ∈ Q. Since q is not a root of unity, for r, s ∈ Q we have

that qr = qs if and only if r = s.

We will use the standard symbols for q-integers:

[m]z =
zm − z−m

z − z−1
, [m]z! =

m∏

j=1

[ j]z,

[ s
r

]
z
=

[s]z!

[r ]z![s − r ]z!
.

The quantum loop algebra Uq(g) is the C-algebra defined by generators ei , fi , k±1
i

(0 ≤ i ≤ n) and the following relations for 0 ≤ i, j ≤ n:

ki kj = kj ki ,

ka0

0 ka1

1 · · · kan
n = 1,

ki ej k
−1
i = q

Ci, j

i ej ,

ki f j k
−1
i = q

−Ci, j

i f j ,

[ei , f j ] = δi, j
ki − k−1

i

qi − q−1
i

,

0 =

1−Ci. j∑

r=0

(−1)r e
(1−Ci, j −r)
i ej e

(r)
i (i 6= j),

0 =

1−Ci. j∑

r=0

(−1)r f
(1−Ci, j −r)
i f j f (r)i (i 6= j).

Here we have set x (r)i = xr
i /[r ]qi ! (xi = ei , fi ). The algebra Uq(g) has a Hopf

algebra structure given by

1(ei )= ei ⊗ 1 + ki ⊗ ei , S(ei )= −k−1
i ei ,

1( fi )= fi ⊗ k−1
i + 1 ⊗ fi , S( fi )= − fi ki ,

1(ki )= ki ⊗ ki , S(ki )= k−1
i ,

where i = 0, . . . , n.

The algebra Uq(g) can also be presented in terms of the Drinfeld generators

[Drinfeld 1987; Beck 1994]

x±
i,r (i ∈ I, r ∈ Z), φ±

i,±m (i ∈ I, m ≥ 0), k±1
i (i ∈ I ).

Example 2.1. For ġ= sl2, we have e1 = x+
1,0, e0 = k−1

1 x−
1,1, f1 = x−

1,0, f0 = x+
1,−1k1.

We shall use the generating series (i ∈ I )

φ±
i (z)=

∑

m≥0

φ±
i,±mz±m = k±1

i exp

(
±(qi − q−1

i )
∑

m>0

hi,±mz±m

)
.

We also set φ±
i,±m = 0 for m < 0, i ∈ I.

The algebra Uq(g) has a Z-grading defined by deg(ei )= deg( fi )= deg(k±1
i )= 0

for i ∈ I and deg(e0) = −deg( f0) = 1. It satisfies deg(x±
i,m) = deg(φ±

i,m) = m for
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i ∈ I, m ∈ Z. For a ∈ C∗, there is a corresponding automorphism τa :Uq(g)→Uq(g)

such that τa(x)= am x for every x ∈ Uq(g) of degree m ∈ Z.

By Proposition 1.6 of [Chari 1995], there exists an involutive automorphism

ω̂ : Uq(g)→ Uq(g) defined by (i ∈ I, m,r ∈ Z, r 6= 0)

ω̂(x±
i,m)= −x∓

i,−m, ω̂(φ±
i,±m)= φ∓

i,∓m, ω̂(hi,r )= −hi,−r .

Let Uq(g)
± (resp. Uq(g)

0) be the subalgebra of Uq(g) generated by the x±
i,r ,

where i ∈ I, r ∈ Z (resp. by the φ±
i,±r , where i ∈ I, r ≥ 0). We have a triangular

decomposition [Beck 1994]

Uq(g)≃ Uq(g)
− ⊗ Uq(g)

0 ⊗ Uq(g)
+. (2-3)

2B. Borel algebra.

Definition 2.2. The Borel algebra Uq(b) is the subalgebra of Uq(g) generated by

ei and k±1
i with 0 ≤ i ≤ n.

This is a Hopf subalgebra of Uq(g). The algebra Uq(b) contains the Drinfeld gen-

erators x+
i,m , x−

i,r , k±1
i , φ+

i,r , where i ∈ I, m ≥ 0 and r > 0.

Let Uq(b)
± = Uq(g)

± ∩ Uq(b) and Uq(b)
0 = Uq(g)

0 ∩ Uq(b). Then we have

Uq(b)
+ = 〈x+

i,m〉i∈I,m≥0, Uq(b)
0 = 〈φ+

i,r , k±1
i 〉i∈I,r>0.

It follows from [Beck 1994; Damiani 1998] that we have a triangular decomposition

Uq(b)≃ Uq(b)
− ⊗ Uq(b)

0 ⊗ Uq(b)
+. (2-4)

3. Representations of Borel algebras

In this section we review results on representations of the Borel algebra Uq(b),

in particular on the category O defined in [Hernandez and Jimbo 2012] and on

finite-dimensional representations of Uq(g). We also introduce the subcategories

O+ and O− of particular interest for this paper.

3A. Highest ℓ-weight modules. For a Uq(b)-module V and ω ∈ PQ, we have the

weight space

Vω = {v ∈ V | kiv = qω(α
∨
i )

i v for all i ∈ I }. (3-5)

We say that V is Cartan-diagonalizable if V =
⊕

ω∈PQ
Vω.

For V a Cartan-diagonalizable Uq(b)-module, we define the structure of a Uq(b)-

module on its graded dual V ∗ =
⊕

β∈PQ
V ∗
β by

(xu)(v)= u(S−1(x)v) (u ∈ V ∗, v ∈ V, x ∈ Uq(b)).

Definition 3.1. A series 9 = (9i,m)i∈I,m≥0 of complex numbers such that9i,0 ∈qQ

i
for all i ∈ I is called an ℓ-weight.
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We denote by Pℓ the set of ℓ-weights. Identifying (9i,m)m≥0 with its generating

series, we shall write

9 = (9i (z))i∈I , 9i (z)=
∑

m≥0

9i,mzm .

We will often use the involution 9 7→ 9 on Pℓ, where 9 is obtained from 9 by

replacing every pole and zero of 9 by its inverse.

Since each 9i (z) is an invertible formal power series, Pℓ has a natural group

structure by componentwise multiplication. We have a surjective morphism of

groups ̟ : Pℓ → PQ given by 9i (0) = q̟(9)(α
∨
i )

i . For a Uq(b)-module V and

9 ∈ Pℓ, the linear subspace

V9 = {v ∈ V | there exists a p ≥ 0 such that,

for all i ∈ I and m ≥ 0, (φ+
i,m −9i,m)

pv = 0} (3-6)

is called the ℓ-weight space of V of ℓ-weight 9. Note that since φ+
i,0 = ki , we have

V9 ⊂ Vω, where ω =̟(9).

Definition 3.2. A Uq(b)-module V is said to be of highest ℓ-weight 9 ∈ Pℓ if there

is v ∈ V such that V = Uq(b)v and the following hold:

eiv = 0 (i ∈ I ), φ+
i,mv =9i,mv (i ∈ I, m ≥ 0).

The ℓ-weight 9 ∈ Pℓ is uniquely determined by V. It is called the highest

ℓ-weight of V. The vector v is said to be a highest ℓ-weight vector of V. For any

9 ∈ Pℓ, there exists a simple highest ℓ-weight module L(9) of highest ℓ-weight 9.

This module is unique up to isomorphism.

For 9 an ℓ-weight, we set 9̃ = (̟(9))−1
9 and we introduce the simple Uq(b)-

module

L̃(9) := L(9̃).

This is the simple Uq(b)-module obtained from L(9) by shifting all ℓ-weights by

̟(9)−1 (see [Hernandez and Jimbo 2012, Remark 2.5]).

The submodule of L(9)⊗ L(9 ′) generated by the tensor product of the highest

ℓ-weight vectors is of highest ℓ-weight 99
′. In particular, L(99

′) is a subquotient

of L(9)⊗ L(9 ′).

Definition 3.3 [Hernandez and Jimbo 2012]. For i ∈ I and a ∈ C×, let

L±
i,a = L(9±1

i,a ), where (9±1
i,a )j (z)=

{
(1 − za)±1, j = i,

1, j 6= i.
(3-7)

We call L+
i,a (resp. L−

i,a) a positive (resp. negative) prefundamental representation.

Definition 3.4. For ω ∈ PQ, let [ω] = L(9ω), where (9ω)i (z)= qω(α
∨
i )

i (i ∈ I ).
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Note that the representation [ω] is 1-dimensional with a trivial action of e0, . . . , en .

For a ∈ C×, the subalgebra Uq(b) is stable by τa . Denote its restriction to Uq(b)

by the same letter. Then the pullbacks of the Uq(b)-modules L±
i,b by τa is L±

i,ab.

3B. Category O. For λ ∈ PQ, we set D(λ)= {ω ∈ PQ | ω ≤ λ}.

Definition 3.5 [Hernandez and Jimbo 2012]. A Uq(b)-module V is said to be in

category O if:

(i) V is Cartan-diagonalizable;

(ii) for all ω ∈ PQ we have dim(Vω) <∞;

(iii) there exist a finite number of elements λ1, . . . , λs ∈ PQ such that the weights

of V are in
⋃

j=1,...,s D(λ j ).

The category O is a monoidal category.

Remark 3.6. The definition of O is slightly different from that in [Hernandez and

Jimbo 2012] as we allow only rational powers of q for the eigenvalues of ki .

Let Pr
ℓ be the subgroup of Pℓ consisting of 9 such that 9i (z) is a rational

function of z for any i ∈ I.

Theorem 3.7 [Hernandez and Jimbo 2012]. Let 9 ∈ Pℓ. A simple object in the
category O is of highest ℓ-weight and the simple module L(9) is in category O if
and only if 9 ∈ Pr

ℓ . Moreover, for V in category O, V9 6= 0 implies 9 ∈ Pr
ℓ .

Given a map c : Pr
ℓ → Z, consider its support

supp(c)= {9 ∈ Pr
ℓ | c(9) 6= 0}.

Let Eℓ be the additive group of maps c : Pr
ℓ → Z such that ̟(supp(c)) is contained

in a finite union of sets of the form D(µ), and such that for every ω ∈ PQ the

set supp(c) ∩̟−1({ω}) is finite. Similarly, let E be the additive group of maps

c : PQ → Z whose support is contained in a finite union of sets of the form D(µ).
The map ̟ is naturally extended to a surjective homomorphism ̟ : Eℓ → E.

As for the category O of a classical Kac–Moody Lie algebra, the multiplicity

of a simple module in a module of our category O is well-defined (see [Kac 1990,

Section 9.6]) and we have the Grothendieck ring K0(O). Its elements are the formal

sums

χ =
∑

9∈Pr

ℓ

λ9[L(9)],

where the λ9 ∈ Z are set so that
∑

9∈Pr

ℓ , ω∈PQ

|λ9| dim((L(9))ω)[ω]
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is in E. For V, V ′ representations in O, the product [V ].[V ′] in K0(O) is naturally

obtained by considering the multiplicities of simple modules in V ⊗ V ′ in the sense

of [Kac 1990, Section 9.6].

We naturally identify E with the Grothendieck ring of the category of representa-

tions of O with constant ℓ-weights, the simple objects of which are the [ω], ω ∈ PQ.

Thus as in [Kac 1990, Section 9.7] we will regard elements of E as formal sums

c =
∑

ω∈supp(c)

c(ω)[ω].

The multiplication is given by [ω][ω′] = [ω+ω′] and E is regarded as a subring

of K0(O). If (ci )i∈N is a countable family of elements of E such that, for any ω∈ PQ,

we have ci (ω) 6= 0 for finitely many i ∈ N, then the sum
∑

i∈N
ci is well-defined

as a map PQ → Z. When this map is in E we say that
∑

i∈N
ci is a countable sum

of elements in E. Note that we have the analogous notion of a countable sum in

K0(O), compatible with countable sums of characters in E.

3C. Finite-dimensional representations. Let C be the category of (type-1) finite-

dimensional representations of Uq(g).

For i ∈ I, let Pi (z) ∈ C[z] be a polynomial with constant term 1. Set

9 = (9i (z))i∈I , 9i (z)= qdeg(Pi )
i

Pi (zq−1
i )

Pi (zqi )
.

Then L(9) is finite-dimensional. Moreover the action of Uq(b) can be uniquely

extended to an action of Uq(g), and any simple object in the category C is of this form.

Hence C is a subcategory of O and the inclusion functor preserves simple objects.

For i ∈ I and a ∈ C∗, we denote by Vi,a the simple finite-dimensional representa-

tion associated with the polynomials

Pi (z)= 1 − za, Pj (z)= 1 ( j 6= i).

The modules Vi,a are called the fundamental representations.

3D. The categories O+ and O−. We introduce two new subcategories O+ and O−

of the category O.

Definition 3.8. An ℓ-weight is said to be positive (resp. negative) if it is a monomial

in the following ℓ-weights:

• Yi,a = qi9
−1
i,aqi

9 i,aq−1
i

, where i ∈ I, a ∈ C∗,

• 9 i,a (resp. 9
−1
i,a ), where i ∈ I, a ∈ C∗,

• [ω], where ω ∈ PQ.

Definition 3.9. O+ (resp. O−) is the category of representations in O whose simple

constituents have a positive (resp. negative) highest ℓ-weight.
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Remark 3.10. (i) By construction, O+, O− are stable by extensions. We will prove

they are also stable by tensor products (Theorem 5.17).

(ii) There are other remarkable subcategories of O, for example, the category Ô

of representations of Uq(g) which belong to O as representations of Uq(b). This

category Ô was introduced in [Hernandez 2005] and further studied in [Mukhin

and Young 2014].

(iii) One motivation of Definition 3.9 is that O± contains C as well as the prefunda-

mental representations L±
i,a . We have the following inclusion diagram:

O ⊃ O+,O−

∪ ∪

Ô ⊃ C

Note that Ô is not contained in O+ or O−, and conversely neither O+ nor O− is

contained in Ô. For instance, for g = ŝl2, the representation L((1 − zq)/(q − z)) is

in the category Ô by [Mukhin and Young 2014, Theorem 3.6], but not in O+ or O−

because its highest ℓ-weight has no factorization as in equation (5-12) below. On

the other hand, the prefundamental representations L±
1,a are in the category O± but

not in Ô (see [Hernandez and Jimbo 2012, Section 4.1] or [Mukhin and Young

2014, Theorem 3.6]).

(iv) All generalized Baxter’s relations established in [Frenkel and Hernandez 2015]

hold in the Grothendieck rings K0(O
+) or K0(O

−) (see Theorem 5.5 below).

(v) The factorization of real simple modules in O into prime representations is not

unique, so the full category O is not a good candidate for the notion of monoidal

categorification discussed in the introduction. For example, for g = ŝl2, it follows

from [Mukhin and Young 2014, Remark 4.3, Theorem 4.6] that

L

(
q−5 1 − q4z

1 − q−6z

)
⊗ L

(
q−9 1 − q8z

1 − q−10z

)
≃ L

(
q−7 1 − q4z

1 − q−10z

)
⊗ L

(
q−7 1 − q8z

1 − q−6z

)
.

Moreover the tensor product is simple real and each simple factor has the character

of a Verma module. Consequently each factor is not isomorphic to a tensor product

of prefundamental representations and so is prime.

4. Cluster algebras

We state the main results of this paper. We refer the reader to [Fomin and Zelevinsky

2003] and [Gekhtman et al. 2010] for an introduction to cluster algebras, and for

any undefined terminology.
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4A. An infinite-rank cluster algebra. Let us recall the infinite quiver G introduced

in [Hernandez and Leclerc 2016, Section 2.1.3]. Put Ṽ = I ×Z. Let Ŵ̃ be the quiver

with vertex set Ṽ. The arrows of Ŵ̃ are given by

((i, r)→ ( j, s)) ⇐⇒ (Ci, j 6= 0 and s = r + di Ci, j ).

By [Hernandez and Leclerc 2016], the quiver Ŵ̃ has two isomorphic connected

components. We pick one of the two isomorphic connected components of Ŵ̃ and

call it Ŵ. The vertex set of Ŵ is denoted by V. A second labeling of the vertices

of Ŵ is deduced from the first one by means of the function ψ defined by

ψ(i, r)= (i, r + di ) ((i, r) ∈ V ). (4-8)

Let W ⊂ I × Z be the image of V under ψ . We shall denote by G the same quiver

as Ŵ but with vertices labeled by W.

By analogy with [Hernandez and Leclerc 2016, Section 2.2.1], consider an

infinite set of indeterminates

z = {zi,r | (i, r) ∈ V }

over Q. Let A(Ŵ) be the cluster algebra defined by the initial seed (z, Ŵ). Thus,

A(Ŵ) is the subring of the field of rational functions Q(z) generated by all the

cluster variables, that is, the elements obtained from some element of z via a finite

sequence of seed mutations. Each element of A(Ŵ) is a linear combination of finite

monomials in some cluster variables. By the Laurent phenomenon [Fomin and

Zelevinsky 2002], A(Ŵ) is contained in Z[z±1
i,r ](i,r)∈V .

For our purposes, it is always possible to work with sufficiently large finite

subseeds of the seed (z, Ŵ), and replace A(Ŵ) by the genuine cluster subalgebras

attached to them. On the other hand, statements become nicer if we allow ourselves

to formulate them in terms of the infinite-rank cluster algebra A(Ŵ).

Define an E-algebra homomorphism χ : Z[z±1
i,r ] ⊗Z E → E by setting

χ(z±1
i,r )=

[(
∓r

2di

)
ωi

]
((i, r) ∈ V ).

For A ∈ A(Ŵ)⊗Z E, we write χ(A)=
∑

ω Aω[ω] and |χ |(A)=
∑

ω |Aω|[ω]. We

will consider the completed tensor product

A(Ŵ) ⊗̂Z E,

that is, the algebra of countable sums
∑

i∈N
Ai of elements Ai ∈ A(Ŵ)⊗Z E such

that
∑

i∈N
|χ |(Ai ) is in E as a countable sum (as defined in Section 3B). Note that

in particular we have the analogous notion of a countable sum in A(Ŵ) ⊗̂Z E.
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4B. Main theorem.

Definition 4.1. Define the category O
+
2Z

as the subcategory of representations in O+

whose simple constituents have a highest ℓ-weight 9 such that the roots and the

poles of 9 i (z) are of the form qr with (i, r) ∈ V.

We will write for short ℓ+i,a = [L+
i,a].

Theorem 4.2. The category O
+
2Z

is monoidal and the identification

zi,r ⊗

[
r

2di
ωi

]
≡ ℓ+i,qr ((i, r) ∈ V ) (4-9)

defines an isomorphism of E-algebras

A(Ŵ) ⊗̂Z E ≃ K0(O
+
2Z
)

compatible with countable sums.

Remark 4.3. (i) The identification (4-9) gives an isomorphism of E-algebras

E[z±1
i,r ](i,r)∈V −→∼ E[(ℓ+i,qr )

±1](i,r)∈V ,

which can be extended to countable sums as above. So the main point of the proof of

Theorem 4.2 will be to show that the subalgebra A(G) ⊗̂Z E is mapped to K0(O
+
2Z
)

by this isomorphism.

(ii) As in the case of finite-dimensional representations, the description of the

simple objects of O+ essentially reduces to the description of the simple objects

of O+
2Z

(the decomposition explained in [Hernandez and Leclerc 2010, Section 3.7]

can be extended to our more general situation by using the asymptotic approach

of Section 7B below). Hence the Grothendieck ring K0(O
+
2Z
) contains all the

interesting information on K0(O
+).

The proof of Theorem 4.2 will be given in Section 6, using material presented in

Section 5.

5. Properties of the category O+

5A. q-characters. The q-character morphism was first considered in [Frenkel and

Reshetikhin 1999] and is a very useful tool for our proofs.

Recall from Section 3B the notation E and Eℓ. Because of the support condition,

we can endow E with a ring structure defined by

(c · d)(ω)=
∑

ω′+ω′′=ω

c(ω′)d(ω′′) (c, d ∈ E, ω ∈ PQ).
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Similarly, Eℓ also has a ring structure given by

(c · d)(9)=
∑

9
′
9

′′=9

c(9 ′)d(9 ′′) (c, d ∈ Eℓ, 9 ∈ Pr
ℓ ),

and such that ̟ becomes a ring homomorphism.

For 9 ∈ Pr
ℓ and ω ∈ PQ, we define the delta functions [9] = δ9,· ∈ Eℓ and

[ω] = δω,· ∈E, where as usual δ denotes the Kronecker symbol. Note that the above

multiplications give

[9 ′] · [9 ′′] = [9 ′
9

′′], [ω′] · [ω′′] = [ω′ +ω′′].

Let V be a Uq(b)-module in category O. We define [Frenkel and Reshetikhin

1999; Hernandez and Jimbo 2012] the q-character and the character of V :

χq(V ) :=
∑

9∈Pr

ℓ

dim(V9)[9] ∈ Eℓ, χ(V ) :=̟(χq(V ))=
∑

ω∈PQ

dim(Vω)[ω] ∈ E.

If V ∈O has a unique ℓ-weight 9 whose weight̟(9) is maximal, we also consider

its normalized q-character χ̃q(V ) and normalized character χ̃(V ) defined by

χ̃q(V ) := [9−1] ·χq(V ), χ̃(V ) :=̟(χ̃q(V )).

Note that

χq(L̃(9))= [9̃] · χ̃q(L(9)) 6= χ̃q(L(9)).

Proposition 5.1 [Hernandez and Jimbo 2012]. The q-character morphism

χq : K0(O)→ Eℓ, [V ] 7→ χq(V ),

is an injective ring morphism.

Following [Frenkel and Reshetikhin 1999], consider the ring of Laurent poly-

nomials Y = Z[Y ±1
i,a ]i∈I,a∈C∗ in the indeterminates {Yi,a}i∈I,a∈C∗ . Let M be the

multiplicative group of Laurent monomials in Y. For example, for i ∈ I and a ∈ C∗

define Ai,a ∈ M by

Ai,a = Yi,aq−1
i

Yi,aqi

( ∏

j :Cj,i =−1

Yj,a

∏

j :Cj,i =−2

Yj,aq−1Yj,aq

∏

j :Cj,i =−3

Yj,aq−2Yj,aYj,aq2

)−1

.

For a monomial m =
∏

i∈I,a∈C∗ Y
ui,a

i,a ∈ M, we consider its “evaluation at φ+(z)”.

By definition it is the element m(φ(z)) ∈ Pr
ℓ given by

m(φ(z))=
∏

i∈I,a∈C∗

(Yi,a(φ(z)))
ui,a , where (Yi,a(φ(z)))j =

{
qi

1−aq−1
i z

1−aqi z , j = i,

1, j 6= i.
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This defines an injective group morphism M→ Pr
ℓ . We identify a monomial m ∈M

with its image in Pr
ℓ . This is compatible with the notation Yi,a used in Definition 3.8.

Note that ̟(Yi,a)= ωi and ̟(Ai,a)= αi .

It is proved in [Frenkel and Reshetikhin 1999] that a finite-dimensional Uq(g)-

module V satisfies V =
⊕

m∈MVm(φ(z)). In particular, χq(V ) can be viewed as an

element of Y.

A monomial M ∈ M is said to be dominant if M ∈ Z[Yi,a]i∈I,a∈C∗ . Given a

finite-dimensional simple Uq(g)-module L(9), there exists a dominant monomial

M ∈ M such that 9 = M(φ(z)). We will also set L(9)= L(M).
For example, for i ∈ I, a ∈ C∗, k ≥ 0, we have the Kirillov–Reshetikhin module

W (i)
k,a = L(Yi,aYi,aq2

i
· · · Yi,aq2(k−1)

i
). (5-10)

Example 5.2. If g = ŝl2, we have (k ≥ 0, a ∈ C∗) [Frenkel and Reshetikhin 1999]

χq(W
(1)

k,aq1−2k )

= Yaq−1Yaq−3 · · · Yaq−2k+1(1 + A−1
1,a + A−1

1,a A−1

1,aq−2 + · · · + A−1
1,a · · · A−1

1,aq−2(k−1)).

Theorem 5.3. (i) [Hernandez and Jimbo 2012; Frenkel and Hernandez 2015]. For
any a ∈ C∗, i ∈ I we have

χq(L
+
i,a)= [9 i,a]χ(L

+
i,a)= [9 i,a]χ(L

−
i,a),

where χ(L+
i,a)= χ(L−

i,a) does not depend on a.

(ii) [Hernandez and Jimbo 2012]. For any a ∈ C∗, i ∈ I we have

χq(L
−
i,a) ∈ [9−1

i,a ](1 + A−1
i,a Z[[A−1

j,b ]] j∈I,b∈C∗).

Example 5.4. In the case g = ŝl2, we have

χq(L
+
1,a)= [(1 − za)]

∑

r≥0

[−2rω1],

χq(L
−
1,a)=

[
1

(1 − za)

] ∑

r≥0

A−1
1,a A−1

1,aq−2 · · · A−1

1,aq−2(r−1) .

Thus, although positive and negative prefundamental representations have the same

character,

χ(L+
1,a)= χ(L−

1,a)=
∑

r≥0

[−2rω1],

their q-characters are very different: the normalized q-character χ̃q(L
+
1,a) is inde-

pendent of the spectral parameter a, whereas χ̃q(L
−
1,a) does depend on a.
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5B. Baxter relations. We can now state the generalized Baxter relations:

Theorem 5.5 [Frenkel and Hernandez 2015, Theorem 4.8, Remark 4.10].2 Let V be
a finite-dimensional representation of Uq(g). Replace in χq(V ) each variable Yi,a by
[ωi ][L

+
i,aq−1

i
]/[L+

i,aqi
] (resp. [−ωi ][L

−
i,aq−1

i
]/[L−

i,aqi
]) and χq(V ) by [V ] (resp. [V ∗]).

Then multiplying by a common denominator we get a relation in the Grothendieck
ring K0(O).

Example 5.6. Taking g = ŝl2 and V = L(Y1,a), we obtain relation (1-2), namely,

[L(Y1,a)][L
+
1,aq ] = [L+

1,aq−1][ω1] + [L+
1,aq3][−ω1],

[L(Y1,aq2)][L−
1,aq ] = [L−

1,aq−1][−ω1] + [L−
1,aq3][ω1].

Remark 5.7. By our main result, Theorem 4.2, (and its dual version; see Remark

5.18), these generalized Baxter relations are interpreted as relations in the cluster

algebra A(G). Moreover, when g = ŝl2, the original Baxter relation (1-2) gets

interpreted as a Fomin–Zelevinsky mutation relation.

The right-hand side of a generalized Baxter relation is an E-linear combination of

classes of tensor products of prefundamental representations. As shown in [Frenkel

and Hernandez 2015], this can be seen as a tensor product decomposition in K (O).
Indeed, we have:

Theorem 5.8 [Frenkel and Hernandez 2015]. Any tensor product of positive (resp.
negative) prefundamental representations L+

i,a (resp. L−
i,a) is simple.

5C. Prefundamental characters of representations and duality. Let K ±
0 be the

E-subalgebra of K0(O
±) generated by the [Vi,a], [L±

i,a] (i ∈ I, a ∈ C∗).

It follows from Theorem 5.5 that the fraction field of E[ℓ+i,a]i∈I,a∈C∗ contains K ±
0 .

More precisely, each element of K ±
0 is a Laurent polynomial in E[(ℓ+i,a)

±1]i∈I,a∈C∗ .

Note that the ℓ+i,a are algebraically independent (this is for example a consequence of

Theorem 5.8, which implies that the monomials in the ℓ+i,a are linearly independent

in K0(O
+)). In particular the expansion in E[(ℓ+i,a)

±1]i∈I,a∈C∗ is unique and we can

define the injective ring morphism

χ+ : K +
0 → E[(ℓ+i,a)

±1]i∈I,a∈C∗,

which is called the positive prefundamental character morphism.

In the same way, by using the relations in Theorem 5.5 in terms of the prefun-

damental representations [L−
i,a] and by setting ℓ−i,a = [L−

i,a−1], we get the negative

2The result in [Frenkel and Hernandez 2015] is stated in terms of the L+
i,a , and the R+

i,a such

that (R+
i,a)

∗ ≃ L−
i,a . In the last case, the variable Yi,a has to be replaced by [ωi ][Ri,aq−1

i
]+/[R+

i,aqi
]

to get [V ]. That is why in the statement of Theorem 5.5 in terms of the L−
i,a the representations

[−ωi ] ≃ [ωi ]
∗ and V ∗ appear.
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prefundamental character morphism, which is an injective ring morphism

χ− : K −
0 → E[(ℓ−i,a)

±1]i∈I,a∈C∗ .

Example 5.9. We can reformulate Theorem 5.5 as follows. For a finite-dimensional

representation V of Uq(g), the positive (resp. negative) prefundamental character

χ+(V ) (resp. χ−(V ∗)) is obtained from the q-character χq(V ) by replacing each

variable Yi,a by [ωi ]ℓ
+
i,aq−1

i
(ℓ+i,aqi

)−1 (resp. [−ωi ]ℓ
−
i,a−1qi

(ℓ−i,a−1q−1
i
)−1). In fact, this

can also be seen as a change of variables analogous to that of [Hernandez and

Leclerc 2016, Section 5.2.2]. For example, for g= ŝl2, using Example 5.6 we have

χ+([L(Y1,a)])=
[ω1]ℓ

+
1,aq−1 + [−ω1]ℓ

+
1,aq3

ℓ+1,aq

,

χ−([L(Y1,a)])=
[−ω1]ℓ

−
1,a−1q3 + [ω1]ℓ

−
1,a−1q−1

ℓ−
i,a−1q

.

(5-11)

Example 5.10. Set g = ŝl3. Let

9 = ((1 − zq−2)/(1 − z), (1 − qz))= [−ω1]Y1,q−192,q .

Let us compute χ+(L(9)). For k ≥ 0, let Wk = L̃(Mk), where

Mk = (Y2,q2k · · · Y2,q4Y2,q2)Y1,q−1 .

We can prove as in [Hernandez and Jimbo 2012, Section 7.2] that (Wk)k≥0 gives

rise to a limiting Uq(b)-module W∞ whose q-character is

χq(W∞)=9(1+A−1
1,1)χ(L

+
2,q)=χq(L

+
2,q)[−ω1]Y1,q−1+[−ω1+ω2]Y

−1
1,qχq(L

+
2,q−1).

But it follows from Theorem 7.6(ii) that L(9) and W∞ have the same character,

limk→+∞ χ(L̃(Mk)) = limk→+∞ χ(L̃(Mk
−1)). As L(9) is a subquotient of W∞,

they are isomorphic. Consequently

χ+(L(9))=
ℓ+2,qℓ

+
1,q−2 + [−α1]ℓ

+
1,q2ℓ

+
2,q−1

ℓ+1,1
.

Proposition 5.11. A representation V in O± satisfying [V ] ∈ K ±
0 has finite length.

Remark 5.12. An object in the category O does not necessarily have finite length.

The subcategory of objects of finite length is not stable by tensor product [Boos

et al. 2009, Lemma C.1].

Proof. Suppose [V ] ∈ K +
0 . Then there is a monomial M in the ℓ+i,a such that

Mχ+(V ) is a polynomial in the ℓ+i,a . There is a tensor product L of positive

prefundamental representations such that χ+(L)= M. Then L ⊗V has finite length,

hence the result. �
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Proposition 5.13. The identification of the variables ℓ+i,a and ℓ−i,a induces a unique
isomorphism of E-algebras

D : K +
0 → K −

0 .

Proof. The identification gives a well-defined injective ring morphism

D′ : K +
0 → E[(ℓ−i,a)

±1]i∈I,a∈C∗ .

It suffices to prove that its image is χ−(K −
0 ). For V = L+

i,b a prefundamental,

its image by D′ is ℓ−i,b = χ−([L−
i,b−1]). For V = L(Yi,b) a fundamental, its image

by D′ is obtained from its q-character χq(V ) by replacing each variable Yi,a by

[ωi ][L
−
i,aq−1

i
]/[L−

i,aqi
], that is, by [ωi ]ℓ

−
i,a−1qi

/ℓ−i,a−1q−1
i

. In the construction of χ−,

this corresponds to Y −1

i,a−1 (see the formula in Theorem 5.5). By [Hernandez 2007,

Lemma 4.10], there is a finite-dimensional representation V ′ whose q-character is

obtained from χq(V ) by replacing each Yi,a by Y −1

i,a−1 . Hence D′(V )=χ−((V ′)∗)∈

χ−(K −
0 ). We have proved Im(D′) ⊂ χ−(K0(O

−
f,Z)). Similarly, for W such that

V = W ∗, we have D′(W ′)= χ−(V ) and we get the other inclusion. �

Example 5.14. (i) For any (i, a) ∈ I × C∗, we have

D([L+
i,a])= [L−

i,a−1].

(ii) For any dominant monomial m, we have

D([L(m)])= [L(m1)],

where m1 is obtained from m by replacing each Yi,a by Yi,a−1 . Indeed L(m1) is

isomorphic to ((L(m))′)∗, whose highest weight monomial is the inverse of the

lowest weight monomial (m1)
−1 of L(m)′. For example, for g = ŝl2, we have

D([L(Y1,a)] = [L(Y1,a−1)], as this can be observed by comparing the two formulas

in (5-11).

Remark 5.15. The duality D is compatible with characters by (i) in Theorem 5.3.

However it is not compatible with q-characters (for example, negative and posi-

tive prefundamental representations have very different q-characters, as explained

above).

Proposition 5.16. An element in the Grothendieck group K0(O
±) is a (possibly

countable) sum of elements in K ±
0 .

Proof. Let us prove it for K0(O
+) (the proof is analogous for K0(O

−)). By definition,

the positive ℓ-weights label the simple modules in O+. Moreover, an ℓ-weight

is positive if and only if it is a product of highest ℓ-weights of representations

L+
i,a , Vi (a) and [ω]. This implies that, for each positive ℓ-weight 9, we can

choose (and fix) a monomial in the [L+
i,a], [Vi (a)], [ω] such that the corresponding

representation has highest ℓ-weight equal to 9. Hence the positive ℓ-weights also



2032 David Hernandez and Bernard Leclerc

label the linearly independent family of these monomials in K +
0 . Expanding these

monomials we get finite sums of classes of simple modules by Proposition 5.11. We

get an (infinite) transition matrix from the classes of simple objects in O+ to such

products in K +
0 , and this matrix is unitriangular (for the standard partial ordering

with respect to weight). Hence the result. �

This implies immediately the following.

Theorem 5.17. O+ and O− are monoidal and the morphism D extends uniquely to
an isomorphism of E-algebras

D : K0(O
+)→ K0(O

−).

Remark 5.18. Consequently, our main result in Theorem 4.2 may also be written

in terms of the subcategory O
−
2Z

of O−
Z

whose Grothendieck ring is D(K0(O
+
2Z
)).

Proof. For L , L ′ simple in O+, we may consider a decomposition of [L], [L ′] as a

countable sum of elements in K +
0 as in Proposition 5.16. Then [L][L ′] is also such a

countable sum and is in K0(O
+). Hence O+ is monoidal. This is analogous for O−.

The isomorphism of Proposition 5.13 is extended by linearity to K0(O
+) by using

Proposition 5.16. This map D : K0(O
+)→ K0(O

−) is an injective ring morphism.

The ring morphism D−1 : K0(O
−)→ K0(O

+) is constructed in the same way and

so D is a ring isomorphism. �

Proposition 5.19. A simple object in O+ (resp. in O−) is a subquotient of a tensor
product of two simple representations V ⊗ L , where V is finite-dimensional and L
is a tensor product of positive (resp. negative) prefundamental representations.

Proof. Let L(9) be simple in O±. By definition, its highest ℓ-weight is a product of

highest ℓ-weights of representations [ω], L±
i,a , Vi (a), where ω ∈ PQ, i ∈ I, a ∈ C∗.

So 9 can be factorized as

9 = [ω] × m ×
∏

i∈I,a∈C∗

9
ui,a

i,a , (5-12)

where ω ∈ PQ, ±ui,a ≥ 0 and m ∈ M is a dominant monomial. The result follows

by taking V = [ω] ⊗ L(m) and L =
⊗

i∈I,a∈C∗(L±
i,a)

⊗|ui,a |, which is simple by

Theorem 5.8. �

Proposition 5.20. The normalized q-character of a simple object in O− belongs to
the ring Z[[A−1

i,a ]]i∈I,a∈C∗ .

Proof. The result is known for the category C by [Frenkel and Mukhin 2001]. For

negative prefundamental representations, the result is known by [Hernandez and

Jimbo 2012, Theorem 6.1]. The general result follows from Proposition 5.19. �

Note that this property is not satisfied in O+; see Example 5.4.
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6. Proof of the main theorem

6A. Examples of mutations.

6A1. Let g = ŝl2. We display a sequence of 3 mutations starting from the initial

seed of A(G). The mutated cluster variables are indicated by a framebox.

...
...

...
...

z4

OO

z4

OO

z4

OO

z4

OO

��

z2

OO

z2

OO

��

z2

OO

~~

[L(Yq−3 Yq−1 Yq)]

zz

z0

OO

[L(Yq−1)]

��

[L(Yq−1)] [L(Yq−1)]

z−2

OO

z−2

==

[L(Yq−1 Yq−3)]

OO

��

[L(Yq−1 Yq−3)]

OO

??

z−4

OO

z−4

OO

z−4

::

z−4

99

...
...

...
...

6A2. Let g = ŝl3. Example 5.10 can be reformulated as a one-step mutation from

the initial seed, as follows:
...

...

...

z1,2

OO

ww
...

z1,2

OO

��

z2,1

&&

z2,1

z1,0

OO

xx

[L(9)]
[

1
2
α1

]
hh

��

z2,−1

OO

''

z2,−1

66

...
z1,−2

OO

...
z1,−2

``

...
...

Recall that here 9 = [−ω1]Y1,q−192,q , as in Example 5.10.

6A3. For an arbitrary g, let us calculate the first mutation relation for each cluster

variable zi,r of the initial seed, generalizing Section 6A2. We denote by z∗
i,r the

new cluster variable obtained by mutating zi,r . Then we have

z∗
i,r zi,r =

∏

j :Cj,i 6=0

z j,r−dj Cj,i +
∏

j :Cj,i 6=0

z j,r+dj Cj,i .
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We claim that z∗
i,r = [λ][L(9)], where

9 = [−ωi ]Yi,qr−di

∏

j :Cj,i<0

9 j,qr−dj Cj,i and λ=
αi

2
− r

∑

j :Cj,i<0

ω j

2dj
.

As in Section 6A2, this is derived from the explicit q-character formula

χq(L(9))= [9](1 + A−1
i,qr )

∏

j :Cj,i<0

χ j , (6-13)

where χ j = χ(L+
j,a) does not depend on a. (By considering L(9)⊗ L(Yi,qr−di 9

−1)

and L(9)⊗ L+
i,qr we prove that the multiplicities in χq(L(9)) are larger than in

the right-hand side of (6-13). The reverse inequality is established by consider-

ing L(MR
−1)⊗ L(9MR), where the monomials MR are defined for 9

−1 as in

Theorem 7.6.) The mutation relation thus becomes the following relation in the

Grothendieck ring K0(O
+):

[L(9)⊗ L+
i,qr ] =

[ ⊗

j :Cj,i 6=0

L+
j,qr−dj Cj,i

]
+ [−αi ]

[ ⊗

j :Cj,i 6=0

L+
j,qr+dj Cj,i

]
. (6-14)

By Theorem 5.8, the two terms on the right-hand side are simple. Hence this is the

decomposition of the class of the tensor product into simple modules.

6B. Proof of Theorem 4.2. We identify the E-algebras

E[z±1
i,r ](i,r)∈V and E[(ℓ+i,qr )

±1](i,r)∈V

as in Remark 4.3.

Proposition 6.1. We have K +
0 ∩ K0(O

+
2Z
)⊆ A(G)⊗Z E.

Note that by Proposition 5.16 this implies K0(O
+
2Z
)⊆ A(G) ⊗̂Z E.

Proof. Clearly, ℓ+i,qs = zi,s[(s/2di )ωi ] belongs to A(G)Z ⊗Z E for any (i, s) ∈ V.

By Proposition 5.16, it remains to show that [Vi,qr ] belongs to A(G)Z ⊗Z E for any

(i, r) ∈ W.

Remember from Section 4A that we denote by G the same quiver as Ŵ with

vertices labeled by W instead of V. In the next discussion, we divide the vertices

of G and Ŵ into columns, as in [Hernandez and Leclerc 2016, Example 2.3],

and we denote by k the number of columns. As in [Hernandez and Leclerc

2016, Section 2.1.3], consider the full subquiver G− of G whose vertex set is

W − = {(i, r) ∈ W | r ≤ 0}. The definition of G shows that there is only one vertex

of G \ G− in each column which is connected to G− by some arrow. Let H−

denote the ice quiver obtained from G− by adding these k vertices together with

their connecting arrows, and by declaring the new vertices frozen.
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Consider the cluster algebras A(H−) (with k frozen variables) and A(G−) (with

no frozen variable). It follows from the definitions that A(H−) can be regarded as

a subalgebra of A(G), and A(G−) is the coefficient-free counterpart of A(H−),

studied in [Hernandez and Leclerc 2016]. Let f j (1 ≤ j ≤ k) be the frozen variable

of A(H−) sitting in column j. The cluster of the initial seed of A(H−) thus

consists of the frozen variables f j (1 ≤ j ≤ k) and the ordinary cluster variables

zi,s ((i, s) ∈ V −), where V − = {(i, s) ∈ V | s + di ≤ 0}. Let us denote by ui,s

((i, s)∈ V −) the cluster variables of the initial seed of A(G−). We can use a similar

change of variables as in [Hernandez and Leclerc 2016, Section 2.2.2]:

yi,r = ui,r−di if r + di > 0, yi,r =
ui,r−di

ui,r+di

otherwise.

Let

F : Z[u±1
i,s | (i, s) ∈ V −] → Z[ f ±1

j , z±1
i,s | 1 ≤ j ≤ k, (i, s) ∈ V −]

be the ring homomorphism defined by

F(ui,s)=
zi,s

f j
if (i, s) sits in column j.

Thus

F(yi,r )=





zi,r−di

f j
if r + di > 0 and (i, r) sits in column j,

zi,r−di

zi,r+di

otherwise.

We introduce a Zk-grading on Z[ f ±1
j , z±1

i,s | 1 ≤ j ≤ k, (i, s) ∈ V −] by declaring

that

deg( f j )= ej , deg(zi,s)= ej if (i, s) sits in column j,

where ej (1 ≤ j ≤ k) denotes the canonical basis of Zk.

Let x be the cluster variable of A(G−) obtained from the initial seed ({ui,s},G−)

via a sequence of mutations σ , and let y be the cluster variable of A(H−) obtained

from the initial seed ({zi,s, f j }, H−) via the same sequence of mutations σ . We want

to compare the Laurent polynomials y and F(x). Since deg(F(ui,s))= (0, . . . , 0)

for every (i, s), we see that F(x) is multihomogeneous of degree (0, . . . , 0) for the

above grading. On the other hand, it is easy to check that for every nonfrozen vertex

(i, s) of the ice quiver H− the sum of the multidegrees of the initial cluster variables

and frozen variables sitting at the targets of the arrows going out of (i, s) is equal to

the sum of the multidegrees of the initial cluster variables and frozen variables sitting

at the sources of the arrows going into (i, s). Therefore, A(H−) is a multigraded

cluster algebra, in the sense of [Grabowski and Launois 2014]. It follows that y is
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also multihomogeneous, of degree (a1, . . . , ak). Now, by construction, we have

F(x)| f1=1,..., fk=1 = y| f1=1,..., fk=1.

Therefore,

y = F(x)
k∏

j=1

f
aj

j .

Taking a cluster expansion with respect to the initial cluster of A(H−), we write

y = N/D where D is a monomial in the nonfrozen cluster variables and N is a

polynomial in the nonfrozen and frozen variables. Moreover N is not divisible

by any of the f j . It follows that
∏k

j=1 f
aj

j is the smallest monomial such that

F(x)
∏k

j=1 f
aj

j contains only nonnegative powers of the variables f j .

Now we can conclude using [Hernandez and Leclerc 2016, Theorem 3.1], which

implies that, for all (i, r) ∈ W − with r ≪ 0, the q-character of Vi,qr (expressed in

terms of the variables yi,s ≡ Yi,qs ) is a cluster variable x of A(G−). By [Frenkel and

Mukhin 2001, Corollary 6.14], for r ≪ 0 this cluster variable does not contain any

variable yi,s with s + 2di > 0, hence F(x) does not contain any frozen variable f j .

Therefore y = F(x), and the q-character of Vi,qr (expressed in terms of the vari-

ables zi,s) is a cluster variable of A(H−), that is, a cluster variable of A(Ŵ). This

proves the claim for every fundamental module Vi,qr with r ≪ 0. But by definition

of the cluster algebra A(Ŵ), the set of cluster variables is invariant under the change

of variables zi,s 7→ zi,s+2di . Thus we are done. �

Proposition 6.2. We have A(G) ⊗̂Z E ⊆ K0(O
+
2Z
).

To prove this proposition, we need to establish some preliminary results. We

first prove in Lemma 6.4 that, for χ ∈ A(G), at least one negative ℓ-weight occurs

in χq(D(χ)). Then in Lemma 6.5 we construct a family of distinguished elements

F(9) ∈ χq(D(K0(O
+))).

The first result allows us to write each element of χq(D(A(G))) as a linear combi-

nation of the F(9). This implies the inclusion in Proposition 6.2.

So consider an element χ in A(G). By the Laurent phenomenon [Fomin and

Zelevinsky 2002], χ is a Laurent polynomial in the initial cluster variables:

χ = P({zi,r }(i,r)∈V ).

Hence A(G) is a subalgebra of the fraction field of K0(O
+
2Z
), and the duality D of

Proposition 5.13 can be algebraically extended to A(G). In particular we have

D(χ)= P({D(zi,r )}(i,r)∈V ) ∈ Frac(K0(O
−
2Z
))

in the fraction field of K0(O
−
2Z
). The q-character morphism can also be algebraically

extended to Frac(K0(O
−
2Z
)). Then χq(D(χ)) is obtained by replacing each zi,r by
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the corresponding q-character

χq(D(zi,r ))=

[(
−r

2di

)
ωi

]
χq(L

−
i,q−r )=

[(
−r

2di

)
ωi

]
9

−1
i,q−r (1 +Ai,r ), (6-15)

where, by Theorem 7.6, Ai,r is a formal power series in the A−1
j,a without constant

term. In particular, we have an analogous formula for the inverse,

(χq(D(zi,r )))
−1 =

[(
r

2di

)
ωi

]
9 i,q−r (1 +Bi,r ),

where

Bi,r =
∑

k≥1

(−Ai,r )
k

is a formal power series in the A−1
j,a without constant term. In particular χq(D(χ))

is in Eℓ and we get a sum of the form

χq(D(χ))=
∑

1≤α≤R

λα[ωα]mα(1 +Aα) ∈ Eℓ, (6-16)

where ωα is a weight, mα is a Laurent monomial in the 9 i,q−r , Aα is a formal

power series in the A−1
j,a without constant term and λα ∈ Z.

We recall the notion of negative ℓ-weight introduced in Definition 3.8.

Remark 6.3. We say that a sequence (9(m))m≥0 of ℓ-weights converges pointwise

as a rational fraction to an ℓ-weight 9 if, for every i ∈ I and z ∈ C, the ratio

9
(m)
i (z)/9 i (z) converges to 1 when N → +∞ and |q| > 1. For example, defin-

ing the monomials Mi,r,N as in equation (6-17) below, the sequence (M̃i,r,N )N≥0

converges pointwise as a rational fraction to 9
−1
i,q−r .

Lemma 6.4. Let χ ∈ A(G) be nonzero. Then at least one negative ℓ-weight occurs
in χq(D(χ)).

Proof. We will use the following partial ordering � on the set of ℓ-weights 9

satisfying ̟(9)= 1: for such ℓ-weights 9, 9
′, we set 9 � 9

′ if

9
′(9)−1 =

∏

i,r≥−M

Ãi,qr
−vi,r

is a possibly infinite product (that is, pointwise the limit of the partial products)

with the vi,r ≥ 0. If 9 = m̃ and 9
′ = m̃′ with m,m′ monomials in M, then 9 � 9

′

is equivalent to m � m′ for the partial ordering considered in [Nakajima 2004].

As the sum (6-16) is finite, there is α0 such that mα0
is maximal for �. We prove

that mα0
is a negative ℓ-weight.

Let N be such that all the cluster variables zi,r of the initial seed occurring

in the Laurent monomials of equation (6-16) satisfy r > −2d(N + 2), where

d = Maxi∈I (di ) is the lacing number of ġ. We consider as above the semi-infinite
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cluster algebra A(H+
N ) obtained from A(G), where the cluster variables sitting

at (i, r) ∈ V, r ≤ −2d(N + 2) have been removed. As explained in the proof of

Proposition 6.1, A(H+
N ) can be regarded as a subalgebra of A(G). We replace

every cluster variable zi,r of the initial seed by the class of the Kirillov–Reshetikhin

module Wi,r,N of highest monomial

Mi,r,N =
∏

k≥0
r+2kdi ≤2d N

Yi,q−r−di −2kdi . (6-17)

(Here Mi,r,N is set to be 1 if r > 2d N .) We obtain

φN (χ) ∈ Frac(K0(C)),

the image of χ in the fraction field of K0(C). By using the duality D, we reverse

all spectral parameters (by (ii) in Example 5.14 illustrating Proposition 5.13, or

by [Hernandez and Leclerc 2010, Section 3.4]). We obtain the same3 as in [Her-

nandez and Leclerc 2016, Section 2.2.2]. Then by [Hernandez and Leclerc 2016,

Theorem 5.1], D(φN (χ)) belongs to the Grothendieck ring of C. So by applying D
again, φN (χ) is in K0(C).

Now we get, as for equation (6-16),

χq(φN (χ))=
∑

1≤α≤R

λαm(N )
α (1 +A(N )

α ), (6-18)

where m(N )
α is a monomial and A

(N )
α is a formal power series in the A−1

i,a . Note

that, when N → +∞, A
(N )
α converges to Aα as a formal power series in the A−1

i,a .

Let ωi,r,N be the highest weight of Wi,r,N . Now if the initial cluster variable zi,r is

replaced by [(
r

2di

)
ωi −ωi,r,N

]
[Wi,r,N ] (6-19)

instead of [Wi,r,N ], we just have to replace in (6-18) each m(N )
α by [ωα](m

(N )
α )∼

(the A
(N )
α are unchanged). Then (m(N )

α )∼ converges to mα when N →+∞ pointwise

as a rational fraction.

Let us show that there are infinitely many N such that (m(N )
α0 )

∼ is maximal among

the (m(N )
α )∼ for �. Otherwise, since equation (6-16) has finitely many summands,

there is α such that (m(N )
α0 )

∼ ≺ (m(N )
α )∼ for infinitely many N. In the limit, we get

that mα0
≺ mα, contradiction.

For N such that (m(N )
α0 )

∼ is maximal for �, m(N )
α0 is necessarily dominant, as

φN (χ) ∈ K0(C) (see [Frenkel and Mukhin 2001, Section 5.4]). Then the limit mα0

of the (m(N )
α0 )

∼ is negative, as it is easy to check that a limit of dominant monomials

3We have a term −di which does not occur in [Hernandez and Leclerc 2016, Section 2.2.2], as we

use the labeling by V and not by W.
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is a negative ℓ-weight. Finally, since mα0
is maximal for �, it necessarily occurs

with a nonzero coefficient in the expansion of χq(D(χ)). �

Lemma 6.5. Let 9 be a negative ℓ-weight such that the roots and the poles of 9 i (z)
are of the form qr with (i, r) ∈ V. Then there is a unique F(9) ∈ χq(D(K0(O

+
2Z
)))

such that 9 is the unique negative ℓ-weight occurring in F(9) and its coefficient
is 1.

Moreover F(9) is of the form

F(9)=[9] +
∑

9
′:̟(9 ′)≺̟(9)

λ9
′[9 ′], (6-20)

for the usual partial ordering on weights and with the λ9
′ ∈ Z.

Proof. The uniqueness follows from Proposition 6.1 and Lemma 6.4. For each

negative ℓ-weight 9 as in the lemma, there is a representation M(9) in O
+
2Z

such

that χq(D([M(9)])) is of the form

χq(D([M(9)]))=[9] +
∑

9
′:̟(9 ′)≺̟(9)

µ9
′,9[9 ′].

Indeed it suffices to consider a tensor product of fundamental and positive prefun-

damental representations. Now if the F(9) do exist, we have an infinite triangular

transition matrix from the (F(9)) to the (χq(D([M(9)]))) with 1 on the diagonal

and whose off-diagonal coefficients are the µ9
′,9 for 9, 9

′ negative. So to prove

the existence, it suffices to consider the inverse of this matrix (which is well-defined,

as for given 9, 9
′ there is a finite number of 9

′′ satisfying ̟(9 ′)�̟(9 ′′) and

µ9
′′,9 6= 0). �

We can now finish the proof of Proposition 6.2:

Proof. Let χ be in A(G). For 9 a negative ℓ-weight, we denote by λ9 the coefficient

of 9 in χq(D(χ)). Then by Lemma 6.4 we have

χq(D(χ))=
∑

9 negative

λ9 F(9).

As the F(9) are of the form (6-20), this sum is well-defined in χq(D(K0(O
+
2Z
)))

and we get χ ∈ K0(O
+
2Z
). �

Example 6.6. Let us illustrate the proof of Lemma 6.4, which is the crucial technical

point for the proof of Proposition 6.2. Consider the sequence of mutations of 6A1.
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Let us write the cluster variables φN (χ):

[WN−2,q1−2N ] [WN−2,q1−2N ] [WN−2,q1−2N ] [WN−2,q1−2N ]

��

[WN−1,q1−2N ]

OO

[WN−1,q1−2N ]

OO

��

[W2,q−5 ]

OO

��

[L(Yq3 YqYq−1)]

||

[WN ,q1−2N ]

OO

[L(Yq)]

��

[L(Yq)] [L(Yq)]

[W1+N ,q1−2N ]

OO

[W1+N ,q1−2N ]

AA

[L(YqYq3)]

OO

��

[L(YqYq3)]

OO

AA

[W2+N ,q1−2N ]

OO

[W2+N ,q1−2N ]

OO

[W2+N ,q1−2N ]

>>

[W2+N ,q1−2N ]

;;

...
...

...
...

The cluster variable corresponding to [L(Yq)] has its q-character, which can be

written in the form of equation (6-16):

χq(L(Yq))= Yq + Y −1

q3 =
χq(WN−1,q1−2N )+χq(WN+1,q1−2N )

χq(WN ,q1−2N )

= Y −1

q−1

1 + A−1

q−2

(
1 + A−1

q−4(1 + · · · (1 + A−1

q2(1−N ))) · · ·
)

1 + A−1
1

(
1 + A−1

q−2(1 + · · · (1 + A−1

q2(1−N ))) · · ·
)

+ Yq

1 + A−1

q2

(
1 + A−1

1 (1 + · · · (1 + A−1

q2(1−N ))) · · ·
)

1 + A−1
1

(
1 + A−1

q−2(1 + · · · (1 + A−1

q2(1−N ))) · · ·
) .

We see as in the statement of Lemma 6.4 that the monomial Yq maximal for � is

dominant and so negative in the sense of Definition 3.8. In the limit N → +∞

(with the renormalized weights) we get the representations in K0(O
−):

[−2ω][L−
q−4 ] [−2ω][L−

q−4 ] [−2ω][L−
q−4 ] [−2ω][L−

q−4 ]

��

[−ω][L−
q−2 ]

OO

[−ω][L−
q−2 ]

OO

��

[−ω][L−
q−2 ]

OO

��

[L(Yq3 YqYq−1)]

~~

[L−
1 ]

OO

[L(Yq)]

��

[L(Yq)] [L(Yq)]

[ω][L−
q2 ]

OO

[ω][L−
q2 ]

BB

[L(YqYq3)]

OO

��

[L(YqYq3)]

OO

AA

[2ω][L−
q4 ]

OO

[2ω][L−
q4 ]

OO

[2ω][L−
q4 ]

@@

[2ω][L−
q4 ]

;;

...
...

...
...
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The duality again gives the representations in K0(O
+):

[−2ω][L+
q4 ] [−2ω][L+

q4 ] [−2ω][L+
q4 ] [−2ω][L+

q4 ]

��

[−ω][L+
q2 ]

OO

[−ω][L+
q2 ]

OO

��

[−ω][L+
q2 ]

OO

~~

[L(Yq−3 Yq−1 Yq)]

{{

[L+
1 ]

OO

[L(Yq−1)]

��

[L(Yq−1)] [L(Yq−1)]

[ω][L+
q−2 ]

OO

[ω][L+
q−2 ]

@@

[L(Yq−1 Yq−3)]

OO

��

[L(Yq−1 Yq−3)]

OO

@@

[2ω][L+
q−4 ]

OO

[2ω][L+
q−4 ]

OO

[2ω][L+
q−4 ]

==

[2ω][L+
q−4 ]

;;

...
...

...
...

Example 6.7. We now illustrate the proof of Lemma 6.4 by means of the mutation

of Section 6A2. Let us write the cluster variables φN (χ):

...
...

...

[W (1)

N−1,q1−2N ]

OO

uu
...

[W (1)

N−1,q1−2N ]

OO

��

[W (2)

N−1,q2(1−N ) ]

))

[W (2)

N−1,q2(1−N ) ]

[W (1)

N ,q1−2N ]

OO

uu

[L(m(N ))]

ii

��

[W (2)

N ,q2(1−N ) ]

OO

))

[W (2)

N ,q2(1−N ) ]

55

...

[W (1)

N+1,q1−2N ]

OO

...

[W (1)

N+1,q1−2N ]

[[

...
...

Here m(N ) = Y1,q(Y2,q2(1−N )Y2,q4−2N · · · Y2,q−2). The q-character corresponding to

the cluster variable [L(m(N ))] can be written in the form of equation (6-16):

χq(L(m
(N )))=

χq(W
(1)

N−1,q1−2N )χq(W
(2)

N ,q2(1−N ))

χq(W
(1)

N ,q1−2N )
+
χq(W

(1)

N+1,q1−2N )χq(W
(2)

N−1,q2(1−N ))

χq(W
(1)

N ,q1−2N )

= Y −1

1,q−1(Y2,q2(1−N )Y2,q4−2N · · · Y2,1)(1 +A
(N )
1 )

+ Y1,q(Y2,q2(1−N )Y2,q4−2N · · · Y2,q−2)(1 +A
(N )
2 ).
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Here A
(N )
1 and A

(N )
2 are formal power series in the A−1

1,qa , A−1
2,qa (a ∈ C∗) without

constant term. The monomial (m(N ))∼ is maximal for �. Its limit for N → +∞ is

[−ω1]Y1,q9
−1

2,q−1 , which is negative in the sense of Definition 3.8.

Example 6.8. In this example we check that the images of the initial cluster vari-

ables considered in the proof of Lemma 6.4 do match. Let us consider type B2 with

the following initial seed and the initial cluster variables replaced by the Wi,r :

(2,−1)

&&

(2,−3)

xx

OO

(1,−3)

xx

(1,−5)

&&

(2,−5)

OO

&&

(2,−7)

OO

xx

(1,−7)

xx

OO

(1,−9)

OO

&&

(2,−9)

OO

&&

(2,−11)

OO

xx

(1,−11)

OO

(1,−13)

OO

...
...

W (2)
1+2N ,−4N

''

W (2)
2+2N ,−4N

ww

OO

W (1)
1+N ,1−4N

ww

W (1)
2+N ,−4N−1

''

W (2)
3+2N ,−4N

OO

''

W (2)
4+2N ,−4N

OO

ww

W (1)
2+N ,1−4N

ww

OO

W (1)
3+N ,−4N−1

OO

''

W (2)
5+2N ,−4N

OO

''

W (2)
6+2N ,−4N

OO

ww

W (1)
3+N ,1−4N

OO

W (1)
4+N ,−4N−1

OO

...
...

In the limit N → +∞ (with the renormalized weights) we get the images of the

initial cluster variables:

[
1
2
ω2

]
L−

2,1

&&[
3
2
ω2

]
L−

2,3

xx

OO

[
3
4
ω1

]
L−

1,3

xx[
5
4
ω1

]
L−

1,5

&&

[
5
2
ω2

]
L−

2,5

OO

&&[
7
2
ω2

]
L−

2,7

OO

xx

[
7
4
ω1

]
L−

1,7

xx

OO

[
9
4
ω1

]
L−

1,9

OO

&&

[
9
2
ω2

]
L−

2,9

OO

&&[
11
2
ω2

]
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7. Conjectures and evidence

7A. A conjecture. The concept of a monoidal categorification of a cluster algebra

was introduced in [Hernandez and Leclerc 2016, Definition 2.1]. We say that a

simple object S of a monoidal category is real if S ⊗ S is simple. Let us recall that

a cluster monomial is a monomial in the cluster variables of a single cluster.

Definition 7.1. Let A be a cluster algebra and let M be an abelian monoidal category.

We say that A is a monoidal categorification of A if there is an isomorphism between

A and the Grothendieck ring of M such that the cluster monomials of A are the

classes of all the real simple objects of M (up to invertibles).

See [Hernandez and Leclerc 2013, Section 2] for a discussion on applications of

monoidal categorifications. In view of Theorem 4.2, it is natural to formulate the

following conjecture.

Conjecture 7.2. The isomorphism of Theorem 4.2 defines a monoidal categorifica-
tion; that is, the cluster monomials in A(Ŵ) get identified with real simple objects
in O

+
2Z

up to invertible representations.

Remark 7.3. By using the duality in Proposition 5.13, the statements of Theorem 4.2

and Conjecture 7.2 can also be formulated in terms of the category O
−
2Z

.

Note that Theorem 5.8 implies that all cluster monomials of the initial seed are

identified with real simple objects, more precisely, with simple tensor products

of positive prefundamental representations, in agreement with Conjecture 7.2. To

give other evidence supporting Conjecture 7.2, we will use the results in the next

subsection.

7B. Limiting characters. We will be using the dual category O∗ considered in

[Hernandez and Jimbo 2012], whose definition we now recall.

Definition 7.4. Let O∗ be the category of Cartan-diagonalizable Uq(b)-modules V
such that V ∗ is in category O.

A Uq(b)-module V is said to be of lowest ℓ-weight 9 ∈ Pℓ if there is v ∈ V such

that V = Uq(b)v and the following hold:

Uq(b)
−v = Cv, φ+

i,mv =9i,mv (i ∈ I, m ≥ 0).

For 9 ∈ Pℓ, there exists up to isomorphism a unique simple Uq(b)-module L ′(9)

of lowest ℓ-weight 9. This module belongs to O∗. More precisely, we have:

Proposition 7.5 [Hernandez and Jimbo 2012]. For 9 ∈ Pℓ, (L ′(9))∗ ≃ L(9−1).

We can also define as in Section 5A notions of characters and q-characters for O∗.

We now explain that characters (resp. q-characters) of certain simple objects

in the category O− can be obtained as limits of characters (resp. q-characters)
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of finite-dimensional representations. This is known for negative prefundamental

representations [Hernandez and Jimbo 2012].

Let L(9) be a simple module whose highest ℓ-weight can be written as a finite

product

9 = [ω] × m ×
∏

i∈I

( ∏

r≥−R0

9
ui,qr

i,qr

)
,

where ω ∈ PQ, R0 ≥ 0, ui,qr ≤ 0 and m ∈M is a dominant monomial. For R ≥ R0,

set

MR = m
∏

i∈I

( ∏

r≥−R0

r ′≥0
r−2di r ′≥−R

Y
−ui,qr

i,qr−2di r ′−di

)
. (7-21)

Theorem 7.6. (1) We have the limit as formal power series

χ̃q(L(MR))R→+∞
−−−→ χ̃q(L(9)) ∈ Z[[A−1

i,a ]]i∈I,a∈C∗ .

(2) We have χ̃(L(9−1))= χ̃(L(9)) and so we have the limit as formal power series

χ̃(L(MR))R→+∞
−−−→ χ̃(L(9−1)) ∈ Z[[−αi ]]i∈I .

The proof of Theorem 7.6 is essentially the same as that of [Hernandez and

Jimbo 2012, Theorem 6.1], so we just give an outline.

Proof. First let us prove that the dimensions of weight spaces of L̃(9) are larger

than those of L̃(MR). Consider the tensor product

T = L̃(9)⊗ L̃(MR9
−1).

By definition of MR , the ℓ-weight MR9
−1 is a product of 9

+
i,qr times [λ] for

some λ ∈ PQ, so by Theorem 5.8 the module L̃(MR9
−1) is a tensor product

of positive fundamental representations. Moreover T and L̃(MR) have the same

highest ℓ-weight, so L̃(MR) is a subquotient of T. By [Frenkel and Mukhin 2001,

Theorem 4.1], each ℓ-weight of L̃(MR) is the product of the highest ℓ-weight

MR(̟(MR))
−1 by a product of A−1

j,b , j ∈ i , b ∈ C∗. Hence, by Theorem 5.3, an

ℓ-weight of T is an ℓ-weight of L̃(MR) only if it is of the form

9
′̟(9)−1(M̃R9̃

−1
),

where 9
′ is an ℓ-weight of L(9) and M̃R9̃

−1
is the highest ℓ-weight of L̃(MR9

−1).

We get the result for the dimensions.

Then we prove as in [Hernandez and Jimbo 2012, Section 4.2] that we can define

an inductive linear system

L(M0)→ L(M1)→ · · · → L(MR)→ L(MR+1)→ · · ·



Cluster algebras and Borel subalgebras of quantum affine algebras 2045

from the L(MR) so that we have the convergence of the action of the subalgebra

Ũq(g) of Uq(g) generated by the x+
i,r and the k−1

i x−
i,r . We get a limiting represen-

tation of Ũq(g) from which one can construct a representation L1 of Uq(b) in the

category O and a representation L2 of Uq(b) in the category O∗ [Hernandez and

Jimbo 2012, Proposition 2.4]. Moreover, L1 (resp. L2) is of highest (resp. lowest)

ℓ-weight 9 (resp. 9).

By construction, the normalized q-character of L1 is the limit of the normalized

q-characters χ̃q(L(MR)) as formal power series. Combining with the result of the

first paragraph of this proof, the representation L1 is necessarily simple isomorphic

to L(9). We have proved the first statement in the theorem.

Now, by construction L∗
2 is in the category O with highest ℓ-weight 9

−1 and

satisfies χ̃(L∗
2) = χ̃(L1). To conclude, it suffices to prove that L∗

2 is irreducible.

This is proved as in [Hernandez and Jimbo 2012, Theorem 6.3]. �

We have the following application:

Theorem 7.7. Let L(9) be a simple module in the category O− such that 9̃ = 9.
Then its image by D−1 in K0(O

+) is simple equal to D−1([L(9)])= [L(9−1)].

Proof. From Example 5.14(i), the property is satisfied by negative prefundamental

representations. Since these representations generate the fraction field of K0(O
−), it

suffices to show that the assignment [L(9)] 7→ [L(9−1)] for ℓ-weights 9 satisfying

9 = 9̃ is multiplicative (recall that D is a morphism of E-algebras). Let us use the

same notation as in the proof of Theorem 7.6 above. For L(9)≃ L1 and L(9 ′)≃ L ′
1

simple modules in O− with 9̃ =9 and 9̃
′ =9

′, we have the corresponding modules

L2, L ′
2 in O∗. We consider the decomposition

[L(9)⊗ L(9 ′)] =
∑

9
′′,9̃ ′′=9

′′

m9
′′[L(9 ′′)]

in K0(O
−) with m9

′′ ∈E. Each χq(L(9 ′′)) is obtained as a limit as in Theorem 7.6,

and by construction the corresponding modules L ′(9 ′′) in the category O∗ satisfy

[L2 ⊗ L ′
2] =

∑

9
′′,9̃ ′′=9

′′

m′
9

′′[L ′(9 ′′)],

where each m′
9

′′ ∈ E is obtained from m9
′′ via the substitution [ω] 7→ [−ω]. This

implies

[L∗
2 ⊗ (L ′

2)
∗] =

∑

9
′′,9̃ ′′=9

′′

m9
′′[(L ′(9 ′′))∗],

that is, in view of Proposition 7.5,

[L(9−1)] ⊗ [L(9 ′−1)] =
∑

9
′′,9̃ ′′=9

′′

m9
′′[L(9 ′′−1)]. �
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Example 7.8. Applying D to (6-14), we get the relation in K0(O
−)

[L(9−1)⊗ L−
i,q−r ] =

[ ⊗

j :Cj,i 6=0

L−
j,q−r+dj Cj,i

]
+ [−αi ]

[ ⊗

j :Cj,i 6=0

L−
j,q−r−dj Cj,i

]
,

where

9
−1 = [−ωi ]Yi,q−r+di

∏

j :Cj,i<0

9
−1
j,q−r+dj Cj,i .

7C. Proof of Conjecture 7.2 for g = ŝl2. In this section we give an explicit de-

scription of all simple modules in O+ and in O− for g = ŝl2.

A q-set is a subset of C∗ of the form {aq2r | R1 ≤ r ≤ R2} for some a ∈ C∗

and R1 ≤ R2 ∈ Z ∪ {−∞,+∞}. The KR-modules Wk,a , Wk′,b are said to be in

special position if the union of {a, aq2, . . . , aq2(k−1)} and {b, bq2, . . . , bq2(k′−1)}

is a q-set which contains both properly. The KR-module Wk,a and the prefun-

damental representation L+
b are said to be in special position if the union of

{a, aq2, aq4, . . . , aq2(k−1)} and {bq, bq3, bq5, . . .} is a q-set which contains both

properly. Two positive prefundamental representations are never in special position.

Two representations are in general position if they are not in special position.

The invertible elements in the category O+ are the 1-dimensional representa-

tions [ω].

Theorem 7.9. Suppose that g = ŝl2. The prime simple objects in the category O+

are the positive prefundamental representations and the KR-modules (up to invert-
ibles). Any simple object in O+ can be factorized in a unique way as a tensor
product of prefundamental representations and KR-modules (up to permutation of
the factors and to invertibles). Moreover, such a tensor product is simple if and only
if all its factors are pairwise in general position.

Proof. As in the classical case of finite-dimensional representations, it is easy

to check that every positive ℓ-weight has a unique factorization as a product of

highest ℓ-weights of KR-modules and positive prefundamental representations in

pairwise general position. Hence it suffices to prove the equivalence in the last

sentence. By [Chari and Pressley 1994], the result is known for finite-dimensional

representations. Now, by using Section 7B, this result implies that a tensor product

with factors which are in general position is simple. Conversely, it is known that a

tensor product of KR-modules which are in special position is not simple. Also, it

is easy to see that the tensor product of a KR-module and a positive prefundamental

representation which are in special position is not simple. �

Remark 7.10. (i) This is a generalization of the factorization of simple representa-

tions in C when g = ŝl2 [Chari and Pressley 1994].
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(ii) This result for g = ŝl2 implies that all simple objects in O+ are real and that

their factorization into prime representations is unique.

(iii) In [Mukhin and Young 2014], a factorization is proved for simple modules

in Ô when g = ŝl2. But the factorization is not unique in the category Ô; see

Remark 3.10.

(iv) By Proposition 5.13, our result implies a similar factorization in the category O−.

(v) The combinatorics of q-sets in pairwise general position is very similar to the

combinatorics of triangulations of the ∞-gon studied in [Grabowski and Gratz

2014], in relation with certain cluster structures of infinite rank. However, in that

paper only arcs (m, n) joining two integers m and n are considered, whereas we

also allow arcs of the form (m,+∞) corresponding to positive prefundamental

representations. Also, we are only interested in one mutation class, namely the

mutation class of the initial triangulation {(m,+∞) | m ∈ Z}.

Theorem 7.11. Conjecture 7.2 is true in the sl2-case.

Proof. Theorem 7.9 provides an explicit factorization of simple objects in O
+
2Z

into positive prefundamental representations and finite-dimensional KR-modules.

In particular, we get an explicit q-character formula for such a simple object and

so a complete explicit description of the Grothendieck ring K0(O
+
2Z
). The cluster

algebra A(Ŵ) can also be explicitly described by using triangulations of the ∞-gon

(see Remark 7.10). Hence we can argue as in [Hernandez and Leclerc 2010,

Section 13.4]. �

7D. Equivalence of conjectures. In general, we have the following:

Theorem 7.12. Conjecture 7.2 is equivalent to Conjecture 5.2 of [Hernandez and

Leclerc 2016].

Combining with the recent results in [Qin 2015], this would imply a part of

Conjecture 7.2 for ADE types, namely that all cluster monomials are classes of real

simple objects.

As recalled in the introduction, [Hernandez and Leclerc 2016, Conjecture 5.2]

states that C−
Z

is the monoidal categorification of a cluster algebra A(G−). Note

that C−
Z

is a subcategory of O−
2Z

and O
+
2Z

.

Proof. For N > 0, let CN be the category of finite-dimensional Uq(g)-modules V
satisfying

[V ] ∈ Z[[Vi,qm]]i∈I,−2d N−di ≤m<d(N+2)−di ⊂ K0(C).

It is a monoidal category similar to the categories considered in [Hernandez and

Leclerc 2010]. It contains the KR-module Wi,r,N with highest monomial Mi,r,N

given in equation (6-17), where i ∈ I and −d(N +2) < r ≤ 2d N. The Grothendieck
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ring K0(CN ) has a cluster algebra structure with an initial seed consisting of these

KR-modules Wi,r,N (here we use the initial seed as in [Hernandez and Leclerc

2016]). We have established in the proof of Theorem 4.2 that K0(CN )⊗E may be

seen as a subalgebra of K0(O
+
2Z
) by using the identification of zi,r with the element

defined in equation (6-19). This induces embeddings K0(CN )⊂ K0(CN+1),

K0(C1)⊂ K0(C2)⊂ K0(C3)⊂ · · · ⊂ K0(O
+
2Z
),

which are not the naive embeddings obtained from the inclusion of categories

CN ⊂ CN+1. The cluster monomials in K0(CN ) corresponds now to cluster mono-

mials in K0(O
+
2Z
).

Note that by Theorem 7.7 we may consider simultaneously the statement of

Conjecture 7.2 for O+
2Z

or for O−
2Z

.

Suppose that [Hernandez and Leclerc 2016, Conjecture 5.2] is true. This im-

plies that the cluster monomials in K0(CN ) are the real simple modules for any

N > 0. Consider a cluster monomial in O
+
2Z

. Then for N large enough, we have

a corresponding real representation VN in K0(CN ). The highest monomial of VN

is a Laurent monomial in the mi,r,N of the form considered in Theorem 7.6. By

Theorem 7.6, χq(VN ) converges to the q-character of a simple module V in O
−
2Z

when N → +∞. Moreover V is real, as the q-character of V ⊗ V is obtained as

a limit of simple q-character χq(VN ⊗ VN ) by Theorem 7.6. Conversely, every

real simple module V in O
−
2Z

is obtained as such a limit of simple modules VN .

Moreover since V is real, VN is real (since χq(VN ⊗ VN ) is an upper q-character of

V ⊗ V in the sense of [Hernandez 2010, Corollary 5.8]). For N large enough the

modules VN correspond to the same cluster monomial, which is therefore identified

with V.

Conversely, suppose that Conjecture 7.2 is true. Consider a cluster monomial χ

in K0(C
−
Z
). The cluster variables occurring in χ are produced via sequences

of mutations from a finite number of KR-modules in the initial seed. By the

proof of Proposition 6.1, there is a seed in K0(O
−
2Z
) containing these KR-modules

(and the quiver of this seed has the same arrows joining the corresponding ver-

tices). By our hypothesis, χ is the class of a simple real module as an element of

K0(O
−
2Z
)⊃ K0(C

−
Z
). Hence it is also real simple in K0(C

−
Z
). Now consider a real

simple module [V ] in K0(C
−
Z
). It corresponds to a cluster monomial in K0(O

−
2Z
)

which is a cluster monomial in K0(C
−
Z
) by the same arguments. �

7E. Web property theorem. Let us prove the following generalization of the main

result of [Hernandez 2010]. If Conjecture 7.2 holds, then the statement of the next

theorem is a necessary condition for simple modules in the same seed.

Theorem 7.13. Let S1, . . . , SN be simple objects in O+ (resp. in O−). Then
S1 ⊗· · ·⊗ SN is simple if and only if the tensor products Si ⊗ Sj are simple for i ≤ j.
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Proof. By Proposition 5.13, this is equivalent to proving the statement in the

category O−. Note that the “only if” part is clear. For the “if” part of the state-

ment, we may assume without loss of generality that the zeros and poles of the

highest ℓ-weights of the Si are in qZ (see (ii) in Remark 4.3). For each simple

module Si , consider a corresponding simple finite-dimensional module L(MR,i ) as

in Section 7B. Since Si ⊗Sj is simple, there exists R1 such that for R ≥ R1 the tensor

product L(MR,i )⊗ L(MR, j ) is simple. Indeed, by Theorem 7.6, χ̃q(Si ⊗ Sj ) is the

limit of the χ̃q(L(MR,i MR, j )). More precisely, there is R1 such that for R ≥ R1 the

image of χ̃q(Si ⊗ Sj ) in Z[A−1
i,qr ]i∈I,r≥−R1+ri is equal to χ̃q(L(MR,i MR, j )). This

implies that χ̃q(L(MR,i MR, j ))= χ̃q(L(MR,i ))χ̃q(L(MR, j )).

Now, by [Hernandez 2010], L(MR,1)⊗ · · ·⊗ L(MR,N ) is simple isomorphic to

L(MR,1 · · · MR,N ). This implies that the character of S1 ⊗ · · · ⊗ SN is the same as

the character of the simple module with the same highest ℓ-weight. Hence they are

isomorphic. �

Remark 7.14. This provides an alternative proof of Theorem 7.9.

7F. Another conjecture. To conclude, let us state another general conjecture. Al-

though the cluster algebra structure presented in this paper does not appear in the

statement, this conjecture arises naturally if we compare Theorem 4.2 with the

results of [Hernandez and Leclerc 2016].

We consider a simple finite-dimensional representation L(m) whose dominant

monomial m satisfies m ∈ Z[Yi,aqr ](i,r)∈W,r≤R for a given R ∈ Z. We have the

corresponding truncated q-character [Hernandez and Leclerc 2010]

χ≤R
q (L(m)) ∈ mZ[A−1

i,qr ]i∈I,r≤R−di ,

which is the sum (with multiplicity) of the monomials m′ occurring in χq(L(m))
and satisfying m(m′)−1 ∈ Z[Ai,qr ]i∈I,r≤R−di . As in the statement of Theorem 5.5,

we consider

(χ+)≤R(L(m)) ∈ Frac(K0(O
+)),

obtained from χ≤R
q (L(m)) by replacing each variable Yi,a by [ωi ]ℓ

+
i,aq−1

i
(ℓ+i,aqi

)−1.

Let us set

WR = {(i, r) ∈ W | R ≥ r > R − 2di }.

For (i, r)∈ WR , we set ui,r to be the maximum of 0 and the powers ui,qr (m′) of Yi,qr

in all monomials m′ occurring in χ≤R
q (L(m)). Let

9R =
∏

(i,r)∈WR

9
ui,r

i,qr+di
and 9 = m9R.

The representations L(9), L(9R) are in the category O+. By Theorem 5.8, L(9R)

is a simple tensor product of positive prefundamental representations.
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Conjecture 7.15. We have the relation in Frac(K0(O
+))

χ+(L(9))= (χ+)≤R(L(m))
∏

(i,r)∈WR

(ℓ+
i,qr+di

)ui,r = (χ+)≤R(L(m))χ+(L(9R)).

Remark 7.16. By taking the q-character, the statement is equivalent to the following

q-character formula:

χq(L(9))= χ≤R
q (L(m))χq(L(9R)).

In some cases the conjecture is already proved:

Example 7.17. (i) In the case χ≤R
q (L(m)) = χq(L(m)), we have ui,r = 0 for

(i, r) ∈ WR . Here the conjecture reduces to the generalized Baxter relations of

Theorem 5.5.

(ii) In the case R = r + di and m = Yi,qr−di , we have χq(L(m))≥R = m(1 + A−1
i,qr ).

The conjecture reduces to the relations we have established in formula (6-14).

(iii) As discussed above, it follows from Theorem 7.12 and from the main result of

[Qin 2015] that, for ADE-types, all cluster monomials are classes of real simple

objects. In particular, for ADE-types, Conjecture 7.15 holds for all simple modules

L(m) which are cluster monomials (for the cluster algebra structure defined in

[Hernandez and Leclerc 2016]). Indeed we may assume that R = 0. It is proved in

in the same paper that, for any dominant monomial m, the truncated q-character

χ≤0
q (L(m)) is an element of the cluster algebra A(G−) defined in the proof of

Proposition 6.1. In χ≤0
q (L(m)) we perform the same substitution as in Theorem 5.5

above (that is, we apply the ring homomorphism F of the proof of Proposition 6.1).

If we assume that χ≤0
q (L(m)) is a cluster variable of A(G−), then it follows from

the proof of Proposition 6.1 that

y := F(χ≤0
q (L(m)))

∏

(i,r)∈W0

z
ui,r

i,qr+di

is a cluster variable in A(H−). Using Theorem 7.12, we deduce that y is the

positive prefundamental character of a simple module. Since F is multiplicative,

the argument readily extends to simple modules L(m) such that χ≤0
q (L(m)) is a

cluster monomial.
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