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Abstract

We apply our previous work on cluster characters for Hom-infinite cluster categories to
the theory of cluster algebras. We give a new proof of Conjectures 5.4, 6.13, 7.2, 7.10
and 7.12 of Fomin and Zelevinsky’s Cluster algebras IV [Compositio Math. 143 (2007),
112–164] for skew-symmetric cluster algebras. We also construct an explicit bijection
sending certain objects of the cluster category to the decorated representations of
Derksen, Weyman and Zelevinsky, and show that it is compatible with mutations in both
settings. Using this map, we give a categorical interpretation of the E-invariant and show
that an arbitrary decorated representation with vanishing E-invariant is characterized
by its g-vector. Finally, we obtain a substitution formula for cluster characters of not
necessarily rigid objects.

1. Introduction

Since their introduction by Fomin and Zelevinsky in [FZ02], cluster algebras have been
found to enjoy connections with several branches of mathematics; see for instance the survey
papers [GLS08, Kel09, Zel07] or the talks of the ICM 2010 [Fom, Lec, Rei]. Cluster algebras are
commutative algebras generated by cluster variables grouped into sets of fixed finite cardinality
called clusters. Of particular importance are cluster algebras with coefficients, as most known
examples of cluster algebras are of this kind. In this paper, we will work with cluster algebras of
geometric type with coefficients.

In [FZ07], the authors developed a combinatorial framework allowing the study of coefficients
in cluster algebras. Important tools that the authors introduced are the F -polynomials and
g-vectors. In particular, they proved that the behavior of the coefficients in any cluster algebra
is governed by that of the coefficients in a cluster algebra with principal coefficients, using the
F -polynomials (see [FZ07, Theorem 3.7]).

The authors phrased a number of conjectures, mostly regarding F -polynomials and g-vectors.
We list some of them here:
(5.4) every F -polynomial has constant term 1;

(6.13) the g-vectors of the cluster variables of any given seed are sign-coherent in a sense to be
defined;

(7.2) cluster monomials are linearly independent;
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(7.10) different cluster monomials have different g-vectors, and the g-vectors of the cluster
variables of any cluster form a basis of Zr;

(7.12) the mutation rule for g-vectors can be expressed using a certain piecewise-linear
transformation.

Work on these conjectures includes:

– a proof of (7.2) by Sherman and Zelevinsky [SZ04] for Dynkin and affine types of rank two;
– a proof of (7.2) by Caldero and Keller [CK08] for Dynkin type;
– a proof of (7.2) by Dupont [Dup11] for affine type A;
– a proof of (7.2) by Ding, Xiao and Xu [DXX09] for affine type;

– a proof of (7.2) by Cerulli Irelli [Cer11] in type A(1)
2 by explicit computations;

– a proof of (5.4) by Schiffler [Sch10] for cluster algebras arising from unpunctured surfaces;
– a proof of (7.2) by Demonet [Dem10] for certain skew-symmetrizable cluster algebras;
– a proof of all five conjectures by Fu and Keller [FK10] for cluster algebras categorified

by Hom-finite 2-Calabi–Yau Frobenius or triangulated categories, using work of Dehy and
Keller [DK08];

– a proof of (7.2) by Geiss et al. [GLS07] for acyclic cluster algebras;
– a proof of (5.4), (6.13), (7.10) and (7.12) in full generality by Derksen et al. [DWZ10] using

decorated representations of quivers with potentials;
– a proof of (5.4), (6.13), (7.10) and (7.12) by Nagao [Nag10], under a certain finiteness

assumption, using Donaldson–Thomas theory (see for instance [Bri10, JS08, KS08]).

In this paper, we use (generalized) cluster categories to give a new proof of (5.4), (6.13),
(7.10) and (7.12) in full generality, and to prove (7.2) for any skew-symmetric cluster algebra of
geometric type whose associated matrix is of full rank.

More precisely, we use the cluster category introduced by Buan et al. [BMRRT06] (and
independently by Caldero et al. [CCS06] in the An case) and generalized to any quiver with
potential by Amiot in [Ami09]. Note that this category can be Hom-infinite. We obtain
applications to cluster algebras via the cluster character of Palu [Pal08], which generalized the
map introduced by Caldero and Chapoton in [CC06]. It was extended in [Pla11] to possibly Hom-
infinite cluster categories. In particular, we have to restrict the cluster character to a suitable
subcategory D of the cluster category.

Using this cluster character, we give categorical interpretations of F -polynomials and
g-vectors which allow us to prove the conjectures mentioned above. We prove (7.2), (6.13),
(7.10) and (7.12) in § 3.2 and (5.4) in § 3.3. Some of our results concerning rigid objects in
§ 3.1 and indices in § 3.2 are used in [IIKKN10a, IIKKN10b]. The methods we use are mainly
generalizations of those used for the Hom-finite case in [DK08, FK10].

The key tool that we use in our proofs is the multiplication formula proved in [Pla11,
Proposition 3.16], while the proofs of Derksen, Weyman and Zelevinsky rely on a substitution
formula [DWZ10, Lemma 5.2].

We also show in § 4 that the setup used in [DWZ10] is closely related to the cluster-categorical
approach. We prove in § 4.1 that (isomorphism classes of) decorated representations over a quiver
with potential are in bijection with (isomorphism classes of) objects in the subcategory D of the
cluster category. In §§ 4.2 and 4.3, we give an interpretation of the F -polynomial, g-vector, h-
vector and E-invariant of a decorated representation in cluster-categorical terms. In particular,
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Cluster algebras via cluster categories

we prove a stronger version of [DWZ10, Lemma 9.2] in Corollary 4.16. Using the substitution
formula for F -polynomials [DWZ10, Lemma 5.2], we also obtain a substitution formula for cluster
characters of not necessarily rigid objects (Corollary 4.14).

2. Recollections

2.1 Background on cluster algebras
We give a brief summary of the definitions and results we will need concerning cluster algebras.
Our main source for the material in this section is [FZ07].

2.1.1 Cluster algebras with coefficients. We will first recall the definition of (skew-
symmetric) cluster algebras (of geometric type).

The tropical semifield Trop(u1, u2, . . . , un) is the abelian group (written multiplicatively)
freely generated by the ui, with an addition ⊕ defined by∏

j

u
aj

j ⊕
∏
j

u
bj
j =

∏
j

u
min(aj ,bj)
j .

A quiver is an oriented graph. Thus, it is given by a quadruple Q= (Q0, Q1, s, t), where Q0

is the set of vertices, Q1 is the set of arrows and s (respectively t) is a map from Q1 to Q0 which
sends each arrow to its source (respectively its target). A quiver is finite if it has finitely many
vertices and arrows. An ice quiver (see [FK10]) is a pair (Q, F ), where Q is a quiver and F is a
subset of Q0. The elements of F are the frozen vertices of Q. It is finite if Q is finite.

Let r and n be integers such that 1 6 r 6 n. Let us denote by P the tropical semifield
Trop(xr+1, . . . , xn). Let F be the field of fractions of the ring of polynomials in r indeterminates
with coefficients in QP.

Let (Q, F ) be a finite ice quiver, where Q has no oriented cycles of length 62, and F and
Q0 have r and n elements, respectively. We will denote the elements of Q0\F by the numbers
1, 2, . . . , r and those of F by (r + 1), (r + 2), . . . , n. Let i be in Q0\F . One defines the mutation
of (Q, F ) at i as the ice quiver µi(Q, F ) = (Q′, F ′) constructed from (Q, F ) as follows:

– the sets Q′0 and F ′ are equal to Q0 and F , respectively;
– all arrows not incident with i in Q are kept;
– for each subquiver of Q of the form j→ i→ `, an arrow from j to ` is added;
– all arrows incident to i are reversed;
– arrows from a maximal set of pairwise disjoint oriented cycles of length two in the resulting

quiver are removed.

A seed is a pair ((Q, F ), x), where (Q, F ) is an ice quiver as above, and x = {x1, . . . , xr} is a
free generating set of the field F . Given a vertex i of Q0\F , the mutation of the seed ((Q, F ), x)
at the vertex i is the pair µi((Q, F ), x) = ((Q′, F ′), x′), where:

– (Q′, F ′) is the mutated ice quiver µi(Q, F );
– x′ = x\{xi} ∪ {x′i}, where x′i is obtained from the exchange relation

xix
′
i =

∏
α∈Q1

s(α)=i

xt(α) +
∏
α∈Q1

t(α)=i

xs(α).

The mutation of a seed is still a seed, and the mutation at a fixed vertex is an involution.
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Fix an initial seed ((Q, F ), x).

– The sets x′ obtained by repeated mutation of the initial seed are the clusters.

– The elements of the clusters are the cluster variables.

– The ZP-subalgebra of F generated by all cluster variables is the cluster algebra A=
A((Q, F ), x).

Suppose that n= 2r. A cluster algebra has principal coefficients at a seed ((Q′, F ′), x′) if
there is exactly one arrow from (r + `) to ` (for `= 1, 2, . . . , r), and if these are the only arrows
whose source or target lies in F ′.

2.1.2 Cluster monomials and g-vectors. Given an ice quiver (Q, F ), we associate to it an
(n× r) matrix B̃ = (bij), where each entry bij is the number of arrows from i to j minus the
number of arrows from j to i.

Let ((Q, F ), x) be a seed of a cluster algebra A. A cluster monomial in A is a product of
cluster variables lying in the same cluster.

To define g-vectors, we shall need a bit of notation. For any integer j between 1 and r, let ŷj
be defined as

ŷj =
∏
`∈Q0

x
b`j

` .

Let M be the set of non-zero elements of A which can be written in the form

z =R(ŷ1, . . . , ŷr)
n∏
j=1

x
gj

j ,

where R(u1, . . . , ur) is an element of Q(u1, . . . , ur). Note that all cluster monomials belong
to M. By [FZ07, Proposition 7.8], if the matrix B̃ is of full rank r, then any element of M can
be written in a unique way in the form above, with R primitive (that is, R can be written as a
ratio of two polynomials, neither of which is divisible by any of the uj). In that case, if z is an
element of M written as above with R primitive, the vector

g(z) = (g1, . . . , gr)

is the g-vector of z.
Let us now state Conjectures 7.2, 7.10 and 7.12 of [FZ07].

(7.2) Cluster monomials are linearly independent over ZP.

(7.10) Different cluster monomials have different g-vectors; the g-vectors of the cluster variables
of any cluster form a Z-basis of Zr.
(7.12) Let g = (g1, . . . , gr) and g′ = (g′1, . . . , g

′
r) be the g-vectors of one cluster monomial with

respect to two clusters t and t′ related by one mutation at the vertex i. Then we have

g′j =
{
−gi if j = i,
gj + [bji]+gi − bji min(gi, 0) if j 6= i,

where B = (bj`) is the matrix associated to the seed t, and we set [x]+ = max(x, 0) for any real
number x.

2.1.3 F -polynomials. Let A be a cluster algebra with principal coefficients at a given seed
((Q, F ), x). Let t be a seed of A and ` be a vertex of Q that is not in F . Then the `th cluster
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variable of t can be written as a subtraction-free rational function in variables x1, . . . , x2r.
Following [FZ07, Definition 3.3], we define the F -polynomial F`,t as the specialization of this
rational function at x1 = · · ·= xr = 1. It was proved in [FZ07, Proposition 3.6] that F`,t is indeed
a polynomial.

We now state Conjecture 5.4 of [FZ07]: every F -polynomial has constant term 1.

2.1.4 Y -seeds and their mutations. We now recall the notion of Y -seeds from [FZ07]. As
above, let 1 6 r 6 n be integers, and let P be the tropical semifield in the variables xr+1, . . . , xn.

A Y -seed is a pair (Q, y), where:

– Q is a finite quiver without oriented cycles of length 62; and
– y = (y1, . . . , yr) is an element of Pr.

Let (Q, y) be a Y -seed, and let i be a vertex of Q. The mutation of (Q, y) at the vertex i is
the Y -seed µi(Q, y) = (Q′, y′), where:

– Q is the mutated quiver µi(Q); and
– y′ = (y′1, . . . , y

′
r) is obtained from y using the mutation rule

y′j =


y−1
i if i= j,
yjy

m
i (yi ⊕ 1)−m if there are m arrows from i to j,

yj(yi ⊕ 1)m if there are m arrows from j to i.

If, to any seed ((Q, F ), x) of a cluster algebra, we associate a Y -seed (Q, y) defined by

yj =
n∏

i=r+1

x
bij
i ,

then for any such seed and its associated Y -seed, and for any vertex i of Q, we have that the
Y -seed associated to µi((Q, F ), x) is µi(Q, y). This was proved in [FZ07] after Definition 2.12.

2.2 Quivers with potentials and their mutations
We recall the notion of a quiver with potential from [DWZ08]. Let Q be a finite quiver. Denote
by k̂Q its completed path algebra, that is, the k-algebra whose underlying k-vector space is∏

w path

kw

and whose multiplication is deduced from the composition of paths by distributivity (by
convention, we compose paths from right to left). It is a topological algebra for the m-adic
topology, where m is the ideal of k̂Q generated by the arrows of Q. A potential on Q is an
element W of the space

Pot(Q) = k̂Q/C,

where C is the closure of the commutator subspace [k̂Q, k̂Q] in k̂Q. In other words, it is a
(possibly infinite) linear combination of cyclically inequivalent oriented cycles of Q. The pair
(Q, W ) is a quiver with potential.

Given any arrow a of Q, the cyclic derivative with respect to a is the linear map ∂a from
Pot(Q) to k̂Q whose action on (equivalence classes of) oriented cycles is given by

∂a(br · · · b2b1) =
∑
bi=a

bi−1bi−2 · · · b1brbr−1 · · · bi+1.
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The Jacobian algebra J(Q, W ) of a quiver with potential (Q, W ) is the quotient of the algebra
k̂Q by the closure of the ideal generated by the cyclic derivatives ∂aW , as a ranges over all
arrows of Q.

The above map is generalized as follows. For any path p of Q, define ∂p as the linear map
from Pot(Q) to k̂Q whose action on any (equivalence class of) oriented cycle c is given by

∂p(c) =
∑
c=upv

vu+
∑

c=p1wp2
p=p2p1

w,

where the sums are taken over all decompositions of c into paths of smaller length, with u, v
and w possibly trivial paths, and p1 and p2 non-trivial paths.

Let (Q, W ) be a quiver with potential. In order to define the mutation of (Q, W ) at a vertex `,
we must recall the process of reduction of a quiver with potential. Let Λ be the k-algebra given
by
⊕

i∈Q0
kei, where ei is the idempotent associated to the vertex i. Two quivers with potentials

(Q, W ) and (Q′, W ′) are right-equivalent if Q0 =Q′0 and there exists a Λ-algebra isomorphism
ϕ : k̂Q−→ k̂Q′ sending the class of W to the class of W ′ in Pot(Q′).

A quiver with potential (Q, W ) is trivial if W is a (possibly infinite) linear combination of
paths of length at least 2, and J(Q, W ) is isomorphic to Λ. It is reduced if W has no terms which
are cycles of length at most 2.

Theorem 2.1 [DWZ08, Theorem 4.6, Proposition 4.5]. Any quiver with potential (Q, W ) is
right-equivalent to a direct sum of a reduced one (Qred, Wred) and a trivial one (Qtriv, Wtriv),
both unique up to right-equivalence. Moreover, J(Q, W ) and J(Qred, Wred) are isomorphic.

We can now define the mutation of quivers with potentials. Let (Q, W ) be a quiver with
potential, and let ` be a vertex of Q not involved in any cycle of length 62. Assume that W
is written as a series of oriented cycles which do not begin or end in ` (W is always cyclically
equivalent to such a potential). The mutation of (Q, W ) at vertex ` is the new quiver with
potential µ`(Q, W ) obtained from (Q, W ) as follows.

(i) For any subquiver i a−−→ `
b−−→ j of Q, add an arrow i

[ba]−−−→ j.

(ii) Delete any arrow a incident with ` and replace it by an arrow a? going in the opposite
direction; the first two steps yield a new quiver Q̃.

(iii) Let W̃ be the potential on Q̃ defined by W̃ = [W ] +
∑
a?b?[ba], where the sum is taken

over all subquivers of Q of the form i
a−−→ `

b−−→ j, and where [W ] is obtained from W by replacing
each occurrence of ba in its terms by [ba]. The first three steps yield a new quiver with potential
µ̃`(Q, W ) = (Q̃, W̃ ).

The mutation µ`(Q, W ) is then defined as the reduced part of µ̃`(Q, W ). Note that µ`(Q, W )
might contain oriented cycles of length 2, even if (Q, W ) did not. This prevents us from
performing iterated mutations following an arbitrary sequence of vertices.

A vertex i of (Q, W ) which is not involved in any oriented cycle of length 62 (and thus at
which mutation can be performed) is an admissible vertex. An admissible sequence of vertices is
a sequence i= (i1, . . . , is) of vertices of Q such that i1 is an admissible vertex of (Q, W ), and
im is an admissible vertex of µm−1µm−2 · · · µ1(Q, W ), for 1<m6 s. In that case, we denote by
µi(Q, W ) the mutated quiver with potential µsµs−1 · · · µ1(Q, W ).
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2.3 Decorated representations and their mutations
We now recall from [DWZ08, § 10] the notion of a decorated representation of a quiver with
potential.

Let (Q, W ) be a quiver with potential, and let J(Q, W ) be its Jacobian algebra. A decorated
representation of (Q, W ) is a pair M= (M, V ), where M is a finite-dimensional nilpotent
J(Q, W )-right module and V is a finite-dimensional Λ-module (recall that Λ is given by⊕

i∈Q0
kei).

We now turn to the mutation of decorated representations. Given a decorated representation
M= (M, V ) of (Q, W ), and given any admissible vertex ` of (Q, W ), we construct a decorated
representation µ̃`(M) = (M, V ) of µ̃`(Q, W ) as follows.

We view M as a representation of the opposite quiver Qop (we must work over the opposite
quiver, since we use right modules). In particular, to each vertex i is associated a vector space Mi

(which is equal to Mei), and to each arrow a : i→ j is associated a linear map Ma :Mj →Mi.
For any path p= ar · · · a2a1, we denote by Mp the linear map Ma1Ma2 · · ·Mar and, for any
(possibly infinite) linear combination σ =

∑
i∈I λipi of paths, we denote by Mσ the linear map∑

i∈I λiMpi (this sum is finite since M is nilpotent). If σ is zero in J(Q, W ), then Mσ is the zero
map. Define the vector spaces Min and Mout by

Min =
⊕
a∈Q1

s(a)=`

Mt(a) and Mout =
⊕
b∈Q1

t(b)=`

Ms(b).

Define the linear map α :Min −→M` as the map given in matrix form by the line vector (Ma :
Mt(a)→M` | a ∈Q1, s(a) = `). Similarly, define β :M` −→Mout as the map given in matrix form
by the column vector (Mb :M`→Ms(b) | b ∈Q1, t(b) = `). Define a third map γ :Mout −→Min

as the map given in matrix form by

(M∂abW :Ms(b)→Mt(a) | a, b ∈Q1, s(a) = t(b) = `).

Now construct µ̃`(M) = (M, V ) as follows.

– For any vertex i 6= `, set M i =Mi and V i = Vi.

– Define M ` and V ` by

M ` =
Ker γ
Im β

⊕ Im γ ⊕ Ker α
Im γ

⊕ V` and V ` =
Ker β

Ker β ∩ Im α
.

– For any arrow a of Q not incident with `, set Ma =Ma.

– For any subquiver of the form i
a−−→ `

b−−→ j, set M [ba] =Mba.

– The actions of the remaining arrows are encoded in the maps

α=


−πρ
−γ

0
0

 and β = (0 ι ισ 0),

where:

∗ the map ρ :Mout→Ker γ is such that its composition with the inclusion map of Ker γ
gives the identity map of Ker γ;

∗ the map π : Ker γ→Ker γ/Im β is the natural projection map;
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∗ the map σ : Ker α/Im γ→Ker α is such that its composition with the projection map
Ker α→Ker α/Im γ gives the identity map of Ker α/Im γ;

∗ the map ι : Im γ→Min is the natural inclusion map.

It is shown in [DWZ08, Proposition 10.7] that µ̃`(M) is indeed a decorated representation of
µ̃`(Q, W ).

2.4 Some invariants of decorated representations
In this section, we recall from [DWZ10, DWZ08] the definitions of F -polynomial, g-vector,
h-vector and E-invariant of a decorated representation.

We fix a quiver with potential (Q, W ) and a decorated representationM= (M, V ) of (Q, W ).
We number the vertices of Q from 1 to n.

The F -polynomial of M is the polynomial of Z[u1, . . . , un] defined by

FM(u1, . . . , un) =
∑
e

χ(Gre(M))
n∏
i=1

uei
i .

The g-vector of M is the vector gM = (g1, . . . , gn) of Zn, where

gi = dim Ker γi − dimMi + dim Vi,

where γi is the map γ :Mout −→Min defined in § 2.3.
The h-vector of M is the vector hM = (h1, . . . , hn) of Zn, where

hi =−dim Ker βi,

where βi is the map β :Mi −→Mout defined in § 2.3.
The E-invariant of M is the integer

E(M) = dim HomJ(Q,W )(M,M) +
n∑
i=1

gi dimMi,

where (g1, . . . , gn) is the g-vector of M.
Let N = (N, U) be another decorated representation of (Q, W ). The E-invariant can also be

defined using the two integer-valued invariants

Einj(M,N ) = dim HomJ(Q,W )(M, N) +
n∑
i=1

(dimMi)gi(N )

and
Esym(M,N ) = Einj(M,N ) + Einj(N ,M).

We have that E(M) = Einj(M,M) = (1/2)Esym(M,M).

2.5 Cluster categories and cluster characters
In this section, we recall the definition of the (generalized) cluster category of a quiver with
potential from [Ami09] and some results on cluster characters from [Pla11].

2.5.1 Cluster categories. Let (Q, W ) be any quiver with potential. We first recall a
construction of [Gin06]. Define a graded quiver Q from Q in the following way:

– the quiver Q has the same vertices as the quiver Q;
– the set of arrows of Q is contained in that of Q, and these arrows have degree zero;
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– for each arrow a : i→ j of Q, add an arrow a∗ : j→ i of degree −1 in Q;

– for each vertex i of Q, add a loop ti : i→ i of degree −2 in Q.

From the graded quiver Q, we construct a differential graded algebra (dg algebra for short)
Γ = ΓQ,W as follows. As a graded algebra, Γ is the completed path algebra of Q. In particular,
its degree ` component is

Γ` =
∏

w path inQ
deg(w)=`

kw,

for any integer `.

The differential d of Γ is the unique continuous and k-linear differential acting as follows on
the arrows:

– for any arrow a of Q, d(a) = 0;

– for any arrow a of Q, d(a∗) = ∂aW ;

– for any vertex i of Q, d(ti) = ei(
∑

a∈Q1
(aa∗ − a∗a))ei.

The dg algebra thus defined is the complete Ginzburg dg algebra. Notice that H0Γ is canonically
isomorphic to J(Q, W ).

Consider now the derived category DΓ of Γ (for background material on the derived category
of a dg algebra, see, for example, [Kel94] or [KY11]). Let per Γ be the perfect derived category of
Γ, that is, the smallest triangulated full subcategory of DΓ containing Γ and closed under taking
direct summands. Denote by DfdΓ the full subcategory of DΓ whose objects are those of DΓ
with finite-dimensional total homology. It was proved in [KY11, Theorem 2.17] that DfdΓ is a
triangulated subcategory of per Γ.

Following [Ami09, Definition 3.5] (and [KY11, § 4] in the case where J(Q, W ) is infinite
dimensional), we define the cluster category of (Q, W ) as the idempotent completion of the
triangulated quotient per Γ/DfdΓ. We denote it by C = CQ,W .

2.5.2 Cluster characters. Let T be a triangulated category, with suspension functor Σ. Let
T =

⊕n
i=1 Ti be a rigid object of T , where the Ti are indecomposable and pairwise non-isomorphic

(a rigid object is an object with no self-extensions). Assume that prT T is a Krull–Schmidt
subcategory, where prT T is the full subcategory of T whose objects are those X for which there
exists a triangle

TX1 −→ TX0 −→X −→ ΣTX1
with TX0 and TX1 in add T .

In this situation, following [DK08, Pal08], we define the index of X with respect to T as the
element of the Grothendieck group K0(add T ) given by

indTX = [TX0 ]− [TX1 ].

This is well defined since we assumed prT T to be Krull–Schmidt. We then write indTX =∑n
i=1[indTX : Ti][Ti], where [indTX : Ti] is an integer for i= 1, 2, . . . , n.

Our preferred example is the case when T is the cluster category C of a quiver with potential
(Q, W ), and T is the object Σ−1Γ (or any mutation of Σ−1Γ in the sense of [KY11], see § 2.6).
We assume now that we work in that case.

1929

https://doi.org/10.1112/S0010437X11005483 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005483


P.-G. Plamondon

Consider the full subcategory D of C whose objects are those M of prCT ∩ prCΣT such
that HomC(T, M) is finite dimensional. Following [Pla11, Definition 3.10], we define the cluster
character with respect to T as the map sending each (isomorphism class of) object M of D to
the element (notation is explained below)

X ′M = xindT Σ−1M
∑
e∈Nn

χ(Gre(HomC(T, M)))x−ι(e)

of Q(x1, . . . , xn).
Here, χ is the Euler–Poincaré characteristic and, for any EndC(T )-module Z, Gre(Z) is the

quiver Grassmannian of dimension vector e of Z, that is, the projective variety whose points are
the submodules of Z with dimension vector e. For any dimension vector e, ι(e) is the expression
indTY + indTΣ−1Y for any object Y of D such that e is the dimension vector of HomC(T, Y ) (it
was shown in [Pla11, Lemma 3.6] that ι(e) does not depend on the choice of such an object Y ).
Finally, for any element t=

∑n
i=1 λi[Ti] of K0(add T ), we denote by xt the product

∏n
i=1 x

λi
i .

As proved in [Pla11, Proposition 3.6], this cluster character satisfies the following multipli-
cation formula: for any objects X and Y of D such that HomC(X, ΣY ) is one dimensional, if

X −→ E −→ Y −→ ΣX and Y −→ E′ −→X −→ ΣY

are non-split triangles, then E and E′ lie in D, and we have the equality

X ′XX
′
Y =X ′E +X ′E′ .

2.6 Mutations as derived equivalences
Let (Q, W ) be a quiver with potential. Assume that Q has no loops, and that i is a vertex
of Q not contained in a cycle of length 2. Let (Q′, W ′) be the mutated quiver with potential
µ̃i(Q, W ). Let Γ and Γ′ be the complete Ginzburg dg algebras associated to (Q, W ) and (Q′, W ′),
respectively.

We recall here some results of [KY11] on the mutation of Γ in DΓ. Let Γ∗i be the cone in DΓ
of the morphism

Γi −→
⊕
α

Γt(α)

whose components are given by left multiplication by α. Similarly, let ΣΓ∗i be the cone of the
morphism ⊕

β

Γs(β) −→ Γi

whose components are given by left multiplication by β.
Then it was proved in the discussion after [KY11, Lemma 4.4] that the morphism ϕi : ΣΓ∗i −→

ΣΓ∗i given in matrix form by (
−β∗ −∂αβW
ti a∗

)
becomes an isomorphism in C.

Remark 2.2. In particular, the composition of the morphisms⊕
α

Γt(α) −→ Γ∗i
Σ−1ϕi−−−−−→ Γ∗i −→

⊕
β

Γs(β)

is given in matrix form by (−∂abW ).
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The theorem below describes how the mutation of an indecomposable summand of Γ can be
interpreted as a derived equivalence.

Theorem 2.3 [KY11, Theorem 3.2]. (i) There exists a triangle equivalence µ̃+
i from D(Γ′) to

D(Γ) sending Γ′j to Γj if i 6= j and to the cone Γ∗i of the morphism

Γi −→
⊕
α

Γt(α)

whose components are given by left multiplication by α if i= j. The functor µ̃+
i restricts to

triangle equivalences from per Γ′ to per Γ and from DfdΓ′ to DfdΓ.

(ii) Let Γred and Γ′red be the complete Ginzburg dg algebras of the reduced part of (Q, W )
and µ̃i(Q, W ), respectively. The functor µ̃+

i induces a triangle equivalence (µ+
i )red :D(Γ′red)−→

D(Γred) which restricts to triangle equivalences from per Γ′red to per Γred and from DfdΓ′red to
DfdΓred.

We will denote a quasi-inverse of µ̃+
i by the symbol µ̃−i . Note that these equivalences induce

equivalences on the level of cluster categories, which we will also denote by µ̃+
i and µ̃−i .

In § 4.1, we will need a concrete description of µ̃+
i and µ̃−i . The functor µ̃+

i is the derived
functor ?⊗LΓ′ T , where T is the Γ′–Γ-bimodule described below. The functor µ̃−i is then
HomΓ(T, ?).

As a right Γ-module, T is a direct sum
⊕n

j=1 Tj , where Tj is isomorphic to ejΓ if i 6= j and
Ti is the cone of the morphism

eiΓ−→
⊕
α∈Q1

s(α)=i

et(α)Γ

whose components are given by left multiplication by α. Thus, as a graded module, Ti is
isomorphic to

PΣi ⊕
⊕
α∈Q1

s(α)=i

Pα,

where PΣi is a copy of Σ(eiΓ), and each Pα is a copy of et(α)Γ. We will denote by eΣi the
idempotent of PΣi and by eα the idempotent of Pα.

The left Γ′-module structure of T is described in terms of a homomorphism of dg algebras
Γ′ −→HomΓ(T, T ), using the left HomΓ(T, T )-module structure of T . We will need the
description of the image of some elements of Γ′ under this homomorphism. This description
is given below.

For any vertex j of Q, the element ej is sent to the identity of Tj .

Any arrow δ not incident with i is sent to the map which is left multiplication by δ.

For any arrow α of Q such that s(α) = i, the element α? is sent to the map fα? : Tt(α) −→ Ti
defined by fα?(a) = eαa.

For any arrow β of Q such that t(β) = i, the element β? is sent to the map fβ? : Ti −→ Ts(β)

defined by fβ?(eΣiai +
∑

s(ρ)=i eρaρ) =−β∗ai −
∑

s(ρ)=i(∂ρβW )aρ.
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3. Application to skew-symmetric cluster algebras

3.1 Rigid objects are determined by their index
This section is the Hom-infinite equivalent of [DK08, § 2].

Let C be a triangulated category, and let T =
⊕n

i=1 Ti be a rigid object of C, where the Ti are
indecomposable and pairwise non-isomorphic. Assume that prCT is a Krull–Schmidt category,
and that B = EndC T is the completed Jacobian algebra J(Q, W ) of a quiver with potential
(Q, W ). An example of such a situation is the cluster category CQ,W , with T = Σ−1Γ.

The main result of this section is the following.

Proposition 3.1. With the above assumptions, if X and Y are rigid objects in prCT such that
indTX = indTY , then X and Y are isomorphic.

The rest of the section is devoted to the proof of the proposition.

Let X be an object of prCT , and let the triangle TX1
fX

−−−→ TX0 −→X −→ ΣTX1 be an (add T )-
presentation of X. The group AutC(TX1 )×AutC(TX0 ) acts on the space HomC(TX1 , TX0 ), with
action defined by (g1, g0)f ′ = g0f

′(g1)−1. The orbit of fX under this action is the image of the
map

Φ : AutC(TX1 )×AutC(TX0 ) −→ HomC(TX1 , TX0 ),
(g1, g0) 7−→ g0f

X(g1)−1.

Our strategy is to show that if Y is another rigid object of prCT , then the orbits of fX and fY

must intersect (and thus coincide), proving that X and Y are isomorphic.
It was proved in [Pla11, Lemma 3.2] that the functor F = HomC(T, ?) induces an equivalence

of categories
prCT/(ΣT )−→modB,

where modB is the category of finitely presented right B-modules. Since T is rigid, this implies
that F induces a fully faithful functor

add T −→modB.

Thus, we can often consider automorphisms and morphisms in the category modB instead of
in C.

Now, let m be the ideal of J(Q, W ) generated by the arrows of Q.
The group A= AutB(FTX1 )×AutB(FTX0 ) is the limit of the finite-dimensional affine

algebraic groups

An = AutB(FTX1 /(FTX1 mn))×AutB(FTX0 /(FTX0 mn))

with respect to the natural projection maps from An+1 to An, for n ∈ N.
Similarly, the vector space H = HomB(FTX1 , FTX0 ) is the limit of the spaces

Hn = HomB(FTX1 /(FTX1 mn), FTX0 /(FTX0 mn))

with respect to the natural projections. All the Hn are finite-dimensional spaces, and they are
endowed with the Zariski topology. The projection maps are then continuous, and H is endowed
with the limit topology.

Finally, for any integer n, we define a morphism Φn :An→Hn which sends any element
(g1, g0) of An to g0f

X
n (g1)−1, where fXn is the image of fX in Hn under the canonical projection.

Then the morphism Φ is the limit of the Φn.
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The situation is summarized in the following commuting diagram.

A= limAn · · ·

Φ
��

// . . . // A3
//

Φ3

��

A2
//

Φ2

��

A1

Φ1

��
H = limHn · · · // · · · // H3

// H2
// H1

The next step is the following: we will prove that the image of Φ is the limit of the images of
the Φn. This will follow from the lemma below.

Lemma 3.2. Let (Xi)i∈N be a family of topological spaces. Let (fi :Xi→Xi−1)i>1 be a family
of continuous maps, and let X = limXi. Let (X ′i)i∈N be another family of topological spaces,
with continuous maps (f ′i :X ′i→X ′i−1)i>1, and let X ′ = limX ′i. Let (ui :Xi→X ′i) be a family of
continuous maps such that f ′iui = ui−1fi for all i> 1, and let u= lim ui. Denote by pi :X →Xi

and p′i :X ′→X ′i the canonical projections. For integers i < j, denote by fij (respectively f ′ij)
the composition fjfj−1 · · · fi+1 (respectively f ′jf

′
j−1 · · · f ′i+1). Let x′ be an element of X ′ with

the property that for all i ∈ N, there exists j > i such that for all `> j, fi`(u−1
` (p′`(x

′))) =
fij(u−1

j (p′j(x
′))).

Then x′ admits a preimage in X, that is, there exists x ∈X such that u(x) = x′.

Proof. This is a consequence of the Mittag–Leffler theorem; see for instance [Bou71,
Corollary II.5.2]. 2

The above lemma implies that the image of Φ is the limit of the images of the Φn. Indeed, the
universal property of the limit gives an inclusion from the image of Φ to the limit of the images
of the Φn. Let now x′ be in the image of Φ, and let x′n be its projection in the image of Φn. The
set Φ−1

n (xn) is a closed subset of An and, for any m> n, the image of Φ−1
m (xm) in Φ−1

n (xn) is
closed. Since An has finite dimension as a variety, the sequences of images of the Φ−1

m (xm) in
Φ−1
n (xn) eventually becomes constant. Applying the above lemma, we get that x′ has a preimage

in A by Φ. This proves that the image of Φ is the limit of the images of the Φn.
We will now prove that the image of each Φn is open (and thus dense, since Hn is

irreducible). To prove this, we pass to the level of Lie algebras. To lighten notation, we
let En = EndB(FTX1 /FTX1 m)× EndB(FTX0 /FTX0 m) be the Lie algebra of An for all positive
integers n. To prove that the image of Φn is open, it is sufficient to show that the map

Ψn : En −→ Hn,

(g1, g0) 7−→ g0f
X
n − fXn g1

is surjective.
The limit of the En is E = EndB(FTX1 )× EndB(FTX0 ), and the limit of the Ψn is the map

Ψ : E −→ H,

(g1, g0) 7−→ g0f
X − fXg1.

The diagram below summarizes the situation.

E = lim En · · ·

Ψ
��

// . . . // E3
//

Ψ3

��

E2
//

Ψ2

��

E1

Ψ1

��
H = limHn · · · // . . . // H3

// H2
// H1

All the canonical projections are surjective.
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Lemma 3.3. The map Ψ defined above is surjective.

Proof. This proof is contained in the proof of [DK08, Lemma 2.1]. 2

As a consequence, all the Ψn are surjective. Hence, the images of the Φn are open.
From this, we deduce that if Y is another rigid object of prCT with (add T )-presentation

TX0
fY

−−−→ TX1 −→ Y −→ ΣTX1 , then X and Y are isomorphic. Indeed, by the above reasoning,
the orbit of fY is the limit of the orbits of its projections in the Hn. But these orbits are open,
and so they intersect (and coincide) with the images of the Φn defined above. Hence, the orbit
of fY in H is the limit of the images of the Φn, and this is exactly the orbit of fX . Therefore,
X and Y are isomorphic.

The last step in proving Proposition 3.1 is to show that given indTX, we can ‘deduce’ TX1
and TX0 .

An (add T )-approximation TX1 → TX0 →X → ΣTX1 is minimal if one of the following
conditions hold.

– The above triangle does not admit a direct summand of the form

R
idR−−−→R−→ 0−→ ΣR.

– The morphism f : TX0 →X in the presentation has the property that for any g : TX0 → TX0 ,
the equality fg = f implies that g is an isomorphism.

In fact, either of these two conditions implies the other.

Lemma 3.4. The above two conditions are equivalent if prCT is Krull–Schmidt.

Proof. First suppose that the presentation has the form

T ′1 ⊕R
u⊕1R−−−−−→ T ′0 ⊕R−→X −→ ΣTX1 ,

where f = (f ′, 0) in matrix form. Then the endomorphism g of T ′0 ⊕R given by g = 1T ′0 ⊕ 0 is
not an isomorphism, and fg = f .

Now suppose that the presentation admits no direct summand of the form

R
idR−−−→R−→ 0−→ ΣR.

Using the Krull–Schmidt property of prCT , we can decompose both TX0 and TX1 as a finite direct
sum of objects with local endomorphism rings. In that case, the morphism f written in matrix
form (in any basis) has no non-zero entries.

Let g be an endomorphism of TX0 such that fg = f . Then f(1TX
0
− g) = 0. Consider the

morphism (1TX
0
− g) written in matrix form. If one of its entries is an isomorphism, then by a

change of basis we can write (1TX
0
− g) as the matrix(

∗ 0
0 φ

)
,

where φ is an isomorphism. In that case, it is impossible that f(1TX
0
− g) = 0, since f has no

non-zero entries. This implies that none of the entries of the matrix of (1TX
0
− g) is invertible.

Therefore, the diagonal entries of g are invertible (since for any element x of a local ring, if
(1− x) is not invertible, then x is), while the other entries are not, and g is an isomorphism. 2
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Lemma 3.5. If X is rigid and TX1
α−−→ TX0 −→X

γ−−→ ΣTX1 is a minimal (add T )-presentation,
then TX1 and TX0 have no direct summand in common.

Proof. The first proof of [DK08, Proposition 2.2] works in this setting. We include here a similar
argument for the convenience of the reader.

Suppose that Ti is a direct factor of TX0 . Let us prove that it is not a direct factor of TX1 .
Applying F = HomC(T, ?) to the triangle above, we get a minimal projective presentation of

FX. This yields an exact sequence

(FX, Si)−→ (FTX0 , Si)
Fα∗−−−−→ (FTX1 , Si),

where Si is the simple EndC(T )-module at the vertex i. Since the presentation is minimal, Fα∗

vanishes, and there exists a non-zero morphism f : FX → Si. In particular, f is surjective.
Let g : FTX1 −→ Si be a morphism. Since FTX1 is projective, there exists a morphism

h : FTX1 −→ FX such that fh= g.
Lift Si to an object ΣT ∗i of C, and lift f , g and h to morphisms f :X → ΣT ∗i , g : TX1 → ΣT ∗i

and h : TX1 →X of C. Using [Pla11, Lemma 3.2(1)], we get that fh= g.

Σ−1X
Σ−1γ // TX1

α //

g

��

h

wwooooooooooooooo TX0
σ

xx
X

f // ΣT ∗i

Since X is rigid, hΣ−1γ vanishes, and thus so does gΣ−1γ. Then there exists a morphism
σ : TX0 → ΣT ∗i such that σα= g. But, since Fα∗ = 0, we get that g = (Fσ)(Fα) vanishes.

We have thus shown that there are no non-zero morphisms from FTX1 to Si. Therefore, Ti is
not a direct factor of TX1 . 2

By the above lemma, the knowledge of indTX is sufficient to deduce the isomorphism classes of
TX1 and TX0 in any minimal (add)-presentation of X. Therefore, if Y is another rigid object of
prCT with indTX = indTY , all of the above reasoning implies that X and Y are isomorphic.
This finishes the proof of Proposition 3.1.

3.2 Index and g-vectors
It was proved in [FK10, Proposition 6.2] that, inside a certain Hom-finite cluster category C,
the index of an object M with respect to a cluster-tilting object T gives the g-vector of X ′M
with respect to the associated cluster. The authors then used this result to prove conjectures
of [FZ07] in this case. In this section, we will prove a similar result, dropping the assumption of
Hom-finiteness.

Let (Q, F ) be a finite ice quiver, where Q has no oriented cycles of length 62. Suppose that
the associated matrix B has full rank r. Denote by A the associated cluster algebra. Let W
be a potential on Q, and let C = CQ,W be the associated cluster category. Denote by D the full
subcategory of prCΓ ∩ prCΣ−1Γ whose objects are those X such that HomC(Σ−1Γ, X) is finite
dimensional.

Following [FK10], let U be the full subcategory of D defined by

U = {X ∈ D |HomC(Σ−1Γj , X) = 0 for r + 1 6 j 6 n}.

Note that U is invariant under iterated mutation of Γ at vertices 1, 2, . . . , r.

1935

https://doi.org/10.1112/S0010437X11005483 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005483


P.-G. Plamondon

Let T =
⊕n

j=1 Tj =
⊕r

j=1 Tj ⊕
⊕n

j=r+1 Γj be a rigid object of D reachable from Γ by
mutation at an admissible sequence of vertices of Q not in F , and let G be the functor
HomC(Σ−1T, ?) from C to the category of EndC(T )-modules. Let X ′? be the associated cluster
character, defined by

X ′M = xindTM
∑
e

(χ(Gre(GM)))x−ι(e),

where ι(e) is the vector indTY + indTΣY for any Y such that the dimension vector of FY is e
(it was proved in [Pla11, Lemma 3.6] that this vector is independent of the choice of such a Y ;
see also [Pal08]).

Since we only allow mutations at vertices not in F , the Gabriel quiver of T can be thought
of as an ice quiver (QT , F ) with the same set of frozen vertices as (Q, F ). Let BT = (bTj`) be the
matrix associated to (QT , F ). According to [GSV03, Lemma 1.2] and [BFZ05, Lemma 3.2], BT

is of full rank r if B is.

Suppose now that M is an object of U . Let us prove that X ′M then admits a g-vector, that
is, X ′M is in the set M defined in § 2.1.2. In order to do this, let us compute −ι(δj), where δj is
the vector whose jth coordinate is 1 and all others are 0, for j = 1, 2, . . . , r.

Let T ∗j be an indecomposable object of D such that GT ∗j is the simple EndC(T )-module at the
vertex j. It follows from the derived equivalence in [KY11, Theorem 3.2] that we have triangles

Tj →
⊕
α∈QT

1
s(α)=j

Tt(α)→ T ∗j → ΣTj and T ∗j →
⊕
α∈QT

1
t(α)=j

Ts(α)→ Tj → ΣT ∗j .

We deduce from those triangles that for any 0 6 `6 n, the `th entry of −ι(δj) is the number of
arrows in QT from ` to j minus the number of arrows from j to `. This number is bT`j . Thus,

with the notation of § 2.1.2, we have that x−ι(δj) =
∏n
`=1 x

b`j

` = ŷj .

Therefore, since ι is additive, for M in U , we have the equality

X ′M = xindTM
∑
e

(χ(Gre(GM)))
r∏
j=1

ŷ
ej

j

(notice that if M is in U , then Gre(GM) is empty for all vectors e such that one of er+1, . . . , en
is non-zero). Moreover, the rational function R(u1, . . . , ur) =

∑
e(χ(Gre(GM)))

∏r
j=1 u

ej

j is in
fact a polynomial with constant coefficient 1, and is thus primitive.

We have proved the following result.

Proposition 3.6. Any object M of U is such that X ′M admits a g-vector. This g-vector
(g1, . . . , gr) is given by gj = [indTM : Tj ], for 1 6 j 6 r.

These considerations allow us to prove the following theorem, whose parts (i), (iii) and (iv)
were first shown in the same generality in [DWZ10] using decorated representations, and then
in [Nag10] using Donaldson–Thomas theory.

We say that a collection of vectors of Zr are sign-coherent if the ith coordinates of all the
vectors of the collection are either all non-positive or all non-negative.

Theorem 3.7. Let (Q, F ) be any ice quiver without oriented cycles of length 62, and let A be
the associated cluster algebra. Suppose that the matrix B associated to (Q, F ) is of full rank r.
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(i) Conjecture 6.13 of [FZ07] holds for A, that is, the g-vectors of the cluster variables of
any given cluster are sign-coherent.

(ii) Conjecture 7.2 of [FZ07] holds for A, that is, the cluster monomials are linearly
independent over ZP, where P is the tropical semifield in the variables xr+1, . . . , xn.

(iii) Conjecture 7.10 of [FZ07] holds for A, that is, different cluster monomials have different
g-vectors, and the g-vectors of the cluster variables of any cluster form a Z-basis of Zr.

(iv) Conjecture 7.12 of [FZ07] holds for A, that is, if g = (g1, . . . , gr) and g′ = (g′1, . . . , g
′
r)

are the g-vectors of one cluster monomial with respect to two clusters t and t′ related by one
mutation at the vertex i, then we have

g′j =
{
−gi if j = i,
gj + [bji]+gi − bji min(gi, 0) if j 6= i,

where B = (bj`) is the matrix associated to the seed t, and we set [x]+ = max(x, 0) for any real
number x.

Proof. Choose a non-degenerate potential W on Q, and let C = CQ,W be the associated cluster
category. Let X ′? be the cluster character associated to Γ.

We first prove Conjecture 6.13. We reproduce the arguments of [DK08, § 2.4]. To any cluster
t of A, we associate (using [Pla11, Theorem 4.1]) a reachable rigid object T of U , obtained
by mutating at vertices not in F . Write T as the direct sum of the indecomposable objects
T1, . . . , Tn. Then, for 1 6 j 6 r, we have that X ′Tj

is a cluster variable lying in the cluster t. By
Proposition 3.6, its g-vector (gj1, . . . , g

j
r) is given by gj` = [indΓTj : Γ`]. Now, by Lemma 3.5, any

minimal add Γ-presentation of T

R1 −→R0 −→ T −→ ΣR1

is such that R0 and R1 have no direct factor in common. But this triangle is a direct sum
of minimal presentations of T1, . . . , Tn. Therefore, the indices of these objects must be sign-
coherent. This proves Conjecture 6.13.

Next, we prove Conjecture 7.2. We prove it in the same way as in [FK10, Corollary 4.4(b),
Theorem 6.3(c)]. Using [Pla11, Theorem 4.1], we associate to any finite collection of clusters
(tj)j∈J of A a family of reachable rigid objects (T j)j∈J of U , obtained by mutating at vertices
not in F (for the moment, we do not know if this assignment is unique). Let (Mj)j∈J be a family
of pairwise non-isomorphic objects, where each Mj lies in add T j (in particular, these objects are
rigid). Any ZP-linear combination of cluster monomials can be written as a Z-linear combination
of some X ′Mj

, where the Mj are as above. Thus, it is sufficient to show that the X ′Mj
are linearly

independent over Z.
The key idea is to assign a degree to each xj in such a way that each ŷj is of degree one. Such

an assignment is obtained by putting deg(xj) = kj , where the kj are rational numbers such that

(k1, . . . , kn)B = (1, . . . , 1).

This equation admits a solution, since the rank of B is r. Thus, the term of minimal degree in
X ′M is xindΓM , for any M in U .

Now let (cj)j∈J be a family of real numbers such that
∑

j∈J cjX
′
Mj

= 0. The term of minimal
degree of this polynomial has the form

∑
`∈L c`x

indΓM` for some non-empty subset L of J , and this
term must vanish. But, according to Proposition 3.1, the indices of the M` are pairwise distinct.
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Thus, c` is zero for any ` ∈ L. Repeating this argument, we get that cj is zero for any j ∈ J . This
proves the linear independence of cluster monomials.

The proof of Conjecture 7.10 goes as follows. Let {w1, . . . , wr} be a cluster of A, and
let wa1

1 · · · war
r be a cluster monomial. Let T =

⊕r
j=1 Tj ⊕

⊕n
j=r+1 Γn be the rigid object of

C associated to that cluster. Then the cluster character

X ′M = xindΓM
∑
e

(χ(Gre(HomC(Σ−1Γ, M))))x−ι(e)

sends the object
⊕r

j=1 T
aj

j to the cluster monomial wa1
1 · · · war

r . The g-vector of this cluster
monomial is the index of

⊕r
j=1 T

aj

j by Proposition 3.6 and, by Proposition 3.1, this object is
completely determined by its index. Therefore, two different cluster monomials, being associated
to different rigid objects of C, have different g-vectors.

Let us now prove that the g-vectors of w1, . . . , wr form a basis of Zr. For any object M
of D, denote by (indΓM)0 the vector containing the first r components of indΓM . In view of
Proposition 3.6, it is sufficient to prove that the vectors (indΓT1)0, . . . , (indΓTr)0 form a basis
of Zr.

We prove this by induction. The statement is trivially true for Γ. Now suppose that it is true
for some reachable object T , as above. Let 1 6 `6 r be a vertex of Q, and let T ′ = µ`(T ). We
can write T ′ =

⊕n
j=1 T

′
j , where T ′j = Tj if j 6= `, and there are triangles

T` −→
⊕
α∈QT

1
s(α)=`

Tt(α) −→ T ′` −→ ΣT` and T ′` −→
⊕
α∈QT

1
t(α)=`

Ts(α) −→ T` −→ ΣT ′`

thanks to [KY11]. Moreover, the space HomC(T ′`, ΣT`) is one dimensional; by applying [Pla11,
Lemma 3.8] (with the T of the lemma being equal to our Σ−1Γ), we get an isomorphism

(Γ)(T ′`, ΣT`)−→DHomC(T`, ΣT ′`)/(Γ).

Therefore, one of the two morphisms T ′` → ΣT` and T`→ ΣT ′` in the triangles above is in (Γ).
Depending on which one is in (Γ), and applying [Pla11, Lemma 3.4(2)], we get that either

indΓT
′
j =


indΓTj if j 6= `,

−indΓT` +
∑
α∈QT

1
s(α)=`

indΓTt(α) if j = `

or

indΓT
′
j =


indΓTj if j 6= `,

−indΓT` +
∑
α∈QT

1
t(α)=`

indΓTs(α) if j = `

holds. Therefore, the (indΓT
′
j)0 still form a basis of Zr. Conjecture 7.10 is proved.

Finally, let us now prove Conjecture 7.12. Let T and T ′ be reachable rigid objects related by
a mutation at vertex `, as above. Then we have two triangles

T` −→ E −→ T ′` −→ ΣT` and T ′` −→ E′ −→ T` −→ ΣT ′`,

where E =
⊕

α∈QT
1

s(α)=`

Tt(α) and E′ =
⊕

α∈QT
1

t(α)=`

Ts(α). Moreover, the dimension of HomC(T, ΣT ′) is

one. Thus, we can apply [Pla11, Proposition 2.7].
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Let M be a rigid object in prCT , and let TM1 → TM0 →M → ΣTM1 be a minimal (add T )-
presentation. Then, by [Pla11, Proposition 2.7], M is in prCT ′. Moreover, if TM0 = T

M
0 ⊕ T a` and

TM1 = T
M
1 ⊕ T b` , where T` is not a direct summand of TM0 ⊕ T

M
1 , then the end of the proof of

that proposition gives us a triangle

(E′)c ⊕ Eb−c ⊕ (T ′`)
a−c ⊕ TM1 −→ (T ′`)

b−c ⊕ TM0 ⊕ (E′)a −→M −→ · · · ,

for some integer c. Notice that [indTM : T`] = (a− b), and that since TM0 and TM0 have no
direct factor in common by Lemma 3.5, one of a and b must vanish; thus, c also vanishes, since
c6 min(a, b). Notice further that b=−min([indTM : T`], 0). Thus,

[indT ′M : T ′j ] =

{
−[indTM : T`] if j = `,

[indTM : Tj ] + [indTM : T`][bTj`]+ − bTj` min([indTM : T`], 0) if j 6= `.

This proves the desired result on g-vectors. 2

Remark 3.8. Using the notation of the end of the proof of Theorem 3.7, we get that, if M is an
object of D which is not necessarily rigid, then

[indT ′M : T ′j ] =

{
−[indTM : T`] if j = `,

[indTM : Tj ] + a[bj`]+ − b[−bj`]+ if j 6= `.

Moreover, if the presentation TM1 → TM0 →M → ΣTM1 is minimal, then the integer c vanishes.
Indeed, in the proof of [Pla11, Proposition 2.7], c (or r in [Pla11]) is defined by means of the
composition

TM1 −→ T
M
0 ⊕ T a` −→ Σ(T ′`)

a.

The minimality of the presentation implies that this composition vanishes, and thus that c= 0.

Using Theorem 3.7, we get a refinement of [Pla11, Theorem 4.1].

Corollary 3.9. The cluster character X ′? associated to Γ induces a bijection between the set
of isomorphism classes of indecomposable reachable rigid objects of C and the set of cluster
variables of A.

Proof. It was proved in [Pla11, Theorem 4.1] that we have a surjection. We deduce from
Theorem 3.7 that different indecomposable reachable rigid objects are sent to different cluster
variables. Indeed, different such objects are sent to elements in A which are linearly independent,
and thus different. 2

We also get that the mutation of rigid objects governs the mutation of tropical Y -variables,
as shown in [Kel10, Corollary 6.9] in the Hom-finite case.

Corollary 3.10. Let (Q, W ) be a quiver with potential, and let C be the associated cluster
category. Let i= (i1, . . . , im) be an admissible sequence of vertices, and let T ′ be the object
µi(Γ). Let (Q, y) be a Y -seed, with y = (y1, . . . , yn).

Then µi(Q, y) is given by (µi(Q), y′), where

y′j =
n∏
s=1

y
−[indΣ−1T ′Γs:Σ−1T ′j ]
s .

Proof. The result is proved by induction on m. It is trivially true for m= 0, that is, for empty
sequences of mutations. Suppose that it is true for any sequence of m mutations.
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Let i′ = (i1, . . . , im, `) be an admissible sequence of m+ 1 mutations. Let T ′′ = µi′(Γ) and
(µi′(Q), y′′) = µi′(Q, y).

Using the mutation rule for Y -seeds (see § 2.1.4) and the induction hypothesis, we get that

y′′` =
n∏
s=1

y
[indΣ−1T ′Γs:Σ−1T ′j ]
s

and that, for any vertex j different from `,

y′′j =
n∏
s=1

y
−[indΣ−1T ′Γs:Σ−1T ′j ]−[indΣ−1T ′Γs:Σ−1T ′` ][bT

′
`j ]+−bT

′
`j min(−[indΣ−1T ′Γs:Σ−1T ′` ],0)

s .

Now, recall from the end of the proof of Theorem 3.7 that for any object M of prCT ′, we
have an (add T ′′)-presentation

(E′)c ⊕ Eb−c ⊕ (T ′′` )a−c ⊕ T ′M1 −→ (T ′′` )b−c ⊕ T ′M0 ⊕ (E′)a −→M −→ Σ(Eb ⊕ (T ′′` )a−c ⊕ T ′M1 ),

and that [indT ′M : T ′`] = (a− b). Notice also that a=−min([−indT ′M : T ′`], 0). Thus,

[indT ′′M : T ′′j ] =

{
−[indT ′M : T ′`] if j = `,

[indT ′M : T ′j ] + [indT ′M : T ′`][b
T ′
`j ]+ + bT

′
`j min(−[indT ′M : T ′`], 0) if j 6= `.

Replacing M by ΣΓs, and using the above computation of y′′j , we get exactly the desired
equality. 2

Remark 3.11. The opposite category Cop is triangulated with suspension functor Σop = Σ−1. If
T is a rigid object of C, then it is rigid in Cop, and any object X admitting an (add Σ−1T )-
presentation in C admits an (add T )-presentation in Cop. If we denote by indop

T X the index of X
with respect to T in Cop, then we have the equality indop

T X =−indΣ−1TX. Thus, the equality of
Corollary 3.10 can be written as

y′j =
n∏
s=1

y
[indop

T ′Γs:T ′j ]
s .

This corresponds to the notation and point of view adopted in [Kel10, Corollary 6.9].

3.3 Cluster characters and F -polynomials
Let A be a cluster algebra with principal coefficients at a seed ((Q, F ), x). In particular, n= 2r,
and the matrix B associated to (Q, F ) has full rank r.

Let W be a potential on Q, and let C = CQ,W be the cluster category associated to (Q, W ).
Let T be a rigid object of C reachable from Γ by mutation at an admissible sequence of vertices
(i1, . . . , is) not in F . Write T as

⊕2r
j=1 Tj , where T` = Γ` for r < `6 2r.

For any vertex j not in F , X ′Tj
is a cluster variable in A. Specializing at x1 = · · ·= xr = 1,

we obtain the corresponding F -polynomial (see § 2.1.3), which we will denote by FTj .
We thus have the equality

FTj =
2r∏

i=r+1

x
[indΓTj :Γi]
i

∑
e

χ(Gre(HomC(Σ−1Γ, Tj)))
2r∏

i=r+1

x
−ι(e)i

i ,

where ι(e) was defined in § 2.5.2 and ι(e)i is the ith component of ι(e).
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Remark 3.12. The element X ′Tj
of A is the jth cluster variable of the cluster obtained from

the initial cluster at the sequence of vertices (i1, . . . , is) by [Pla11, Theorem 4.1]. Therefore, the
polynomial FTj is the corresponding F -polynomial.

It follows from our computation in § 3.2 that for r < i6 2r, there is an equality −ι(e)i =∑r
j=1 ejbij and, since our cluster algebra has principal coefficients, this number is ei−r. Thus, we

get the equality

FTj =
2r∏

i=r+1

x
[indΓTj :Γi]
i

∑
e

χ(Gre(HomC(Σ−1Γ, Tj)))
2r∏

i=r+1

x
ei−r

i .

From this, we can prove the following theorem, using methods very similar to those found
in [FK10], in which the theorem was proved in the Hom-finite case. Note that the theorem was
shown in [DWZ10] using decorated representations and in [Nag10] using Donaldson–Thomas
theory.

Theorem 3.13. Conjecture 5.6 of [FZ07] holds for A, that is, any F -polynomial has constant
term 1.

Proof. It suffices to show that the polynomial FTj defined above has constant term 1. In order
to do so, we will prove that, for any r < i6 2r, the number [indΓTj : Γi] vanishes.

We know that Tj lies in the subcategory U defined in § 3.2, that is, for any r < i6 2r, the
space HomC(Σ−1Γi, Tj) vanishes. Using [Pla11, Proposition 2.15], we get that HomC(Tj , ΣΓi)
also vanishes.

Let T 1→ T 0→ Tj → ΣT 1 be a minimal (add Γ)-presentation of Tj . Let r < i6 2r be a vertex
of Q. Suppose that Γi is a direct summand of T 1. Since HomC(Tj , ΣΓi) is zero, this implies that
the presentation has the triangle

Γi
1Γi−−−→ Γi −→ 0−→ ΣΓi

as a direct summand, contradicting the minimality of the presentation. Thus, Γi is not a direct
summand of T 1.

Suppose that Γi is a direct summand of T 0. Since i is a sink in Q, and since Γi is not a direct
summand of T 1, we get that HomC(T 1, Γi) is zero. This implies that Γi is a direct summand of
Tj and, since the latter is indecomposable, we get that it is isomorphic to the former. This is a
contradiction, since T must be basic. 2

Definition 3.14. For any object M of D, the F -polynomial of M is the polynomial

FM =
∑
e

χ(Gre(HomC(Σ−1Γ, M)))
2r∏

i=r+1

x
ei−r

i

in Z[xr+1, . . . , x2r].

Thanks to Theorem 3.13, this definition is in accordance with the FTi used above. Note that
we have the equality

X ′M |x1=···=xr=1 =
2r∏

i=r+1

x
[indΓM :Γi]
i FM .

We can deduce from the multiplication formula of [Pla11, Proposition 3.16] an equality for the
polynomials FM . This was first proved implicitly in [Pal08, § 5.1]; see also [Kel10, Theorem 6.12].
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Proposition 3.15. Let M and N be objects of D such that the space HomC(M, ΣN) is one
dimensional. Let

M −→ E −→N −→ ΣM and N −→ E′ −→M −→ ΣN

be non-split triangles. Then

FMFN =
2r∏

i=r+1

x
di−r

i FE +
2r∏

i=r+1

x
d′i−r

i FE′ ,

where d= (d1, . . . , d2r) is the dimension vector of the kernel K of the induced morphism
HomC(Σ−1Γ, M)−→HomC(Σ−1Γ, E) and d′ = (d′1, . . . , d

′
2r) is the dimension vector of the kernel

K ′ of HomC(Σ−1Γ, N)−→HomC(Σ−1Γ, E′).

Proof. We know from [Pla11, Proposition 3.16] that X ′MX
′
N =X ′E +X ′E′ . Specializing at

x1 = · · ·= xr = 1, we get the equality
2r∏

i=r+1

x
[indΓM :Γi]+[indΓN :Γi]
i FMFN =

2r∏
i=r+1

x
[indΓE:Γi]
i FE +

2r∏
i=r+1

x
[indΓE

′:Γi]
i FE′ .

It follows from [Pla11, Lemma 3.5] (applied to the above triangles shifted by Σ−1, and with
T = Σ−1Γ) that

indΓM + indΓN = indΓE + indΓK + indΓΣK
= indΓE

′ + indΓK
′ + indΓΣK ′,

where K and K ′ are as in the statement of the proposition. But indΓK + indΓΣK = ι(d) and,
using our computation of ι(e) of § 3.2, we get that −ι(d)i = di−r for r < i6 2r.

Similarly, we get that indΓK
′ + indΓΣK ′ = ι(d′), and that −ι(d′)i = d′i−r for r < i6 2r. The

desired equality follows. 2

4. Link with decorated representations

In this section, an explicit link between cluster categories and the decorated representations
of [DWZ08] is established. We show that the mutation of decorated representations of [DWZ08]
corresponds to the derived equivalence of [KY11], and we give an interpretation of the E-invariant
of [DWZ10] as half the dimension of the space of self-extensions of an object in the cluster
category.

4.1 Mutations
Let (Q, W ) be a quiver with potential. Let Γ = ΓQ,W be the associated complete Ginzburg dg
algebra, and C = CQ,W be the associated cluster category. Let B =BQ,W be the endomorphism
algebra of Γ in C. Recall from [KY11, Lemma 2.8] that B is the Jacobian algebra of (Q, W ).
Denote by F the functor HomC(Σ−1Γ, ?) from C to ModB. Let D =DQ,W be the full subcategory
of prCΓ ∩ prCΣ−1Γ whose objects are those X such that FX is finite dimensional.

Consider the map Φ = ΦQ,W from the set of isomorphism classes of objects in D to the set
of isomorphism classes of decorated representations of (Q, W ) defined as follows. For any object
X of D, write X =X ′ ⊕

⊕
i∈Q0

(eiΓ)mi , where X ′ has no direct summands in add Γ. Such a
decomposition of X is unique up to isomorphism, since prCΓ is a Krull–Schmidt category, as
shown in [Pla11]. Define Φ(X) to be the decorated representation (F (X ′),

⊕
i∈Q0

Smi
i ), where

(0, Si) is the negative simple representation at the vertex i, for any i in Q0.
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Consider also the map Ψ = ΨQ,W from the set of isomorphism classes of decorated
representations of (Q, W ) to the set of isomorphism classes of objects in D defined as follows.
Recall from [Pla11] that F induces an equivalence prCΣ−1Γ/(Γ)→modB, where modB is
the category of finitely presented B-modules. Let G be a quasi-inverse equivalence. For any
decorated representation (M,

⊕
i∈Q0

Smi
i ), choose a representative M of G(M) in D which has

no direct summands in add Γ (the representative can be chosen to be in D thanks to [Pla11,
Lemma 3.2]). Such a representative is unique up to (non-unique) isomorphism. The map Ψ then
sends (M,

⊕
i∈Q0

Smi
i ) to the object M ⊕

⊕
i∈Q0

(eiΓi)mi .
The diagram below summarizes the definitions of Φ and Ψ.{

isoclasses of
objects of D

}
←→

{
isoclasses of decorated

representations of (Q, W )

}
,

X =X ′ ⊕
n⊕
i=1

(eiΓ)mi 7−→ Φ(X) =
(
FX ′,

n⊕
i=1

(Si)mi

)
,

Ψ(M) =M ⊕
n⊕
i=1

(eiΓ)mi ←− [ M=
(
M,

n⊕
i=1

Smi
i

)
.

The main result of this subsection states that the maps Φ and Ψ are mutually inverse
bijections, on the one hand, and that, via these maps, the derived equivalences of [KY11] are
compatible with the mutations of decorated representations of [DWZ08], on the other hand.

Proposition 4.1. With the above notation, Φ and Ψ are mutually inverse maps. Moreover, if
i ∈Q0 is not on any cycle of length 62, and if (Q′, W ′) = µ̃i(Q, W ), then for any object X of D,
we have that

ΦQ′,W ′(µ̃−i (X)) = µ̃i(ΦQ,W (X)),
where the functor µ̃−i is as defined after Theorem 2.3

The rest of this section is devoted to the proof of the proposition.
It is obvious from the definitions of Φ and Ψ that the two maps are mutual inverses. Thus,

we only need to show that the two mutations agree.
Let Γ′ be the complete Ginzburg dg algebra of (Q′, W ′). Note that EndC′(Γ′) is the Jacobian

algebra J(Q′, W ′), by [KY11, Lemma 2.8]. Let C′ be the cluster category associated to (Q′, W ′).
We know from [DWZ10] that µ̃i(ΦQ,W (X)) is a decorated representation of (Q′, W ′) = µ̃i(Q, W ).
We need to show that it is isomorphic to ΦQ′,W ′(µ̃−i (X)).

We can (and will) assume for the rest of the proof that X is indecomposable, as all the maps
and functors considered commute with finite direct sums.

We first prove the proposition for some special cases.

Lemma 4.2. Assume that X is an indecomposable object of D such that either:

– X is of the form ejΓ for j 6= i; or

– X is the cone Γ∗i of the morphism

Γi −→
⊕
α

Γt(α)

whose components are given by left multiplication by α.

Then the equality ΦQ′,W ′(µ̃−i (X)) = µ̃i(ΦQ,W (X)) holds.
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Proof. Suppose that X = ejΓ for some vertex i 6= j. Then µ̃i(ΦQ,W (X)) = µ̃i(0, Sj) = (0, Sj), and
ΦQ′,W ′(µ̃−i (X)) = ΦQ′,W ′(ejΓ′) = (0, Sj), so the desired equality holds.

Suppose now that X is the cone Γ∗i of the morphism

Γi −→
⊕
α

Γt(α)

whose components are given by left multiplication by α. In that case, µ̃−i (X) = eiΓ′ and
Φ(X) = (Si, 0), so the desired equality is also satisfied. 2

Now suppose that X is not of the above form. Using the definition of µ̃−i , we get that
Φ(µ̃−i (X)) is equal to Φ(HomΓ(T, X)), where T is as defined in § 2.6. Because of our assumptions
on X, this decorated representation is given by (HomC′(Σ−1Γ′,HomΓ(T, X)), 0).

We have the isomorphisms of EndC′(Γ′)-modules

HomC′(Σ−1Γ′,HomΓ(T, X)) = HomDΓ′(Σ−1Γ′,HomΓ(T, X))
= HomDΓ(Σ−1Γ′ ⊗LΓ′ T, X)
= HomDΓ(Σ−1T, X)
= HomC(Σ−1T, X),

where X is a lift of X in prDΓΣ−1Γ. Using this, we prove the proposition for another special
case.

Lemma 4.3. If X = eiΓ, then ΦQ′,W ′(µ̃−i (X)) = µ̃i(ΦQ,W (X)).

Proof. We have that µ̃i(ΦQ,W (eiΓ)) = (Si, 0). Moreover, the above calculation gives that
ΦQ′,W ′(µ̃−i (eiΓ)) = (HomC(Σ−1T, eiΓ), 0).

For any vertex j 6= i, we have isomorphisms HomC(Σ−1T, eiΓ)ej = HomC(Σ−1(ejT ), eiΓ) =
HomC(Σ−1(ejΓ), eiΓ), and this last space is zero.

For the vertex i, we have HomC(Σ−1T, eiΓ)ei = HomC(Σ−1(eiT ), eiΓ) = HomC(Σ−1Γ∗i , eiΓ),
and this space is one dimensional.

Therefore, HomC(Σ−1T, eiΓ) is the simple module at the vertex i, and this proves the desired
equality. 2

We now treat the remaining cases, that is, those where X is not in add Γ and is not Γ∗i . Then
Φ(X) = (FX, 0), and µ̃i(ΦQ,W (X)) = µ̃i(FX, 0) = (M ′, 0) is computed using § 2.3. We will show
that HomC(Σ−1T, X) is isomorphic to M ′ as a J(Q′, W ′)-module, using heavily the definition of
T given in § 2.6.

Lemma 4.4. For any vertex j, the vector spaces M ′ej and HomC(Σ−1T, X)ej are isomorphic.

Proof. If j is a vertex different from i, then we have the isomorphisms of vector spaces
HomC(Σ−1T, X)ej = HomC(Σ−1(ejT ), X) = HomC(Σ−1(ejΓ), X) = (FX)ej =M ′ej .

For the vertex i, we have that HomC(Σ−1T, X)ei = HomC(Σ−1(eiT ), X) = HomC(Σ−1Γ∗i , X).
Let us show that this space is isomorphic to M ′ei.

We have triangles in C:

eiΓ−→
⊕
s(a)=i

et(a)Γ−→ Γ∗i −→ Σ(eiΓ)
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and

Γ∗i −→
⊕
t(a)=i

es(a)Γ−→ eiΓ−→ ΣΓ∗i .

These triangles yield a diagram with exact rows,

(Σ−1Γ∗i , X)

ϕ∗i
��

(Σ−1
⊕

t(a)=i es(a)Γ, X)

−γ
��

hoo (Σ−1(eiΓ), X)
βoo (Γ∗i , X)oo

(Σ−1Γ∗i , X)
g // (Σ−1

⊕
s(a)=i et(a)Γ, X) α // (Σ−1(eiΓ), X) // (Σ−2Γ∗i , X)

where we write (Y1, Y2) for HomC(Y1, Y2), where −γ = gϕ∗ih, and where ϕi was defined in § 2.6.
Note that ϕ∗i is an isomorphism.

Notice that, in the notation of § 2.3, we have (Σ−1
⊕

t(a)=i es(a)Γ, X) = (FX)out and
(Σ−1

⊕
s(a)=i et(a)Γ, X) = (FX)in. Moreover, the maps α and β in the diagram above correspond

to the maps α and β of § 2.3.
The map γ above also corresponds to the map γ defined in § 2.3. This follows from the

computation we made in Remark 2.2.
Using the above diagram, we get isomorphisms

(Σ−1Γ∗i , X) ∼= Im g ⊕Ker g
∼= Ker α⊕Ker g

and

Ker γ ∼= h−1(ϕ∗−1
i (Ker g))

∼= Ker h⊕Ker g
∼= Im β ⊕Ker g.

Thus, (Σ−1Γ∗i , X) is (non-canonically) isomorphic to Ker α⊕Ker γ/Im β, which is in turn
isomorphic to Ker γ/Im β ⊕ Im γ ⊕Ker α/Im γ. But this is precisely M ′ei. 2

It remains to be shown that the action of the arrows of Q′ on HomC(Σ−1T, X) is the same
as on M ′ in order to get the following lemma.

Lemma 4.5. As a J(Q′, W ′)-module, HomC(Σ−1T, X) is isomorphic to M ′.

Proof. We know from Lemma 4.4 that the two modules considered are isomorphic as Λ-modules,
where Λ is as in § 2.2.

Now let a be an arrow of Q not incident with i. Then a is an arrow of Q′, and its action on
HomC(Σ−1T, X) is obviously the same as its action on M ′.

Consider now an arrow of Q′ of the form [ba], where t(a) = i= s(b) in Q. By the definition
of M ′ given in § 2.3, [ba] acts as ba on M ′, that is, M ′[ba] = (FX)ba.

According to the definition of T given in § 2.6, [ba] acts on T as the map

Ts(a) −→ Tt(b),

x 7−→ bax.

Hence, the action of [ba] on HomC(Σ−1T, X) is also given by multiplication by ba. Thus, the
actions of [ba] on M ′ and on HomC(Σ−1T, X) coincide.
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There remains to be considered the action of the arrows incident with i.
Keep the notation introduced in the proof of Lemma 4.4. We assert that the maps ϕ∗ih and

g encode the action of the arrows incident with i.
Recall that in DΓ, the object Γ∗i is isomorphic as a graded module to

Σ(eiΓ)⊕
⊕
a∈Q1

s(a)=i

et(a)Γ,

and that the map
⊕

a∈Q1

s(a)=i

et(a)Γ−→ Γ∗i is the canonical inclusion. Thus, its components are

given by

et(a)Γ −→ Γ∗i ,
x 7−→ eax

for any arrow a of Q such that s(a) = i. By the definition of T , this is multiplication by a?.
Therefore, g encodes the action of the arrows a? of Q′, where s(a) = i in Q.

Similarly, recall that in DΓ, the object Γ∗i is isomorphic as a graded module to(⊕
b∈Q1

t(b)=i

et(b)Γ
)
⊕ Σ−1(eiΓ)

and that the map Γ∗i −→
⊕

b∈Q1

t(b)=i

et(b)Γ is given by the canonical projection. Thus, its composition

with ϕ∗i is given by the matrix
(
−b∗ −∂abW

)
. Its components are the maps

Γ∗i −→ es(b)Γ,

eΣixi +
∑
s(a)=i

eaxa 7−→ −b∗xi +
∑
s(a)=i

(∂abW )xa

for any arrow b of Q such that t(b) = i. By the definition of T , this is multiplication by b?. Thus,
ϕ∗ih encodes the action of the arrows b? of Q′, where t(b) = i in Q.

Finally, recall from Lemma 4.4 that HomC(Σ−1Γ∗i , X) is isomorphic to Ker γ/Im β ⊕ Im γ ⊕
Ker α/Im γ. Recall that the summand Ker γ/Im β corresponds to Ker g, while the summand
Im γ ⊕Ker α/Im γ corresponds to Im g.

We choose a splitting Im γ ⊕Ker α/Im γ in such a way that Im ϕ∗ih ∩Ker α/Im γ = 0. In

that case, g is given in matrix form by (0 ι ισ) and ϕ∗ih, by
(
−πρ
−γ

0

)
, in the notation of § 2.3. This

proves that the actions of the arrows of Q′ on M ′ and on HomC(Σ−1T, X) coincide, finishing the
proof of the lemma. 2

We have proved Proposition 4.1.

4.2 Interpretation of F -polynomials, g-vectors and h-vectors
In this section, we study the relation between the F -polynomials of objects of D and of
decorated representations, and between the index of objects in D and the g-vectors of decorated
representations. We also give an interpretation of the h-vector.

Let (Q, W ) be a quiver with potential, and let C be the associated cluster category. We keep
the notation of the previous section for the maps Φ and Ψ.
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We first prove a result regarding F -polynomials.

Proposition 4.6. Let X be an object of D. Then we have the equality

FX(xr+1, . . . , xn) = FΦ(X)(xr+1, . . . , xn).

Proof. This is immediate from the definitions of FX , Φ and FΦ(X), given in Definition 3.14 and
§§ 4.1 and 2.4, respectively. 2

We now prove that g-vectors of decorated representations and indices of objects in the
cluster category are closely related. We will need the following Hom-infinite extension of [Pal08,
Lemma 7].

Lemma 4.7. Let M be an indecomposable object of D. Then

[indΓM : eiΓ] =
{
δij if M ∼= eiΓ,
dim Ext1

B(Si, FM)− dim HomB(Si, FM) otherwise,

where B = EndC(Γ).

Proof. The result is obvious if M lies in add Γ. Suppose that it does not. Let T1 −→ T0 −→
M −→ ΣT1 be an (add Γ)-presentation of M .

The opposite category Cop is triangulated, with suspension functor Σop = Σ−1. Thus, in Cop,
we have a triangle Σ−1

op T0 −→ Σ−1
op T1 −→M −→ T0. Applying the functor F ′ = HomCop(Σ−1

op Γ, ?),
we get a minimal projective resolution

F ′Σ−1
op T0 −→ F ′Σ−1

op T1 −→ F ′M −→ 0

of F ′M as a Bop-module.
Letting S′i be the simple Bop-module at the vertex i, we apply HomB′(?, Si) to the above

exact sequence and get a complex

0−→HomBop(F ′Σ−1
op T1, S

′
i)−→HomBop(F ′Σ−1

op T0, S
′
i)−→ · · ·

whose differential vanishes, since the presentation is minimal.
Therefore, we have the equalities

[indΓM : eiΓ] = dim Ext1
Bop(F ′M, S′i)− dim HomBop(F ′M, S′i)

= dim Ext1
B(Si, DF ′M)− dim HomB(Si, DF ′M),

where Si is the simple B-module at the vertex i.
Now, using [Pla11, Proposition 2.16], we get that

DF ′M =DHomCop(Σ−1
op Γ, M) =DHomC(M, ΣΓ)∼= HomC(Σ−1Γ, M) = FM.

Thus, DF ′M is isomorphic to FM as a B-module. This proves the lemma. 2

We now prove the result on g-vectors of decorated representations.

Proposition 4.8. Let (Q, W ) be a quiver with potential, and let C be the associated cluster
category. Let X be an object of D. Let gΦ(X) = (g1, . . . , gn) be the g-vector of the decorated
representation Φ(X). Then we have the equality

gi = [indΓX : Γi]

for any vertex i of Q.
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Proof. We can assume that X is indecomposable. If X lies in add Γ, then the result is obviously
true. Suppose that X does not lie in add Γ.

Using the two triangles in C,

eiΓ−→
⊕
s(a)=i

et(a)Γ−→ Γ∗i −→ Σ(eiΓ)

and

Γ∗i −→
⊕
t(a)=i

es(a)Γ−→ eiΓ−→ ΣΓ∗i

and applying the functor F = HomC(Σ−1Γ, ?), we get a projective resolution of the simple B-
module Si at the vertex i:

Pi −→
⊕
s(a)=i

Pt(a) −→
⊕
t(a)=i

Ps(a) −→ Pi −→ Si −→ 0,

where Pj is the indecomposable projective B-module at the vertex j. Applying now the functor
HomB(?, FM), we get the complex

0−→ (FM)i
βi−−→ (FM)out

−γi−−−→ (FM)in
αi−−→ (FM)i.

From this complex, we see that HomB(Si, M) = Ker βi and that Ext1
B(Si, M) = Ker γi/Im βi.

We also deduce an exact sequence

0−→Ker βi −→ (FM)i
βi−−→Ker γi −→Ker γi/Im βi −→ 0.

Using the above arguments and Lemma 4.7, we get the equalities

[indΓX : eiΓ] = dim Ext1
B(Si, M)− dim HomB(Si, M)

= dim(Ker γi/Im βi)dim Ker βi
= dim Ker γi − dim(FM)i
= gi.

This finishes the proof. 2

As a corollary of the proof of the above proposition, we get an interpretation of the h-vector
of a decorated representation.

Corollary 4.9. For any decorated representation M= (M, V ) of a quiver with potential
(Q, W ), we have the equality

hi =−dim HomJ(Q,W )(Si, M)

for any vertex i of Q.

This provides us with a way of ‘counting’ the number of terms in a minimal presentation.

Corollary 4.10. If g = (g1, . . . , gn) and h = (h1, . . . , hn) are the g-vector and h-vector of a
decorated representation M= (M, V ), if h′ = (h′1, . . . , h

′
n) is the h-vector of µi(M) and if

T1 −→ T0 −→Ψ(M)−→ ΣT1

is a minimal (add Γ)-presentation of Ψ(M) (see Proposition 4.1), then −hi and −h′i are the
numbers of direct summands of T1 and T0 which are isomorphic to Γi, respectively.

1948

https://doi.org/10.1112/S0010437X11005483 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005483


Cluster algebras via cluster categories

Proof. It follows from Corollary 4.9 that −hi = dim HomJ(Q,W )(Si, M).
Let T ∗i be an indecomposable object of D such that HomC(Σ−1Γ, T ∗i ) is the simple J(Q, W )-

module Si. Then, by [Pla11, Lemma 3.2], we have that

HomJ(Q,W )(Si, M)∼= HomC(T ∗i ,Ψ(M))/(Γ).

Applying HomC(T ∗i , ?) to the presentation, we get a long exact sequence

(T ∗i , T0)
ψ∗−−−→ (T ∗i ,Ψ(M))

φ∗−−−→ (T ∗i , ΣT1)−→ (T ∗i , ΣT0).

We see that the image of ψ∗ is (Γ)(T ∗i ,Ψ(M)), so that HomC(T ∗i ,Ψ(M))/(Γ) is isomorphic
to the image of φ∗. Thus, −hi is the dimension of the image of φ∗.

Using [Pla11, Proposition 2.16], we get that the morphism (T ∗i , ΣT1)−→ (T ∗i , ΣT0) is
isomorphic to the morphism D(Σ−1T1, T

∗
i )−→D(Σ−1T0, T

∗
i ), and this morphism is zero since

the presentation is minimal. Thus, φ∗ is surjective.
Therefore, −hi is equal to the dimension of HomC(Σ−1T1, T

∗
i ), which is equal to the number

of direct factors of T1 isomorphic to Γi in any decomposition of T1.
Furthermore, [DWZ10, Lemma 5.2] gives us that gi = hi − h′i and, by Proposition 4.8,

gi = [indΓΨ(M) : Γi]. This immediately implies that −h′i is equal to the number of direct factors
of T0 isomorphic to Γi, and finishes the proof. 2

Remark 4.11. Corollary 4.10 allows us to reformulate Remark 3.8 in the following way. If M is
any object of D, and if h = (h1, . . . , hn) and h′ = (h′1, . . . , h

′
n) are the h-vectors of Φ(M) and

µ̃iΦ(M), respectively, then

[indT ′M : T ′j ] =

{
−[indTM : Ti] if i= j,

[indTM : Tj ]− h′i[bji]+ + hi[−bji]+ if i 6= j.

As a corollary, we get a proof of Conjecture 6.10 of [FZ07].

Corollary 4.12. Conjecture 6.10 of [FZ07] is true, that is, if g = (g1, . . . , gn) and g′ =
(g′1, . . . , g

′
n) are the g-vectors of one cluster variable with respect to two clusters t and t′ related

by one mutation at vertex i, and if h = (h1, . . . , hn) and h′ = (h′1, . . . , h
′
n) are its h-vectors with

respect to those clusters, then we have that

h′i =−[gi]+ and hi = min(0, gi).

Proof. Let M be an indecomposable object of D such that X ′M is the cluster variable considered
in the statement. In particular, M is reachable, and thus rigid. It follows from [DWZ10,
Equation (5.5)] that the h-vector of the cluster variable corresponds to the h-vector of the
associated decorated representation.

Since M is rigid, Lemma 3.5 tells us that any minimal (add Γ)-presentation of M has disjoint
direct factors. The result follows directly from this and from Corollary 4.10. 2

Remark 4.13. Conjecture 6.10 of [FZ07] also follows directly from Conjecture 7.12 (see
Theorem 3.7(4) above) and [FZ07, Equations (6.15) and (6.26)]. We give the above proof because
it is an application of the results developed in this paper.

Finally, we get an interpretation of the substitution formula of [DWZ10, Lemma 5.2] in terms
of cluster characters.
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Corollary 4.14. Let (Q, W ) be a quiver with potential. Let i be an admissible vertex of Q,
and let ϕX : Q(x′1, . . . , x

′
n)−→Q(x1, . . . , xn) be the field isomorphism sending x′j to xj if i 6= j

and to

(xi)−1

( n∏
`=1

x
[b`i]+
` +

n∏
`=1

x
[−b`i]+
`

)
if i= j. Let C and C′ be the cluster categories of (Q, W ) and µ̃i(Q, W ), respectively, and let
µ̃+
i : C′ −→ C be the associated functor (see [KY11, Theorem 3.2]).

Then, for any object M of the subcategory D′ of C′, we have that

X ′
µ̃+

i (M)
= ϕX(X ′M ).

Proof. Consider the field isomorphism ϕY : Q(y′1, . . . , y
′
n)−→Q(y1, . . . , yn) whose action on y′j

is given by

ϕY (y′j) =


y−1
i if i= j,
yjy

m
i (yi + 1)−m if there are m arrows from i to j,

yj(yi + 1)m if there are m arrows from j to i.

Consider also the morphism ˆ(−) : Q(y1, . . . , yn)−→Q(x1, . . . , xn) sending each yj to

ŷj =
n∏
`=1

x
b`j

` .

Denote by the same symbol the corresponding map from the field Q(y′1, . . . , y
′
n) to Q(x′1, . . . , x

′
n).

Then [FZ07, Proposition 3.9] implies that ϕX(ẑ) = ̂(ϕY (z)) for any z ∈Q(y′1, . . . , y
′
n). In other

words, the following diagram commutes.

Q(y1, . . . , yn)
ˆ(−) // Q(x1, . . . , xn)

Q(y′1, . . . , y
′
n)

ˆ(−) //

ϕY

OO

Q(x′1, . . . , x
′
n)

ϕX

OO

Let us now compute ϕX(X ′M ). We have that

ϕX(X ′M ) = ϕX(x′indΓ′M )FM (ŷ′1, . . . , ŷ
′
n)

= ϕX(x′indΓ′M )FM ( ̂(ϕY (y′1)), . . . , ̂(ϕY (y′n))).

Now, using [DWZ10, Lemma 5.2], we can express the right-hand side of the equation in terms
of the ŷj . The equalities thus continue:

ϕX(X ′M ) = ϕX(x′indΓ′M )ϕX(1 + ŷ′i)
−h′i(1 + ŷi)hiFM (ŷ1, . . . , ŷn)

= ϕX(x′indΓ′M )ϕX(1 + ŷ′i)
−h′i(1 + ŷi)hix−indΓµ̃

+
i (M)X ′

µ̃+
i (M)

.

Thus, in order to prove the corollary, we must show that

ϕX(x′indΓ′M )ϕX(1 + ŷ′i)
−h′i(1 + ŷi)hix−indΓµ̃

+
i (M) = 1. (1)
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We do this in several steps. First, using the definitions of ϕX and ϕY , we get

ϕX(1 + ŷ′i)
−h′i(1 + ŷi)hi = (1 + ϕ̂Y (y′i))

−h′i(1 + ŷi)hi

= (1 + ŷ−1
i )−h

′
i(1 + ŷi)hi

= ŷ
h′i
i (1 + ŷi)hi−h′i .

Now, using Proposition 4.8, we get the equalities

ϕX((x′)indΓ′M )x−indΓµ̃
+
i (M) = ϕX

( n∏
`=1

(x′`)
g′`

) n∏
`=1

x−g`
`

= xgi
i

( n∏
`=1

x
[b`i]+
` +

n∏
`=1

x
[−b`i]+
`

)−gi
(∏
`6=i

x
g′`−g`

`

)
x−gi
i

=
( n∏
`=1

x
[b`i]+
` +

n∏
`=1

x
[−b`i]+
`

)−gi
(∏
`6=i

x
g′`−g`

`

)
.

Thus, we have, using the fact that gi = hi − h′i (see [DWZ10, Lemma 5.2]), that the left-hand
side of equation (1) is equal to

ŷ
h′i
i (1 + ŷi)gi

( n∏
`=1

x
[b`i]+
` +

n∏
`=1

x
[−b`i]+
`

)−gi
(∏
`6=i

x
g′`−g`

`

)
,

which is in turn equal to (using Remark 4.11)

ŷ
h′i
i

( n∏
`=1

x
−[−b`i]+
`

)gi
(∏
`6=i

x
g′`−g`

`

)
= ŷ

h′i
i

( n∏
`=1

x
−[−b`i]+
`

)gi
(∏
`6=i

x
hi[−b`i]+−h′i[b`i]+
`

)
= ŷ

h′i
i

(∏
`6=i

x
h′i[−b`i]+−hi[−b`i]++hi[−b`i]+−h′i[b`i]+
`

)
= ŷ

h′i
i

(∏
`6=i

x
−h′ib`i

`

)
=
∏
`6=i

x
h′ib`i−h′ib`i

`

= 1.

This finishes the proof. 2

4.3 Extensions and the E-invariant
In this section, we give an interpretation of the E-invariant of a decorated representation, as
defined in [DWZ10] (its definition was recalled in § 2.4), as the dimension of a space of extensions,
using the map Φ of § 4.1.

Proposition 4.15. Let (Q, W ) be a quiver with potential, and let C be the associated cluster
category. Let X and Y be objects of D. Then we have the following equalities:

(i) Einj(Φ(X), Φ(Y )) = dim(ΣΓ)(X, ΣY );
(ii) Esym(Φ(X), Φ(Y )) = dim(ΣΓ)(X, ΣY ) + dim(ΣΓ)(Y, ΣX);

(iii) E(Φ(X)) = (1/2)dim HomC(X, ΣX),

where (ΣΓ)(X, Y ) is the subspace of HomC(X, Y ) containing all morphisms factoring through
an object of add ΣΓ.
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Proof. The second equality follows immediately from the first one.
The third equality follows from the second one. Indeed, the second equality implies that

(ΣΓ)(X, ΣX) is finite dimensional. It then follows from [Pla11, Lemma 3.8] that we have an
isomorphism

(ΣΓ)(X, ΣX)∼=DHomC(X, ΣX)/(ΣΓ).
Since dim HomC(X, ΣX) = dim(ΣΓ)(X, ΣX) + dim HomC(X, ΣX)/(ΣΓ), we get that

dim HomC(X, ΣX) = 2 dim(ΣΓ)(X, ΣX)
= Esym(Φ(X), Φ(X))
= 2E(Φ(X)).

Let us now prove the first equality. Let

T Y1 −→ T Y0 −→ Y −→ ΣT Y1
be an (add Γ)-presentation of Y . This triangle yields an exact sequence

(X, Y ) u // (X, ΣT Y1 ) // (X, ΣT Y0 ) // (X, ΣY ) v // (X, Σ2T Y1 ),

which in turn gives an exact sequence

0 // Im u // (X, ΣT Y1 ) // (X, ΣT Y0 ) // Ker v // 0.

Since X is in D, the two middle terms of this exact sequence are isomorphic to (T Yi , ΣX) (for
i= 1, 2) thanks to [Pla11, Proposition 2.16], and these spaces are finite dimensional. Therefore,
all of the terms of the exact sequence are finite dimensional.

Now, Im u is isomorphic to (X, Y )/Ker u, and Ker u is exactly (Γ)(X, Y ). Therefore,
by [Pla11, Lemma 3.2], Im u is isomorphic to the space HomJ(Q,W )(FX, FY ), where F =
HomC(Σ−1Γ, ?).

Moreover, Ker v is exactly (ΣΓ)(X, ΣY ).
Thus, using the above exact sequence and Proposition 4.8, we have the equalities

dim(ΣΓ)(X, ΣY ) = dim HomJ(Q,W )(FX, FY )− dim(X, ΣT Y1 ) + dim(X, ΣT Y0 )

= dim HomJ(Q,W )(FX, FY )− dim(T Y1 , ΣX) + dim(T Y0 , ΣX)

= dim HomJ(Q,W )(FX, FY )−
n∑
i=1

[T Y1 : Ti](dim(FX)i)

+
n∑
i=1

[TX0 : Ti](dim(FX)i)

= dim HomJ(Q,W )(FX, FY ) +
n∑
i=1

[indΓΣY : Γi](dim(FX)i)

= dim HomJ(Q,W )(FX, FY ) +
n∑
i=1

gi(Φ(Y ))(dim(FX)i)

= Einj(Φ(X), Φ(Y )),

where [T Yj : Ti] is the number of direct summands of T Yj isomorphic to Ti in any decomposition of
T Yj into indecomposable objects, and where the g-vector of Φ(Y ) is (g1(Φ(Y )), . . . , gn(Φ(Y ))).
This finishes the proof. 2
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Cluster algebras via cluster categories

As a corollary, we get the following stronger version of [DWZ10, Lemma 9.2].

Corollary 4.16. Let M and M′ be two decorated representations of a quiver with potential
(Q, W ). Assume that E(M′) = 0. Then the following conditions are equivalent:

(i) M and M′ are isomorphic;

(ii) E(M) = 0 and gM = gM′ .

Proof. Condition (i) obviously implies condition (ii). Now assume that condition (ii) is satisfied.
Then Proposition 4.15 implies that Ψ(M) and Ψ(M′) are rigid objects of D. By Proposition 4.8,
the indices of Ψ(M) and Ψ(M′) are given by gM and gM′ . By hypothesis, their indices are the
same. Thus, by Proposition 3.1, Ψ(M) and Ψ(M′) are isomorphic, and so are M and M′. 2
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