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Abstract

Background: Protein-protein interactions have traditionally been studied on a small scale, using classical biochemical

methods to investigate the proteins of interest. More recently large-scale methods, such as two-hybrid screens, have

been utilised to survey extensive portions of genomes. Current high-throughput approaches have a relatively high rate

of errors, whereas in-depth biochemical studies are too expensive and time-consuming to be practical for extensive

studies. As a result, there are gaps in our knowledge of many key biological networks, for which computational

approaches are particularly suitable.

Results: We constructed networks, or 'interactomes', of putative protein-protein interactions in the rat proteome –

the rat being an organism extensively used for cancer studies. This was achieved by integrating experimental protein-

protein interaction data from many species and translating this data into the reference frame of the rat. The putative rat

protein interactions were given confidence scores based on their homology to proteins that have been experimentally

observed to interact. The confidence score was furthermore weighted according to the extent of the experimental

evidence, giving a higher weight to more frequently observed interactions. The scoring function was subsequently

validated and networks constructed around key proteins, identified as being highly up- or down-regulated in rat cell lines

of high metastatic potential. Using clustering methods on the networks, we have identified key protein communities

involved in cancer metastasis.

Conclusion: The protein network generation and subsequent network analysis used here, were shown to be useful for

highlighting key proteins involved in metastasis. This approach, in conjunction with microarray expression data, can be

extended to other species, thereby suggesting possible pathways around proteins of interest.

Background
Microarray experiments provide information about gene
expression within the cells under study.

Expression patterns can be uncovered from large-scale
microarray data by systematically grouping genes with the

help of clustering methods. Co-clustering of genes can
indicate that the genes in question have a similar function
or that they participate in the same cellular process [1,2].
Nevertheless, microarray experiments typically yield hun-
dreds of significantly differentially-expressed genes, mak-
ing it difficult to draw biological conclusions.
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Furthermore, although microarray experiments can show
correlations between the expression of genes, they do not
reveal the exact protein interaction mechanism.

Protein network analysis is dependent on a reliable
assignment of protein-protein interactions. Protein-pro-
tein interactions are commonly studied using biochemi-
cal methods, and several different experimental methods
are currently in use. Two-hybrid screens have, to date,
yielded the bulk of available data [3,4]; however their
level of accuracy is not particularly high and should be
supported by additional evidence [5,6]. Advances in other
techniques, such as tandem-affinity purification and mass
spectroscopy, have also made large-scale studies increas-
ingly feasible [7,8].

A number of computational methods, either based on
sequence or structural features, have been developed to
complement experimental approaches to predicting pro-
tein-protein interactions [9,10]. An increasing emphasis
has been on deducing and exploring the protein-protein
interaction networks that are reflected in expression data;
gene networks have been inferred from gene expression
data using mathematical analysis such as Bayesian regres-
sion [11-14]. Moreover, networks have been derived by
complementing gene expression data with data from dif-
ferent sources, such as gene ontologies, phenotypic profil-
ing and functional similarities [15-18].

Alternative techniques to network construction have also
been taken, see e.g. Cabusora et al. [19], where a protein
interaction map was created based upon the principle that
interacting protein modules in one organism may be
fused into a single chain in another, and Calvano et al.
[20] who constructed the network by literature searches
for information pertaining to interacting protein pairs
from closely related organisms. These methods do not uti-
lise gene expression explicitly in the network generation,
rather the expression data is used as a tool to focus on the
network.

Previous studies have mapped expression data of different
systems onto experimentally-based networks. Ideker et al.
[21] used gene expression changes in response to pertur-
bation to highlight clusters within a yeast network, and
Sohler et al. [22] made use of statistical analysis to high-
light significant sub-clusters, also within a yeast network.
Moreover, the dynamic aspect of yeast networks have
been highlighted by de Lichtenberg and coworkers [23],
who combined temporal cell cycle expression data with
protein-protein interaction networks.

Here we have taken an extensive multi-genome approach,
utilising a homology-based method for predicting inter-
acting proteins [24] and further extended it by developing

a scoring function, based upon sequence similarity and
the amount of experimental data supporting each interac-
tion. This scoring function has subsequently been exten-
sively validated. In contrast to the above methodologies
we go beyond data integration by considering ortholo-
gous relationships and are therefore able to create a more
extensive protein interaction network – or 'interactome' –
for a higher eukaryote, the rat.

In order to demonstrate the utility of our predicted inter-
actions, expression data on tumour progression resulting
in rat sarcomas with high metastatic potential were
mapped onto our interactome, creating protein networks
around key proteins involved in the metastatic process.

Results and Discussion
Networks of interacting proteins were constructed auto-
matically for the entire rat (Rattus norvegicus) genome
using the approach described in the methods section and
summarised in Figure 1. The number of individual inter-
actions was reduced from 325,087 to 151,049, when a
scoring function was applied to filter out low-quality data,
and was further cut down by a clustering method aimed at
identifying key interconnected network nodes. The inter-
actome data is available though the PIP (Potential Interac-
tions of Proteins) web server [25].

Validation of the scoring function

The protein networks are composed of predicted individ-
ual interactions, each of which is assigned a score which
indicates the strength of the prediction. Before examining
the networks in detail it is necessary to assess the quality
of the predictions and to validate the method.

Selection of cut-off value for the scoring function

Our method of constructing networks is based on homol-
ogy to known interactions. It is therefore imperative to
ascertain the minimum level of homology whereby the
structural and functional similarity of the interacting pro-
teins is retained. Russell et al. [26] have previously exam-
ined the relationship between sequence and structural
divergence of interacting proteins. They found that pairs
of interacting proteins can be considered structurally sim-
ilar if their sequence identity is no lower than 30%. As we
utilise BLAST bitscores as components for our scoring
function, we tested the relationship between bitscores and
sequence identity. At the 30% sequence identity level, the
bitscore ranges linearly from 86–177 (see Figure 2) which,
according to Equation 1, yields minimum interaction
scores ranging from 9 to 10. We chose to set the minimum
score for interactions at 10, to minimise possibilities of
false positive results due to low homology.
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Inferring interactions by homologyFigure 1

Inferring interactions by homology. Each interaction is inferred from homology to experimentally observed interactions. 

In this schematic, proteins a1 and b1 have been shown experimentally to interact in one organism, here labelled 'species X', and 

protein a2 and b2 in another, 'species Y'. Lists of homologues are generated for each of the proteins, ranked by their bit score 

( , , etc.). A protein from one list may interact with a protein from the other (shown by the red arrow) and potential 

pairwise interactions are scored according to Equation 1, based on homology to the proteins involved in the known interac-

tion. Furthermore, interactions receive a higher score if they are derived from multiple experimental sources (n > 1). The 

score is additive, for instance, in the example here, the blue and green sequences are predicted to interact based on the inter-

actions in 'species X' and 'species Y' and the overall score is the sum of both pairwise scores. This additive process continues 

over all experimentally determined protein pairs, N, (e.g. through 'species Z'), for which the rat sequences, labelled blue and 

green, are present.
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Identification of highly reliable interactions

Many methods for detecting protein-protein interactions
can yield either false positive or false negative results, but
X-ray crystal structures of complexed proteins can be con-
sidered to be a gold standard for proof. To examine the
validity of our scoring function we looked at the interac-
tion scores of rat proteins that have either been crystal-
lised together in a complex or have a very high homology
to one that has been. These scores were then compared to
ones without any crystallographic evidence, i.e. those that
do not interact or have not been proven to do so by crys-
tallography.

We found that highly reliable interactions, identified by
X-ray crystallography, score higher than those without
crystallographic evidence, with median scores 128 and 16
respectively. This difference was significant according to a
χ2-test (p << 0.0001), indicating that true interactions
score higher than those whose association has not been
confirmed by crystallography.

Moreover, as shown in Table 1, about 94% of the interac-
tions confirmed by X-ray crystallography score above 10,
reaffirming the choice of the cutoff score, whereas just
under half of all genome-wide predicted interactions score
10 and lower.

Community participation and cellular localisation

Another way of estimating the quality of the scoring func-
tion is to look at proteins participating in the same cellu-
lar process and compare them with proteins that are not
thought to interact directly in a pathway. We used a clique
percolation method to identify 'communities' within the
network that show high interconnectivity. This yielded 37
communities of tightly interconnected proteins that will
be described later. One can assume that interactions
within communities are more likely to be true than inter-
actions between communities, i.e. higher scores would be
expected for intra-community interactions [27]. We found
this to be true; the average score for interactions within a
community was 26.2 (n = 2038) and the average score for
interactions between communities was 13.5 (n = 502).
This is significant at a 95% confidence level (p = 3.1 × 10-

30).

Lastly, the protein interaction scores were examined in the
context of cellular localisation. We assume that for true
interactions, interacting proteins would co-localise in the
same cellular compartment, at least during the time of
interaction, and thus would expect predicted interactions
between proteins in separate cellular compartments to be
less reliable and receive a lower score. Localisation data
from the Gene Ontology Consortium [28] were used,
where available, for proteins within the thirty-seven pro-
tein communities. Of the protein interactions predicted,
681 (94%) were considered co-localised, with an average
score of 25.8 and 41 (6%) were annotated as not sharing
cellular localisation, with an average score of 13.1. The
score difference is statistically significant (p = 0.001 at a
95% confidence level).

Metastatic network communities identified by cluster 

analysis

Metastasis is a key event that is associated with a poor
prognosis in cancer patients. Metastasising cancer cells

Table 1: Distribution of protein-protein interaction scores. 

Interaction scores of X-ray crystal structures (n = 377) compared 

to the scores of all (genome-wide) predicted interactions.

Percentage of interactions

Interaction s
core 0 – 10

Interaction 
score > 10

X-ray crystal structures 6.4 93.6

Genome-wide 43.2 56.8

The distribution of bit scores as a function of sequence iden-tityFigure 2
The distribution of bit scores as a function of 
sequence identity. The sequence identity and bit score of 
each hit when proteins in the interaction data were queried 
against the rat genome. The solid red line shows the best lin-
ear fit to the data and shown in dotted red is a line, starting 
at the origin, which contains 97% of the data in the area 
below it. Reading from these lines at 30% sequence identity 
gives bitscores of 86 and 177, respectively, yielding interac-
tion scores of 9 and 10 when inserted into Equation 1. To 
ensure a stringent criteria for the minimum interaction score 
the higher value was selected as a cutoff score.
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have the ability to break away from the primary tumour
and move to different organs, making the cancer more dif-
ficult to treat. Much is unknown about the molecular biol-
ogy of metastasis, but it culminates in the cancerous cells

acquiring several properties, such as increased motility
and invasiveness. This involves a network of cascading
protein-protein interactions which have to be unravelled
if an effective treatment is to be developed.

Identifying protein communities by cluster analysisFigure 3
Identifying protein communities by cluster analysis. The communities identified by k-clique analysis performed on the 
predicted genome-wide rat protein network. The communities are distinguished by different colours and labelled by the overall 
function or the dominating protein class. Note that proteins, particularly at community edges, can belong to more than two 
communities, although this is not shown. A complete list of protein names is included as supplementary material [see Addi-
tional file 1]. The graph was created by Graphviz [61].
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As a starting point, we used data from a microarray analy-
sis of cell lines with different metastatic potentials (see
Methods). We took the highest up- and down-regulated
genes (≥ 4-fold up- or down-expression), and constructed
networks around these, extending two generations from
the starting point, i.e. initially including proteins that
interact directly with the originating protein and then
going on to include the proteins that interact with them.
This subset of the rat interactome contained 10,628 inter-
actions. We then performed a cluster analysis in order to
highlight areas in the protein networks that are involved
in the metastatic process. The clustering is based on a
clique percolation method [29] that seeks to identify
'communities' of highly interconnected proteins that
make up the essential structural units of the networks.

The community definition is based on the observation
that a typical member in a community is linked to many,
but not necessarily all other nodes in the community. In
other words, a community can be regarded as a union of
smaller, complete, fully-connected subgraphs that share
nodes (see Methods section). Palla et al. [27] have shown
that clique clustering analysis is a powerful tool to identify
communities of proteins participating in the same cellular
processes. Furthermore, it has been shown that subnet-
works of proteins involved in a defined cellular process
are more heavily interconnected by direct protein interac-
tion than would be expected by chance [16]. Highly con-
nected proteins are also more likely to be essential to
cellular processes [30].

By applying the clustering method to our rat interactome
we automatically identified 37 protein communities of

highly interconnected proteins, containing 313 proteins
involved in 1,094 interactions (Figure 3). The majority of
the communities have been associated with cancer and
metastasis. Some show a degree of overlap and are linked,
the most prominent link running through the centre of
the figure and containing 17 communities linked in a
chain-like manner, however others are not linked, for
example, the transcription regulation, which consists of
only four proteins.

An initial analysis of the structural- and functional com-
position of the networks was performed using Domain
Fishing [31], which assigns structural domains to
sequences based on homology to known domains. When
comparing the domain composition of the communities
to domain frequencies of the whole rat genome we
observed a bias towards classes of domains found in pro-
teins involved in cytoskeletal structures, cell motility and
cell-signalling (see Table 2). All but one of the most fre-
quent domains are overrepresented when compared to
the genome-wide distribution; only immunoglobulin
domains appear less frequently. Spectrin repeat domains,
which top the table, are found in proteins involved in
cytoskeletal structure, such as spectrin, α-actinin and dys-
trophin. They are known to bind to calponin homology
domains, which are found in both cytoskeletal and signal
transduction proteins. The IQ calmodulin-binding
domains work as Ca2+ switches for myosin which are
involved in cell motility and chemotaxis. Furthermore,
protein kinase domains, SH2 and SH3 domains and pro-
tein-tyrosine phosphatase participate in signal transduc-
tion and known to interact. These categories of domains,

Table 2: Domain frequency within the clustered communities. The table shows the most frequently observed domains in the 

metastasis-related cluster communities (observed frequencies) alongside the expected domain frequencies, based on the domain 

composition of the whole rat genome. The n-fold difference was calculated from the frequency percentages (numbers within 

parentheses).

Domain Observed frequency (%) Expected frequency (%) n-fold difference

Spectrin repeat 56 (6.9) 6 (0.7) 8.3

IQ calmodulin-binding motif 54 (6.6) 2 (0.2) 26.5

EGF-like domain 52 (6.4) 16 (2.0) 2.2

Protein kinase domain 47 (5.8) 12 (1.4) 3.0

SH2 domain 27 (3.3) 2 (0.3) 11.7

EF hand 25 (3.1) 7 (0.8) 2.6

Immunoglobulin domain 21 (2.6) 35 (4.3) -0.4

SH3 domain 20 (2.4) 6 (0.7) 2.6

Calponin homology (CH) domain 13 (1.6) 2 (0.3) 5.4

Proteasome A-type and B-type 12 (1.5) 1 (0.1) 20.0

LIM domain 11 (1.3) 3 (0.4) 2.7

Transforming growth factor β-like 
domain

10 (1.2) 1 (0.1) 11.2
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and associated functions and interactions, are all of inter-
est in the context of cancer metastasis.

The intracellular signalling cascade

It is not the aim here to explore every member of each
community, instead, with the automatic identification of
metastatic-related protein communities being the primary
focus, we will illustrate the value of our approach by
describing a key section of the regulation pathway. The
intracellular signalling cascade constitutes the head of a
chain of communities (Figure 3), and as such warrants a
closer investigation.

Figure 4 shows a detailed view of some of the interactions
within that community, focused on the intersection with
the vascular endothelial growth factors (VEGFs) and the
JAK/STAT group. Many of the interactions in this network
have been established either in rat or in other species; oth-

ers have not been previously demonstrated and we pro-
pose that these might have a role in the context of the
surrounding proteins.

Three separate groups of proteins are distinguishable: vas-
cular endothelial growth factors (Vegfa, Vegfc, Figf) and
the receptor (Kdr), which play a principle role in tumour
progression and angiogenesis [32] and which have also
been associated with tumour metastasis [33]; insulin-like
growth factors and receptors (Igf1, Igf1r and Grb 7/14);
and JAK/STAT proteins (JAK2, STATSb).

The figure shows the three ligands, Vegfa and Vegfc and
Figf, at different levels of expression, all of which can bind
to kinase insert domain protein receptor Kdr, a VEGF
receptor, which in turn induces mitogenesis and differen-
tation of vascular endothelial cells [34].

The interaction between Kdr and Socs1, an SH2 domain-
containing suppressor of cytokine signaling 1, is plausible
as Kdr has a tyrosine protein kinase domain which in a
mouse homologue has been shown to interact with Socs1
[35]. Furthermore, up-regulation of Socsl has been linked
with the suppression of cytokine signalling and the JAK/
STAT inflammatory signalling [36-38], which is shown
here further down the network; here also, Socs1 is up-reg-
ulated and JAK/STAT down-regulated.

The proposed Ptpn11-Lck interaction is based on orthol-
ogy to an interaction between Ptprc and Lck in mouse.
Ptpn11 and Ptprc both have tyrosine specific protein
phosphatase activity. Ptpn11 is phosphorylated by tyro-
sine protein kinases, contains two SH2 domains and
therefore could be phosphorylated by Lck.

Higher up the network are the insulin-like growth factor 1
and its receptor (Igf1 and Igf1r, respectively) which are
highly implicated in different cancers [39-41]. The insu-
lin-like growth factors are involved in several cellular
processes, such as regulation of proliferation, migration,
survival, size control, and differentiation [42-45]. Igf1r is
overexpressed in most malignant tumours, where it func-
tions as an anti-apoptotic agent by enhancing cell sur-
vival. Igf1 has also been shown to enhance adhesion and
motility of cancer cells [46,47]; however, the exact role of
Igf1r in the metastatic process has not been established.
The network shown here suggests a link between the insu-
lin-like growth factor receptor and the vascular endothe-
lial growth factors through the highly up-regulated
phospholipase delta 4 (Plcd4) and phospholipase gamma
1/2 (Plcg 1/2). The Plcg 1/2 and Igf1r interaction is based
on the fact that the phospholipase has been shown to
interact with insulin receptor, a close homologue of the
insulin-like receptor.

A closer view of a part of the 'intracellular signalling cascade'Figure 4
A closer view of a part of the 'intracellular signalling 
cascade'. The figure shows a subsection of the network 
around the intracellular signalling cascade where it extends 
to the VEGFs and JAK/STAT protein communities. The con-
fidence of the interactions is shown by colour coding based 
on the interaction scores ranging from low-scoring blue (10 
≤ s < 10.5) to high-scoring red (s > 40.0). The metastatic cell 
line expression levels are also shown; blue for down-regu-
lated genes and red for up-regulated ones.
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Another distinguishing feature in the network is the
highly down-regulated protein tyrosine phosphatase
(Ptpn13). It has been reported that a protein tyrosine
phosphatase, Ptp61F, negatively regulates the JAK/STAT
pathway in Drosophila melanogaster [48]. Our networks
suggest that the signalling protein tyrosine phosphatase,
Ptpn13, may act on the JAK/STAT pathway similarly,
through the dephosphorylation of the growth hormone
receptor Ghr.

The few examples shown here illustrate the value of the
approach in terms of revealing potential pathways and
interactions that play a part in cancer metastasis, but fur-
ther experimental work will be needed to confirm the
validity of these predictions.

Network view of gene expression

Extracting meaningful information from microarray
expression data is often difficult, especially when looking
at a complex process involving a large number of genes
and unknown mechanisms. Clustering of genes may be of
use when trying to find genes in a common pathway and
genes with related function, but it often has limitations,
such as in identifying negative feedback loops [49]. Fur-
thermore, even if key proteins are highlighted through
microarray analysis, the expression data rarely reveals all
proteins involved in a particular pathway.

Examining the distribution of up- and down-regulated
proteins in the context of their neighbours, shows that
this is indeed the case for the protein networks shown in
Figure 3. The metastatic expression data was mapped onto
the networks and the frequency of the up-, down- and up-
/down-regulated genes interacting was examined. The
results, in Table 3, indicate that if expression data from the

network was randomly redistributed, the probability of
observing two up-regulated proteins interacting with each
other is about the same as the observed probability. That
is, up-regulated proteins do not have a trend of directly
interacting with each other, but are interlinked through
either neutrally expressed or down-regulated proteins.
Moreover, down-regulated proteins are much less likely to
interact with each other than expected, demonstrating the
benefit of projecting the expression data onto already
built networks, as clustering similarly expressed genes and
assigning to the same pathway would not be effective.

Conclusion
Expression data has previously been put into a network
context, for example by incorporating gene ontology data
[15] and protein interactions [50], but here we generated
the networks first, mapped the expression on top, and
then performed a clustering. This approach allows us to
bypass some of the obstacles involved in traditional
microarray analysis, such as clustering of gene expression
patterns; as demonstrated here, interactions of up-up and
down-down regulated genes are not necessarily co-local-
ised. To focus on the parts of the genome-wide interaction
network relevant to metastasis we first selected subnet-
works around highly up- and down-regulated genes and
then utilised the clique method, which highlights hubs of
highly interconnected protein communities. This allows
us to examine the most complex parts of the network but
as a result simple linear pathways do not get included.

Table 4: Experimental sources for building the interactome. 

Summary of the experiments used as a foundation for building 

the interactome, from most frequent (top) to least frequent 

(bottom). The percentage of the total is listed after each value.

Method Frequency (%)

Two hybrid test 35,759 (69.9)

Immunoprecipitation 6,290 (12.3)

Tandem Affinity Purification (TAP) 3,503 (6.85)

Affinity chromatography 1,070 (2.09)

Copurification 572 (1.12)

Cross-linking 518 (1.01)

X-ray crystallography 511 (1.00)

In vitro binding 452 (0.88)

Biochemical/biophysical 327 (0.64)

Gel filtration chromatography 326 (0.64)

In vivo kinase activity assay 185 (0.36)

Competition binding 185 (0.36)

Immunoblotting 140 (0.27)

Cosedimentation 133 (0.26)

Gel retardation assays 106 (0.21)

Native gel electrophoresis 103 (0.20)

Other 973 (1.90)

Table 3: The connectivity of up- and down-regulated proteins. 

Observed and expected frequencies of pairwise protein 

interactions, categorised by their expression: N-N (non-

expressed protein interacting with non-expressed protein), U-U 

(up-regulated protein interacting with up-regulated protein), D-

D (down-regulated protein interacting with down-regulated 

protein) and U-D (up-regulated interacting with down-

regulated). For the purpose of the classification, up-regulated 

proteins are those up-regulated more than 20% and down-

regulated proteins down-regulated more than 20%. Expected 

values were calculated based on a random distribution of the 

expression data on the network (p < 0.001 for a χ2-test).

Observed Expected n-fold 
difference

N-N 8 5 1.5

U-U 121 109 1.1

D-D 17 41 0.4

U-D 71 67 1.1
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Although we believe the general approach is of value in
protein network analysis, there remain some shortcom-
ings. Most importantly, transient protein-protein interac-
tions are unlikely to be captured by our approach. This is
a direct consequence of transient not being as well docu-
mented as non-transient interactions. Moreover, the
method cannot distinguish between true and false posi-
tives, for which there is limited experimental data – how-
ever, these problems will be alleviated as more high-
throughput proteomic studies are completed.

The system-level approach taken here, combining infor-
mation on how proteins interact with each other and how
genes are expressed, is a particularly appealing way to gain
understanding of complex biological processes, such as
metastasis. Although not discussed here in great detail
several interesting groups of interactions, at the domain
level, have been highlighted as potentially important
players in the metastatic process. Further dissection of
these is the subject of ongoing studies and consequently
to be confirmed experimentally.

This method of using homologous protein interaction
data to infer protein-protein information could be partic-
ularly useful for proteins for which there is no definite
binding partner information. Moreover the relative
expression levels of neighbouring proteins may prove an
important consideration, when protein networks are to be
subsequently modulated in conjunction with disease
analysis, for example by targeting the expression of a par-
ticular gene by short interfering RNA (siRNA) [51].

The approaches described in this work are readily transfer-
able to other species and cellular processes.

Methods
Protein interaction prediction

In order to identify homologous interaction pairs for
which there is experimental data, BLAST searches were run
for the rat genome [52] against all proteins in the DIP [53]

and MIPS Mammalian Protein-Protein Interaction data-
bases [54].

The experimental data arises from several methods – the
most frequent are listed in Table 4. The putative interac-
tions were given confidence scores based on two factors:
the level of homology to proteins found experimentally to
interact, and the amount of experimental data available
(see Figure 1 for an illustrationof the approach).

The score, S, was calculated for each putative interaction
according to the following:

where  and  are sequence similarity bit scores to

proteins ai and bi, respectively, which have experimentally

been shown to interact; n is the number of experiments

linking protein ai to protein bi; and N is the total number

of instances where the same pair of proteins is identified

as interacting through different homologues. As men-

tioned in the Introduction, two-hybrid experiments are

prone to giving false-positive results. Although most of

the interactions created here are derived through yeast

two-hybrid links, it has been shown that confidence is

higher for interactions detected in multiple independent

yeast two-hybrid experiments [15]. This fact is reflected in

the additive nature of the score, where a protein interac-

tion that shows up repeatedly in independent two-hybrid

experiments gets a higher score.

Validation

In order to test the scoring function, we created a subset of
data from the RCSB Protein Data Bank [55] that specifi-
cally concentrates on stable functional protein interac-
tions, rather than transient. Protein chains with high
sequence homology to the Norwegian rat were considered

S s s n
i

N

= ( )
=
∑ ln( ) ,a bi i

1

1

s
ia s

ib

Table 5: Gene ontology cellular compartments. A simplified representation of gene ontology cellular compartments. Protein 

accessibility between compartments is represented by ones and zeros: the former indicates the possibility of interaction between 

respective compartments and the latter excludes any interactions.

Extracellular Intracellular Cytoplasm Nucleus Mitochondrion Membrane

Extracellular 1 0 0 0 0 1

Intracellular 0 1 1 1 1 1

Cytoplasm 0 1 1 0 0 1

Nucleus 0 1 0 1 0 1

Mitochondrion 0 1 0 0 1 0

Membrane 1 1 1 1 0 1
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(e ≤ 1 × 10-10). We distinguished biologically functional
complexes (where multimeric protein chains are perma-
nently bound and essential for the complex function)
from transient ones (where protein chains may be bound
to a complex but may also act as a separate functional pro-
tein on its own), by applying a method proposed by
Ofran and Rost [56]. This yielded 377 binary chain inter-
actions.

Cellular localisation of proteins was obtained from the
Gene Ontology Consortium [28]. Each of the proteins
identified by the cluster analysis was placed in a basic cel-
lular localisation class as per Table 5. Protein pairs pre-
dicted to interact were considered co-localised if they were
found in compatible cellular compartments.

Creation of networks around up/down-regulated genes

Rat genes that were overexpressed or underexpressed
more than four-fold were used as starting points (n =
100). Networks were expanded two generations out from
the starting points using protein-protein interactions
whose S-score value was 10 or higher. The resulting
10,628 interactions were then analysed using CFinder
[27], which locates maximal complete subgraphs (k-
cliques) in the networks and then identifies 'communi-
ties' by carrying out standard component analysis of the
clique-clique overlap. In this context, the variable k is
defined as the number of nodes in the subgraph and a k-
clique community is defined as the union of all k-cliques
that can be reached from each other through a series of
adjacent k-cliques, where cliques sharing k - 1 nodes are
defined as adjacent. Table 6 shows the number of individ-
ual protein communities for different k-values. Thirty-
seven communities were identified for k = 4, i.e. setting
the subgraph size threshold to a minimum of four. Select-
ing the k-value is a balancing act; the higher the k-value,
the smaller and more internally connected the communi-
ties become, but less connection is observed between

communities. The k-value was selected after observing
that at k = 4, reasonably large communities were formed.
Proteins which shared sequence identity higher than 40%
within each community, were merged together such that
they appeared as a single nodes on the protein map. These
merged nodes inherited all the interactions from the indi-
vidual proteins before the merging process. This was done
to correct for any possible redundancies caused by our
homology-based method for predicting protein interac-
tions. There was negligible change in the protein networks
as a result of this.

Microarray expression data for metastatic rat cells

To investigate genes that may be important in the devel-
opment of metastases, we used a rat sarcoma model in
which the cell populations K2, T15, A297 and A311 have
0, 40, 90 and 100% incidence of metastasis, respectively.
We performed Affymetrix microarray analysis on the four
cell populations and the primary tumours that formed
when the cells were injected subcutaneously into rats. All
experiments were performed in triplicate, using Affyme-
trix rat 230A GeneChip oligonucleotide arrays [57]. Total
RNA was extracted from each sample and used to prepare
biotinylated target RNA; 10 µg of RNA was used to gener-
ate first-strand cDNA by using a T7-linked oligo(dT)
primer. After second-strand synthesis, in vitro transcrip-
tion was performed with biotinylated UTP and CTP (Enzo
Diagnostics), resulting in approximately 100-fold ampli-
fication of RNA. A complete description of the procedures
is included in The Paterson Institute's Affymetrix Gene-
Chip systems protocols [58].

The target cRNA generated from each sample was proc-
essed as per the manufacturer's recommendation using an
Affymetrix GeneChip Instrument System [59]. Briefly,
spike controls were added to 10 µg fragmented cDNA
before overnight hybridisation, arrays were washed and
stained with streptavidin-phycoerythrin, and scanned on
an Affymetrix GeneChip scanner. The procedure is further
described in The Paterson Institute's RNA Hybridisation
protocols [60]. The median fluorescence intensity value of
each GeneChip was calculated and used to normalise the
chips. Gene expression was considered in terms of fold-
changes between non-metastatic and the median of the
three metastatic samples.
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Table 6: The number of protein communities at different 

clustering threshold values. The number of protein communities 

vary as the k-value for clustering is changed. The table shows the 

total number of separate protein communities for each k-value.

Clustering threshold value Number of protein communities

k = 3 145

k = 4 37

k = 5 12

k = 6 8

k = 7 2

k = 8 1

k = 9 1

k = 10 1

k = 11 1
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