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Joshua B. Plotkin,1,2,* Jérôme Chave,2 and Peter S. Ashton3

1. Institute for Advanced Study, Princeton, New Jersey 08540;
2. Department of Ecology and Evolutionary Biology, Princeton
University, Princeton, New Jersey 08544;
3. Department of Organismal and Evolutionary Biology, Harvard
University, Cambridge, Massachusetts 02138

Submitted February 13, 2001; Accepted May 6, 2002

abstract: Tree species in tropical rain forests exhibit a rich panoply
of spatial patterns that beg ecological explanation. The analysis of
tropical census data typically relies on spatial statistics, which quantify
the average aggregation tendency of a species. In this article we
develop a cluster-based approach that complements traditional spa-
tial statistics in the exploration and analysis of ecological hypotheses
for spatial pattern. We apply this technique to six study species within
a fully mapped 50-ha forest census in peninsular Malaysia. For each
species we identify the scale(s) of spatial aggregation and the cor-
responding tree clusters. We study the correlation between cluster
locations and abiotic variables such as topography. We find that the
distribution of cluster sizes exhibits equilibrium and nonequilibrium
behavior depending on species life history. The distribution of tree
diameters within clusters also varies according to species life history.
At different spatial scales, we find evidence for both niche-based and
dispersal-limited processes producing spatial pattern. Our method-
ology for identifying scales of aggregation and clusters is general; we
discuss the method’s applicability to spatial problems outside of trop-
ical plant ecology.

Subject heading: tropical forests, spatial statistics, spatial point pro-
cesses, continuum percolation, dispersal limitation.

It has been firmly established that woody plant species and
lianas exhibit spatial aggregation in natural communities.
This trend has been especially well documented in species-
rich communities, such as tropical rain forests, through
large-scale census experiments (Hubbell 1979; Hubbell
and Foster 1983; He et al. 1997; Condit et al. 2000; Plotkin
et al. 2000b). Although the primary cause of spatial pat-
terns is hotly debated, the existence of spatial heterogeneity
is fundamental to our theoretical and practical under-
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standing of complex ecosystems (Ashton 1976, 1998; Hub-
bell and Foster 1983; Hubbell 1997; Levin et al. 1997).
The niche-based hypothesis attributes most species-level
heterogeneity to biotic and abiotic environmental varia-
bility (Ashton 1969; Grubb 1977). However, even without
habitat differentiation, neutral models of diversity predict
that dispersal limitation can itself account for the emer-
gence of spatial clustering (Wong and Whitmore 1970;
Hubbell 1997, 2001).

Why should tree species be spatially clumped? Why do
they not eventually occupy all suitable space evenly? Many
ecologists (the niche theorists) argue that some sites are,
at least at certain periods, unsuitable for certain species.
This occurs because the species is not competitive in the
local abiotic habitat, or pathogens or predators have elim-
inated it locally (Janzen 1970; Connell 1971), or it is due
to some random vicissitude. Other ecologists (the neutral
theorists) contend that dispersal limitation and differential
mortality alone cause aggregated occupancy patterns.

Not until recently, however, with the advent of large
botanical inventories and long-term surveys, have these
fundamental issues been addressed with detailed empirical
data. Methodologies for analysis of spatial data have be-
come important for evaluating ecological theories. Such
analyses usually employ the large body of spatial statistics
that have been developed over the past century. Recent
contributions (He et al. 1997; Batista and McGuire 1998;
Condit et al. 2000; Plotkin et al. 2000b) have quantified
the average clumping characteristics of tree species by util-
izing a family of measures derived from the Ripley K sta-
tistic (Ripley 1976). The K statistic computes the number
of conspecifics within a distance d from an individual,
averaged over all individuals in the data set. To quantify
clumping, the observed K values are compared with the
null hypothesis of spatial randomness. Other common
methodologies for analyzing spatial data include Fisher’s
quadrat-based variance-to-mean ratio (Fisher et al. 1922;
David and Moore 1954; Lloyd 1967), nearest-neighbor sta-
tistics (Pielou 1959; Pollard 1971; Diggle 1983; Cressie
1991; He et al. 1997), and fitted spatial point processes
(Diggle 1983; Cressie 1991; Batista and Maguire 1998; Plot-
kin et al. 2000b).

In this article we address a generic limitation of such



630 The American Naturalist

statistical studies. Despite their broad efficacy, spatial sta-
tistics essentially quantify the average aggregation pattern
of a species. This limitation often has induced ecologists
to assign a single scale of aggregation to each species (Con-
dit et al. 2000; Plotkin et al. 2000b, He and Gaston 2000)
even though a species can be aggregated at several scales
simultaneously. Many ecological questions, such as the
influence of habitat differentiation, can be better addressed
by identifying the specific position, size, and shape of the
spatial clusters in a data set. This task is tantamount to
partitioning survey data into distinct clusters.

The problem of partitioning data has been investigated
extensively in many disciplines (Duda et al. 1998). In this
article we develop an approach to identifying clusters in
spatial data, at several spatial scales, without making any
a priori assumptions on the structure of clusters. We apply
this technique to a 50-ha permanent sampling plot of trop-
ical rain forest. Using select species from the 50-ha survey,
we investigate the potential effects of habitat differentiation
and dispersal limitation, that is, niche-based and dispersal-
based hypotheses, on the spatial arrangement of individ-
uals at various spatial scales. For each species we identify
the scale(s) of spatial aggregation and the corresponding
tree clusters. We study the correlation between cluster lo-
cations and abiotic variables such as topography, the dis-
tribution of cluster sizes, and the distribution of tree di-
ameters within clusters. We conclude by discussing the
relative merits of our cluster-based approach and spatial
statistics in general.

Material and Methods

Study Site

The Pasoh Forest Reserve, Negiri Sembilan, Malaysia, is a
2,450-ha protected forest of the Keruing-Meranti type. Its
flora has been studied since 1970 (Wong and Whitmore
1970; Ashton 1976; P. S. Ashton, unpublished manuscript,
1971). The canopy of the Pasoh forest is dominated by
dipterocarp trees, mostly in the genera Shorea, Diptero-
carpus, and Neobalanocarpus. Mean rainfall at the study
site is relatively low, approximately 2,000 mm/yr, but with-
out marked seasonality.

A 50-ha permanent sampling plot was established in
1987 by the Forest Research Institute of Malaysia to mon-
itor long-term changes in primary forest (Manokaran and
Kochummen 1987; Kochummen et al. 1990; Manokaran
and LaFrankie 1990). The Pasoh plot, located at 102�18�W
and 2�55�N, is a rectangular census 1 km long and 0.5 km
wide. The plot’s topography is fairly even, with a gentle
slope rising 24 m toward the northwest. There are two
primary streams within the plot. All 335,256 free-standing
woody stems exceeding 1 cm diameter at breast height

(dbh) were identified to species and spatially mapped to
!1 m accuracy (see Manokaran and LaFrankie 1990),
yielding 816 species, 294 genera, and 74 families. The ini-
tial census of 1987 has been repeated in 1990 and 1996.
The 1996 data are used throughout this article. The Pasoh
plot is part of a long-term research program worldwide,
coordinated by the Smithsonian’s Center for Tropical For-
est Science.

We have selected this plot because it has motivated sev-
eral statistical studies in the past few years (He et al. 1997;
Condit et al. 2000; Plotkin et al. 2000a, 2000b; He and
Gaston 2000). Hence, our cluster analysis may be easily
compared with prior results of a more statistical nature.

Study Species

Previous studies of spatial pattern in tropical forests (He
et al. 1997; Condit et al. 2000; Plotkin et al. 2000b) have
addressed the question of how many species are aggre-
gated. These studies have clearly concluded that most spe-
cies are clumped, and a few are randomly distributed. This
conclusion was based on spatial statistics, which are often
deficient for rare species.

Here, by contrast to previous studies, we focus on a
handful of carefully chosen species. We have selected four
abundant and two rare species in the Pasoh permanent
plot. Xerospermum noronhianum (Blume) Blume Sapin-
daceae is a subcanopy species and the most common in
the plot (8,820 stems, average dbh cm, maximalD p 3.19
dbh cm). It is recorded as a peat swamp forestD p 37.3max

specialist. It is abundant in mesic moist sites throughout
western Malaysia but also is widespread in other lowland
habitats in mixed dipterocarp forest. The seeds of X. no-
ronhianum are dispersed by the monkey, the crab-eating
or long-tailed macaque, and by the gibbon (Yap 1976).
Knema laurina (Blume) Warb. Myristicaceae (4,088 stems,

cm, cm) is a subcanopy speciesD p 2.53 D p 35.4max

often found on sand or clay.
Neobalanocarpus heimii (3,334 stems, cm,D p 5.0

cm) is an emergent dipterocarp and a com-D p 196.8max

mercial timber known as chengal. It is endemic to pen-
insular Malaysia and is widespread there on sandy allu-
vium and on ridges to about 1,000 m. It is sometimes
gregarious. It is shade tolerant as a juvenile and has very
hard durable wood (specific density 0.7–0.8 g/cm3). With
large wingless fruit, the seed has no known means of dis-
persal. Neobalanocarpus heimii is the ultimate climax spe-
cies, able to regenerate even in very small light gaps.

Shorea macroptera (1,508 stems, cm,D p 6.1 D pmax

cm) is a main-canopy dipterocarp and a leading102.5
species in the so-called Red Meranti–Keruing type of
mixed dipterocarp forest on suitable soils throughout west-
ern Malaysia. The fruit bears slightly twisted, aliform, ex-
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Figure 1: Schematic spatial arrangement of six data points in the plane.
Points within a radius d are assigned to the same cluster; hence, points
a, b, c, and d are in the same cluster. Points e and f are in separate clusters.

panded sepals, so that it is dispersed by gyration and some-
times wind. It is also a light demander and regenerates
from established seedlings after the formation of large
gaps. Shorea macroptera follows life-historical strategies
that are extremely different from those of N. heimii.

In addition, we have studied two less abundant species
with peculiar spatial patterns. Mallotus penangensis Muell.
Arg. Euphorbiaceae (1,404 stems, cm,D p 4.56 D pmax

cm) is a subcanopy tree found on various habitats both24
in peninsular Malaysia and in Borneo (known as Mallotus
sarawacensis). Pternandra coerulescens Jack Melastomata-
ceae (438 stems, cm, cm) is a sub-D p 5.31 D p 25max

canopy species found mainly along watercourses or wher-
ever ground litter is minimal.

Clustering Spatial Data

Algorithm Specification

We present a technique of spatial analysis that identifies
the location of intraspecific tree clusters in a fully censused
forest plot. This technique will serve as the basis for an-
alyzing the spatial patterns of our six study species. Tree
locations are henceforth considered as punctual. Our tech-
nical problem is, therefore, to define and detect the spatial
clusters for a set of points in the plane. In addition, we
wish to detect “critical distances” or “critical scales” related
to the observed data. When data contain more than one
critical distance, classical statistics would yield an average
of these distances and, thus, a fairly imprecise character-
ization. The most straightforward method for partitioning
data into clusters is by visual inspection. However, this
method is subjective and time consuming. We desire a
rigorous technique of cluster detection that requires no a
priori assumptions about the shape of the clusters. We also
want to detect clusters even if they are not radially sym-
metric or approximately symmetric. We now present an
efficient technique for addressing both questions.

We say that two trees are connected if their stems are
separated by a distance d or less. Two trees are said to
belong to the same cluster if they are related by a path of
connected trees. For example, if tree A is connected to
tree A, and tree B is connected to tree C, then all three
trees will belong to same cluster, even if A and C are not
directly connected. This definition of a cluster, illustrated
graphically in figure 1, is extremely simple and natural. In
addition, this definition allows us to interpret cluster anal-
ysis in the language of statistical mechanics (see “Perco-
lation and Critical Distances”).

Given a value of the clustering distance d, our algorithm
partitions the data into distinct spatial clusters. The dis-
tance d is a free parameter of the algorithm. Once d is

specified, there is a unique corresponding partition of the
data into disjoint clusters. In the trivial case when d p

, each tree forms its own distinct cluster, but when d is0
very large (larger than the maximal pairwise distance be-
tween two trees), there is only one cluster; all trees are
pairwise connected. Interesting patterns emerge for inter-
mediate values of the clustering parameter d. The appendix
describes an efficient implementation of our algorithm as
well as some related subtleties of its execution.

Percolation and Critical Distances

Spatial statistics typically are compared against the null
model of randomly distributed points. In order to gain
some intuition about our clustering algorithm, we tem-
porarily restrict our focus to the case of random data
points. An understanding of this scenario will improve our
interpretation of the cluster results in the forthcoming
applied setting. When data are random, the behavior of
our algorithm is, in fact, equivalent to the “continuum
percolation problem,” a well-researched topic in statistical
physics (Broadbent and Hammersley 1957; Stauffer and
Aharony 1994). The partitions identified by our algorithm
undergo a sharp transition as the parameter d increases.
Before the transition, most data points are isolated; after
the transition, most points belong to the same large cluster.
This phenomenon is known as the “percolation transi-
tion.” Percolation is usually studied when data points are
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Figure 2: a, Idealized relationship between the distance parameter d and
the mean cluster size. A sharp (critical) transition is predicted at a single
distance dc if the data points are randomly distributed in space and if
the sample size is large. As d passes through the percolation threshold
dc, the data points become connected in space and the mean cluster size
undergoes a phase transition from 0 to 1. b, Influence of finite sample
size on the “continuum percolation” transition. The transition occurs at
the same critical distance as in the large sample size limit (a), but the
transition is not as sharp. c, Percolation behavior for simulated data. In
each of the four data sets, points have been placed in space at random
with density 0.1. The largest data set contains points, andn p 12,500

the smallest data set, points. As the sample size gets smaller,n p 100
the transition becomes more gradual, as depicted schematically in a. See
the appendix for a discussion of minimizing sample size artifacts.

constrained to remain on a discrete lattice (see, e.g., Keitt
et al. 1997; and Keymer et al. 2000 for applications in
ecology). In our case, however, tree locations are uncon-
strained, and the corresponding process is called “contin-
uum percolation” (Hall 1985; Meester and Roy 1996).

As we vary the cluster parameter d, we obtain corre-
sponding partitions of the data into disjoint clusters. For
any given d value, we denote the number of resulting
clusters by m and the size of the clusters by

. Let denote the total number ofc , c , … , c n p � c1 2 m i

individuals in the sample. We can conveniently summarize
a cluster arrangement by recording the mean cluster size,
that is, the first moment of the cluster size distribution:

m m
c 1i 2AcS p # c p c .� �i in nip1 ip1

The mean cluster size equals the expected size of the cluster
containing a randomly chosen individual. The normalized
mean cluster size, , computes the probability that twoAcS/n
randomly chosen data points lie in the same cluster.

Percolation theory predicts that below a certain critical
distance, dc, individuals will be distributed in many small
clusters, while above this distance most individuals will
belong to a single large cluster. The critical distance dc at
which the clusters undergo this transition is called the
“percolation threshold.” The transition will be increasingly
sharp as number of individuals in the data sample in-
creases. The percolation transition may also be stated in
terms of the mean cluster size: the (normalized) mean
cluster size of a very large random data set will equal 0
below the critical distance dc and 1 above the critical dis-
tance. Figure 2 demonstrates the percolation transition by
graphing the distance parameter d against the mean cluster
size for a simulated set of random data points.AcS

In real data, as opposed to random data, we do not
expect to find a single sharp transition at one critical dis-
tance. Instead, we may often discover several critical dis-
tances with varying degrees of sharpness. Such behavior
is indicative of spatial clustering at several scales. As we
vary the distance parameter d, producing different parti-
tions of the data into clusters, we will detect critical dis-
tances by graphing d against the corresponding mean clus-
ter size . Any range of distances d that corresponds toAcS
a plateau in the cluster size curve indicates a nonrandom
scale of aggregation that is insensitive to perturbations in
d. In general, the number of plateaus in the observed
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cluster size curve will reflect the number of nonrandom
scales of aggregation.

In order to compare cluster behavior across species with
different abundances, we must normalize the distance pa-
rameter d. We will divide d by the quantity

1 �A/n,
2

which is the average nearest-neighbor distance for n ran-
domly placed data points. The normalized parameter is
denoted

ˆ �d p 2d n/A.

Here A denotes the total sample area, and n denotes the
abundance of the species. This normalization produces a
nondimensional version of cluster parameter , suitabled̂
for interspecific comparison. In the limit of a large sample
size and a random data set, the sharp transition will occur
around , regardless of the density of points.d̂ ≈ 2.4

Techniques for the Study of Habitat Associations

The association of species with habitat type was one of
the first questions studied by tropical botanists (see, e.g.,
Richards 1936). This question was a primary motivation
for many large-scale studies in Southeast Asia (Ashton
1964) and in the Neotropics (Gentry 1988). Such studies
have stimulated the development of statistical methods for
detecting “phytosociological units” or habitat associations.

In essence, statistical methods of habitat correlation
query, with varying degrees of sophistication, whether or
not a species is overrepresented in a particular habitat; x2

(Basnet 1992) and modified x2 (e.g., Harms 1996; Plotkin
et al. 2000b) tests are the most common statistical analyses.
Such techniques are undeniably useful in quantifying over-
all patterns of habitat associations. Yet their ability to char-
acterize the specific effects of habitat on any particular
species is modest: such tests simply inform us whether or
not a species is associated (positively or negatively) with
a given habitat. Moreover, such tests are only possible if
complete and consistent abiotic measurements have been
performed throughout the survey area. We will demon-
strate how cluster analyses can complement existing sta-
tistical techniques. Cluster analysis can elucidate habitat
associations for rare and common species alike, even in
situations where more classical statistical analyses fail to
detect or to characterize associations. The dual informa-
tion of the location and the shape of a cluster is extremely
useful in assessing potential habitat specializations.

Results

Identification of Spatial Clumps

As a preliminary example of our cluster algorithm, we first
consider Mallotus penangensis, a species with a noniso-
tropic spatial distribution. Figure 3 shows the primary
output of our algorithm. Cluster analyses are shown for
two distances, m and m (fig. 3a). Fig-d p 12.4 d p 20.8
ure 3b shows the relationship between the normalized clus-
ter parameter and the corresponding mean cluster size.d̂
Notice that the cluster behavior summarized in figure 3b
is very different from the random case discussed above
(fig. 2c). Instead of a single percolation threshold at d̂ ≈

, M. penangensis displays two transitions occurring at2.4
approximately 1.5 and 8.0. The first transition occurs at
a smaller distance than for random data and the second,
at a much larger distance. The distance required to connect
all points into a single cluster is much larger for the Mal-
lotus data ( ) than for the random data ( ).ˆ ˆd 1 8 d p 3

The M. penangensis clusters undergo their first transition
at , and the mean cluster size remains fairly con-d̂ ≈ 1.5
stant on a plateau for a range of distances thereafter (fig.
3b). This indicates that the M. penangensis clusters are well
defined over a large range of scales ( ). Theˆ1.5 ! d ! 6.0
two d values chosen in figure 3a correspond to d̂ p 1.3
and ; these two values demonstrate the clusterd̂ p 2.2
structure before and after the first transition. Figure 3b
indicates that the right panel of figure 3a is a better clus-
tering of the M. penangensis species than the left panel, in
the sense that the clusters are robust to perturbation.

The precise relationship between cluster structure and
distance parameter is best summarized by the graph in
figure 3b. Nevertheless, figure 4 provides an alternative,
three-dimensional summary of this relationship. The Z-
axis of figure 4 corresponds to the distance parameter d.
For convenience, clusters are represented schematically by
circles (in fact, clusters are not symmetric). The top layer,

, shows the locations of every tree in green. On thez p 0
bottom layer ( m) all the trees are within the samed p 134
large cluster, represented by a single circle. As d increases
down the Z-axis, the number of clusters decreases and the
cluster sizes increase. The critical transitions in this spec-
trum are visible in figure 4, but they are perhaps discerned
more accurately by graphing the mean cluster size (fig.
3b).

Our analysis of M. penangensis highlights two important
regimes of spatial patterns: stable regions in which the
clusters are well defined and sensitive regions in which the
cluster structure undergoes dramatic transitions. Depend-
ing on the ecological question at hand, either one of these
regimes may be of interest. In the case of M. penangensis,
the stable region most likely indicates the clustering that
corresponds to dispersal-driven clumps of related trees. As
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Figure 3: a, Cluster analysis of the understory species Mallotus penangensis, Euphorbiaceae. There are 1,404 stems of this species in the Pasoh 50-
ha plot. When we set the clustering distance d equal to 12.4 m, the algorithm partitions the data into 75 distinct clusters, each plotted in a different
color (left panel). Some colors may appear similar. Setting m results in 34 clusters (right panel). b, Mean cluster size as a function of thed p 20.8
normalized distance parameter for M. penangensis. The algorithm was run with a temperature to minimize finite-size artifacts (see appendixx p 0.08
for details).

we shall see, however, the critical regimes can also be useful
for detecting the influences of habitat.

Habitat Associations

Pternandra coerulescens. The species P. coerulescens pro-
vides an instructive comparison with M. penangensis. Both
species demonstrate essentially two critical distances (figs.
3b, 5b). For P. coerulescens, the transitions occur at d̂ ≈

and . The clusters of P. coerulescens shown inˆ1.2 d ≈ 2.5
figure 5a occur in the stable region immediately after the

first critical distance. Unlike M. penangensis, the clusters
of P. coerulescens are long, narrow, and linear in shape,
with a few exceptions. Notice that both cluster geometries
are simultaneously detected by our algorithm. Pternandra
coerulescens also features a large number of singleton trees
located far away from conspecifics. This feature, seen
graphically in figure 5a, is reflected by the long tail of the
cluster size curve in figure 5b. The tail is caused by the
gradual assimilation of singleton trees into the main cluster
at large distances d.

Pternandra coerulescens exhibits clusters with a very
characteristic shape. The hypothesis that P. coerulescens is
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Figure 4: Dependence of clusters on the distance parameter d for Mallotus penangensis. The figure shows a three-dimensional graph of M. penangensis
clusters. The X- and Y-axes of the figure correspond to the length and width of the 50-ha plot, as in figure 3a. The Z-axis corresponds to the value
of d. The color also corresponds to the value of d. On the upper plane, , and each tree forms its own cluster, all plotted in green. As dd p 0
increases down the Z-axis, larger clusters form. Each cluster is represented in the figure by a circle centered at the center of mass of the cluster.
The radius of the circle equals the mean distance of the trees in the cluster to its center of mass.

associated with local streams, which stands out as the most
natural in light of figure 5b, is confirmed by the natural
history of the species (see “Study Species”). This suggests
that the linear-shaped clusters are the direct result of P.
coerulescens’s finicky habitat requirements. Indeed, P. coe-
rulescens mainly grows wherever ground litter is minimal
or absent. The latter observation was made during a trop-
ical plant biomass experiment in 1971–1973 when all free-
standing trees and litter were removed from a survey plot
near Pasoh’s 50-ha plot (Kira 1971). Pternandra coerules-
cens, normally a fairly rare species, colonized most of the
logged region, presumably due to the complete absence of
ground litter there (T. Kira, personal communication). In
addition, P. coerulescens also clusters at the primary pig
wallows in the plot (fig. 5a), another location with frequent
litter disturbance. Despite the numerous, widespread,

small seeds produced by P. coerulescens, the species is se-
verely limited by abiotic environmental factors. Since maps
of Pasoh’s local stream networks (and many other abiotic
environmental variables) are not available, the present
analysis would have been much more difficult, or impos-
sible, via classical tests of habitat specificity.

Xerospermum noronhianum and Knema laurina. We turn
now to the environmental influences on two of the most
common Pasoh species: Xerospermum noronhianum and
Knema laurina. In particular, we examine the effect of
topography of their spatial distributions. A Ripley K anal-
ysis indicates that both of these species follow nonrandom
spatial distributions (Plotkin et al. 2000b). The cause or
nature of the nonrandomness is difficult to determine with
the naked eye. Statistical tests indicate that neither of these
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Figure 5: a, Cluster analysis of Pternandra coerulescens that results from
the distance parameter m ( ). There are 438 stems withinˆd p 25.4 d p 1.5
the plot, which form 79 clusters. Most of the clusters of P. coerulescens
are linear in shape. The arrow indicates the locations of pig wallows
within the 50-ha plot. b, Mean cluster size curve for P. coerulescens. The
algorithm was run with a positive temperature ( ) to minimizex p 0.08
finite size effects. The resulting curve shows two principal transitions.

Figure 6: a, Topographic contour map of the Pasoh 50-ha plot. The
primary water drainage route running off the hill is indicated in red. b,
Cluster analysis of Knema laurina for m (330 disjoint clusters).d p 12.1
Notice that K. laurina forms a single, stable cluster on the hill. c, Cluster
analysis of Xerospermum noronhianum for m (494 disjoint clus-d p 9.0
ters). Notice that X. noronhianum tends to form larger, stable clusters
off of the hill. The water drainage route apparently disrupts the X. no-
ronhianum clusters. See figure 7 for the relationship between distance
parameter d and mean cluster size.

species is very strongly correlated with Pasoh’s topography
(Plotkin et al. 2000b). In particular, for each species, the
total density of stems on the hill is roughly equal to the
density of stems off the hill. Although topography does
not limit the ranges of these species, it might, nevertheless,
influence the spatial geometry of individual tree
placement.

Figure 6b shows that topography does have an effect on
the spatial distribution of these two species, despite the
absence of a strong statistical correlation with topography.
Knema laurina exhibits one large cluster whose boundaries
clearly coincide with the detailed topography of the single
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Figure 7: Mean cluster size curve for Xerospermum noronhianum. The
algorithm was run with a positive temperature, (see appendixx p 0.05
for details). The critical value yields the cluster arrangementd̂ p 2.4
displayed in figure 6c. The mean cluster size curve for Knema laurina
(not shown) is very similar.

Figure 8: Distribution of cluster sizes for Mallotus penangensis (dashes),
Pternandra coerulescens (solid line), and Knema laurina (dots). The figure
shows the rank cluster size distribution on semilogarithmic axes. All three
species demonstrate a full range of cluster sizes. (The largest cluster of
K. laurina, containing 2,223 trees, is not visible within these axes.)

hill within the Pasoh plot. Knema laurina’s cluster ge-
ometry is radically different off the hill as compared to
on the hill. Off the hill, K. laurina forms tighter clumps
that are more separated from each other than those on
the hill. Since the total densities of trees on and off the
hill are roughly equal, the within-clump density of stems
is higher for clusters off the hill, an intriguing behavioral
pattern whose underlying mechanism we cannot yet fully
elucidate.

Although the cluster behavior of X. noronhianum is less
dramatic than that of K. laurina, it also evidences a clear
response to the topographic gradient. In the case of X.
noronhianum, the clusters off the hill are large, stable, and
evenly spaced. On the hill, X. noronhianum exhibits tighter
aggregation patterns. In fact, the cluster geometry of X.
noronhianum is also correlated with the main drainage
streams running off the hill (as indicated in fig. 6c). Figure
7 shows the cluster size curve for X. noronhianum. The
effect of topography on cluster geometry has been revealed
by inspecting a critical value of ( m).d̂ p 2.4 d p 9.0

As figures 6 and 7 reveal, the spatial cluster geometries
of X. noronhianum and K. laurina are clearly influenced
by topography. It is unlikely that these species suffer from
a dramatic difference in dispersal limitation depending on
their location on or off the hill. Thus, habitat is probably
the primary influence on the particular spatial arrange-
ment of these two common species, despite their consti-
tutive presence throughout the plot.

Cluster Demographics

The ability to partition spatial data into clusters allows us
to reexamine many classical questions about plant com-
munity dynamics, such as habitat associations. We can also
now analyze community structure on a different scale than
the census scale addressed by classical statistics. In partic-
ular, having identified specific tree clusters, it is natural to
consider the range of observed cluster sizes as well as the
within-cluster demographics.

Cluster Sizes. Null models of disturbance-driven com-
munities would predict uniform cluster sizes within each
species, reflecting the same history of disturbance. As is
fairly clear from figures 3–7, there is a very wide range of
cluster sizes within each species, both in terms of the min-
imum convex area containing a cluster and the number
of trees belonging to each cluster. Figure 8 summarizes
the distribution of cluster sizes (in terms of number of
individuals) for M. penangensis, P. coerulescens, and K. lau-
rina. Each of these species, as well as the vast majority of
Pasoh species, demonstrates a wide range of cluster sizes,
even if we discard extraneous clusters containing ≤5
individuals.

Distribution of Within-Cluster Tree Diameters. We now fo-
cus on the within-cluster demographics of our study spe-
cies. Figure 9 shows the range of tree diameters within
each of the four largest clusters of M. penangensis. For
comparison, we also plot the dbh distribution of all M.
penangensis stems in the entire 50-ha plot. Aside from the
four or five largest trees, the clusters exhibit the same full
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Figure 9: Distribution of tree diameters within the four largest Mallotus
penangensis clusters, compared with the distribution of M. penangensis
diameters in the entire 50-ha census (large dots). The figure shows a rank
dbh plot on a semilogarithmic axis. The individual clusters of M. pen-
angensis exhibit nearly the same full range of dbh classes as the 50-ha
plot as a whole.

range of diameters as the 50-ha census taken altogether.
Moreover, the dbh distribution is approximately expo-
nential at both the cluster scale and the full 50-ha scale.
These results indicate that the identified clusters of M.
penangensis represent full-fledged microcommunities of
trees, containing juvenile and mature stems alike. We do
not find any examples of purely juvenile or purely adult
trees, which would be obvious signatures of a system away
from equilibrium. Instead, the clusters of M. penangensis
are in equilibrium, in that we do not expect their diameter
distribution to change significantly in time.

A full range of intracluster diameters is common among
those Pasoh species that demonstrate obvious aggregation
patterns. The trend demonstrated by M. penangensis also
holds for our other study species. Species Neobalanocarpus
heimii is a rare counterexample: its large clusters dem-
onstrate an elevated proportion of juveniles, compared
with the dbh distribution in the plot as a whole. The
unusual nonequilibrium distribution of N. heimii reflects
its characteristic ability to regenerate quickly in small gaps.

Cluster Structure and Tree Diameters. In addition to the
range of within-cluster tree diameters, we are also inter-
ested, naturally, in the relative locations of large and small
trees within a cluster. In particular, are clusters character-
ized by one or several large “mother trees” located near
the cluster center? Or are large trees more often found on
the periphery of clusters? Such questions are relevant to
an understanding of those processes behind cluster
formation.

We have found examples of both trends within the Pa-
soh plot. Many species exhibit random within-cluster tree
placement, with respect to tree diameter. Many other spe-
cies exhibit an elevated proportion of large peripheral
trees. And only a few species exhibit large central trees.
This finding, which we document in two particular in-
stances below, may be somewhat surprising compared with
the simplistic view of a dispersal-driven cluster with central
large “mother trees.” Shorea macroptera exhibits an ele-
vated proportion of peripherally located large trees. Figure
10a shows a cluster analysis of S. macroptera in which the
size of each circle corresponds to the tree’s diameter. It is
not immediately apparent to the eye whether large trees
are central or peripheral. With the explicit knowledge of
the cluster partition, however, we can test for statistical
correlations between tree diameter and within-cluster
placement.

We define the center of a cluster to be the average X
and Y coordinate of all those trees in the cluster. This
definition assumes some degree of isotropy. For each clus-
ter, we inspect the relationship between a tree’s dbh and
its distance to the center of its cluster. We normalize this
distance by dividing by the mean distance to the center
among all trees in the cluster. Finally, we calculate the
Pearson’s correlation coefficient of the relationship be-
tween dbh and distance to center for each cluster.

The correlation between tree diameter and distance to
center is shown for each cluster of S. macroptera in figure
10b. Notice that most of the large clusters demonstrate a
positive correlation. Pooling the dbh distance data from
the 10 largest clusters of S. macroptera together, the positive
correlation between dbh and distance is statistically sig-
nificant at the 95% confidence level: larger trees tend to
lie on the periphery of their cluster. The same finding holds
for many other Pasoh species, including, for example, Dip-
terocarpus cornutus, Shorea guiso, Schoutenia accrescens,
and Eugenia claviflora.

Figure 11 demonstrates a parallel analysis for N. heimii.
In this case, however, the large clusters demonstrate a neg-
ative correlation between dbh and distance to cluster cen-
ter. Pooling the data from the 10 largest clusters together,
there is again a statistically significant result at the 95%
level: larger trees tend to be found closer to the center of
the cluster. Among the Pasoh species, N. heimii is a some-
what rare example of this central large tree phenomenon.
The tendency for large trees to be located in the center of
clusters, as opposed to the periphery, is indicative of strong
intraspecific competition. Despite an abundant seed rain
around many large, reproductive, locally dispersed trees,
seedlings have difficulty establishing themselves in the
nearby vicinity of large conspecifics and find themselves
marginalized on the periphery. Most of this intraspecific
competition occurs before stems reach 1 cm diameter
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Figure 10: a, Cluster analysis of Shorea macroptera corresponding to
, resulting in 171 clusters. The radius of each circle representsd̂ p 1.4

the diameter of the corresponding tree, although not to scale. b, Pearson
correlation coefficient for the within-cluster relationship between dbh
and distance to cluster center for all S. macroptera clusters. The X-axis
denotes the size of the cluster, and the Y-axis denotes the correlation
coefficient for the trees within the cluster. Notice that most of the large
clusters exhibit a positive correlation between dbh and distance to center;
large S. macroptera trees are found toward the periphery of their cluster.

Figure 11: a, Analysis of Neobalanocarpus heimii parallel to figure 10.
The cluster algorithm was run at , resulting in 1,200 clusters. b,d̂ p 1.1
Pearson correlation coefficient for the within-cluster relationship between
dbh and distance to cluster center for all N. heimii clusters. Notice that
most of the large clusters exhibit a negative correlation between dbh and
distance to center. In other words, large trees of N. heimii are found near
the center of their cluster.

(Wills and Condit 1999). Thus, within-cluster demograph-
ics may be a strong indicator of intraspecific forces and
even Janzen-Connell effects (Janzen 1970; Connell 1971).

It is interesting to note that N. heimii and S. macroptera
have radically different dispersal mechanisms (see “Study
Species”). The dispersal differences between these two dip-
terocarps are clearly correlated with the different spatial
population structures of their clusters (fig. 10 vs. fig. 11).
Such an observation would perhaps be predicted from an
understanding of life-history traits and from visual in-
spection but can only be verified rigorously by a complete
cluster analysis. In the case of N. heimii, trees that succeed
to maturity then escape competition and continue to live

reproductively for centuries. Because of their large wingless
fruit, most juveniles do not survive the stifling dark pa-
rental subcanopy light climate. As a result, there are several
large central stems of N. heimii surrounded by a range of
aspiring juveniles on the perimeter, most of which will not
survive. This interpretation agrees with our earlier obser-
vation of an elevated proportion of juveniles found in
clusters of N. heimii.

The seeds of S. macroptera, by contrast, are well dis-
persed, and the growth rates are also higher. Moreover,
adult stems of S. macroptera do not persist as long as N.
heimii. As a result, old clumps of S. macroptera may have
new clumps growing in gaps and around their perimeters;
we therefore find a positive correlation between dbh and
distance to center.

It is also interesting to compare the cluster demograph-
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ics of N. heimii with those of the ballistically dispersed M.
penangensis. On the face of it, these two species might be
expected to demonstrate similar within-cluster spatial
structure. However, M. penangensis does not, in fact, ex-
hibit any significant correlation (positive or negative) be-
tween distance and size, in contrast to N. heimii’s negative
correlation. This observation likely reflects the fact that N.
heimii does not reproduce until its crown has emerged
above the canopy, perhaps after at least 50 yr. Mallotus
penangensis, which also is a slow grower, nevertheless starts
reproducing when quite small, so that a range of sizes are
dispersing seeds within the cluster, resulting in no con-
sistent space-diameter correlations.

In summary, we have seen that there is a large range of
cluster sizes within each species and that clusters generally
exhibit a full range of tree sizes, whose distribution is
similar to the dbh distribution found in the 50-ha plot as
a whole. In addition, many species exhibit large trees on
the periphery of their clusters, few species exhibit clusters
centered around large trees, and many species exhibit no
consistent spatial size class structure. And finally, many of
these trends reflect the different dispersal mechanisms and
growth patterns between species.

Discussion

Ecological Implications

Ecologists address questions of community dynamics on
many spatial scales: individuals, censuses, regions, and
landscapes. Once spatial data have been partitioned into
clusters, however, we can inspect community dynamics on
two new scales: the intracluster and intercluster scales. In
our case, clustering has allowed us to examine several is-
sues of importance in tropical plant ecology: the corre-
lation between cluster locations and abiotic environmental
variables, the distribution of cluster sizes, the distribution
and spatial placement of within-cluster tree diameters.

This technique has allowed us to unveil hidden patterns
(for Xerospermum noronhianum and Knema laurina)
whose discovery might otherwise have been impossible.
Such discoveries suggest that habitat may have a stronger
effect on the spatial distribution of common species—even
species that are present constitutively on all habitat
types—than standard statistical analyses would suggest. In
addition, cluster analysis of species such as Pternandra
coerulescens demonstrate that spatial distribution can
sometimes be driven almost entirely by abiotic habitat
specificity, regardless of dispersal capability.

At the same time, our investigation of cluster demo-
graphics has revealed that dispersal mechanisms and

growth patterns can play a large role in determining in-
tracluster spatial population structure. Species-level vari-
ation in regeneration speed is reflected by variation in the
range of tree diameters found within clusters. Gap colo-
nizers (e.g., Neobalanocarpus heimii) may be identified,
from static data alone, by a signature elevated proportion
of purely juvenile clusters. Differences in dispersal mech-
anism (e.g., Shorea macroptera vs. N. heimii) are associated
with characteristic differences in the placement of large
trees within a cluster. Similarly, differences in growth pat-
terns (e.g., Mallotus penangensis vs. N. heimii) are also
reflected by within-cluster tree placement; species that re-
produce throughout their lifetime may lack any correlation
between diameter and intracluster placement.

In short, we have found that the diversity of tropical
tree life-historical traits and of the diversity of responses
to abiotic influences are reflected by the diversity of their
spatial arrangements. Thus our study species evidence both
niche-based and dispersal-based processes affecting spatial
distributions, at different spatial scales.

We emphasize that, despite the analysis of our study
species, our cluster method does not allow us to infer
process unambiguously from pattern. We cannot soundly
argue to have teased apart the influences of niche- and
dispersal-based processes in general. In the end, we view
the techniques developed here more as tools for explor-
atory data analysis and for generating hypotheses. Such
hypotheses (e.g., the disequilibrium dynamics of N. heimii)
must eventually be tested by field and lab experiments.
Nevertheless, we have seen that careful direct observation
of species’ maps can, when combined with a clustering
algorithm, provide a powerful method for ecological
exploration.

Cluster Analysis and Spatial Statistics

We have developed a fairly general method for analyzing
spatial distributions that is conceptually different from the
classical paradigm of spatial statistics. Spatial statistics have
been used to assess mean clumping behavior across the
entire range of species in order to document universal
trends of aggregation in forests. The cluster techniques
developed here complement such gross statistics.

One might argue that a formal clustering technique pro-
vides little more information than an automated mapping
device. The human eye is, in fact, a remarkably efficient
and complex tool for detecting spatial patterns. The meth-
odology developed here, however, permits us to reframe
specific questions of tree dynamics in terms of spatial scales
and to identify the relevant critical scale(s) for a given
species. Several critical scales indicate multiple factors that
influence a species’ distribution. There is no single “correct
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answer” to partitioning spatial data but, rather, a spectrum
of answers among which our method guides us toward
the critical and stable solutions.

Unlike most spatial statistics, our method of identifying
clusters does not make a priori assumptions about un-
derlying spatial structure. The edge-correction factors used
to compute spatial statistics, by contrast, typically assume
that the underlying stochastic point process is isotropic or,
at least, stationary (Ripley 1976). We have seen, however,
that abiotic influences often cause large departures from
stationarity or isotropy in tropical tree distributions. De-
partures from these assumptions are also common in other
spatial settings (Diggle 1983).

The primary distinction between cluster analysis and
spatial statistics is that the former explicitly separates data
points into disjoint subsets. Formal clustering is better
used as a tool for exploratory data analysis of the specific
spatial geometries in a census; spatial statistics, by contrast,
are more limited and require more assumptions but allow
for rigorous statistical tests of departure from spatial ran-
domness (He et al. 1997; Condit et al. 2000; Plotkin et al.
2000b).

Unlike gross statistics, the identification of explicit clus-
ters allows for further inquiry into the spatial geometry
of a data set. In our case, clustering has allowed us to
examine several questions of ecological importance: the
correlation between cluster locations and abiotic environ-
mental variables, the distribution of cluster sizes, and the
distribution and spatial placement of within-cluster tree
diameters. Such analysis of specific ecological and demo-
graphic questions in light of the known life-historical strat-
egies would be impossible without partitioning the data
set into clusters.

Our method for identifying scales of aggregation and
clusters is general, and it can be applied in contexts other
than tropical plant ecology. For example, spatiogenetic
analysis of plants in general may benefit from a formal
clustering methodology to complement statistical tech-
niques that are currently employed (Ouborg et al. 1999).
In that setting, such a methodology would allow research-
ers to contrast the genetic variation within and between
clusters. Our method of identifying scales of aggregation
can also be applied outside of a strictly spatial setting, for
example, for the identification of quasi species within a
data set of RNA virus sequences (Plotkin et al. 2002).
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APPENDIX

Algorithmic Details

In this appendix we detail the algorithmic implementation
of our data clustering method.

Algorithmic Implementation

Our basic clustering algorithm is extremely simple. We
first fix the clustering parameter d, and we connect two
trees if their pairwise distance is less than d. Next, we
identify the resulting connected components (clusters).
The latter stage is critical from a computational viewpoint.
A naive implementation of this step would involve a dou-
ble loop over all the data points. For n trees, the algorithm
would require on the order of n2 operations. An efficient
alternative for identifying connected components has been
developed by Hoshen and Kopelman (1976), and it re-
quires operations.n ln (n)

Minimizing Sample Size Effects

Our basic algorithm can be modified to reduce the noise
associated with finite sample sizes (as seen, e.g., in fig. 2c).
In the original algorithm, we first fix the clustering pa-
rameter d, and we connect two trees if their pairwise dis-
tance is less than d. In the modified algorithm, we assume
a small amount of noise in the parameter d, and we average
over many replicas of the basic algorithm. The noise is
somewhat analogous to temperature in statistical me-
chanics. For a fixed mean value of , we compare pair-Ad S
wise interevent distance to independent draws of d from
a normal distribution with mean and standard devi-Ad S
ation (the normal distribution is naturally trun-x # Ad S
cated at ). Our simplest algorithm corresponds tod p 0
the deterministic case . When x is positive, however,x p 0
the algorithm is no longer deterministic. For each replica,
the radius around each data point varies slightly. We first
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fix , and we average the resulting mean cluster size overAd S
multiple runs of the stochastic algorithm. This averaging
procedure reduces the finite-size artifacts. Empirical in-
vestigations suggest that is a good range ofx ≈ .05 � .03
values for minimizing noise in ecological data.

As an aside, we mention one important technicality re-
garding the stochastic version of our algorithm. The critical
distance dc studied extensively in physics and mathematics
depends on the value of x. In fact, simulations suggest
that as x ranges from 0 to 0.25, the normalized critical
distance of the Poisson process varies from to 2.44 to 2.18.
Fortunately, a result of Meester and Roy (1996) guarantees
that dc depends continuously on x. (Meester and Roy
[1996] prove that if two series of distributions for the radii
converge weakly, then their corresponding critical dis-
tances converge as well.) In most theoretical studies of
percolation, x is assumed to be 0.

Other Clustering Algorithms

There exists a large variety of clustering algorithms (k
means, fuzzy k means [Duda et al. 1998], neural k means
[Kohonen 1989], nearest neighbor, furthest neighbor, cen-
troid, Ward, hypervolume, minimal spanning tree, Mo-
jena’s upper tail, Wolfe’s test) designed to partition data
into clumps (Everitt 1993). Many of these techniques re-
quire explicit or implicit a priori assumptions about cluster
shapes or the total number of clusters. In an extensive
comparison of clustering techniques, Hardy (1996) con-
cluded that the implicit assumptions of most algorithms
often lead to erroneous cluster classifications. Our method
of clustering is closely related to the so-called single-link-
age hierarchical method. Our method is distinguished,
however, by the introduction of a temperature, or statis-
tical averaging, into the cluster calculation. Moreover, the
connection between single-linkage clustering and contin-
uum percolation provides an important tool for analyzing
the spectrum of possible cluster arrangements and for
identifying either the critical or the stable solutions.

A new generation of clustering algorithms, also inspired
by percolation theory, has recently appeared in the physics
literature (Rose et al. 1990; Blatt et al. 1997; Angelini et
al. 2000). The unifying concept of these methods is to
optimize the temperature variable x for each value of the
average distance . Statistical mechanics can be used toAd S
solve this problem in a broad class of dynamical systems
(coupled map lattices and superparamagnetic systems),
and the resulting algorithm is, therefore, powerful and, in
a sense, optimal. We have verified that one of these al-
gorithms (SPC, provided by E. Domany) gives very similar
results to our more simple algorithm. We believe that the

relative simplicity of our algorithm is valuable in the pres-
ent context.
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