
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2007; 7:893–907
Published online 10 May 2007 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/wcm.502

Cluster-based information processing in wireless sensor
networks: an energy-aware approach‡

Yuan Tian1∗,†, Eylem Ekici2 and Füsun Özgüner2

1Bosch Research and Technology Center North America, Palo Alto, CA, U.S.A.
2Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, U.S.A.

Summary

Emerging Wireless Sensor Network (WSN) applications demand considerable computation capacity for in-network
processing in resource limited WSN environments. To achieve the required processing capacity under energy
consumption constraints, collaboration among sensors through parallel processing methods emerges as a promising
solution. Although such methods have been extensively studied in wired networks of processors, its counterpart
for WSNs remains largely unexplored. In this paper, a localized task mapping and scheduling solution for energy-
constrained applications in WSNs, Energy-constrained Task Mapping and Scheduling (EcoMapS), is presented.
EcoMapS guarantees energy consumption constraints while minimizing schedule length. EcoMapS incorporates
channel modeling, concurrent task mapping, communication and computation scheduling, and sensor failure
handling algorithms. Simulation results show significant performance improvements of EcoMapS over existing
mechanisms in terms of minimizing schedule lengths subject to energy consumption constrains. Copyright ©
2007 John Wiley & Sons, Ltd.

KEY WORDS: wireless sensor network; cluster; in-network processing; task mapping and scheduling

1. Introduction

Wireless Sensor Networks (WSNs) are envisioned
to observe large and inhospitable environments at
close ranges for extended periods of time. WSNs are
generally composed of a large number of sensors with
relatively low computation capacity and limited energy
supply [1]. Many emerging WSN applications require
computationally expensive processing operations to
be performed in the network. For instance, in-
target tracking applications [2], sensors collaboratively

*Correspondence to: Yuan Tian, Bosch Research and Technology Center North America, 4009 Miranda Ave., Palo Alto, CA,
U.S.A.
†E-mail: Yuan.Tian@us.bosch.com
‡ A preliminary version of this paper has appeared in RPMSN 2005.

measure, track, and classify moving targets. Operations
such as Bayesian Estimation and data fusion must
be executed in the WSN. In-network processing is
essential for energy-efficiency in WSNs [1], especially
in video sensor networks [3]. A simple motivating
example is shown in Figure 1, where four calibrated
camera sensors collaboratively detect an intruder’s
location.

The sensors first collaboratively estimated the
intruder’s position, which drastically reduces data
volume by several orders of magnitude. Thus, it is

Copyright © 2007 John Wiley & Sons, Ltd.

894 Y. TIAN, E. EKICI AND F. ÖZGÜNER

Fig 1. A simplified distributed video surveillance example.

more energy-efficient to send the processed data than
delivering the raw data in large-scale WSNs, where
base stations can be multiple hops away. However, such
multi-media applications as distributed visual surveil-
lance [4] may demand considerable computation power
that is beyond the capacity of each individual sensor.
Furthermore, limiting energy consumption while
performing these operations is of vital importance
to prolong network lifetime. Thus, it is desirable to
develop a general solution to provide the computation
capacity required by in-network processing subject to
energy consumption constraints. A promising solution
is to have sensors collaboratively process information.
Task mapping and scheduling [5] plays an essential
role in parallel processing by solving the following
problems subject to certain design objectives:

� Assignment of tasks to sensors;
� Execution sequence of tasks on sensors;
� Communication schedule between sensors.

Task mapping and scheduling has extensively been
studied in the area of high performance computing [5–
7]. However, existing solutions for wired networks can-
not directly be implemented in WSNs since the wireless
communication scheduling is not addressed. Further-
more, these solutions do not explicitly consider energy
consumption during communication and task execu-
tion, which is one of the major constraints in WSNs.

In large-scale WSNs, global optimization of
task mapping and scheduling is a costly task.
Furthermore, events of interest in such networks
generally occur in remote regions that only local
sensors can detect. Thus, local information processing,

and consequently, localized task mapping and
scheduling, is more suitable for large-scale WSNs.
In localized task mapping and scheduling, solutions
focus on performance optimization applied to clusters
alone. System level optimization is achieved through
collective result of local optimizations.

In this paper, we propose a localized task
mapping and scheduling solution for WSNs. We
consider energy-constrained applications executed in
a single-hop cluster of a homogeneous WSN. Our
proposed solution, Energy-constrained Task Mapping
and Scheduling (EcoMapS), aims to map and schedule
the tasks of an application with the minimum schedule
length subject to energy consumption constraints.
EcoMapS is based on the high-level application model
that describes the task dependencies through Directed
Acyclic Graphs (DAG) [8]. Therefore, EcoMapS can
be used with arbitrary applications. In EcoMapS,
communication and computation are jointly scheduled
in the Initialization Phase. In case of sensor failures,
replacement schedules are computed in the Quick
Recovery Phase. We prove that the quick recovery
algorithm meets energy consumption constraints if
applied on an initially feasible solution.

2. Related Work

Localized task mapping and scheduling problems in
WSNs have been studied in the literature recently. In
Reference [9], an online task scheduling mechanism
(CoRAl) is proposed to iteratively allocate the network
resources between the tasks of periodic applications in
WSNs: The upper-bound frequencies of applications
are first evaluated according to the bandwidth and
communication requirements between sensors. The
frequencies of the tasks on each sensor are then op-
timized subject to the upper-bound execution frequen-
cies. However, CoRAl does not address mapping tasks
to sensor nodes. Furthermore, energy consumption is
not explicitly discussed in Reference [9].

Distributed Computing Architecture (DCA) is
presented in Reference [10], which executes low-level
tasks on sensing sensors and offload all other high-level
processing tasks to cluster heads. However, processing
high-level tasks can still exceed the capacity of cluster
heads’ computation power. Furthermore, application-
specific design of DCA limits its implementation for
generic applications.

Localized task mapping and task scheduling have
been jointly considered for real-time applications in
mobile computing [7] and WSNs [8] recently. Task

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

CLUSTER-BASED INFORMATION PROCESSING IN WSNs 895

mapping and scheduling heuristics are presented in
Reference [7] for heterogeneous mobile ad hoc grid
environments. However, the communication model
adopted in Reference [7] is not well-suited for WSNs,
which assumes individual channels for each node and
concurrent data transmission and reception capacity of
every node. In Reference [8], Energy-balanced Task
Allocation (EbTA) is presented to minimize balanced
energy consumption subject to application deadline
constraints. In Reference [8], communications over
multiple wireless channels are modeled as additional
linear constraints of an Integer Linear Programming
(ILP) problem. Then a heuristic algorithm is presented
to provide a practical solution. Furthermore, Dynamic
Voltage Scaling (DVS) mechanism is implemented
to conserve energy. However, the communication
scheduling model in Reference [8] does not exploit
the broadcast nature of wireless communication, which
can reduce energy consumption and execution time.
The energy-balanced solution of Reference [8] does
not take energy consumption constraints into account
and cannot provide energy consumption guarantees.

Different from the work above, in this paper,
we present a generic task mapping and scheduling
solution, EcoMapS, for single-hop clustered WSNs
with the following salient properties:

� Task mapping and task scheduling are considered
simultaneously.

� The single-hop wireless channel is modeled as a vir-
tual node, and applications are represented to reflect
the broadcast nature of wireless communication.

� Communication and computation events are jointly
scheduled.

� Based on realistic energy models, EcoMapS aims
to provide energy consumption guarantees with
minimum schedule lengths.

� A quick recovery mechanism is designed to handle
sensor failures.

3. Preliminaries

3.1. Network Assumptions

The following assumptions are made regarding the
WSN:

� Each cluster executes an application which is
either assigned during the network setup time or
remotely distributed by base stations during the
network operation. Once assigned, applications are
independently executed within each cluster unless
new applications arrive. With application arrivals,

cluster heads create the schedules for execution
within clusters.

� Sensors are synchronized within clusters.
� Computation and communication can occur simul-

taneously on sensor nodes as supported by various
platforms including MICA2DOT running TinyOS.

� Communication within a cluster is isolated from
other clusters through time division or channel
hopping mechanisms such as described in Refer-
ence [11] with appropriate hardware support (eg.,
Chipcon CC2420).

It should be noted that while the intra-cluster
communication is isolated from other clusters, com-
munication across clusters is assumed to be handled
over common time slots or channels orthogonal to those
used inside a cluster. The cooperative transmission
mechanism [12] can also be implemented to avoid
interference. As such, information flow across the net-
work is not hindered by intra-cluster communication
isolation.

3.2. Application Model

To have an application-independent solution, applica-
tions are represented by DAGs. A DAG T = (V,E)
consists of a set of vertices V representing the tasks to
be executed and a set of directed edges E representing
dependencies among tasks. E contains directed edges
eij for each task vi ∈ V that task vj ∈ V depends
on. Given an edge eij , vi is called the immediate
predecessor of vj , and vj is the immediate successor
of vi. vj depends on its immediate predecessors such
that vj cannot start execution before it receives results
from all of it immediate predecessors. A task without
immediate predecessors is called an entry-task and a
task without immediate successors is called an exit-
task. A DAG may have multiple entry-tasks and one
exit-task. If there are more than one exit-tasks, they will
be connected to a pseudo exit-task with computation
cost equals zero. Figure 2 shows an example of a DAG,
where V1, V2, and V3 are entry-tasks, V8 is an exit-
task, and V5 is the immediate successor and immediate
predecessor of V1 and V8, respectively.

In the DAG scheduling problem, if a task vj

scheduled on one node depends on a task vi scheduled
on another node, a communication between these nodes
is required. In such a case, vj cannot start its execution
until the communication is completed and the result of
vi is received. However, if both of the tasks are assigned
on same node, the result delivery latency is considered
to be zero and vj can start to execute after vi is finished.

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

896 Y. TIAN, E. EKICI AND F. ÖZGÜNER

Fig 2. An example DAG.

This execution dependency between tasks is referred to
as Dependency Constraint throughout the paper.

3.3. Energy Consumption Model

The energy consumptions of transmitting and receiving
l-bit data over a distance d that is less than a threshold
do are defined as Etx(l, d) and Erx(l), respectively:

Etx(l, d) = Eelec · l + εamp · l · d2, Erx(l) = Eelec · l,

(1)
where Eelec and εamp are hardware related parameters
[10,13]. The energy consumption of executing N clock
cycles with CPU clock frequency f is given as:

Ecomp(Vdd, f) = NCV 2
dd + Vdd

(
Ioe

Vdd
nVT

) (
N

f

)
,

f � K(Vdd − c) (2)

where VT is the thermal voltage and C, Io, n, K and c
are processor-dependent parameters [10,14]. It should
be noted that the energy consumption model presented
above only considers the energy expenditure directly
related with application executions. Thus, energy
consumption during idle time is not taken into account.
However, our computation and communication
schedules can also be utilized as sensor sleep
schedules, where sensors go to sleep when there are
no scheduled communication and computation events.

3.4. Problem Statement

In general, a task mapping and scheduling problem
is defined as calculating a set of task assignments and
their execution sequences on a network that minimizes

an objective function such as energy consumption
or schedule length. Let Hx = {hx

1, h
x
2, . . . , h

x
n}

denote a task mapping and scheduling solution of
the application DAG T on a network G, where x
is the index of the task mapping and scheduling
solution space. Each element hx

i ∈ Hx is a tuple of the
form (vi, mk, svi,mk

, tvi,mk
, fvi,mk

, cvi,mk
), where mk

represents the node to which task vi is assigned, svi,mk

and fvi,mk
represent the start time and finish time of vi,

and tvi,mk
, and cvi,mk

represent the execution length and
energy consumption of vi on node mk, respectively.
The design objective of our proposed EcoMapS
solution is to find an Ho ∈ {Hx} that has the minimum
schedule length subject to energy consumption
constraints, which can be formulated as follows:

min length(Ho) = max
i,k

fvi,mk
, subject to

energy (Ho) =
∑
i,k

cvi,mk
≤ EB (3)

where length(H) and energy(H) are the schedule length
and energy consumption of schedule H, respectively,
and EB is the energy consumption constraint (also
referred to as Energy Budget). The DAG scheduling
problem is shown to be NP-complete in general [15].
Therefore, heuristic algorithms are needed to solve
this problem in polynomial time.

Some notations are listed here for convenience:

� pred(vi) and succ(vi) denote the immediate
predecessors and successors of task vi, respectively,

� m(vi) denotes the node on which vi is assigned,
� T (mk) denotes the tasks assigned on node mk.
� T

ft
st (mk) denotes the tasks assigned on node mk

during the time interval [st, ft].

4. The Proposed EcoMapS Solution

Our proposed EcoMapS solution has two phases:
Initialization Phase and Quick Recovery Phase.
In the Initialization Phase, tasks are assigned to
sensors, the execution sequence of tasks are decided,
and communications between sensors are scheduled.
The Initialization Phase algorithms aim to minimize
schedule lengths subject to energy consumption
constraints. Since sensors are prone to failures, a
quick recovery algorithm is designed for the Quick
Recovery Phase to handle run-time sensor failures. The
scheduling algorithms are executed on cluster heads
when applications are assigned to clusters. In case of

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

CLUSTER-BASED INFORMATION PROCESSING IN WSNs 897

a loss of a cluster head, a new cluster head is selected
via the clustering algorithm in use, and schedules will
be regenerated by the new cluster head.

In the following sections, the main components
of our proposed EcoMapS solution, namely, wireless
channel modeling and Hyper-DAG extension, commu-
nication scheduling algorithm (CSA), extended CNPT
algorithm [6] and Min-Min algorithm [7] (referred to
as E-CNPT and E-MinMin, respectively), and Quick
Recovery algorithm, are presented. During the Initial-
ization Phase, either E-CNPT or E-MinMin is executed
as the schedule search engine to find the optimal
schedule. The original CNPT and Min-Min algorithms
are designed for traditional parallel processing. To
extend CNPT and Min-Min for WSNs, we developed
a CSA based on the wireless channel model and the
Hyper-DAG representation of applications. CSA is
embedded in the execution of E-CNPT and E-MinMin.
In case of sensor failures, the schedules generated in
the Initialization Phase will be adjusted with the Quick
Recovery Algorithm instead of rescheduling with the
E-CNPT algorithm or E-MinMin algorithm, which can
be time consuming. The optimal schedule search with
E-CNPT or E-MinMin will be executed only when the
performance degrades to a certain threshold, a new
application arrives, or the cluster head fails.

4.1. Wireless Channel Modeling and
Hyper-DAG Extension

In single-hop clusters, there can be only one
transmission at a given time. Similar to that in
Reference [9], the wireless channel can be modeled as a
virtual node C that executes one communication task at
any time instance. Hence, a cluster can be modeled as a
star-network where all sensors only have connections
with the virtual node C. The communication latency
between sensor nodes and C is considered zero since all
wireless communications are accounted for by the tasks
executed on C. With the virtual node representation
of C, communication contention can be effectively
avoided by serially scheduling communications on C.
Another important advantage of the channel model
is its suitability to represent the broadcast nature of
wireless communication. When a node in a single-hop
cluster transmits information, it is potentially received
by all nodes in the cluster. Wireless broadcasting can
be leveraged to relay information generated by a task to
its immediate successors in a single transmission rather
than multiple transmissions. This approach reduces
schedule lengths as well as communication energy
consumption.

Fig 3. Hyper-DAG representation.

To implement this channel model, communication
events between computation tasks should be explicitly
represented in task graphs. Thus, we extend a DAG as
follows: for a task vi in a DAG, we replace the edges
between vi and its immediate successors with a net
Ri. Ri represents the communication task to send the
result of vi to its immediate successors in the DAG.
The weight of Ri equals to the result data volume of vi.
This extended DAG is a hypergraph and is referred to
as Hpyer-DAG. With the Hyper-DAG representation,
exclusive channel access constraints and broadcasting
are incorporated into task dependency in a compact
way. A Hyper-DAG is represented as T ′ = (V ′, E′),
where V ′ = {γi} = V ∪ R denotes the new set of tasks
to be scheduled and E′ represents the dependencies
between tasks. Here, V = {Computation Tasks},
and R = {Communication Tasks}. The example of
converting the DAG in Figure 2 to a Hyper-DAG is
shown in Figure 3.

In the Hyper-DAG scheduling problem, the
Dependency Constraint is rephrased as follows: If a
computation task vj scheduled on node mk depends
on a communication task vi on another node, a copy
of vi needs to be scheduled to mk, and vj cannot start
to execute until all of its immediate predecessors are
received on the same node.

4.2. CSA

Based on the Hyper-DAG and the channel model
presented in Section 4.1, scheduling communication
between single-hop neighbors is equivalent to first
duplicating a communication task from the sender
to C, then from C to the receiver. If the requested
communication task has been scheduled from the

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

898 Y. TIAN, E. EKICI AND F. ÖZGÜNER

Fig 4. Communication task scheduling algorithm.

sender to another node before, the receiver will
directly duplicate the communication task from C. This
process is equivalent to receiving broadcast data, which
can lead to significant energy saving compared with
multiple unicasts between the sender and receivers.
The detailed description of the CSA is shown in
Figure 4, where Steps 2–15 stand for originating a
new communication from ms to mr, and Steps 18–
21 represent reception of a broadcast data. Compared
with originating a new communication, the broadcast
method leads to energy saving of one data transmission
for each additional data reception. With our CSA, one
data transmission may reach multiple receivers, which
enhances energy efficiency.

4.3. Task Mapping and Scheduling in
Initialization Phase

In the Initialization Phase of EconMapS, the tasks of
Hyper-DAGs are mapped and scheduled on sensors.
During task mapping, several constraints have to
be satisfied. These constraints together with the
Dependency Constraint are represented as follows:

� A computation task can be assigned only on sensor
nodes, that is, ∀γi ∈ V : tvi,C = ∞, cvi,C = ∞.

� A communication task can be assigned both on
sensors and C.

� If a communication task has its immediate
predecessor and immediate successors assigned on
the same node, it has zero execution length and
energy cost.

� If a communication task is duplicated to or from
C, the corresponding data transmission or reception
energy consumption is defined as Equation 1.

� If vi ∈ V and pred(vi) 	= ∅, then pred(vi) ⊂
T (m(vi)) and svi,m(vi) ≥ max fpred(vi),m(vi).

During task mapping and scheduling, if a
computation task depends on a communication
task assigned on another sensor node, CSA will be
executed to duplicate the absent communication task.
With CSA and the task mapping constraints presented
above, task mapping and scheduling in single-hop
wireless networks can be tackled as a generic task
mapping and scheduling problem with additional
constraints. This problem is NP-complete in general
[15] and heuristic algorithms are needed to obtain
practical solutions. In this section, E-CNPT and E-
MinMin algorithms are presented for the Initialization
Phase of EcoMapS with the objective of minimizing
schedule lengths subject to energy constraints.

Before presenting E-CNPT and E-MinMin, we first
introduce a concept of computing sensor: A computing
sensor is a sensor that can execute non-entry tasks as
well as entry-tasks. The concept of computing sensor
is an intuitive extension of DCA in Reference [10],
where only one sensor, that is the cluster head, in
a cluster can execute high-level tasks. In EcoMapS,
there can be more than one computing sensors to
speed up execution. However, this approach generally
consumes more energy with more computing sensors
because of the increased volume of communication
between the sensors. Thus, the increment of number
of computing sensors must be bounded by energy
consumption constraints. In our EcoMapS, E-CNPT
and E-MinMin will iteratively search for the optimal
schedule with different number of computing sensors
subject to energy constraints.

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

CLUSTER-BASED INFORMATION PROCESSING IN WSNs 899

4.3.1. E-CNPT

The list-scheduling CNPT algorithm [6] is extended
and implemented in the Initialization Phase of
EcoMapS, and is denoted as E-CNPT. The objective of
E-CNPT is to minimize schedule lengths subject to en-
ergy consumption constraints. The strategy of E-CNPT
is to assign the tasks along the most critical path to the
nodes with the earliest execution start time (EEST).
By adjusting the number of computing sensors in each
scheduling iteration and choosing the schedule with
the minimum schedule length under the energy con-
sumption constraint, the design objective of E-CNPT
is achieved. Similar to CNPT, E-CNPT also has two
stages: listing stage and sensor assignment stage. In
the listing stage, tasks are sequentialized into a queue L
such that the most critical path comes the first and a task
is always enqueued after its immediate predecessors. In
the sensor assignment stage, the tasks will be dequeued
from L and assigned to the sensors with the minimum
execution start time. Several scheduling iterations will
be run in the sensor assignment stage with different
number of computing sensors, and only one schedule
is chosen as the solution according to the design objec-
tive. The listing stage and sensor assignment stage of
E-CNPT are introduced individually as follows:

Listing Stage. The Listing Stage of E-CNPT is
similar to that of CNPT [6]. The Earliest Start Time
EST(vi) of task vi is first calculated by traversing
the Hyper-DAG downward from the entry-tasks to
the exit-task. The Latest Start Time LST(vi) of task
vi is then calculated in the reverse direction. During
the calculation, the entry-tasks have EST = 0 and the
exit-task has LST = EST. The formulas to calculate
EST and LST are as follows:

EST(vi) = max
vm∈pred(vi)

{EST(vm) + tm}, LST(vi)

= min
vm∈succ(vi)

{LST(vm)} − ti (4)

where ti equals to the execution length on sensor nodes
if vi ∈ V or to the execution length onC if vi ∈ R. Then,
the Critical Nodes (CN) are pushed into stack S in the
decreasing order of their LST. Here, a CN is a node
with the same value of EST and LST. Consequently,
if top(S) has un-stacked immediate predecessors, the
immediate predecessor with the minimum LST is
pushed into the stack; otherwise, top(S) is popped and
enqueued into queue L. The Listing Phase ends when
the stack is empty, and the task graph is sequentialized
into L. It should be noted that the EST and LST are
for evaluating the critical path of DAGs, and do not
represent the actual execution start time of tasks.

Sensor Assignment Stage. The design objective of
our algorithm is to minimize schedule lengths subject to
energy consumption constraints. Different from CNPT,
E-CNPT iteratively searches the schedule space with
different number of computing sensors in the Sensor
Assignment Stage. Among these schedules, the one
with the minimum schedule length under the energy
consumption constraint is chosen as the solution. If no
schedule meets the energy constraint, the best effort is
made by choosing the one with the minimum energy
consumption. The detailed description of the E-CNPT
algorithm is shown in Figure 5.

In E-CNPT, SingleCNPT(L,q) is a single round of
task scheduling that schedules the tasks in L with q
computing sensors. It should be noted that q is the
upper bound of the number of computing sensors that
can be involved in the schedule. The actual number of
computing sensors can be smaller than q depending on
applications and scheduling algorithms. The core of
SingleCNPT(L,q) is the extended CNPT processor
assignment algorithm embedded with CSA. The basic
strategy of the algorithm is to assign tasks to the
sensor with the minimum EEST. SingleCNPT(L,q) is
described in Figure 6, where EAT(mk) is the Earliest
Available Time of node mk, and EEST(vi, mk) is the
EEST of vi on sensor mk. Different from EST, EEST

Fig 5. E-CNPT algorithm.

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

900 Y. TIAN, E. EKICI AND F. ÖZGÜNER

Fig 6. SingleCNPT algorithm.

represents the actual execution start time of a task if
assigned on a sensor node.

4.3.2. E-MinMin

The Min-Min algorithm is reported of satisfying
performance with relatively low complexity [7]. Thus,
the Min-Min algorithm [7] is extended for the
Initialization Phase of EcoMapS, and is referred to as
the E-MinMin algorithm.

Similar to E-CNPT, E-MinMin also searches for
the schedule with the optimal number of computing
sensors that has the smallest schedule length subject
to the energy consumption constraint. E-MinMin’s
schedule searching algorithm is the same as E-CNPT
in Section 4.3.1 except that the input of E-MinMin
is the Hyper-DAG instead of the task queue L, and
the core of the searching algorithm is SingleMinMin
instead of SingleCNPT.

We now introduce the procedure SingleMinMin-
(Hyper-DAG,q) that schedules the tasks of the
Hyper-DAG with q computing sensors. The core
of SingleMinMin is the fitness function. For each
task-node combination (v,m), the fitness function
fit(v, m, α) indicates the combined cost in time
and energy domain of assigning task v to node m,
where α is the weight parameter trading off the
energy consumption cost for the time cost. In the
SingleMinMin algorithm, the task-node combination
that gives the minimum fitness value among all
combinations is always assigned first. To extend and
describe the fitness function of the Min-Min Algorithm
in Reference [7], the following notations are introduced
first:

� MFT(v,m) is the maximum finish time of the tasks
assigned prior to task v.

� fv,m is the scheduled finish time of v on m.

� PE(v,m) is the energy consumption after assigning v
on m, which includes the computation energy con-
sumption and communication energy consumption.

� NPT(v,m) is the normalized partial execution time of
assigning v on m: NPT(v, m) = fv,m

MFT(v,m) .
� NPE(v,m) is the normalized energy consumption of

assigning v on m: NPE(v, m) = PE(v,m)
EB .

Thus, the fitness function of assigning v on m is
defined as:

fit(v, m, α) = α · NPE(v, m) + (1 − α) · NPT(v, m)

(5)

SingleMinMin is presented in Figure 7, where �α is
the α sampling step, a ‘mappable’ task is either an
entry-task or a task that has all immediate predecessors
already been assigned, and the ‘mappable task list’ is
the list that contains currently mappable tasks of the
Hyper-DAG.

4.4. Sensor Failure Handling with Quick
Recovery Algorithm

In WSNs, sensors are prone to failures. In case
of sensor failures, the schedules created by the E-
CNPT and E-MinMin in the Initialization Phase may
not be feasible solutions. In such cases, the WSN’s
functionality needs to be recovered as soon as possible.
Instead of rescheduling from scratch, which can be
time consuming, a low-complexity recovery algorithm
is presented in this section to quickly recover from
sensor failures. The E-CNPT or E-MinMin scheduling
algorithms will not be executed unless the performance
of the recovered schedule degrades to certain threshold.

The strategy of the quick recovery algorithm is to
merge the tasks of the failing sensor onto the working
sensor that has the most idle time. If there are more

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

CLUSTER-BASED INFORMATION PROCESSING IN WSNs 901

Fig 7. SinglMin algorithm.

than one sensor failures, the quick recovery algorithm
is iteratively executed to handle the failures one by one.
The rationale behind merging the tasks of the failing
sensor onto another sensor instead of re-distributing
the tasks among all of the working sensors is to
guarantee the energy consumption constraint, as proved
in Theorem 1. The quick recovery algorithm is shown
in Figure 8, where IR(mk) is the idle time ratio of
sensor mk, and TH is the threshold of unacceptable
performance degrade in quick recovery.

Theorem 1. The recovered scheme Hs still meets the
energy consumption budget constraint, that is, if
energy(Ho) ≤ EB, then energy(Hs) ≤ EB.

Proof. The energy consumption of a schedule H
is composed of computation energy (compEng(H))
and communication energy (commEng(H)). Since
compEng(H) is fixed for an application in homoge-
neous WSNs, compEng(Hs) = compEng(Ho) holds.
commEng(H) is determined by the communication
tasks assigned on C. According to Step 14, 23, and 29
of the quickRecovery algorithm, the only operations
related with the communication tasks on C are task
removals and task shifting in time domain. In other
words, no new tasks are assigned to C and, therefore,
no additional energy is consumed for communi-
cation. Hence, commEng(Hs) ≤ commEng(Ho)
holds. If energy(Ho) ≤ EB, then energy(Hs) =
compEng(Hs) + commEng(Hs) ≤ compEng(Ho) +

Fig 8. Quick recovery algorithm

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

902 Y. TIAN, E. EKICI AND F. ÖZGÜNER

commEng(Ho) = energy(Ho) ≤ EB holds, as
well. �

4.5. Computational Complexity

Assume that the application T is represented as T =
(V, E), |V | = v, |E| = e, the number of entry-tasks is
f, and the cluster has p sensor nodes. Thus, the Hyper-
DAG is T ′ = (V ′, E′), where |V ′| = 2v and |E′| = 2e.
The time complexity of EcoMapS with E-CNPT is
analyzed as follows:

� Listing Stage of E-CNPT: Similar to CNPT [6], the
complexity is O(v + e).

� SingleCNPT: The communication tasks have
complexity of v · O(1) = O(v), the entry-tasks
have complexity of f · O(p) = O(fp), other non-
entry computation tasks have complexity of (v −
f) · O(p) · O(e/v). Hence, the overall complexity
of SingleMapSchedule is O(v) + O(fp) + (v − f) ·
O(p) · O(e/v). For the worst case, e = O(v2) and
f = O(v), thus the complexity of SingleMapSched-
ule is O(pv2) for the worst case.

� EcoMapS with E-CNPT: The SingleCNPT algo-
rithm will be called O(p) times. Thus, the complexity
of the whole algorithm is O(v + e) + O(p) · O(v2p)
= O(p2v2) for the worst case.

The time complexity of EcoMapS with E-MinMin
is analyzed as follows:

� SingleMinMin: The complexity of SingleMinMin is
dominated by the loop starting from Step 5, which is
executed O(v) times. Similarly to SingleCNPT, the
complexity of the loop starting from Step 6 has the
complexity of O(v) · O(p) · O(e/v) = O(pe). Thus,
SingleMinMin has the complexity of O(pv3) for the
worst case.

� EcoMapS with E-MinMin: similar to the analysis
of E-CNPT, the complexity is O(p) · O(pv3)/�α =
O(p2v3/�α) for the worst case.

From the analysis above, the complexity of the
EcoMapS with E-MinMin is higher than that of the
EcoMapS with E-CNPT with the order of v for a fixed
value of �α.

Regarding the Quick Recovery Algorithm of
EcoMapS, all tasks including communication tasks and
computation tasks will be adjusted at most once. So,
the complexity for the Quick Recovery Algorithm is
O(2v − 1) = O(v).

5. Simulation Results

The performance of our EcoMapS solution with
E-CNPT and E-MinMin is investigated through
simulations. The performance of an extended version
of DCA [10] is evaluated as a benchmark. DCA
is extended with our proposed CSA to deliver the
intermediate results of entry-tasks to the cluster head
for further processing. Simulations are run on arbitrary
applications with randomly generated DAGs. Our
simulations study the effect of the following factors:
(1) energy consumption constraints, (2) number of
tasks in applications, (3) the inter-task dependency.
We further evaluate the schedule energy consumption
balance of EcoMaps, investigate the performance
of the Quick Recovery Algorithm, and compare
the heuristic execution time of E-CNPT and E-
MinMin. In these simulations, we observe energy
consumption and schedule lengths unless otherwise
stated. The energy consumption includes computation
and communication energy expenditure of all sensors.
The schedule length is defined as the finish time of the
exit-task. The presented simulation results correspond
to the average of 500 independent runs.

5.1. Simulation Parameters

In our simulation study, the bandwidth of the channel
is set to 1 Mb/s and the transmission range r = 10
meters. We assume that there are 10 sensors in a
cluster. The sensors are equipped with the StrongARM
SA-1100 microprocessor with the CPU frequency be
100 MHz. The parameters of Equation 1, 2 are in
coherence with [10,13,14] as follows: Eelec = 50 nJ/b,
εamp = 10 pJ/b/m2, VT = 26 mV, C = 0.67 nF, Io =
1.196 mA, n = 21.26, K = 239.28 MHz/V and c =
0.5 V. Our simulation shows that when �α = 0.1, the
E-MinMin algorithm provides satisfying performance
with reasonable heuristic execution time. Thus, �α is
set to be 0.1 for our simulation studies.

To evaluate EcoMapS performance for arbitrary
applications, simulations are run on randomly
generated DAGs based on three parameters: The
number of tasks numTask, the number of entry-tasks
numEntry, and the maximum number of predecessors
maxPred. The number of each non-entry task’s
immediate predecessors, computation load (in units of
kilo-clock-cycle, KCC), and resulting data volume (in
units of bit) of a task are uniformly distributed over [1,
maxPred], [300 K CC ±10%], and [800 bits ±10%],
respectively.

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

CLUSTER-BASED INFORMATION PROCESSING IN WSNs 903

(a)

5200 5400 5600 5800 6000 6200 6400 6600 6800 7000
5000

5200

5400

5600

5800

6000

6200

6400

6600

Energy Budget(uJ)

E
ne

rg
y

C
on

su
m

pt
io

n
(u

J)
Energy Budget
DCA
E−CNPT
E−MinMin

(b)

5200 5400 5600 5800 6000 6200 6400 6600 6800 7000
20

25

30

35

40

45

50

55

60

65

Energy Budget(uJ)

S
ch

ed
ul

e
Le

ng
th

 (
m

s)

DCA
E−CNPT
E−MinMin

Fig 9. Effect of the energy consumption constraints; (a) Energy consumption; (b) Schedule length.

5.2. Effect of the Energy Consumption
Constraints

The effect of the energy consumption constraints
is evaluated with randomly generated DAGs with
numTask = 25, numEntry = 6, and maxPred = 3.
As shown in Figure 9, both EcoMapS algorithms have
better capability to adjust their schedules according
to energy budget than DCA. When the energy
budget is small, EcoMapS algorithms converge to
use one sensor for computation, which is the default
behavior for DCA. Instead of sending all sensed data
to cluster heads, the EcoMapS algorithms choose
one of the sensing sensor for computation, which
saves energy and shortens schedule lengths. As
energy budget increases, the EcoMapS algorithms
have more sensors involved in computation, which
decreases schedule lengths at the cost of larger energy
consumption. On the other hand, DCA cannot adjust
its schedule to higher availability of energy resources.
Compared with DCA, EcoMapS can lead up to
67% schedule length improvement for this set of
simulations.

Regarding the comparison of the EcoMapS
algorithms themselves, both E-CNPT and E-MinMin
tend to use one computing sensor with small energy
budget, which leads to equal schedule lengths and
energy consumptions. When the energy budget is
sufficiently large, E-CNPT has a slightly shorter
schedule length than E-MinMin because of its better
perspective of global optimization: The listing stage
of E-CNPT enqueues tasks according to the critical
path of Hyper-DAG, while E-MinMin just locally
calculates the cost of assigning a task. However, this
improvement comes at a higher energy consumption
cost, as shown in Figure 9a. For the scenarios with
intermediate energy budgets, E-MinMin outperforms

E-CNPT up to 39% in terms of schedule lengths
(Figure 9b). This advantage of E-MinMin stems from
its fitness function. Different from E-CNPT, which
just takes time cost into account when assigning
tasks with the fixed number of computing sensors,
the fitness function of E-MinMin considers time cost
as well as energy consumption. Thus, E-MinMin
is more likely to find a feasible schedule meeting
energy constraints with a larger number of computing
sensors than E-CNPT, which leads to shorter schedule
lengths.

5.3. Effect of the Number of Tasks in
Applications

To test the effect of number of tasks in applications,
three sets of simulations are run on randomly generated
DAGs with 20, 25, and 30 tasks (numEntry = 6,
maxPred = 3). As shown in Figure 10, energy
consumption and schedule lengths are dominated
by the number of tasks. When the number of
tasks increases, the energy consumption and schedule
length of DCA increase proportionally. The EcoMapS
algorithms on the other hand adapt themselves to the
increasing energy budget. For the extreme scenarios
with small and large energy budgets, the schedule
lengths and energy consumption of the EcoMapS
algorithms increase in proportion to the number of
tasks. For the intermediate scenarios, the EcoMapS
algorithms adapt their schedule lengths and energy
consumptions according to the available energy budget
when the number of tasks increases. For all three
scenarios, the energy consumption of E-MinMin
follows energy budgets closer than E-CNPT, and the
schedule length of E-MinMin is shorter than E-CNPT
for the scenarios with intermediate energy budgets.

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

904 Y. TIAN, E. EKICI AND F. ÖZGÜNER

Fig 10. Effect of Number of Tasks; (a) Energy consumption; (b) Schedule length.

5.4. Effect of the Inter-task Dependency

The inter-task dependency is determined by the in/out
degree of application DAGs. Simulations with sets
of DAGs with maxPred = 3 and maxPred = 6
(numTask = 25, numEntry = 6) are executed. As
shown in Figure 11, the inter-task dependency has
almost no effect on the performance of DCA. The
robustness of DCA against inter-task dependency
changes stems from the fact that inter-task dependency
affects communication scheduling, and DCA has
most of the tasks executed on the cluster head
with less needs for communication. Regarding the
EcoMapS algorithms, increasing the in/out degree of
DAGs does not introduce new communication task in
Hyper-DAGs, but increases the dependency between
a communication task and its immediate successors.
Greater dependency degree may lead to a higher
number of communication tasks scheduled on C and
less parallelism between sensors, which leads to more
energy consumption and longer schedules. Thus, when
the energy budget is sufficiently larger, the energy

consumption of the EcoMapS algorithms increases and
the schedule lengths decrease. When the energy budget
is relatively tight, both of the EcoMapS algorithms
use less computing sensors to meet energy constrains
when the inter-task dependency increases, which
decreases energy consumptions and increases schedule
lengths. As we can see from Figure 11b, although the
performances of the EcoMapS algorithms degrade with
higher inter-task dependency, the EcoMapS algorithms
still outperform DCA with respect to schedule lengths
subject to energy consumption constraints.

5.5. Evaluation of the Energy Consumption
Balance

In this section, the energy consumption balance of
the proposed EcoMapS algorithms are evaluated and
compared to the DCA algorithm. The random DAGs
considered in the simulations have the parameters of
numTask = 25, numEntry = 6, and maxPred = 3. The
observed metrics are the Fairness Index (FI) and the

Fig 11. Effect of inter-task dependency; (a) Energy consumption; (b) Schedule length.

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

CLUSTER-BASED INFORMATION PROCESSING IN WSNs 905

5200 5400 5600 5800 6000 6200 6400 6600 6800 7000

5000

5200

5400

5600

5800

6000

6200

6400

6600

Energy Budget(uJ)

E
ne

rg
y

C
on

su
m

pt
io

n
(u

J)

Energy Budget
DCA
E−CNPT
E−MinMin

Fig 12. Overall energy consumption.

Maximum of Sensor’ Energy Consumption in addition
to the energy consumption of all sensors. Here, the
FI is a variation of Jain’s FI [16], and is defined as

FI = (
∑n

k=1 Ek)2

n
∑n

k=1 E2
k

, where Ek is the energy consumption

of sensor mk, and n is the number of active sensors.
The ‘active sensors’ are the sensors that execute either
entry-tasks or non-entry-tasks. FI varies in [0,1], and
the closer of FI to 1 , the better the energy consumption
balance of the schedule.

As shown in Figure 12, when the energy budget
is small, the EcoMapS algorithms tend to utilize a
small number of computing sensors to reserve energy.
Thus, most computation as well as energy consumption
are burdened on these sensors (Figure 13b), which
leads to relatively inferior energy consumption balance
(Figure 13a). When the energy budget increases, more
sensors can be involved in the application execution
with the increased overall energy consumption
increases due to the larger communication volume.
However, the maximum of each sensor’s energy
consumption decreases (Figure 13b) and the energy

consumption balance improves (Figure 13a) because
of the distributed computation load among sensors.
Compared to E-CNPT, the energy consumption of E-
MinMin is more balanced for the scenarios with inter-
mediate energy budgets. On the other hand, DCA al-
ways overloads the cluster head with most computation
tasks regardless of energy availability, which causes
poor energy consumption balance for all scenarios.

5.6. Performance of the Quick
Recovery Algorithm

The Quick Recovery Algorithm is evaluated in this
section. Since the recovery mechanism with idle
sensors as backup is trivial, the tested scenarios only
consider task merging cases without idle sensors.
The simulated scenarios are generated by randomly
selecting one failing sensor and merging its tasks
onto other working sensors using the quick recovery
algorithm presented in Section 4.4. From Figure 14a,
it can be observed that as long as the original
schedule meets energy consumption constraints, the
recovered schedule satisfies the constraint as well. As
we discussed in the proof of Theorem 1, task merging
leads to less energy consumptions at the cost of longer
schedule lengths according to Figure 14b.

5.7. Comparison of the Heuristic
Execution Time

The relative execution time of E-MinMin over E-
CNPT is tested with randomly generated DAGs
of different number of tasks (25, 30, 35, 40, 45,
and 50) with numEntry = 6 and maxPred = 3.
According to our simulation results, E-CNPT is slightly
more than 50 times faster than E-MinMin for tested
scenarios. When the number of tasks increases, the

Fig 13. Energy consumption balance; (a) fairness index; (b) maximum energy consumption per node.

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

906 Y. TIAN, E. EKICI AND F. ÖZGÜNER

Fig 14. Performance of quick recovery; (a) Energy consumption; (b) Schedule length.

speed difference between E-CNPT and E-MinMin also
slightly increases.

As shown in the previous sections, the performances
of E-CNPT and E-MinMin are similar when the energy
budget is small or sufficiently large. For such scenarios,
E-CNPT is more preferable with shorter execution
time. For the scenarios with medium energy budgets,
E-MinMin generally provides shorter schedules with
better energy consumption balance than E-CNPT.
However, taking the heuristic execution time into
account, the trade-off between the schedule length
and the heuristic execution time should be considered.
Both of E-CNPT and E-MinMin are executed in
the Initialization Phase of EcoMapS, and schedules
must be regenerated when new applications arrive.
For WSNs without frequent application updates, the
scheduling overhead is negligible and E-MinMin is
preferred because of its shorter schedule lengths. For a
WSN that updates its applications more frequently, E-
CNPT can be favored over E-MinMin due to E-CNPT’s
shorter schedule computation time.

6. Conclusions

Parallel processing among sensors is a promising
solution to provide the computation capacity required
by in-network processing. In this paper, we present
a task mapping and scheduling solution, EcoMapS,
in single-hop clustered homogeneous WSN clusters.
EcoMapS aims to minimize schedule lengths of
applications under energy consumption constraints.
Incorporating the channel model and communica-
tion scheduling algorithm, EcoMapS simultaneously
schedules communication and computation tasks. A
quick recovery algorithm is also proposed to handle
sensor failures. Simulations show that EcoMapS
provides superior performance in terms of schedule

length and energy consumption balance compared to
the DCA algorithm. The E-MinMin-based EcoMapS
algorithm outperforms the E-CNPT-based EcoMapS
algorithm with respect to schedule lengths and energy
consumption balance but has a larger computation
overhead. Thus, the E-MinMin-based EcoMapS
algorithm is suitable for WSN applications that
do not change frequently, while the E-CNPT-based
EcoMapS is preferable where application updates
occur more frequently. Our future work includes
extending our wireless channel model to multi-
hop clusters, addressing communication failures, and
extending our solutions to heterogeneous WSNs.

References

1. Akyidiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless
sensor networks: a survey. Computer Networks (Elsevier)
Journal 2002; 38(4): 393–422.

2. Vercauteren T, Guo D, Wang X. Joint multiple target tracking and
classification in collaborative sensor networks. IEEE Journal on
Selected Areas in Communication 2005; 23(4): 714–723.

3. Feng W-C, Kaiser E, Feng WC, Baillif ML. Panoptes:
scalable low-power video sensor networking technologies. ACM
Transactions on Multimedia Computing, Communications, and
Applications 2005; 1(2): 151–167.

4. Valera M, Velastin SA. Intelligent distributed surveillance
systems: a review. IEEE Proceedings on Vision, Image and
Signal Processing 2005; 152(2): 192–204.

5. Dogan A, Özgüner F. Matching and scheduling algorithms
for minimizing execution time and failure probability of
applications in heterogenous computing. IEEE Transactions on
Parallel and Distributed Systems 2002; 13(3): 308–323.

6. Hagras T, Janecek J. A high performance, low complexity
algorithm for compile-time job scheduling in homogeneous
computing environments. In Proceeding of International
Conference on Parallel Processing Workshops (ICPPW’03)
2003; pp.149–155.

7. Shivle S, Castain R, Siegel HJ, et al. Static mapping of subtasks
in a heterogeneous ad hoc grid environment. In Proceedings of
Parallel and Distributed Processing Symposium 2004.

8. Yu Y, Prasanna VK. Energy-balanced task allocation for col-
laborative processing in wireless sensor networks. ACM/Kluwer

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

CLUSTER-BASED INFORMATION PROCESSING IN WSNs 907

Journal of Mobile Networks and Applications 2005; 10 (1–2):
115–131.

9. Giannecchini S, Caccamo M, Shih C-S. Collaborative resource
allocation in wireless sensor networks. In Proceedings of
Euromicro Conference on Real-Time Systems (ECRTS’04) 2004;
pp.35–44.

10. Wang A, Chandrakasan A. Energy-efficient DSPs for wireless
sensor networks. IEEE Signal Processing Magazine 2002; 68–78.

11. So J, Vaidya NH. Multi-channel MAC for ad hoc networks: han-
dling multi-channel hidden terminals using a single transceiver.
In Proceedings of ACM MobiHoc’04 2004; pp. 222–233.

12. Hong Y-W, Scaglione A. Energy-efficient broadcasting with
cooperative transmissions in wireless sensor networks. IEEE
Transactions on Wireless Communications 2006; 5(10): 2844–
2855.

13. Heinzelman WB, Chandrakasan AP, Balakrishnan H. An
application-specific protocol architecture for wireless microsen-
sor networks. IEEE Transactions on Wireless Communications
2002; 1(4): 660–670.

14. Shih E, Cho S, Ickes N, et al. Physical layer driven protocol and
algorithm design for energy-efficient wireless sensor networks.
In Proceedings of ACM MobiCom’01 2001; pp. 272–286.

15. Garey M, Johnson D. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Co.: New
York, NY, 1979.

16. Jain R, Chiu D-M, Hawe W. A quantitative measure of fairness
and discrimination for resource allocation in shared conputer
systems. Tech. Rep. TR-301, DEC Research Report, September
1984.

Authors’ Biographies

Yuan Tian received his B.S. and
M.S. degrees in Information Engineer-
ing and Communication and Informa-
tion System from Zhejiang University,
Hangzhou, China, in 1998 and 2001,
respectively. He recently received his
Ph.D. degree in Electrical and Com-
puter Engineering from the Ohio State
University, Columbus, OH, in 2006. He

currently works in the Wireless Technology Group of the
Bosch Research and Technology Center North America,
Palo Alto, CA. Dr Tian’s current research interests include
wireless sensor networks, wireless network architecture, and
network resource allocation and optimization.

Eylem Ekici has received his B.S. and
M.S. degrees in Computer Engineering
from Bogazici University, Istanbul,
Turkey, in 1997 and 1998, respectively.
He received his Ph.D. degree in Elec-
trical and Computer Engineering from
Georgia Institute of Technology, Atlanta,
GA, in 2002. Currently, he is an Assistant
Professor in the Department of Electrical

and Computer Engineering of the Ohio State University,
Columbus, OH. Dr Ekici’s current research interests include
wireless sensor networks, vehicular communication systems,
next generation wireless systems, and space-based networks,
with a focus on routing and medium access control protocols,
resource management, and analysis of network architectures
and protocols.

Fusun Ozguner received the M.S.
degree in Electrical Engineering from
the Istanbul Technical University in
1972, and the Ph.D. degree in Electrical
Engineering from the University of
Illinois, Urbana-Champaign, in 1975.
She worked at the I.B.M. T.J. Watson
Research Center with the Design Au-
tomation group for 1 year and joined the

faculty at the Department of Electrical Engineering, Istanbul
Technical University in 1976. Since January 1981 she has
been with The Ohio State University, where she is presently
a Professor of Electrical and Computer Engineering.
Her current research interests are parallel and fault-
tolerant architectures, heterogeneous distributed computing,
reconfiguration and communication in parallel architectures,
real-time parallel computing and communication, and
wireless networks. Dr Ozguner has served as an Associate
Editor of the IEEE Transactions on Computers and on
program committees of several international conferences.

Copyright © 2007 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2007; 7:893–907

DOI: 10.1002/wcm

