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INTRODUCTION 

This thesis is about using structural equation modelling to detect and account for 

measurement bias in multilevel data. The basic concepts and their importance will be 

illustrated below, by using an example from educational research.  

Suppose, a researcher is interested in the influence of students’ motivation on their 

mathematical ability.  After weeks of calling schools, she finds 200 teachers and 700 

students willing to participate in her study. The students complete a motivation 

questionnaire with 10 items such as “I think learning math is good for me” and “I like 

math”,  scored on a 7-point scale ranging from 1 (strongly disagree) to 7 (strongly agree). 

The children also make a mathematical ability test consisting of 60 items that can be 

answered correctly or incorrectly.  

Before the researcher can test any hypothesis on the relation between motivation and 

mathematical ability, the researcher needs to know: are these measurements valid? Are 

differences in motivation and mathematical ability reflected by differences in the associated 

item scores (Borsboom, Mellenbergh & van Heerden, 2004)? A related issue is the 

question of measurement invariance: do the items measure the same attributes for 

different (groups of) respondents (Mellenbergh, 1989; Meredith, 1993; Oort, 1992, 1993)? 

If the mathematical ability test items indeed measure the same attribute in boys and girls, 

then boys and girls with equal mathematical ability should, on average, have identical 

observed scores. If this is not the case, we speak of measurement bias. For example, an 

item with a worded math problem may be easier to solve for girls, because girls are 

generally better in reading than boys (Wei et al., 2012). For that reason, with equal levels of 

mathematical ability, girls may have more correct answers on this item than boys will.  

This thesis presents models and methods to investigate and account for measurement bias 

in multilevel data, such as data from children in school classes. One difficulty is that we do 

not have a direct measure of the (latent) variables of interest, such as mathematical ability 

or motivation, we have to work with observed item scores. The relationship between the 

observed item scores and motivation or mathematical ability can be represented by a 

measurement model, such as a linear factor model (Mellenbergh, 1994; Spearman, 1904,  

1928). In this thesis we use factor models as measurement models, in which the variables 

that were intended to be measured are represented by continuous latent common factors, 

that capture all common variance in the observed scores. Each item is also affected by a 

unique factor that has a structural part (causing item specific variance), and a random part 

(measurement error)  (Bollen, 1989).  

The investigation of measurement bias should always be preceded by the establishment of 

a sensible measurement model. Chapter 1 serves as an introduction to the concept of 

measurement bias. Using two examples with data from a cognitive ability test, we show 
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that measurement bias and multidimensionality are closely related. An item that shows 

measurement bias is multidimensional, as it taps into a dimension that was not intended to 

be measured. If this dimension is related to the variable with respect to which 

measurement bias is tested (often variables like gender, ethnicity, age), then the item is said 

to be biased with respect to this variable.  

Another question that the researcher in the example above might ask is: Are motivation 

and mathematical ability measured identically in different classrooms? As she collected 

data from school children, who are clustered in classes, the data have a multilevel structure. 

Children’s scores  are affected by class level variables, such as teacher quality and 

classroom composition. Differences in these variables may lead to differences in the 

average scores of children in different classrooms, that are not accounted for by the 

common factor (mathematical ability or motivation in the example). In Chapter 2 we 

propose a test for cluster bias, which can be used to examine whether measurements are 

biased with respect to school class. This test can be used in more situations than with 

children in classes only. It can be used to investigate bias with respect to any clustering 

variable in multilevel data (e.g. data from people in countries, from patients in hospitals, or 

from children in families), hence the general term “test for cluster bias”.  

The motivation items from the example were scored on 7-point scales, which can be 

treated as continuous scores in a linear factor model (Dolan, 1994). The answers to the 

math questions were dichotomous (right/wrong), which needs to be taken into account in 

the measurement model. Chapter 3 extends the test for cluster bias to situations with 

dichotomous and ordinal item responses.  

The cause of cluster bias in the mathematical ability test or in the motivation items is a 

class level variable, such as the mathematical ability of the teacher. If the researcher also 

measured the mathematical ability of teachers, she may test whether the differences 

between the classroom level math scores can be explained by mathematical ability of the 

teacher. This involves testing for measurement bias with respect to a class level variable. In 

the population, if there is no cluster bias, there is no bias with respect to any other class 

level variable. In Chapter 4 it is investigated whether the test for cluster bias indeed detects 

all bias that is caused by specific class level variables. 

The researcher from the example has three types of so-called violators with respect to 

which the tests may be biased: student level variables (e.g. student’s gender, student’s 

ethnicity), the clustering variable (class) and class level variables (e.g. teacher quality, 

average student SES). In Chapter 5 we propose a 5-step approach to investigate bias with 

respect to these three types of violators.  

This thesis will help researchers who analyse multilevel data to evaluate measurement bias 

in their research instruments in a systematic and valid way.  
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CHAPTER 1  

 

Measurement bias and multidimensionality;  

an illustration of bias detection in multidimensional 

measurement models  

 

Abstract Restricted factor analysis can be used to investigate measurement bias. A 

prerequisite for the detection of measurement bias through factor analysis is the correct 

specification of the measurement model. We applied restricted factor analysis to two 

subtests of a Dutch cognitive ability test. These two examples serve to illustrate the 

relationship between multidimensionality and measurement bias. We conclude that 

measurement bias implies multidimensionality, whereas multidimensionality shows up as 

measurement bias only if multidimensionality is not properly accounted for in the 

measurement model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Jak, S., Oort, F.J. & Dolan, C.V. (2010). Measurement bias and 

multidimensionality; an illustration of bias detection in multidimensional measurement 

models. Advances in Statistical Analysis, 94, 129-137. 
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INTRODUCTION 

In the presence of measurement invariance, systematic differences between observed test 

scores are attributable to true differences in the trait(s) that the test measures.  A test is 

measurement invariant with respect to V, if the following conditional independence holds: 

 

 f1 ( X | T = t , V = v ) = f2 ( X | T = t ),                                                               (1) 

 

where X is a set of observed variables, T is a set of attributes measured by X, and V is a 

set of variables other than T, possibly violating measurement invariance. Function f1 is the 

conditional distribution function of X given values of t and v, and f2 is the conditional 

distribution function of X given t. If the conditional independence does not hold (i.e., if f1 

≠ f2), the measurement of T by X is said to be biased with respect to V. In the presence of 

measurement bias, differences between observed test scores may not represent true 

differences between respondents. 

The principle of conditional independence (PCI) was introduced by Mellenbergh (1989) to 

define item bias (or differential item functioning), with X representing a test item, T a 

latent trait, and V some group membership. Yet Mellenbergh emphasized the generality of 

the definition: X, T, and V may be measured on the nominal, ordinal, interval or ratio level, 

they may be latent or manifest, and their relationships may be linear or nonlinear. In their 

review of statistical methods for the detection of measurement bias, Millsap and Everson 

(1993) distinguished between latent variable methods (with latent T ) and observed variable 

methods (with observed T), but they only considered group membership as possible V. 

Oort (1991) showed that a whole range of measurement issues can be subsumed under the 

PCI. Relevant measurement issues only differ in what is substituted for X (e.g., item 

responses, test scores), T (e.g., one or more latent traits), and V (e.g., other items, other 

latent traits, group membership, time of measurement occasion, socio-demographic 

variables). Oort called variables V potential violators of unbiased measurement (hence the 

symbol V). Meredith (1993) used the PCI to define weak measurement invariance and 

factorial invariance across populations defined by V, and called V a selection variable. 

Structural equation modeling (SEM) with latent variables provides flexible means to test 

measurement invariance, i.e., measurement issues related to the PCI-based definition of 

unbiased measurement can be investigated using SEM. Most typically, the X variables are 

observed variables (item scores or test scores) and the T variables are continuous latent 

variables. The V variables can be group membership in multigroup data, time index in 

longitudinal data (see King-Kallimanis, Oort & Garst (2010) for an example), or any other 
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variable, observed or latent. Different SEM methods to detect measurement bias with 

respect to each of these types of V have been proposed.  

If measurement bias is investigated with respect to a nominal V representing groups (e.g., 

treatment versus control group, men versus women), then we can use multigroup factor 

analysis (MGFA) with structured means (Sörbom, 1974). In the multigroup method, 

specific manifestations of bias can be investigated by testing across group constraints on 

intercepts (uniform bias) and factor loadings (nonuniform bias); see Vandenberg and 

Lance (2000) for a review. Similarly, measurement bias in longitudinal data (e.g., response 

shift) can be investigated using longitudinal factor analysis (Oort, 2005). 

Another way to detect bias, with respect to any variable (e.g., age, gender, personality trait, 

attitude, mood), is by conducting restricted factor analysis (RFA) as proposed by Oort 

(1992, 1998).  In the RFA method, uniform bias can be investigated by testing the 

significance of direct effects of exogenous variables (V) on the observed variables (X).  In 

effect, the RFA method is equivalent with using multiple indicator multiple cause (MIMIC) 

models to detect measurement bias (Muthén, 1989), the only difference being that in 

MIMIC models the V variables have causal effects on the T variables, whereas in the RFA 

method V and T variables are merely associated. Advantages of RFA (and MIMIC analysis) 

over multigroup factor analysis (MGFA) are that it is not necessary to categorize 

continuous V variables into groups, and that bias can be investigated with respect to 

several violators simultaneously. 

A prerequisite for the detection of measurement bias through any of these SEM methods 

is the correct specification of the measurement model. The definition of unbiasedness 

based on PCI features distributions of X conditional on T. This requires the relationship 

between X and T, including the dimensionality of T, to be correctly specified. 

Misspecification of the dimensionality of T in the measurement model may lead spurious 

bias results (Ackerman, 1992). 

In this paper, we present two examples of measurement bias detection through RFA. We 

focus on the specification of the measurement model, and discuss explicitly the 

relationship between multidimensionality and measurement bias. 

 

METHOD 

The RFA method is used to study measurement invariance of the “Q1000 Capaciteiten 

Hoog” with respect to age and gender. This is a commercial test, designed to measure 

cognitive abilities of highly educated people (Meurs HRM, Woerden, The Netherlands). 

The test consists of seven subtests, with a total of 137 dichotomous items (scored 0 for 

incorrect, 1 for correct). The test was administered to 1617 respondents (961 men and 656 
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women, 17 to 63 years of age, m = 37.9, sd = 9.0) as part of a selection procedure for a 

traineeship in Dutch government. All respondents were highly educated (BA level at least). 

Here we present the results for two subtests, Mathematical ability and Spatial visualization 

ability. Prior to investigating measurement bias, we first established the measurement 

model. Subsequently, we applied the RFA method to investigate bias with respect to 

gender and age. 

 

ESTABLISHING THE MEASUREMENT MODEL 

We first fitted a one-factor model in both subtests. Standardized residuals and 

modification indices (MIs, this is equivalent to using Lagrange Multiplier tests; Muthén & 

Muthén, 2006) were used to guide specification search. To guard against capitalizing on 

chance, the MIs were tested at a Bonferroni adjusted level of significance (nominal alpha 

of 5% was divided by p(p -1)/2, where p is the number of items in the subtest). We only 

permitted modifications that were amendable to substantive interpretation. 

 

DETECTING MEASUREMENT BIAS 

Once we established the measurement models, we added gender and age to the model as 

exogenous variables. Gender and age were allowed to correlate with each other and with 

the ability factor(s), but all direct effects of gender and age on the test items were fixed to 

zero. Measurement bias was evaluated by testing these zero direct effects, using MIs. If the 

largest of the MIs was significant at a Bonferroni adjusted alpha level (nominal alpha of 5% 

was divided by pq, where p and q are numbers of items and exogenous variables), the direct 

effect was set free to be estimated. The associated item was then considered biased. This 

procedure was repeated until none of the remaining fixed direct effects was significant (at a 

re-adjusted level of significance, i.e., dividing nominal alpha by pq - r, where r is the number 

of direct effects set free).  

 

STATISTICAL ANALYSIS 

As the items of the ability tests are dichotomous, we fitted our models to a matrix of 

tetrachoric correlations, using weighted least squares with adjusted mean and variance 

(WLSMV) as implemented in Mplus 4.2 (Muthén & Muthén, 2006). WLSMV provides 

asymptocically correct standard errors and an adjusted χ2 statistic (Muthén, du Toit and 

Spisic 1997). All MIs and χ2 difference tests were re-scaled to improve the approximation 

of the χ 2 distribution (Satorra & Bentler, 2001).  

In addition to the adjusted χ2 statistic, the root mean squared error of approximation 

(RMSEA) and the expected cross validation index (ECVI) were used as measures of 
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overall goodness-of-fit (Browne & Cudeck, 1993). RMSEA values smaller than 0.05 

indicate close fit, and values smaller than 0.08 are still considered satisfactory. Confidence 

intervals around the RMSEA values and ECVI values were calculated with the freely 

available computer program NIESEM (Dudgeon, 2003). 

 

RESULTS 

MATHEMATICAL ABILITY 

Mathematical ability is measured with 12 worded, four-choice math problems. Although 

the overall goodness-of-fit of the one-factor model was reasonable (χ2 = 329.55, df = 48, p 

< .01, RMSEA= .060 [90% CI: .053, .067], ECVI = .241 [90% CI: .208, .279]), significant 

MIs identified correlated residuals. All items with correlated residuals were at the end of 

the test. Apparently, time constraints caused respondents to hurry through the last part of 

the test, so that the results were affected by speed as well as mathematical ability. We 

added a second factor, labeled “Speed”, to account for the extra shared variance in the last 

six items. The fit of this two-factor model is close (χ2 = 63.50, df = 43, p = .02, 

RMSEA= .017 [90% CI: .007, .026], ECVI = .083 [90% CI: .072, .099]). 

Using this measurement model, we added gender and age as exogenous variables (Figure 2). 

We found a positive correlation between gender and mathematical ability (r = 0.34), 

indicating higher mathematical ability for men, and a negative correlation between age and 

speed (r = -0.20), indicating that older people are slower, which may have affected their 

test performance. Two items showed bias. Age had a significant direct effect on Item 1 (β 
= .12), indicating that the item is easier for older people: In a subgroup of equally able 

respondents, older respondents perform better on Item 1. Item 2 was found to be biased 

with respect to both age (β = -.12) and gender (β = -.13): For respondents with equal 

ability, this item was easier for women, and easier for younger people. 

We did not find an immediate explanation for Item 1, which was about chicken farmers 

and their relative numbers of chickens. Item 2 was a worded problem about employees’ 

preferences of what to do at an upcoming office party. To solve the item, one must 

assume that half of the male employees prefer dancing over bowling. Perhaps the older 

male respondents have been distracted more than other respondents by the unusual gender 

role behaviour. 
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Figure 1 Mathematical ability measured by worded problems. 

Notes: All figures denote standardized parameter estimates; apostrophes indicate non-significance; N = 

1617; model fit: χ2 = 103.79, df = 58, p < .01, RMSEA= .022 [90% CI: .015, .029], ECVI = .122 [90% CI: 

.108, .143].  

 

SPATIAL VISUALIZATION ABILITY 

The Spatial visualization ability test consists of 17 items. Each item pictures a three-

dimensional cube with different patterns on each of its planes. Through mental rotation, 

respondents have to choose from four options which other cube is a rotation of the first 

cube. 

The overall goodness-of-fit of the one-factor model is reasonable: χ2 = 750.64, df = 95, p 

< .01, RMSEA= .065 [90% CI: .061, .070], ECVI = .537 [90% CI: .485, .594]). However, 

MIs identified 15 covariances among the item residuals of three subsets of items.  

Inspection of item content showed that the three groups of items differed in the number 

of mental rotations needed to solve the items. We modeled this property by adding three 

factors to the general ability factor, hypothesizing that different mental capacities are 

required to solve problems that require different numbers of rotations. The fit of this four-

factor model was good: χ2 = 133.02, df = 87, p < .01, RMSEA= .018 [90% CI: .012, .024], 

ECVI = .165 [90% CI: .148, .187]). 

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12
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1 1 1 1
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We added gender and age as exogenous variables to the revised measurement model 

(Figure 2). Significant positive correlations between gender and general visual-spatial ability 

(r = .15), specific single rotation ability (r = .12), and double rotation ability (r = .13) 

indicated that men do slightly better than women. Negative correlations between age and 

general visual-spatial ability r = -.24), single rotation ability (r = -.18) and triple rotation 

ability (r = -.10) seemed to indicate that the associated skills deteriorate with increasing age. 

None of the items was found to be biased with respect to age or gender. 

 

 

 

Figure 2 Spatial visualization ability measured by cube rotation problems. 

Notes: All figures denote standardized parameter estimates; apostrophes indicate non-significance; for visual 

clarity, residual variances are not shown, and variables gender and age are pictured twice; N = 1617; model 

fit: χ2 = 165.54 with df = 107, p < .05, RMSEA= .018 [90% CI: .013, .023], ECVI = .206 [90% CI: .187, 

.231]. 

 

DISCUSSION 

We applied RFA to detect measurement bias with respect to age and gender to two 

subtests of a Dutch cognitive ability test. We also applied the MGFA method to the 

cognitive ability data, categorizing age into two age groups and conducting separate 

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17
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analyses to investigate bias with respect to gender and age.  Here, the MGFA and RFA 

methods yielded very similar results, but the MGFA method does have some 

disadvantages. In our example, gender and age were correlated (men were older). When we 

use MGFA to separately investigate bias with respect to gender and age then it might be 

difficult to distinguish gender bias from age bias. Investigation of gender and age group 

bias simultaneously in MGFA would involve the comparison of at least four smaller 

groups (younger women, older women, younger men, older men). Besides complicating 

the procedure and the interpretation of the results, this also means less precise parameter 

estimates and loss of statistical power. 

Limitations of the RFA method generally come from the measurement bias definition 

being far more general. For example, in the RFA method T is operationalized as a 

continuous latent variable, whereas in the definition T can be a discrete latent variable, as 

in latent class analysis (also incorporated in SEM; Muthén & Muthén, 2006), or T can be 

an observed variable, as in some of the older bias detection methods such as the Mantel-

Haenszel procedure (Holland & Thayer, 1988) and the logistic regression procedure 

(Swaminathan & Rogers, 1990). Furthermore, in the RFA method only linear conditional 

independence can be tested, and the method is not readily suited to detect nonuniform 

bias (although the RFA method can be extended with latent moderated structures; see 

Barendse, Oort & Garst, 2010). In the MGFA method nonuniform bias can be 

investigated by testing across group constraints on factor loadings. Still, when we applied 

the MGFA method to our cognitive ability data we did not find any nonuniform bias. 

In the present research we relied on modification indices for model modification, and we 

tested these at a Bonferroni adjusted level of significance to prevent chance results. Saris, 

Satorra, & Van der Veld, (2009) suggested to use modification indices in combination with 

the expected parameter change, and to take the statistical power of the modification index 

into account as well. This is generally worthwhile, but does not lead to other results in our 

examples, as the model modifications were already justified substantively and we checked 

whether the modifications changed the parameter estimates substantially. 

In practice it may be difficult to find the true cause of apparent bias, because there may be 

many possible violators of the measurement model operating simultaneously. Even if all 

possible violators are known, it will not be possible to operationalize and measure all 

possible causes of measurement bias. For example, in the worded math problem about 

office parties we conjecture that the apparent sex and age bias is really caused by the 

unusual gender role behaviour in the text of the worded problem. As we have no measure 

of “familiarity with unusual gender role behaviour” available, we can only detect bias with 

respect to sex and age. Researchers of measurement bias should be aware of this problem, 

and always try to investigate bias with respect to as many possible violator variables as 
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available. One of the advantages of the RFA method is that bias can be detected with 

respect to multiple possible violators simultaneously. 

 

MEASUREMENT BIAS AND MULTIDIMENSIONALITY 

The present examples serve to illustrate the relationship between measurement bias and 

multidimensionality.  In both examples we rejected the one-dimensional factor model in 

favour of a multidimensional factor model. In the first example, if we ignored the speed 

factor, we found age bias in the last items of the test, which would have been difficult to 

interpret. In the multidimensional model it is clear that the last items (also) measure speed 

and that age is correlated with speed.  In the second example, the specific rotation factors 

that vary in their correlations with gender and age could have been mistaken for bias in the 

associated items. In one of the other Q1000 cognitive ability tests, a 37-item vocabulary 

test, measurement bias detection yielded multiple items that favoured younger respondents 

(results not shown here). Inspection of item content showed that these biased items all 

inquired after the meaning of words with English origin. The biasing factor was therefore 

taken to be familiarity with English language, which is assumed to be inversely related with 

age. 

In general, the interpretation of apparent measurement bias involves reflection on possible 

biasing factors. In the one-dimensional model, all items are really affected by two factors: 

the single common factor and an item-specific residual factor, as in Spearman’s (1928) 

original “two-factor theory”. If all residual variance was really only random error variance 

then measurement bias would be absent by definition. But if the residual variance also 

contains structural variance then this may stem from a biasing factor. If multiple items in a 

test are affected by the same biasing factors, these factors may surface as additional 

common factors, as was the case with speed in the mathematical ability test, the specific 

rotation factors in the spatial-visual test, and English language familiarity in the vocabulary 

test.  However, if the residual factors do not share any structural variance, then the 

hypothesis of unidimensionality will not be rejected, although measurement bias may still 

be present. Oort (1991) used the definition of measurement bias to define 

unidimensionality as the absence of measurement bias with respect to any variable that 

might be relevant in whatever context the test is used. Following Lord and Novick’s (1968) 

notion of  “complete latent space”, we can define k-dimensionality as the number of 

dimensions of T that is needed to achieve statistical independence of all items X. Modeling 

all k dimensions guarantees the absence of measurement bias. 

With the RFA method, if we operationalize the biasing factor as one of the variables V, we 

can detect bias with respect to the nuisance factor itself. In the mathematical ability 

example, we might consider speed to be a biasing factor, and the effects of the speed 

factor on Items 7 through 12 as measurement bias. Instead of the speed factor as an 
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additional T in a multidimensional measurement model, the speed factor then features as a 

latent V in a model with a unidimensional T. This once more shows that 

multidimensionality and measurement bias really address the same problem. Measurement 

bias in a unidimensional model may disappear in a multidimensional model. The other way 

around, misspecification of the dimensionality of T in the measurement model may lead to 

spurious findings of bias. 

In conclusion, measurement bias and multidimensionality are related, but not equivalent. 

Measurement bias implies multidimensionality, but multidimensionality shows up as 

measurement bias only if multidimensionality is not properly accounted for in the 

measurement model. 
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CHAPTER 2  

 

A test for cluster bias: Detecting violations of measurement 

invariance across clusters in multilevel data   

 

Abstract We present a test for cluster bias, which can be used to detect violations of 

measurement invariance across clusters in 2-level data. We show how measurement 

invariance assumptions across clusters imply measurement invariance across levels in a 2-

level factor model. Cluster bias is investigated by testing whether the within-level factor 

loadings are equal to the between-level factor loadings, and whether the between level 

residual variances are zero. The test is illustrated with an example from school research. In 

a simulation study, we show that the cluster bias test has sufficient power, and the 

proportions of false positives are close to the chosen levels of significance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Jak, S., Oort, F.J. & Dolan, C.V. (2013). A test for cluster bias: Detecting 

violations of measurement invariance across clusters in multilevel data. Structural Equation 

Modeling, 20, 265-282. 
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INTRODUCTION 

Measurement invariance (or the absence of measurement bias) of a given instrument 

across groups is a necessary condition for the comparisons of groups with respect to the 

latent variables that the instrument purports to measure. The importance of measurement 

invariance is widely recognized (Mellenbergh, 1989; Millsap & Everson, 1991; Meredith, 

1993; Vandenberg & Lance, 2000). A method that is often used to investigate 

measurement invariance is Multigroup Factor Analysis (MGFA), which involves testing the 

equality of measurement parameters (specifically, factor loadings, intercepts, and residual 

variances) over groups (e.g., Wicherts, et al., 2004, Smits, et al, 2011). This approach is 

applicable to both the linear factor model (Reise, Widaman & Pugh, 1993) and the ordinal 

factor model (Millsap & Yun-Tein, 2004). MGFA becomes unwieldy or even unfeasible if 

the number of groups is large (Selig, Card and Little, 2008). Measurement invariance issues 

in a large number of groups are common in cross-cultural research (Byrne & van de Vijver, 

2010) and in teacher evaluation studies (Marsh & Hocevar, 1984). 

The aim of the present paper is to present a multilevel approach to investigate 

measurement invariance in a large number of groups. We circumvent the limitations of 

standard MGFA in this context by treating group membership as random. In view of this, 

we refer to groups as clusters, and we refer to violations of measurement invariance across 

clusters as cluster bias. We present a test for cluster bias in the two-level factor model. The 

test is illustrated with an empirical example from educational research. In addition, using 

simulated data, we investigate the performance of the test for cluster bias in terms of 

detection rate (power), false positives (Type 2 error), and estimation bias for different types 

and sizes of bias.  

 

MEASUREMENT BIAS 

Consider a measurement instrument X that was designed to measure a trait T (e.g., 

intelligence). Measurement bias with respect to a variable V (e.g., gender) implies that 

systematic differences in test scores on X over the levels of V (boys and girls) are not only 

attributable to differences in trait T but also to differences in variable V or variables 

associated with V (e.g., motivation). Measurement invariance (i.e. absence of bias) 

therefore is a necessary condition for the substantive interpretation of systematic 

differences between observed test scores. Mellenbergh (1989) defines measurement bias as 

a violation of measurement invariance. A test X is measurement invariant with respect to 

V if the following conditional independence holds: 

 f1 ( X | T = t , V = v ) = f2 ( X | T = t ) ,          (1) 
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with X representing measurements, T representing the trait of interest, and V representing 

any other variable. Function f1 is the conditional distribution of X given values t and v, and 

f2 is the conditional distribution of X given t. If the conditional independence does not 

hold (i.e., if f1 ≠ f2), the measurement of T by X is biased with respect to V. Mellenbergh 

distinguishes between uniform bias and non-uniform bias, depending on whether the 

distribution of X is uniformly affected by V or not. Figure 1 gives a graphical 

representation of unbiased measurement, uniform bias and non-uniform bias. 

Here we focus on the linear common factor model as the measurement model 

(Mellenbergh, 1994), and on structural equation modeling (SEM) as the method of 

measurement bias detection. 

 

 

Figure 1. Graphical representation of unbiased measurement, uniform bias, and non-uniform bias. 

 

USING SEM TO DETECT MEASUREMENT BIAS 

SEM provides various methods to test for measurement invariance, such as multiple indicator 

multiple cause analysis (MIMIC; Muthén, 1989) and restricted factor analysis (RFA; Oort, 1992, 

1998). In these methods the trait of interest is operationalized as a latent variable, 

measured by multiple observed variables. Uniform bias can be investigated by testing the 

significance of direct effects of exogenous variables (V) on the observed variables (X), and 

non-uniform bias by testing the significance of the product of the trait of interest and the 

exogenous variable (T*V) on the observed variables (Barendse, Oort & Garst, 2010; 

Barendse, Oort, Werner, Ligtvoet & Schermelleh-Engel, 2012). The only difference 

between MIMIC and RFA is that in MIMIC, the exogenous variable V is assumed to have 

a causal effect on latent variable T, whereas in RFA the two variables are merely correlated. 

If V is a nominal variable, indicating group membership, multigroup factor analysis 

(MGFA; Sörbom, 1974) can also be used to investigate bias, as mentioned above. Meredith 

(1993) introduced the term weak measurement invariance in his operationalization of 

VT

X
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X
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measurement invariance within linear MGFA. With MGFA, a series of increasingly 

restrictive models can be fitted to test different levels of measurement invariance. In the 

terminology of Meredith (1993; Meredith & Teresi, 2006), we distinguish configural invariance, 

with equal patterns of factor loadings across groups, weak factorial invariance, with equal 

values of factor loadings, strong factorial invariance, with equal intercepts in addition to equal 

values of factor loadings, and strict factorial invariance, with equal residual variances in 

addition to equal factor loadings and intercepts. In MGFA, uniform bias and non-uniform 

bias are associated with violations of strong and weak factorial invariance, respectively. We 

do not consider strict factorial invariance here, as strong factorial invariance suffices for 

meaningful across group comparison of common factor means. 

 

MEASUREMENT BIAS IN MULTILEVEL DATA  

In educational and psychological research, data often have a hierarchical multilevel 

structure, such as data from children in classrooms, employees in teams, or patients from 

physicians. With multilevel data, the grouping variable typically has many levels, which are 

called clusters. In contrast to standard MGFA, in which the grouping variable is viewed as 

a fixed variable, group membership is considered a random variable in multilevel factor 

analysis. Violations with respect to this random variable, that is, violations of measurement 

invariance across clusters, will be referred to as cluster bias. Multilevel SEM is suited to test 

for cluster bias, as first suggested by Rabe - Hesketh, Skrondal, and Pickles (2004), and 

Muthén (1990). We will show the implications of various across cluster constraints, 

yielding a test of cluster bias. The cluster bias test will be illustrated with an empirical 

example, and further evaluated through a small scale simulation study. 

In the next section, we will show how three increasingly restrictive assumptions across 

clusters (i.e. configural, weak, and strong factorial invariance across clusters) lead to testable 

invariance hypothesis across levels in a two-level factor model. 

 

METHOD 

TWO-LEVEL SEM WITH INVARIANCE RESTRICTIONS 

Consider the multivariate response vector yij, containing p test scores of subject i in cluster 

j. The scores can be decomposed into p cluster means j and p individual deviations ij 

from the cluster means: 

 

 yij = j + ij .         (2)
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As the individual deviations are independent of the cluster means, the overall variances and 

covariances of yij, denoted , can also be decomposed into independent parts, 

 

  = COV(yij, yij) 

      = COV(j, j) + COV(ij, ij) 

       = B + W ,                         (3)

    

where , B, and W are p × p variance-covariance matrices. B contains the variances and 

covariances of the cluster means, and W contains the pooled within-cluster variances and 

covariances of the individual deviations from the cluster means. COV( ) denotes 

covariance, and the B and W subscripts denote between clusters and within clusters.  

 

CONFIGURAL INVARIANCE ACROSS CLUSTERS  

We assume a common factor model for yij, where q common factors are measured by the p 

tests,  

 

 yij = j + j ij + ij ,                        (4) 

 

where vector ξij contains the scores on the q common factors of individual i in cluster j, 

vector εij contains the scores on the p residual factors of individual i in cluster j, vector τj 

contains p intercepts, and matrix Λj is a p × q matrix containing the factor loadings. The 

residual factors have zero means, and are mutually independent and independent of the 

common factors. Intercepts and factor loadings can be considered measurement 

parameters, characteristic for the tests or measurement instruments. Intercepts j indicate 

the attractiveness or (reverse) difficulty of the tests in cluster j, and factor loadings Λj 

indicate how well the tests discriminate between subjects with different common factor 

values in cluster j. 

As in each cluster j, the p residual factors have zero means, the cluster means of the p 

observed variables are given by 

 

 j  = E(j + j ij + ij)   

      = j + j E(ij)  
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       = j + j j ,              (5)

             

 

where E( ) denotes the expected value, and vector j contains the q common factor means 

in cluster j. Substitution of Equations 4 and 5 into Equation 2 yields 

 

 ij = yij - j 

     = j ij - j j + ij .             (6) 

 

As a result, the between cluster variances and covariances of j can be expressed as 

 

 B = COV(j, j) 

      = COV(j + j j, j + j j) 

      = COV(j, j) + COV(j, j j) + COV(j j, j) + COV(j j, j j) ,              (7) 

 

and the pooled within cluster variances and covariances of ij as 

 

 W = COV(ij, ij) 

       = COV(j ij - j j + ij, j ij - j j + ij) 

       = COV(j ij, j ij) + COV(ij, ij) .           (8)  

 

WEAK FACTORIAL  INVARIANCE ACROSS CLUSTERS 

Equality of factor loadings j (i.e. discrimination parameters) over clusters, or weak 

invariance, is one constraint that follows from the definition of measurement invariance. If 

we introduce this constraint, j =  for all j, and if we assume that the intercepts j (i.e. 

difficulty parameters) are uncorrelated with the common factor means j  (i.e. means of 

subject ability parameters), then Equations 7 and 8 simplify to 

 

 B =  COV(j, j) ’ + COV(j, j)  

      =  B ’ + B ,                          (9)

              

 and 
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 W =  COV(ij, ij) ’ + COV(ij, ij) 

      =  W ’ + W ,              (10)

  

Where the q × q matrix B contains the variances and covariances of the common factor 

cluster means j, the p × p matrix B contains the variances and covariances of the 

intercepts j, the q × q matrix W contains the pooled within variances and covariances of 

the common factors ij, and the p × p matrix W contains the pooled within variances of 

the residual factors ij. As the residual factors are assumed to be independent, W is a 

diagonal matrix. Matrix B, however, is not necessarily diagonal. As the random intercepts 

in j may share common variance, matrix B may contain some off-diagonal elements.  

 

STRONG FACTORIAL INVARIANCE ACROSS CLUSTERS 

Equality of intercepts j (i.e. difficulty parameters) over clusters, or strong invariance, is 

another constraint that follows from the definition of measurement invariance. If we add 

this constraint, j =  for all j, then B = 0 and Equation 9 further simplifies to 

 

 B =  B ’ .             (11) 

 

So, if we assume invariance of j across clusters, B disappears altogether.  

 

TESTING FOR CLUSTER BIAS 

If there is no cluster bias, then a two-level factor model given by Equations 10 and 11 

should fit the data (to reasonable approximation). Absence of cluster bias in two-level 

factor analysis is similar to strong invariance in multigroup factor analysis (Meredith, 1993). 

We refer to the model given by Equations 10 and 11 as the cluster invariance model.  

If there is uniform cluster bias, then the two-level factor model given by Equations 9 and 

10 should fit the data. We refer to this model as the cluster bias model. Presence of uniform 

cluster bias violates strong invariance, while weak invariance may still hold.  

If the model given by Equations 9 and 10 does not fit the data, then there is non-uniform 

cluster bias, assuming that at least the pattern of factor loadings is correct and invariant 

across clusters. This is similar to configural invariance in multigroup factor models.  

When testing for cluster bias, one could start with fitting the cluster invariance model, i.e., 

a model in which the factor loadings are constrained to be equal across levels, and the 
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covariance matrix ΘB is constrained to be zero, as follows from strong invariance across 

clusters. To investigate uniform cluster bias, one can use the likelihood ratio test (or chi-

square difference test) to compare the fit of the cluster invariance model with the fit of the 

cluster bias model (with a diagonal ΘB), and use the likelihood ratio test to test whether ΘB  

equals zero. It is not possible to conduct this test with a symmetric ΘB with all elements 

free to be estimated, as such a model is not identified. Therefore, alternatively to this 

omnibus test, one can consider the modification indices (Sörbom, 1989) to explore 

possible non-zero diagonal and off-diagonal elements in ΘB. Between level residual 

covariances (i.e. covariances between random intercepts) may originate from a common 

cause of cluster bias in multiple indicators. 

After testing uniform cluster bias, one can investigate non-uniform bias by testing the 

omnibus hypothesis that the factor loadings are equal across levels, using the likelihood 

ratio test or by considering modification indices. If the factor loadings are not equal across 

levels, the common factors do not have the same interpretation across clusters (Muthén, 

1990; Rabe-Hesketh, Skrondal & Pickles, 2004).  

A cautionary note concerns the scaling of the common factors. With freely estimated 

factor loadings at both levels, the common factors at both levels can be scaled by fixing 

their variances a non-zero value (e.g., diag(W) = diag(I), diag(B) = diag(I)). With the 

factor loadings constrained to be equal over the levels, and the factor variances of ij at the 

within level fixed (e.g., diag(W) = diag(I)), the factor variances of j at the between level 

are identified by the equality constraints on the factor loadings and can be freely estimated. 

In such a model there is no reason to assume equality of ij and j variances. 

Similar to usual measurement invariance testing in single level data, there may be 

measurement bias with respect to some but not all indicators. This is referred to as partial 

invariance (Byrne, Shavelson & Muthén, 1989). With respect to cluster bias we will use the 

term partial cluster invariance. The tests for cluster bias will be illustrated in the next section. 

 

ILLUSTRATIVE EXAMPLE 

DATA 

We illustrate the test for cluster bias with data from Thoonen, Sleegers, Peetsma, and Oort 

(2010). Participants in this study are 2814 students from 121 school classes, from fourth to 

sixth grade (ten through twelve years old). Students’ attitude to mathematics was measured 

with five items, such as “I have no trouble focusing my attention during mathematics”, 

with four response options. 
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PROCEDURE 

First, we verify the necessity of multilevel analysis of the nested data structure. The intra 

class correlation (ICC) reflects the proportion of a single variable’s variance that can be 

accounted for by the between level. The statistical significance of the collective between 

level variance of all observed variables can be tested by fitting a null-model (ΣB = 0) to the 

between level covariance matrix, while specifying a saturated model for ΣW.  If the null 

model does not fit we conclude that there is significant between level variance. The 

statistical significance of the covariances can be tested by fitting the independence model 

(with diagonal ΣB) to the between level covariance matrix, while specifying a saturated 

model for ΣW. If the independence model does not fit, we conclude that there is significant 

between level covariance.  

Second, we establish a measurement model for ΣW, while specifying a saturated model for 

ΣB, and third, we test for cluster bias by imposing the cluster invariance model of 

Equations 10 and 11 for ΣW and ΣB, and compare its fit with alternative models allowing 

for cluster bias. 

 

STATISTICAL ANALYSIS 

We refer to the student level as the ‘within level’, and to the classroom level as the 

‘between level’. As the item responses are scored on a four-point scale, we should evaluate 

the maximum likelihood of the ordinal item responses, which however is often not feasible 

because of the large computational demands (Grilli & Rampichini, 2007). In our example, 

Mplus (Muthén & Muthén, 2007) indeed did not converge to a solution. As our example 

only serves to illustrate the cluster bias test, we treat the responses to the four-point scale 

as approximately continuous.  We used robust maximum likelihood estimation (MLR) in 

Mplus to obtain parameter estimates. This estimation method provides a test statistic that 

is asymptotically equivalent to the Yuan-Bentler test statistic (T2, Yuan & Bentler, 2000), 

and standard error estimates that are robust for non-normality. 

In addition to this test of exact fit, we calculate the root mean square of approximation 

(RMSEA) as an index of approximate fit. RMSEA values smaller than .05 indicate close fit, 

and values smaller than .08 are still considered satisfactory (Browne & Cudeck, 1992). We 

also calculate level specific RMSEA’s as described by Ryu and West (2009). For example, 

the model fit at the within level, RMSEAW, is given by 

 

 RMSEAW = 
)(

2

Mdf

df

W

WW 
,            (12)
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where χ2
W and dfW are the chi-square test statistic and degrees of freedom obtained from 

fitting a model with saturated between models, and M is the total sample size. The 

RMSEAB for model fit at the between level is calculated in a similar way, 

 

 RMSEAB = 
)(

2

Ndf

df

B

BB 
 ,

 

            (13) 

 

with the chi-square test statistic and degrees of freedom from a model with saturated 

within part, and using the number of clusters, N, instead of the total sample size. 

When establishing a measurement model for W, we want to avoid correlated residual 

factors, because when we subsequently test for cluster bias, we want to model the same 

dimensionality for ΣW and ΣB. With B equal to zero, additional dimensions cannot be 

modeled trough W and B.  The solution is to reparameterize the model by adding 

(uncorrelated) factors, one for each residual covariance. For such additional factors, fixing 

both factor loadings at unity (or any other non-zero value) and estimating the (possibly 

negative) factor variance, leads to a model that is statistically equivalent to a model with 

residual covariances.  

When testing for cluster bias we use modification indices (MI’s) to guide model 

specification. To guard against chance results, we test MI’s at a Bonferroni corrected level 

of significance. That is, we use as a critical value the chi-square that is associated with a 

two-sided level of significance (α) of 0.05 divided by the number of possible modifications 

under consideration. When testing the significance of residual variances we choose a one-

sided level of significance, to account for the problem of bounded parameter space 

explained by Stoel, Garre, Dolan and Van den Wittenboer (2006).  

 

RESULTS 

The intra class correlations of the five items are respectively .043, .037, .033, .028 and .020. 

A null model (no variances and covariances) at the between level does not fit the data (χ2 

= 153.65, df = 15, p < .05, RMSEA = .057, RMSEAB = .276), indicating that there is 

significant between level variance. The independence model (no covariances at the 

between level, so ΣB is diagonal) does not fit the data either (χ2 = 43.51, df = 10, p < .05, 

RMSEA = .035, RMSEAB = .166), indicating that there are significant covariances at the 

between level. Therefore, these data require multilevel modeling. 
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A MEASUREMENT MODEL AT THE STUDENT LEVEL 

A one factor model for ΣW does not fit the data (χ2 = 85.14, df = 5, p < .05, RMSEA 

= .075, RMSEAW = .075). MI’s indicate a possible covariance between the residuals of 

Items 4 and 5, probably because both items concern the ability to concentrate on math. 

Adding the residual covariance results in a model with satisfactory fit (χ2 = 19.04, df = 4, p 

< .05, RMSEA = .037, RMSEAW = .037). Another significant MI indicates a large residual 

correlation between Item 2 and Item 3, which may be due to the fact that both items focus 

on “working hard during math”. Adding this residual covariance results in excellent model 

fit (χ2 = 0.35, df = 3, p = .95, RMSEA = 0). We reparameterize the model by adding two 

uncorrelated factors, one for Item 4 and 5, and one for Item 2 and 3. For each of these 

factors, we fix both factor loadings at 1, so the model is equivalent with the model 

containing the correlated residuals.  

 

TESTING FOR CLUSTER BIAS 

The model with the between level and within level factor loadings constrained to be equal, 

and no residual variances at the between level, fits the data reasonably well (χ2 = 45.56, df 

= 15, p < .05, RMSEA = .027). MI’s show that the zero residual variance of Item 3 causes 

misfit, indicating cluster bias in Item 3. Freeing the residual variance for this item results in 

better model fit (χ2 = 24.56, df = 14, p < .05, RMSEA = .017). Another significant MI 

reveals a non-zero residual variance for Item 1. Freeing the residual variance results in 

excellent model fit (χ2 = 12.89, df = 13, p = .46, RMSEA = 0). Allowing a covariance 

between the residual factors at the between level does not improve model fit. All factor 

loadings can be considered equal across levels. The final model with free residual variance 

at the between level for Item 1 and 3 is depicted in Figure 2. For Item 1, 1.6% of the total 

variance is explained by cluster bias. For Item 3, this percentage is 5.5 %. These 

percentages are calculated by dividing the residual variance at the between level by the total 

variance of the item.  

 

CONCLUSION 

The presence of cluster bias in Items 1 and 3 implies that, given the same attitude to 

mathematics, school classes still have different mean scores on Item 1 and Item 3. Item 1 

is about immediately starting to work on mathematics after the assignment is given. It is 

possible that this ‘immediately starting’ aspect does not only depend on pupil’s attitude to 

mathematics, but also on other between level characteristics such as the teaching style of 

the teacher. For Item 3, an item about trying one’s best at math, an explanation could be 

that the item scores do not just depend on pupil’s attitude but also on between level 

variables such as classroom climate or the teacher’s enjoyment in teaching mathematics.  
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Figure 2. Partial cluster invariance model with parameter estimates. Note: All parameter estimates are 

significantly larger than zero (with α = 0.05), with exception of the variances of the ‘Concentration’ and 

‘Work’ factors at the between level.  

 

SIMULATION STUDY 

A simulation study can give an idea of the power of the cluster bias test. The data are 

generated according to the model as depicted in Figure 3. This model comprises a one-

factor model with five indicators and one between-level exogenous variable (V). The 

exogenous variable V is used to introduce bias in the first indicator variable. We introduce 

uniform bias by regressing the first indicator variable on V, and we introduce non-uniform 

bias, by regressing the first indicator variable on the product of the common factor and V.  

For unbiased indicators, 50% of the total variance is residual variance, and 10% of the total 

variance is between level variance (ICC = 0.10). The population parameter values are given 

in Figure 3.  

We generate multivariate normal data in two steps, using the computer program R (R 

Development Core Team, 2010). First, cluster means are generated according to the 

following equation:  
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 μhj = τh + λh κj + bh vj + ch (κj vj)  ,           (14) 

 

where μhj is the cluster mean of observed indicator h in cluster j, κj is the cluster mean of 

the common factor, vj is the cluster mean of V, τi is the intercept for indicator h, λh is the 

factor loading of indicator h, and b and c are regression coefficients. The cluster scores κj 

and vj are drawn from the bivariate standard normal distribution, with zero means, unity 

variances, and zero covariance. As shown in Figure 3, indicator variables 2 through 5 are 

unbiased.  

In the next step, we draw data from the multivariate normal distribution with means 

corresponding to the associated cluster means from the previous step, and covariance 

matrix ΣW which is calculated as W = Λ ФW Λ’ + ΘW, with the parameter values given by 

Figure 3. 

 

Figure 3. Two-level measurement model with population parameter values. Note: In conditions with 0, 1, 3 

and 5 % bias, the corresponding values for b and c were 0, 0.159, 0.278 and 0.363 respectively. 

 

CONDITIONS 

We vary the size of uniform bias, the size of non-uniform bias, and the number of clusters. 

We choose the numbers of clusters to be 20, 50 or 100. The size of 100 is sometimes 

mentioned as the minimum number of clusters that ensures that the chi-square statistic 
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(obtained using MLR estimation) follows its expected asymptotic distribution to 

reasonable approximation (Hox, Maas & Brinkhuis, 2010). We also consider 50 and 20 

clusters, as in practice the numbers of clusters are often (much) smaller than 100.  

We vary the size of bias by choosing different values for b and c (see Figure 3).  In the 

uniform bias conditions, we introduce bias by choosing a non-zero value of b. In the non-

uniform bias conditions, we introduce bias by choosing a non-zero value of c. Values for b 

and c are chosen 0, 0.159, 0.278 and 0.363, which correspond to 0, 1, 3 and 5% of the total 

variance in the first indicator variable if only one type of bias is present. For example, 

using the parameter values from Figure 3, a b value of 0.159 yields a proportion of 

explained variance of 0.1592 / (0.1592 + 0.502 + 0.502 × 4 + 1.25) = 0.01 (1 %).  In the 

conditions with both uniform and non-uniform bias we retain the values for b and c 

mentioned above. Non-zero values for b and c cause additional variance, so that biased 

indicators have larger variance and larger ICC’s than unbiased indicators. Hereinafter we 

refer to bias percentages of 1%, 3%, and 5% as small, medium, and large bias, respectively.  

We do not vary the intra class correlation. For the unbiased indicator variables, we set the 

ICC value at 0.10, which value we consider typical for school data. For biased indicators, 

the ICC’s then vary from 0.10 to 0.19 (depending on the size of the biases). Snijders and 

Bosker (1999) qualify 0.05 to 0.20 as common in educational data. Hox (2002) notes that 

ICC’s of 0.10 to 0.15 are often found. Preacher, Zyphur and Zhang (2010) consider ICC’s 

of 0.10 to represent a medium sized effect.  

For simplicity, we only consider balanced designs, in which the group sizes of all clusters 

are equal. We choose group sizes of 25 because this is the typical size of a school class in 

the Netherlands. Total sample sizes are 2500 observations in conditions with 100 clusters, 

1250 observations in conditions with 50 clusters, and 500 observations in conditions with 

20 clusters. 

Varying the sizes of uniform and non-uniform bias and the numbers of clusters results in 4 

× 4 × 3 = 48 conditions. For each condition, we generate 500 datasets. To each data set, 

we fit the measurement invariance model, a partial invariance model that allows estimation 

of the between level residual variance of the first (biased) indicator variable, and a partial 

invariance model that allows estimation of the between level residual variance of the 

second (unbiased) variable.  

 

RESULTS  

Overall fit of the cluster invariance model  

We evaluate the rejection rate of the cluster invariance model by the chi-square test of 

overall goodness-of-fit, at the 0.05 level of significance. Table 1 gives the results for the 

cluster invariance model in the 48 conditions.  
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The expected chi-square in the no bias condition is equal to the degrees of freedom (df = 

19). The expected standard deviation of the central chi-square distribution with 19 degrees 

of freedom is √(19 × 2) = 6.16. In our simulations, the means of the chi-squares in the no 

bias conditions are 24.78, 21.02, and 20.07 for N = 20, N = 50, and N = 100, respectively. 

The standard deviations are 11.59, 9.11, and 8.51for N = 20, N = 50, and N = 100, 

respectively. The rejection rates were 0.27, 0.17 and 0.13, which is substantially higher than 

the expected 0.05.   

The mean chi-square and rejection rate increases with size of the bias and with the number 

of clusters. In the conditions with 20 clusters, rejection rates vary from .30 in the small 

uniform bias condition to 0.94 in the conditions with combinations of medium and large 

bias. In the conditions with 50 clusters, rejection rates vary from 0.32 in the small non-

uniform bias condition to 1.00 in the conditions with combinations of medium and large 

bias. In the conditions with 100 clusters, the rejection rate is around .45 or .41 in 

conditions with small uniform or small non-uniform bias. With medium uniform or 

medium non-uniform bias the rejection rates are 0.99 and 0.97, respectively. One deviation 

from the general pattern of results is that the mean chi-square and rejection rate for the 

small non-uniform bias condition is higher with N = 20 than with N = 50.   	
Overall fit of the partial cluster invariance model   

To all data sets, we fit the model with between level residual variance for the biased 

indicator free to be estimated. The fit results and rejection rates are given in Table 2. The 

expected chi-square is equal to the degrees of freedom (df = 18). The expected standard 

deviation of the chi-square distribution with 18 degrees of freedom is √(18 × 2) = 6.00. 

The chi-square values, standard deviations and rejection rates decrease with numbers of 

clusters, but do not vary with size of the bias. In the N = 20 conditions, the mean varies 

between 23.39 and 28.78. In the N = 50 conditions, the mean chi-square varies between 

19.65 and 21.67. In the N = 100 conditions, the mean chi-square varies between 18.63 and 

19.97.  
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Table 1. Cluster invariance model (df = 19), 500 replications: Mean χ2, standard deviation (SD) and rejection 

rate (p) at α = 0.05 (two-sided).  

 

Size of bias 

 in first  indicator 

20 clusters 50 clusters 100  clusters 

Uniform 

 

Non- 

uniform 
Mean χ2 (SD) p Mean χ2 (SD) p Mean χ2 (SD) p 

        

zero zero 24.78 (11.59) .27 21.02 (9.11) .17 20.07 (8.51) .13 

zero small 28.53 (14.89) .36 27.59 (12.83) .32 29.87 (12.88) .41 

zero medium 53.25 (81.77) .68 57.24 (37.70) .83 81.90 (37.68) .97 

zero large 93.83 (191.97) .81 113.25 (106.80) .97 173.90 (94.33) 1.00

small zero 27.22 (12.33) .30 26.99 (11.39) .33 30.26 (12.24) .45 

small small 34.41 (21.35) .48 37.55 (18.05) .59 51.43 (22.24) .86 

small medium 64.03 (118.17) .73 80.22 (52.61) .93 120.51 (56.92) 1.00

small large 117.75 (189.85) .86 160.70 (372.97) .98 236.97 (137.78) 1.00

medium zero 44.66 (27.71) .68 55.84 (22.53) .89 83.63 (29.69) .99 

medium small 60.36 (57.36) .76 78.42 (40.73) .94 122.00 (50.87) 1.00

medium medium 98.41 (141.95)  .86 137.23 (126.98) .99 206.40 (95.27) 1.00

medium large 198.65 (753.96) .93 268.49 (658.89) 1.00 373.04 (246.74) 1.00

large zero 72.93 (53.42) .89 108.41 (49.49) 1.00 176.19 (55.55) 1.00

large small 95.82 (102.37) .90 139.41 (90.41) .99 224.05 (93.13) 1.00

large medium 177.64 (447.527) .94 238.23 (297.33) 1.00 353.43 (191.64) 1.00

large large 335.45 (1964.43) .94 433.97 (1016.59) 1.00 627.20 (727.86) 1.00
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Table 2. Partial cluster invariance model (df = 18), 500 replications: Mean χ2, standard deviation (SD) and 

rejection rates (p) at α = 0.05 (two-sided). 

 

Size of bias 

 in first  indicator 

20 clusters 50 clusters 100  clusters 

Uniform 

 

Non- 

uniform 
Mean χ2 (SD) p Mean χ2 (SD) p Mean χ2 (SD) p 

    

zero zero 28.78 (22.74) .38 21.67 (11.55) .21 19.61 (7.94) .14

zero small 25.88 (18.33) .31 21.32 (9.75) .18 18.67 (7.69) .10

zero medium 25.73 (14.00) .31 20.49 (8.44) .15 19.63 (8.09) .11

zero large 24.96 (12.10) .30 21.13 (9.08) .19 19.97 (8.22) .13

small zero 24.33 (11.21) .27 21.07 (8.56) .17 19.03 (7.84) .10

small small 23.69 (11.06) .24 20.79 (8.48) .15 19.72 (8.47) .14

small medium 25.02 (11.42) .31 21.24 (8.34) .16 19.76 (7.88) .12

small large 25.33 (12.42) .28 20.89 (8.81) .16 19.95 (8.43) .14

medium zero 23.39 (10.05) .25 20.48 (8.25) .16 18.63 (6.78) .07

medium small 24.02 (10.95) .27 20.45 (8.38) .14 18.79 (8.43) .09

medium medium 23.80 (10.70) .26 21.06 (8.06) .17 19.06 (7.32) .10

medium large 25.79 (11.73) .32 20.77 (7.97) .14 18.99 (6.90) .08

large zero 24.29 (11.00) .27 19.65 (7.70) .12 19.55 (8.32) .11

large small 24.71 (10.96) .31 20.64 (7.78) .16 19.11 (7.58) .11

large medium 24.48 (10.77) .28 20.47 (7.87) .13 19.59 (7.16) .10

large large 24.50 (11.03) .29 20.64 (8.11) .14 19.61 (7.94) .14
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Power of the chi-square difference test 

For each of the 24000 datasets, the difference in -2 × log likelihood values of the 

invariance model and the partial invariance model is calculated. This results in a chi- square 

difference test with one degree of freedom. With MLR estimation, the differences in -2 log 

likelihood values do not follow the chi-square distribution. However, the Mplus program 

provides scaling correction factors, which can be used for correct difference testing. The 

scaled chi-square differences sometimes produce a negative value, which is an invalid result 

(this is a well-known problem; see Satorra & Bentler (2010) for a possible solution). In our 

analysis, the negative differences are consistently associated with small estimates of the 

residual variance at the between level. In calculating proportions of significant chi-square 

tests, we therefore consider the negative values for scaled chi-square differences as 

indications of non-significant differences. We test the chi-square differences against critical 

values of 2.71, 3.84, and 6.63, associated with two-sided alphas of 0.10, 0.05, and 0.01. 

Proportions of significant chi-square differences are reported in Table 3.  

The power of the chi-square difference test increases with the size of the bias and with the 

number of clusters. Here we discuss the results for alpha = 0.10, for the other results we 

refer to Table 3. In the N = 20 condition, power is low, 0.22 and 0.21 for small uniform 

bias and small non-uniform bias. For medium bias, power increases to 0.74 and 0.64. 

Acceptable power of over 0.80 is achieved when uniform bias is large. In the N = 50 

conditions the power to detect small uniform or non-uniform bias is 0.45. Power increases 

to 0.98 and 0.95 for medium uniform or non-uniform bias, and to 0.80 for the 

combination of small uniform and small non-uniform bias. For larger amounts of bias 

almost all chi-square differences are significant. In the N = 100 conditions, the power to 

detect small uniform or non-uniform bias is 0.75 and 0.67 respectively. Power is already 

1.00 with medium uniform or non-uniform bias.  

 

False positives of the chi-square difference test 

Proportions of false positives (Type 2 error) are calculated by testing the significance of 

the between level residual variance of the second indicator, which is unbiased. These 

results are reported in Table 4. Overall, the proportion of false positives increases with 

sample size and with size of the bias. In the conditions without bias, all proportions of 

false positives are lower than the chosen alpha levels. In the N = 20 conditions, the 

proportion of false positives never exceeds the alpha level. In the N = 50 conditions they 

are generally equal to the alpha level. In most of the N = 100 conditions, the proportions 

are higher than the nominal alpha levels. 
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Table 3. Proportions of bias detection in (biased) Indicator 1, using the chi-square difference test at α = 0.01, 

0.05, and 0.10. 

 

Size of bias 

 in first  indicator 

20 clusters 50 clusters 100 clusters 

Uniform 

bias 

Non-

uniform 

bias 

α 

.01 

 

 .05 .10 

α

.01 .05 .10 

α 

.01 

  

.05 .10 

zero zero* .00 .00 .02 .00 .01 .02 .00 .02 .03

zero small .07 .15 .21 .21 .37 .45 .39 .59 .67

zero medium .41 .57 .64 .84 .94 .95 .99 .99 1.00

zero large .67 .80 .83 .97 .99 .99 1.00 1.00 1.00

small zero .06 .14 .22 .17 .34 .45 .44 .65 .75

small small .25 .38 .47 .58 .74 .80 .90 .96 .97

small medium .52 .68 .75 .92 .96 .98 1.00 1.00 1.00

small large .75 .82 .87 .99 1.00 1.00 1.00 1.00 1.00

medium zero .48 .65 .74 .91 .97 .98 1.00 1.00 1.00

medium small .63 .76 .82 .96 .98 .99 1.00 1.00 1.00

medium medium .78 .87 .91 1.00 1.00 1.00 1.00 1.00 1.00

medium large .85 .93 .95 1.00 1.00 1.00 1.00 1.00 1.00

large zero .80 .92 .94 1.00 1.00 1.00 1.00 1.00 1.00

large small .82 .90 .94 1.00 1.00 1.00 1.00 1.00 1.00

large medium .90 .95 .96 1.00 1.00 1.00 1.00 1.00 1.00

large large .92 .95 .96 1.00 1.00 1.00 1.00 1.00 1.00

*In the no bias condition, results are the proportion of false positives.  

 

 

 



Chapter 2 

 

38 
 

 

Table 4. False positives: Proportions of bias detection in (unbiased) Indicator 2, using the chi-square 

difference test at α = 0.01, 0.05, and 0.10. 

 

Size of bias 

 in first  indicator 

20 clusters 50 clusters 100 clusters 

Uniform 

bias 

Non-

uniform 

bias 

α

.01 

  

.05 .10 

α

.01 .05 .10 

α

.01 

  

.05 

 

.10 

zero zero .00 .01 .04 .01 .02 .04 .00 .02 .04 

zero small .00 .02 .04 .01 .01 .05 .01 .02 .06 

zero medium .01 .02 .04 .01 .03 .05 .01 .05 .08 

zero large .01 .02 .05 .02 .06 .11 .03 .09 .15 

small zero .00 .01 .03 .00 .03 .05 .00 .03 .05 

small small .01 .03 .04 .00 .03 .05 .01 .05 .08 

small medium .00 .03 .06 .01 .04 .07 .01 .07 .12 

small large .01 .04 .07 .03 .06 .11 .04 .11 .17 

medium zero .00 .02 .05 .01 .04 .06 .01 .05 .09 

medium small .00 .01 .05 .02 .05 .08 .02 .06 .12 

medium medium .01 .05 .07 .01 .06 .09 .03 .11 .17 

medium large .01 .05 .09 .02 .08 .15 .06 .17 .24 

large zero .01 .02 .04 .02 .06 .09 .02 .07 .15 

large small .00 .05 .08 .02 .08 .12 .04 .10 .17 

large medium .01 .03 .07 .02 .10 .15 .06 .15 .21 

large large .01 .05 .10 .03 .10 .17 .07 .18 .27 

 



A test for cluster bias 

39 

 

 

Estimation bias 

We also examine the accuracy of parameter estimation in cluster invariance model. The 

percentage of estimation bias is calculated as 100 × (mean estimated value – population 

value) / population value. See Figure 3 for the population values. According to Muthén, 

Kaplan and Hollis (1987), estimation bias less than 10% can be considered negligible. 

With the cluster invariance model, all percentages of estimation bias are smaller than 10%. 

The largest estimation bias is found in the N = 100 condition, for the common factor 

variance on the between level, which is – 4.5 %.  

With the partial cluster invariance model, the residual between level variance for the biased 

item is consistently underestimated, but never more than 10 %. The population value for 

this residual variance in the uniform bias conditions is calculated as the square of b. The 

highest bias percentages are – 8.3 % in the N = 20 conditions, – 7.3 % in the N = 50 

conditions, and – 2.2 % in the N = 100 conditions. For all other parameters in the partial 

cluster bias model, sizes of estimation bias are identical with the results from the cluster 

invariance model. 

 

DISCUSSION 

We have presented a test of measurement invariance across cluster in the two-level 

common factor model. The simulations show that the chi-square difference test and the 

overall model fit test both have sufficient power to detect cluster bias, given a large enough 

number of clusters. With 50 clusters, the power to detect cluster bias is sufficient if the 

bias accounts for 3% or more of the total variance of the indicator. With only 20 clusters, 

power to detect cluster bias is still sufficient if bias accounts for at least 5% of the total 

variance. The proportions of false positives are higher than the nominal level of 

significance in conditions with 100 clusters, but lower in conditions with 20 clusters.  

The present approach to detect cluster bias is a viable way to investigate measurement 

invariance across clusters. In our illustrative example, we have investigated measurement 

invariance across school classes. This is relevant, for example, when teachers are evaluated 

based on the performance of their classes. The investigation of cluster bias may be of 

importance in other fields as well, for example in cross-cultural research or organizational 

research, were multilevel structures are very common.  

We have considered data structures with two levels. However, the model can be extended 

to three-level structures, such as with data from children within school classes within 

schools. The same invariance constraints will apply to higher levels.  
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A requirement for the models presented in this paper is that the highest level units should 

be independent. These models can therefore not be used with classified nesting structures, 

where units at the same level of the hierarchy are classified by more than one factor 

(Rasbash and Goldstein, 1994).  

If cluster bias is detected, the next step would be to understand the cause of the bias. In 

our illustration we hypothesize that the detected bias might be due to teaching style of the 

teacher. Unfortunately, we do not have an actual measure of teaching style to test this 

hypothesis. If teaching style is indeed the cause of the cluster bias, regression of the 

intercept on teaching style should explain the bias, and should render the residual variance 

at the between level equal to zero.  

As illustrated, cluster bias is caused by a between level variable. The bias implies that 

something else than the construct we intend to measure is causing cluster differences in 

the observed scores. So cluster bias, as modeled here, is actually bias with respect to a 

between level variable. Even if we do not have actual measures of substantive between 

level variables, the present model still allows us to investigate bias with respect to such 

variables. A similar point concerning bias with respect to unmeasured variables in the 

context of single level MGFA is made by Lubke, Dolan, Kelderman & Mellenbergh (2003).   

Absence of cluster bias suggests that there are no between level variables causing cluster 

bias. Fitting the cluster invariance model thus serves as a quick and easy first step before 

the investigation of bias with respect to specific between level variables. Suppose we are 

interested in the effect of teacher sex in the measurement of children’s interest in 

mathematics. If there is no cluster bias, we know that all group differences are explained 

by differences in average interest in mathematics, and there is no variance to be explained 

by teacher sex. Of course, the power to detect bias may be greater when testing cluster bias 

with respect to specific measured between level variables, compared to the power of the 

present approach.    

 

CONCLUSION 

We presented a framework for testing cluster bias. Violations of measurement invariance 

across clusters can readily be tested. The cluster bias test has sufficient power to detect 

cluster bias, and its specification with any multilevel structural equation modeling software 

is straightforward.   
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CHAPTER 3 

 

Using two-level ordinal factor analysis to test for cluster bias 

in ordinal data 

 

Abstract The test for cluster bias is a test of measurement invariance across clusters in 

two-level data. The present paper examines the true positive rates (empirical power)  and 

false positive rates of the test for cluster bias using the Likelihood Ratio Test (LRT) and 

the Wald test with ordinal data. A simulation study indicates that the scaled version of the 

LRT, that accounts for non-normality of the data, gives untrustworthy results, while the 

unscaled LRT and the Wald test perform well in terms of empirical power rate if the 

amount of cluster bias is large, and have acceptable false positive rates. The test for cluster 

bias is illustrated with data from research on teacher – student relations.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Jak, S., Oort, F.J. & Dolan, C.V. (under review). Using two-level ordinal factor 

analysis to test for cluster bias in ordinal data.  
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INTRODUCTION 

If psychometric data have a two-level structure, as is the case with data from students in 

school classes, it is important to ensure that an instrument measures the same 

construct(s) across students in different clusters. In the case of cluster bias, differences in 

test scores between students from different clusters cannot be attributed exclusively to 

differences in the construct(s) measured at the student level. For example, in the case of 

students’ test scores on a motivation questionnaire, differences between students from 

different classes can be fully explained by differences in motivation if cluster bias is absent. 

In the presence of cluster bias however, variables other than motivation appear to 

contribute to differences in students’ scores.  

Cluster bias is a special case of measurement bias, which can be defined as a violation of 

measurement invariance. Measurement invariance holds if all measurement parameters are 

equal across different groups (Mellenbergh, 1989). In the present study, the factor model is 

the measurement model of interest  (Mellenbergh, 1994). In this case, the notion of 

measurement invariance is denoted factorial invariance (Meredith, 1993). The measurement 

parameters in the factor model are factor loadings (regression coefficients relating the 

indicator to the common factor), intercepts (the means of the residual factors) and residual 

variances (variance in the indicators that is not explained by the common factor(s)). 

Measurement invariance with respect to some grouping variable can be tested using 

multigroup factor models with a mean structure (Sörbom, 1974). In the terminology of 

Meredith, we distinguish the following forms of invariance: Configural invariance, comprising 

equal patterns of factor loadings across groups, weak factorial invariance, comprising equal 

values of factor loadings, strong factorial invariance, comprising equal intercepts in addition to 

equal values of factor loadings, and strict factorial invariance, comprising equal residual 

variances in addition to equal factor loadings and intercepts (Meredith & Teresi, 2006).  

To test measurement invariance across clusters in multilevel data, the test for cluster bias 

can be used (Jak, Oort & Dolan, 2013). If one considers the clustering variable a fixed 

variable, multigroup factor analysis is an obvious choice to investigate measurement bias. 

When the clusters are viewed as a sample from a population of clusters, random effects 

modeling is suitable. With large numbers of groups, the random effects approach of 

multilevel structural equation modeling offers clear advantages. One advantage is that the 

model fitting procedure is simpler than it is in the case of a multigroup model with a large 

number of groups. A second advantage is that with multilevel structural equation modeling, 

the possible causes of clusterbias can be investigated by regressing the parameters 

representing the bias on potential causes, if these have been measured. Statistical methods 

to investigate measurement bias across clusters in continuous data have been developed 

(Muthén, 1990; Rabe-Hesketh, Skrondal & Pickles, 2004) and have been found to perform 

well with continuous item responses (Jak, Oort, & Dolan, 2013). As in educational and 
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psychological testing, item responses are often ordinal, e.g., 5-point Likert scales in attitude 

measures or binary, correct/incorrect, responses in mathematical tests, it is important to 

establish that this method works well with such data as well. The purpose of the present 

paper is therefore to extend the test for cluster bias to ordinal data, using the multilevel 

factor model for ordinal data (Grilli & Rampichini, 2007). 

 

TESTING FOR CLUSTER BIAS IN THE ORDINAL TWO-LEVEL FACTOR MODEL 

Ordinal two-level factor models can be used to investigate cluster bias in ordinal data 

(Grilli & Rampichini, 2007). With p observed variables or items, the p-dimensional vector 

of observed discrete item responses yij of individual i in cluster j can be viewed as 

originating from a p -dimensional vector of underlying (unobserved) continuous response 

variables yij*. It is assumed that for each variable ypij with a number of Cp categories,  a set 

of Cp -1 threshold parameters exists, such that ypij takes on values {1, 2, …, Cp }  if a 

certain threshold on the underlying variable ypij*  is passed (see Lord & Novick, 1968; 

Muthén, 1984; Olsson, 1979; Christofferssen, 1975). For example, given a variable with 

five response options, there are four threshold parameters τ, such that: 

 

                    1 if ypij*  < τ1 

         2 if τ1  < ypij*  < τ2 

ypij  =         3 if τ2  < ypij*  < τ3                      (1) 

         4 if τ3  < ypij*  < τ4 

          5 if ypij*  > τ4 
. 

This model is extended to a two-level model by decomposing the vector of underlying 

continuous response variables yij*, into a vector of cluster means (μj), and a vector of 

individual deviations from the cluster means (ηij): 

 

 yij* = μj + ηij .               (2) 

 

It is assumed that μj and ηij are independent. The covariances of y (ΣTOTAL ) can be written 

as the sum of the covariances of μj (ΣBETWEEN ) and the covariances of ηij (ΣWITHIN  ): 

 

 ΣTOTAL = ΣBETWEEN + ΣWITHIN.            (3) 
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Any structural equation model can be fitted to the within and between level covariance 

matrices. A two-level factor model for p observed variables and k common factors is given 

by: 

 

          ΣBETWEEN = ΛBETWEEN ΦBETWEEN ΛBETWEEN’ + ΘBETWEEN ,     

          ΣWITHIN = ΛWITHIN ΦWITHIN ΛWITHIN’ + ΘWITHIN ,                 (4) 

 

where ΦBETWEEN and ΦWITHIN are k by k covariance matrices, ΘBETWEEN and ΘWITHIN are p 

by p (diagonal) matrices with residual variances, and ΛBETWEEN and ΛWITHIN are p by k 

matrices with factor loadings at the between- and within-level, respectively.  

Grilli and Rampichini (2007) outlined the specification and fitting procedures for 

multilevel factor models with ordinal data using maximum likelihood estimation via an EM 

(Expectation - Minimization) algorithm using adaptive numerical quadrature (denoted by 

MLR estimation in Mplus, Muthén & Muthén, 2007). Although theoretically the estimation 

of ordinal multilevel factor models poses no problems, estimation of the model parameters 

is computationally demanding. The maximum likelihood method is therefore restricted to 

the estimation of simple models with a small number of random effects. Fortunately, the 

model that is used to investigate cluster bias is quite restrictive, so that its parameters can 

usually be estimated using MLR estimation. As explained by Jak, Oort and Dolan (2013, in 

press), in the absence of cluster bias, the following model holds: 

 

 ΣBETWEEN = Λ ΦBETWEEN Λ’   

and      

 ΣWITHIN = Λ ΦWITHIN Λ’ + ΘWITHIN.           (5) 

  

If there is no cluster bias, the factor loadings are equal across levels, and there is no 

residual variance at the between level. The test for cluster bias implies constraining factor 

loadings to be equal across levels and testing whether the residual variances at the between 

level are zero. If the factor loadings are not equal across levels, the common factors do not 

have the same interpretation across levels (Muthén, 1990; Rabe-Hesketh, Skrondal & 

Pickles, 2004). If the between level residual variance of a given indicator is found to be 

greater than zero, then the indicator is judged to be affected by cluster bias.  
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Jak, Oort and Dolan (2013) showed that with continuous data from five items, the chi-

square difference test has sufficient power to detect cluster bias, given a large enough 

number of clusters. With 50 clusters with 25 observations per cluster, the power to detect 

cluster bias was sufficient if the bias accounted for 3% or more of the total variance of the 

indicator. With only 20 clusters of 25 observations, power to detect cluster bias was still 

sufficient if bias accounted for at least 5% of the total variance. The proportions of false 

positives were higher than the nominal level of significance in conditions with 100 clusters, 

but lower in conditions with 20 clusters. 

In the next sections, we present a simulation study to investigate the performance of the 

test for cluster bias in ordinal data under various conditions. Finally, we illustrate the test 

with data from research on teacher-student relationships.  

 

SIMULATION STUDY 

We generated discrete scores on five items, representing responses of students in schools. 

The model we used to generate the data was a two-level factor model with one factor at 

each level, and a covariate at the between (second) level. Population parameter values are 

given in Figure 1. Factor loadings were equal across levels, and there was no residual 

variance at the between level. We introduced cluster bias in Item 1 by specifying a non-

zero effect of the violator (covariate that possibly violates measurement invariance) on 

Item 1. Values that we chose were such that for unbiased items, 10% of the variance was 

at the between level (the intraclass correlation was .10).  For unbiased items (Items 2, 3, 4 

and 5),  50% of the total variance was common variance and 50% was residual variance. 

The size of the clusters was fixed at 25, which is a typical size of a school class. 

 

CONDITIONS 

Data were generated under various conditions. The size of the cluster bias was small, 

contributing 1% of the total variance, which corresponds to a small r2 (Cohen, 1992),  or 

large (contributing 5% of the total variance). We considered conditions with 100 clusters 

(total sample size is 100*25 = 2500) and conditions with 50 clusters (total sample size is 

50*25 = 2500). We categorized the continuous normal data into 2 or 5 categories, and the 

observed score distributions were symmetrical or asymmetrical. Varying the factors size of 

the bias (none, small or large), number of clusters (50 or 100), number of categories (2 or 

5), and frequency distribution (symmetrical or asymmetrical) yielded 3*2*2*2 = 24 

conditions. We generated 500 samples per condition. 
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Figure 1. Two-level measurement model with population parameter values. In conditions with 0, 1, and 5 % 

bias, the corresponding values for b were 0, .142, and .324 respectively. 

 

DATA GENERATION 

We generated continuous multivariate normal data using the R program (R Development 

Core Team, 2011). First, cluster means were generated according to the following equation:  

 

 μij = τi + λi tj + b vj,             (6) 

 

where μij is the mean of item i in cluster j,  tj is the cluster mean score on the common 

factor, vj is the cluster score on the violator, τi is the intercept of item i, λi is the factor 

loading of item i, and b is a regression coefficient. The cluster scores tj and vj were drawn 

from the bivariate standard normal distribution, with means zero, unit variances and zero 

covariance.  

In the next step, continuous data were drawn from the multivariate normal distribution 

with means corresponding to the associated cluster means from the previous step, and 

covariance matrix ΣWITHIN that is calculated as WITHIN = Λ ФWITHIN Λ’ + ΘWITHIN (see 

Equation 5). We used the parameter values from Figure 1. 

Y1 Y2 Y3 Y4 Y5
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1.00 1.00 1.00 1.00 1.00
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0 0 0 0 0
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0.45 0.45 0.450.45

0.45 0.45 0.45 0.45 0.45
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1
1
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For unbiased items, the population values yield normally distributed continuous responses 

with a mean of 0 and a variance of 2.01. To obtain ordinal data, we categorized the 

continuous responses. Thresholds were chosen such that in conditions with symmetrically 

distributed scores, the population proportions for the two categories were .50 , .50 and the 

population proportions for five categories were .10, .20, .40, .20, .10 . Asymmetrical 

discrete distributions were created by assuming a mean of the underlying variable of -1, 

leading to population proportions of .76, .24 with two categories, and .28,  .29, .32, .09, .02 

with five categories. Biased items were given the same thresholds as unbiased items. The 

introduction of cluster bias increases the variance of the continuous variable with cluster 

bias. Greater variance leads to bigger tails in the continuous distribution, and more scores 

in the extreme categories of the categorical distribution.   

 

ANALYSIS 

We used robust maximum likelihood (MLR) estimation in Mplus (Muthén & Muthén, 

2007) to fit the models to the generated datasets. MLR estimation of the parameters in the 

ordinal factor model is described by Grilli and Rampichini (2007). We investigated the 

effects of the various conditions on six outcomes: the proportions of true positives 

(empirical power) and the false positive rates of the likelihood ratio test, the likelihood 

ratio test with a correction factor (Satorra & Bentler, 2001), and of the univariate Wald test. 

The Wald test is the test that the parameter is zero, based on the parameter estimate 

divided by its standard error. We fitted three models to each sample:  

 

Model 0: The cluster invariance model (Equation 5) 

Model 1: A partial cluster invariance model with free Level 2 residual variance for Item 1 (a 

biased item) 

Model 2: A partial cluster invariance model with free Level 2 residual variance for Item 2 

(an unbiased item) 

 

The true positives (power) of the likelihood ratio tests are associated with a significant 

difference in the likelihoods of Model 0 and Model 1, given the level of significance. The 

false positives of the likelihood ratio tests are indicated by a significant difference in fit 

between Model 0 and Model 2 in conditions without cluster bias.  In conditions with an 

Item with cluster bias, a significant difference in fit between Model 0 and Model 2 

indicates a false positive test with a misspecified model.  
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We investigated the true positives of the univariate Wald test by testing the significance of 

the Level 2 residual variance for Item 1 in Model 1. A false positive of the Wald test is 

found when in Model 2, the Level 2 residual variance for Item 2 is considered significant in 

conditions without cluster bias. False positive rates with misspecified models are also 

investigated in conditions with cluster bias. i.e. by testing the significance of the Level 2 

residual variance of Item 2, while there is cluster  bias in Item 1.  

 

RESULTS 

The results of the analyses with MLR estimation are shown in Table 1 and Table 2. The 

true and false positive rates in all conditions are shown for three tests: The uncorrected 

likelihood ratio test (LRT), the likelihood ratio test with a correction (scaled LRT), and the 

Wald test. Results are presented for alpha = .05 and alpha = .10, two-sided.  

A graphical comparison of the results obtained with the three tests using alpha = .05 is 

shown in Figure 2. The Wald test is expected to give the same results as the LRT 

asymptotically (Engle, 1983). In our study, they indeed give similar results. Figure 2a shows 

the power of the three tests in the various conditions. It is striking that the scaled LRT 

shows decreasing power as the bias becomes larger. This points to a problem with this test. 

The last three columns of Table 1 show the proportions of cases where the three tests 

produced problematic results. Specifically, the scaled chi-square difference tests sometimes 

produce a negative value, which is invalid (this is a well-known problem; see Satorra & 

Bentler, 2010). The number of negative chi-square differences for the scaled LRT 

increased with the size of the bias. It seems that the estimation of the correction factor 

used in scaling the LRT is inaccurate with misspecified models. As the scaled LRT 

therefore is of limited use in testing for cluster bias, we limited our examination to the 

performance of the LRT and Wald test. The standard LRT also produced some negative 

values, indicating that the likelihood of the more restrictive model was higher than the 

likelihood of the least restrictive model. Our results show that the LRT produced these 

errors only if the size of the bias was small. Problems with the Wald test concerned 

untrustworthy standard errors due to non-positive definiteness of the first order derivative 

product matrix. These problems, while relatively rare overall, occurred more often in 

conditions with two response options than in conditions with five response options.  

The power of the LRT and the Wald test exceeded .80 (marked in bold in Table 1) in all 

conditions were the bias was large (except for the asymmetrical condition with 50 clusters, 

with alpha = .05). In conditions with small bias, the power varied between .096 and .684. 

In general, power was higher in conditions with more response options and with a larger 

number of clusters. Figure 2b shows the false positive rates for the three tests with alpha 

= .05. While the LRT and the Wald test yield around 5% false positive rates in all 
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Table 1. Proportions of true positives and problems for all conditions, with α =.05 and α =.10. 

 

Condition   Power   Power   Problems  
     α = .05    α = .10      

  
N 

 
Size 

 
Cat. 

 
LRT 

 

 
scaled  
LRT 

 

 
Wald 

 

 
LRT 

 

 
scaled  
LRT 

 

 
Wald 

 

 
Negative 

LRT 

 
Negative 

scaled 
LRT 

 
Incorrect  

SE’s 

S
ym

m
et

ri
ca

l 

            
50 small 2 .136 .222 .116 .202 .274 .232 .254 .262 .078 
  5 .262 .374 .236 .356 .454 .414 .150 .212 .018 
 large 2 .890 .376 .850 .936 .388 .948 0 .566 .012 
  5 .998 .064 .996 1.00 .064 1.00 0 .936 0 
            

100 small 2 .218 .324 .220 .300 .388 .364 .096 .096 .038 
  5 .502 .608 .518 .618 .672 .684 .052 .080 .036 
 large 2 .996 .396 .990 .998 .398 .996 0 .600 .002 
  5 1.00 .014 

 
1.00 1.00 .014 1.00 0 .986 .038 

A
sy

m
m

et
ri

c
a
l 

            
50 small 2 .096 .186 .180 .142 .236 .328 .330 .328 .152 
  5 .224 .340 .228 .332 .398 .372 .142 .164 .034 
 large 2 .794 .400 .734 .844 .434 .850 .010 .492 .020 
  5 .998 .080 .994 1.00 .080 .998 0 .920 0 
            

100 small 2 .171 .274 .182 .252 .342 .312 .120 .136 .090 
  5 .462 .588 .442 .568 .644 .632 .046 .056 .048 
 large 2 .984 .524 .974 .996 .532 .994 0 .446 0 
  5 1.00 .026 1.00 1.00 .026 1.00 0 .974 0 

 
Note: N = number of clusters, Size = size of the clusterbias, Cat.= number of response categories, Negative LRT = the LRT results in a negative chi-square, Negative scaled 
LRT = the scaled LRT results in a negative chi-square, Incorrect SE’s = Wald test is performed with untrustworthy standard errors.     
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Table 2. Proportions of false positives and problems for all conditions, with α = .05 and α =.10.  

  Condition  False positives, α = .05 False positives, α = .10  Problems  
 N Size Cat. LRT 

 
Scaled 
LRT 

 

Wald 
 

LRT 
 

Scaled 
LRT 

 

Wald 
 

Negative
LRT 

Negative 
Scaled 
LRT 

Incorrect 
SE’s 

S
ym

m
et

ri
ca

l 

            
50 none 2 .026 .078 .022 .044 .122 .078 .548 .490 .092 
  5 .018 .120 .034 .050 .144 .122 .624 .574 .050 
 small 2 .014 .066 .016 .028 .094 .086 .550 .532 .104 
  5 .020 .092 .034 .032 .114 .100 .584 .550 .070 
 large 2 .018 .074 .030 .046 .108 .090 .480 .456 .144 
  5 .052 .170 .064 .098 .208 .164 .478 .446 .068 

100 none 2 .038 .076 .052 .046 .108 .098 .456 .446 .142 
  5 .016 .078 .020 .036 .104 .060 .576 .538 .096 
 small 2 .024 .072 .030 .044 .096 .078 .430 .442 .154 
  5 .032 .070 .034 .044 .102 .078 .538 .504 .126 
 large 2 .054 .136 .062 .114 .194 .148 .338 .348 .170 
  5 .072 .142 .074 .110 .184 .156 .354 .356 .168 

A
sy

m
m

et
ri

c
a
l 

            
50 none 2 .026 .078 .022 .044 .122 .078 .548 .490 .102 
  5 .028 .104 .046 .044 .142 .106 .572 .300 .001 
 small 2 .012 .066 .024 .028 .094 .068 .564 .444 .136 
  5 .016 .108 .020 .044 .156 .086 .568 .296 .114 
 large 2 .020 .106 .024 .052 .124 .116 .558 .440 .130 
  5 .054 .142 .050 .088 .170 .128 .460 .264 .076 

100 none 2 .024 .104 .044 .056 .150 .114 .340 .370 .086 
  5 .018 .072 .028 .030 .100 .084 .562 .276 .200 
 small 2 .022 .082 .024 .046 .108 .092 .312 .398 .060 
  5 .021 .070 .036 .040 .116 .092 .492 .256 .116 
 large 2 .028 .108 .040 .068 .156 .106 .284 .344 .074 
  5 .044 .048 .142 .104 .190 .152 .354 .200 .124 

Note: N = number of clusters, Size = size of the clusterbias, Cat.= number of response categories, Negative LRT = the LRT results in a negative chi-square, Negative scaled 
LRT = the scaled LRT results in a negative chi-square, Incorrect SE’s = Wald test is performed with untrustworthy standard errors. 
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conditions, the scaled LRT is always yields around 10% false positive rate. The proportions 

of false positives were generally below or around the significance levels for the LRT and 

Wald test in conditions without bias. In conditions with cluster bias, the proportions of 

false positives of mainly the Wald test were higher if the size of cluster bias was large. The 

highest false positive rates were found in the symmetrical condition with large bias and 100 

clusters. Asymmetry of the response distribution did not substantially affect power or false 

positive rate.  

 

 

 

Figure 2a. A comparison of the power of the LRT, the Wald test, and the scaled LRT with alpha = .05 in 

different conditions.  
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Figure 2b. A comparison of the false positive rate of testing cluster bias in Item 2 (unbiased item), while the 

cluster bias is in Item 1 (in the conditions with bias) of the LRT, the Wald test, and the scaled LRT with 

alpha = .05 in different conditions. The straight dotted lines denote the nominal alpha levels. 

 

Note: None_2 : Condition without bias and 2 response options, None_5 : Condition without bias and 5 

response options, Small_2 : Condition with small bias and 2 response options, Small_5 : Condition with 

small bias and 5 response options, Large_2 : Condition with large bias and 2 response options, Large_5 : 

Condition with large bias and 5 response options. 

 

ILLUSTRATIVE EXAMPLE 

DATA 

We illustrate the test for cluster bias with data from the Dependency scale of a Dutch 

translation of the Student-Teacher Relationship Scale (STRS; Koomen, Verschueren & 

Pianta, 2007; Pianta, 2001). The scale comprises 6 items. Dependency  refers to overly 

dependent and clingy child behavior. The dependency items are given in the note to Table 

2. Data of 1493 students were gathered from 659 primary school teachers (182 men, 477 

women) from 92 regular elementary schools. Each teacher reported on two or three 

students. 182 Male teachers reported on 242 boys and 227 girls; 477 female teachers 

reported on 463 boys and 561 girls. The children were in grades 1 through 6. Responses 

were given on a 5-point scale ranging from 1 (definitely does not apply) to 5 (definitely does apply). 
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STATISTICAL ANALYSIS  

In earlier research, treating the responses as continuous outcomes, a one factor model was 

found to fit the item responses adequately  (Koomen, Verschueren, van Schooten, Jak, 

Pianta, 2012; Spilt, Koomen & Jak, 2012). We use a one factor model with cluster 

invariance restrictions (see Equation 5) as the baseline model. An overall test for cluster 

bias was not feasible due to the number of parameters involved in this test. Therefore, we 

tested the residual variances one by one at a bonferroni corrected one-sided test with an 

alpha of  .05. We used the one-sided test because we were testing the significance of a 

variance, that cannot have values below zero (Stoel, Garre, Dolan & van den Wittenboer, 

2006).  

 

RESULTS 

Table 3 gives the -2 log likelihood of the cluster invariance model on the dependency data. 

The Level 2 residual variance of each indicator was freed one by one. For each model we 

calculated the chi-square value associated with the likelihood ratio test, the chi-square value 

associated with the scaled likelihood ratio test, and the Wald-statistic. For the Wald statistic, 

we test against a critical value of 2.39, (i.e. the z-value associated with an alpha level of .10, 

divided by the number of tests to be performed (six). For the LRT’s, the critical value was 

6.96, (i.e. the chi-square value associated with an alpha level of .10 / 6). Table 3 shows that 

all chi-square values were larger than this critical value, so, according to the likelihood ratio 

tests, there was cluster bias in all six indicators. The Wald statistic indicated there was 

significant cluster bias in all indicators except for Item 3. The proportions of cluster bias 

relative to the total variances are given in the last column. The most cluster bias is found in 

the first indicator, of which about one third of the variance is caused by other between 

factors that Dependency. For the other indicators, the percentages varied from .10 

to .20 %.  

 

CONCLUSION 

Cluster bias implies that variables other than the common factor are causing differences in 

scores between clusters. The cluster bias was largest for the first indicator, i.e., the Item: 

“This child fixes his/her attention on me the whole day long”. This item can be viewed as 

different from the others as it involves passive behavior of the child: focusing attention to 

the teacher, instead of actively attracting attention from the teacher. A possible explanation 

for the cluster bias could be found in teachers varying in the ability to perceive such 

behavior.  
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Table 3. Fit results of the cluster invariance model and six models with estimated Level 2 residual variance for one of the items.  

Model -2 Log 

likelihood 

Scale factor Scaled LRT 

Chi-square 

LRT 

Chi-square 

Wald test 

Estimate / SE 

Proportion bias 

Level 2* 

Proportion  bias 

Total** 

 

0. Invariance 

 

25168.90 

 

1.232 

     

1. θBETWEEN,11 25035.44 1.208 287.66 133.46 5.933 .584 .333 

2. θBETWEEN,22 25148.30 1.218 26.29 20.61 2.966 .190 .091 

3. θBETWEEN,33 25157.46 1.229 10.08 11.45 2.232 .231 .098 

4. θBETWEEN,44 25142.84 1.212 44.03 26.07 3.798 .348 .166 

5. θBETWEEN,55 25075.82 1.201 387.84 93.08 5.656 .401 .209 

6. θBETWEEN,66 25101.42 1.207 156.24 67.50 4.530 .341 .166 

        

  * Calculated as:  residual variance at Level 2 / total variance at Level 2 

** Calculated as:  residual variance at Level 2 / total variance at Level 1 + Level 2 

 

 

Dependency items:  

1. This child fixes his/her attention on me the whole day long. 

2. This child reacts strongly to separation from me.  

3. This child is overly dependent on me. 

4. This child asks for my help when he/she really does not need help.  

5. This child expresses hurt or jealousy when I spend time with other children.  

6. This child needs to be continually confirmed by me. 
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DISCUSSION  

From the simulation study we can conclude that cluster bias can be tested in ordinal data 

with the LRT and Wald-test. Both tests show good power to detect large bias, and show 

acceptable false positive rates. The scaled LRT, as implemented in Mplus, is not 

recommended for cluster bias testing as inadmissible results were obtained in all conditions, 

and their number increased with the amount of bias.  

In the data from the illustration, the clusters were smaller than in the simulation study 

(average cluster size was around three in the illustration and 25 in the simulation).  The test 

for cluster bias has yet to be evaluated for cluster sizes smaller than 25. We expect that 

with smaller cluster sizes, more within level random variance  (as opposed to structural 

variance) in the indicators will be aggregated to the between level, leading to larger 

proportions of false positives in the test for cluster bias. However, even if this is the case, 

indicators with cluster bias will have more residual variance than other indicators at the 

between level, such as Item 1 from the illustration, which had twice as much between level 

residual variance as the other items.  

In this paper we used MLR estimation. An alternative estimator, suitable for larger models, 

is the multilevel version of weighted least squares (denoted by WLSM in Mplus, 

Asparouhov & Muthén, 2007). This method  replaces a complex model estimation with 

high dimensional numerical integration by multiple smaller models with low dimensional 

numerical integration. If the test for cluster bias cannot be performed by MLR estimation 

due to computational difficulties, WLSM may be a viable alternative, although simulation 

research is needed to verify this.  

Measurement bias across clusters in discrete multilevel data could also be investigated 

using item response models for measurement bias. Verhagen and Fox (2012) show how to 

use Bayesian methods to test invariance hypothesis in the random item effects modeling 

framework.   

In conclusion, this study showed that cluster bias can be tested in ordinal data, using 

ordinal factor analysis.  We prefer and advice to use the unscaled LRT or the Wald test 

over the scaled version of the LRT, as the latter gave untrustworthy results.  The unscaled 

LRT and the Wald test performed well in terms of empirical power rate if the amount of 

cluster bias is large, and showed acceptable false positive rates. 
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CHAPTER 4 

 

On the power of the test for cluster bias 

 

Abstract Cluster bias refers to measurement bias with respect to the clustering variable in 

multilevel data. Cluster bias can be investigated using two-level factor analysis, by 

constraining the factor loadings to be equal across levels, and testing the absence of 

residual variance at the cluster level (Level 2). The absence of cluster bias implies absence 

of bias with respect to any Level 2 variable (Jak, Oort, & Dolan, 2013). Therefore, the test 

for cluster bias serves as a global test of measurement invariance with respect to any Level 

2 variable. However, the validity of the global test depends on its power. In this simulation 

study we evaluate whether not rejecting cluster invariance indeed implies absence of bias 

with respect to all Level 2 variables.  

The performance of the test for cluster bias is compared with the performance of the RFA 

model (Oort, 1992) to detect the bias. It appeared that the RFA test has considerably more 

power than the test for cluster bias. However, the false positive rates of the test for cluster 

bias were generally around the expected values, while the RFA test showed unacceptably 

high false positive rates in some conditions. We conclude that if no significant cluster bias 

is found, there can still be significant bias with respect to a Level 2 violator in an RFA 

model. Although the test for cluster bias is less powerful, an advantage of the test is that 

the cause of the bias does not need to be measured, or even known.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Jak, S. & Oort, F. J. (under review). On the power of the test for cluster bias. 
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INTRODUCTION 

The importance of establishing measurement invariance of research instruments is widely 

recognized; a measurement instrument should function identically in different groups of 

respondents (see Cheung & Rensvold, 1999; Meredith, 1993; Reise, Widaman, & 

Pugh, 1993; Vandenberg & Lance, 2000). If measurement invariance does not hold with 

respect to some variable (e.g. gender), then two respondents with identical values on the 

latent trait that the test is supposed to measure, may have different expected scores, 

depending on their value on the other variable (e.g. depending on being a man or a 

woman). When a test is biased with respect to gender, then gender is called a violator (of 

measurement invariance; Oort, 1992). Within structural equation modeling, the two 

prevalent models to investigate measurement bias are multigroup models (Sörbom, 1974; 

Horn & McArdle, 1992; Little, 1997; Widaman & Reise, 1997) and Restricted Factor 

Analysis (RFA; Oort, 1992, 1998) or, equivalently, MIMIC (Muthén, 1989) models.  

In the present paper we consider the investigation of measurement invariance in two-level 

data. Two-level data are data with a clustered structure, such as children in school classes 

or patients in hospitals. In these cases there are two levels of analysis, the student or 

patient level is called Level 1 or the within level. The class or hospital level is called Level 2 or 

the between level. With two-level data, measurement bias can be present at the within level 

or at the between level. The purpose of this paper is to compare the performance of two 

methods to investigate measurement bias at the between level. One method is the test for 

cluster bias, which can be considered a global test of measurement bias at the between 

level, in which the violating variable(s)  is (are) not necessarily measured or even known. 

The other method is the RFA test, which requires the operationalization of possible 

violators of measurement invariance, in order to include them as exogenous variables in 

multilevel factor analysis.  

 

MEASUREMENT BIAS AT LEVEL 2 

With two-level SEM, the covariance matrix is modelled as the sum of the within level 

(Level 1) and the between level (Level 2) covariance matrices (Muthén, 1990; Rabe - 

Hesketh, Skrondal &  Pickles, 2004): 

 

 ΣTOTAL = ΣBETWEEN + ΣWITHIN.            (1) 

 

For example, consider data concerning the closeness of teacher-child relations, obtained 

using a 5-item questionnaire, completed by teachers for several of their pupils. The (pooled, 
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within class) differences between children are modelled by  ΣWITHIN. Teachers also differ in 

the general closeness of their relations with children. The differences between teachers are 

modeled by ΣBETWEEN. At the within and between levels, distinct measurement models can 

be used to describe the covariances between the item scores. In the present study we 

employ the linear factor model as the measurement model (Mellenbergh, 1994). 

Jak, Oort, and Dolan (in press) described a five-step procedure to investigate measurement 

bias in multilevel data. In this procedure, Step 1 involves testing the necessity of applying 

multilevel analysis, Step 2 consists of establishing a measurement model at Level 1, Step 3 

involves testing for measurement bias at Level 1, Step 4 refers to testing for cluster bias, 

and Step 5 concerns explaining the cluster bias with observed Level 2 variables. The 

present study focusses on Steps 4 and 5 of this procedure.  

Testing for cluster bias (Step 4) can be seen as a global test for measurement bias with 

respect to all possible Level 2 violators. In case of cluster bias,  one or more indicators 

measure different constructs in different clusters. In the closeness example, if there is 

cluster bias, this means that there are other cluster level variables than closeness causing 

differences between the teachers’ scores. The test for cluster bias involves testing whether 

the factor loadings are equal across levels, and whether the residual variance at Level 2 is 

zero (Jak, Oort & Dolan, 2013). If there is no cluster bias, for p observed variables and k 

common factors, the following model holds: 

 

 ΣBETWEEN = Λ ΦBETWEEN Λ’,   

 and      

 ΣWITHIN = Λ ΦWITHIN Λ’ + ΘWITHIN.           (2) 

 

In this model, ΦBETWEEN and ΦWITHIN are k by k covariance matrices, ΘWITHIN is a p by p 

(diagonal) matrix with residual variances, and Λ is a p by k matrix with factor loadings at 

the between- and within-level, respectively. Cluster bias appears as residual variance at the 

between level, and can be modeled by estimating a (diagonal) p by p matrix with residual 

variance at the between level (ΘBETWEEN), so that  ΣBETWEEN = Λ ΦBETWEEN Λ’ + ΘBETWEEN. 

The test for cluster bias involves testing whether ΘBETWEEN is zero. 

Equality of the factor loadings across levels implies that the common factors have the 

same interpretation across levels (Muthén, 1990; Rabe-Hesketh, Skrondal & Pickles, 2004). 

In the closeness example, it means that the factor at the within level can be interpreted as 

child-level closeness, and the factor at the between level as teacher-level closeness.  

If there are no factors other than closeness influencing the teachers’ scores, then there is 

no residual variance in the Level 2 common factor model; the closeness factor explains all 
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variance and covariance at the between level. In that case, it would not be necessary to 

include other variables in the model, which possibly cause measurement bias at the 

between level. If there is residual variance however, this cluster bias can possibly be 

explained by measured between level variables.  

Testing for measurement bias with respect to specific between level variables (the final 

step of the five-step procedure) requires the availability of measured between level 

variables that can be added to the model. Measurement bias with respect to such variables 

can be investigated using RFA (Oort, 1992), which is statistically equivalent to MIMIC 

modeling (Muthén, 1989). In an RFA model, the variables that possibly violate 

measurement invariance, the violators, are correlated with the common factors, whereas in 

MIMIC the common factors are regressed on the violators. In both models, measurement 

bias is represented as a direct effect of the violator on the indicators. Testing for 

measurement bias is only appropriate if there is variance in the indicators that is not 

explained by the common factor. So, if there is no cluster bias, i.e., if the residual level 2 

variance is zero, investigating measurement bias with respect to possible between level 

violators would be superfluous.  

The test for cluster bias thus serves as a global test of measurement invariance at the 

between level. However, the cluster bias test is subject to Type 1 errors (false positives) 

and Type 2 errors (false negatives). If the power of the overall cluster bias test is sufficient, 

or at least larger than the power of the RFA test, then not detecting cluster bias will render 

the RFA test unnecessary. In that case, the RFA test will not detect bias that the test for 

cluster bias would not detect. However, if the power of the test for cluster bias is smaller 

than the power of the RFA test, it is possible that a researcher will not detect cluster bias 

with the global cluster bias test, but will detect measurement bias with respect to particular 

Level 2 variables with the RFA test. This raises the important question concerning the 

informativeness of the global test compared to the RFA test. Specifically, if the cluster bias 

test is highly informative, the RFA test could be superfluous, while if the cluster bias test is 

not really informative, the cluster bias test itself would be of no use. In this paper we use 

simulated data to compare the power and false positive rates of the test for cluster bias and 

the RFA test in several conditions, varying the size of the bias and the sample size at both 

levels.  

 

METHOD 

To compare the performance of the test for cluster bias and the RFA test, we generated 

500 datasets for each of 18 conditions, according to a factorial design with the following 

three factors: 
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 - Bias effect size (none, small, large) 

 - Between level sample size (50 clusters, 100 clusters) 

 - Within level sample size (2, 5, 25 observations per cluster) 

In all conditions, the population model was a two-level, one-factor model with 5 indicators, 

with one observed covariate (violator) at the between level. Population values are given in 

Figure 1. In the population, factor loadings are equal across levels, and there is no residual 

variance at the between level. With these population values, 50% of the total variance is 

residual variance and 10% of the variance of an unbiased indicator is at the between level 

(ICC = .10).  

 

 

Figure 1. Two-level measurement model with population parameter values. In conditions with 0, 1, and 5 % 

bias, the corresponding values for the effect of V on Y1 were 0, .159, and .363 respectively. 

 

BIAS EFFECT SIZE 

Bias was introduced in the first indicator, by including a direct effect of the violator on this 

indicator. Small sized bias was defined as a direct effect of .159, which amounts to 1% of 

the total variance of the indicator being caused by the violator. Large sized bias was 
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defined as a direct effect at .363, which amounts to 5% of the total variance being caused 

by the violator.  

 

BETWEEN LEVEL SAMPLE SIZE 

We considered conditions with 100 and with 50 clusters. 100 is the minimum number of 

clusters with which the chi-square statistic follows its expected asymptotic distribution to a 

reasonable approximation (Hox, Maas & Brinkhuis, 2010). As in practice the numbers of 

clusters are often smaller than 100, we also considered conditions with 50 clusters. 

 

WITHIN LEVEL SAMPLE SIZE 

A within level sample size of 25 corresponds to the typical size of a school class (e.g. 

Elffers, 2012; Thoonen, Sleegers, Peetsma & Oort, 2010). Group sizes of 5 are common in 

data from organisational research where it is a typical size of a working team (e.g. Jackson 

& Joshi, 2004; Koman & Wolff, 2007). Cluster sizes of 2 correspond to a typical cluster 

size in data from family research (e.g. Duncan, Alpert & Duncan, 1998; Voorpostel & 

Blieszner, 2008).  

 

DATA GENERATION 

We generated continuous multivariate normally distributed data using the same procedure 

as Jak, Oort, & Dolan (2013), using the R-package ‘mvtnorm’ (Genz et al., 2012).  

 

LIKELIHOOD RATIO TEST AND WALD TEST 

The likelihood ratio test (LRT) and the Wald test were used to test the significance of 

parameters. The likelihood ratio equals the difference in -2 log likelihoods of a model with 

and without the parameter(s) of interest. The difference between the -2 log likelihoods 

follows a chi-square distribution with degrees of freedom equal to the difference in 

numbers of parameters between the two models, assuming the parameter of interest is 

zero. If the chi-square test is significant, given the chosen alpha level, then the hypothesis 

of the parameter(s) of interest being zero is rejected. In the present study, we used robust 

maximum likelihood estimation (MLR) in Mplus (Muthén & Muthén, 2007) to obtain 

parameter estimates. The differences in -2 log likelihoods of models that are estimated 

with MLR theoretically need a correction to approximate the chi-square distribution 

(Satorra & Bentler, 2001). However, simulation studies have showed, that conducting the 

LRT with this correction often leads to untrustworthy results and that the corrected LRT 

does not perform better than the uncorrected LRT (Cham, West, Ma & Aiken, 2013; Jak, 

Oort, Dolan, 2013). In this study we therefore apply the uncorrected LRT.  
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The Wald test is based on the parameter estimate divided by its standard error, and tests 

the hypothesis that the parameter is zero. The Wald test is asymptotically equivalent to the 

LRT (Engle, 1983).  

 

Table 1. An overview of the combinations of tests and outcomes 

Outcome 

 

Test 

True positive rate 

(power) 

False positive rate False positive rate 

with misspecified 

model 

    

Test for cluster bias Case A Case D Case G 

 

RFA test 

 

Case B 

 

Case E 

 

Case H 

 

RFA test accounting 

for cluster bias  

 

Case C 

 

Case F 

 

Case I 

Note: In addition, in Case J, we investigated false positives by testing the residual variance in Indicator 1, 

while the bias was already accounted for in the RFA model. 

 

 

TESTING FOR LEVEL 2 BIAS WITH THE CLUSTER BIAS TEST AND THE RFA TEST 

Table 1 gives an overview of the three models and the three outcomes that we consider in 

the simulation study. We gave each combination a label (Case A through Case I) to 

organize the presentation of the results. We looked at the power, the false positive rate and 

the false positive rate with a misspecified model, for each of three tests: the test for cluster 

bias and two versions of the RFA test. We explain the individual cases below.  

To investigate the power of the test for cluster bias and the RFA test, we considered the 

conditions in which bias was introduced in Indicator 1. Cluster bias is tested in a model, as 

depicted in Figure 2a (Case A). In a one-factor model with equal factor loadings across 

levels, we tested the significance of the between level residual variance of Indicator 1, with 

the between level residual variance of the other indicators fixed at zero.  

With the RFA test, we included the violating variable at the between level as an exogenous 

variable that is correlated with the common factor. Subsequently, we tested the significance 

of the direct effect of the violator on Indicator 1. We used the RFA test in two ways; see 

Figure 2b and 2c for a graphical representation of these models. In the first model we 

fixed all the residual variance at the between level at zero, hypothesizing that the violator 

explains all cluster bias (Case B). In the second model, residual variance was freely 
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estimated for all indicators, allowing for possible cluster bias in the indicators that is not 

explained by the violator (Case C).  

 

 

 

Figure 2.  Three models that were used to investigate the power of three tests (corresponding to Case A, 

Case B and Case C).  

 

 

 

Figure 3.  The models that were used to investigate the false positive rates (without bias) and false positive 

rates with a misspecified model (with bias in Indicator 1) (Case D through I). 

 

We investigated the false positive rates of all tests in three ways (see Figure 3). Firstly, we 

tested for bias in the conditions where no bias was introduced (Cases D, E and F). 

Secondly, we tested for bias in Indicator 2 (an unbiased indicator), in conditions where the 

bias was in Indicator 1 (Cases G, H and I). So in these cases we investigate the false 

positive rates with a misspecified model.  
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In the conditions with bias in Indicator 1, we investigated a third type of false positives 

(Case J, see Figure 4). In these cases we accounted for the bias by letting the violator have 

a direct effect on this indicator. We then tested the residual variance in Indicator 1. As the 

violator is the only cause of the cluster bias, significance of the residual variance represents 

a false positive result. 

 

 

Figure 4. The model that was used to evaluate the false positive rates of the cluster bias test after accounting 

for the bias in the RFA model (Case J). 

We test against levels of significance of alpha of 5% and 10%. The test for cluster bias 

involves testing a variance parameter, which cannot be negative by definition. Therefore, 

in line with Stoel, Garre, Dolan & van den Wittenboer (2006), we employ one-sided levels 

of significance of .05 and .10 with the test for cluster bias. Direct effects can be either 

negative or positive, so with the RFA tests we use two-sided tests. This implies that in 

order to obtain an alpha level of .05 we used a critical chi-square value of χ2
crit = 2.71 with 

the test for cluster bias and a critical value of χ2
crit = 3.84 with the RFA tests. With an alpha 

level of .10, these critical values are χ2
crit = 1.64 for the test for cluster bias and χ2

crit = 2.71 

for the RFA tests. Critical values for the Wald-tests are obtained in the same manner (with 

alpha = .05, zcrit = 1.28 for the cluster bias test and 1.64 for the RFA test, and with alpha 

= .10, zcrit = .84 for the cluster bias test and zcrit = 1.28 the RFA test).  

 

RESULTS 

The results of the LRT and the Wald test are very similar. In the tables and figures we 

show the outcomes from both the LRT and the Wald test, both at the 5% and 10% level 

of significance, but below we focus on the LRT with an alpha level of 5%.  
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POWER 

Results of the true positive rates of the three tests are shown in Table 2. Figure 5 shows 

the results based on the .05 alpha level graphically. With large bias, all bias is detected by all 

three tests, provided the total sample size is large (100 or 50 clusters with 25 observations 

per cluster). With smaller samples, the two RFA tests still have adequate power, but the 

power of the test for cluster bias drops to 69% and 44% with 100 and 50 clusters of 5 

observations, respectively, and to even lower levels with 2 observations per cluster. 

With small sized bias, the power of all tests is low. The test for cluster bias detects 76% of 

the bias in the conditions with the largest sample size, and detects less than 10% of the 

bias in conditions with small sample sizes. The two RFA tests perform better, with 

acceptable power in conditions with 25 observations per cluster, and in the condition with 

100 clusters with 5 observations. With just 50 clusters of 5 observations, the RFA tests 

detect around 50% of the bias, which drops to around 20% with 50 clusters of 2 

observations per cluster.  Overall, the power of the RFA tests is considerably larger than 

the power of the test for cluster bias.   
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Table 2. Power: Case A, Case B and Case C. 

True positive rates of the likelihood ratio test and the Wald test, using the cluster bias model and the RFA model. Based on 500 replications per condition. 

  α = .05 α = .10

  Cluster bias RFA RFA free Θ Cluster bias RFA RFA free Θ 

Size  
bias 

N 
between 

N 
within 

LRT Wald test LRT 
 

Wald test LRT 
 

Wald test LRT 
 

Wald test LRT Wald test LRT Wald test 

    

Large 100 25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 5 .686 .762 1.00 1.00 1.00 1.00 .794 .880 1.00 1.00 1.00 1.00 

 2 .150 .242 .966 .982 .962 .982 .236 .420 .982 .992 .980 .992 

 50 25 1.00 1.00 1.00 1.00 1.00 .988 1.00 1.00 1.00 1.00 1.00 .990 

 5 .438 .532 .994 .996 .988 .992 .598 .736 1.00 1.00 .998 .996 

 2 .102 .198 .794 .890 .780 .878 .186 .334 .860 .952 .848 .938 

Small 100 25 .756 .826 1.00 1.00 1.00 1.00 .860 .908 1.00 1.00 1.00 1.00 

 5 .108 .174 .808 .888 .792 .884 .194 .308 .878 .942 .862 .942 

 2 .074 .134 .418 .558 .404 .550 .126 .252 .520 .702 .512 .690 

 50 25 .454 .552 .982 .992 .978 .982 .628 .750 .992 .996 .990 .986 

 5 .082 .100 .508 .662 .462 .638 .136 .250 .620 .750 .600 .734 

 2 .044 .076 .210 .310 .194 .340 .082 .182 .314 .456 .310 .456 

Note: The alpha levels are one-sided alpha levels for the test for cluster bias and two-sided alpha levels for the RFA tests. 
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Figure 5. Case A, Case B and Case C (Power). 

True positive rates of the test for cluster bias and the two RFA tests with various sample sizes in conditions 

with large bias (upper part) and small bias (lower part), with the LRT (left part) and the Wald test (right part).  

Note: On the X-axis, B100_W25 refers to the condition with 100 clusters with 25 observations per cluster, 

B50_W25 to the condition with 50 clusters with 25 observations per cluster, and so on.  

FALSE POSITIVE RATES 

In conditions without bias, the expected false positive rate is the chosen alpha level of 

significance. Observed false positive rates for all tests are given in Table 3 and Table 4. 

Figure 6 shows a plot of the false positive rates with an alpha of .05 . The upper two 

graphs show the false positive rates in the conditions without bias. The false positive rates 

of the cluster bias test are all under the alpha level, and for the RFA tests we found false 

positive rates around the chosen alpha level.  

We obtained interesting results in conditions, where we introduced the bias in Indicator 1, 

but we tested bias in Indicator 2. In this case the model is effectively misspecified. When 

the bias was small, the false positive rates of the test for cluster bias were acceptable, but 

the two RFA tests identified Indicator as 2 biased in 33% and 21% of the samples in  
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Table 3. False positives: Case D, Case E and Case F.  
 False positive rates of the likelihood ratio test and the Wald test, using the cluster bias model and the RFA model. Based on 500 replications per condition.  

   α = .05 α = .10

   Cluster bias RFA RFA free Θ Cluster bias RFA RFA free Θ 

Size  

bias 

N

between 

N 

within 

LRT

 

Wald 
test 

LRT

 

Wald 
test 

LRT

 

Wald 
test 

LRT

 

Wald 
test 

LRT

 

Wald 
test 

LRT

 

Wald 
test 

None 100 25 .038 .068 .044 .086 .042 .086 .086 .130 .090 .218 .074 .218 

 5 .034 .080 .056 .134 .048 .130 .084 .160 .102 .216 .094 .214 

 2 .024 .072 .032 .088 .024 .092 .064 .148 .068 .186 .064 .192 

 50 25 .028 .042 .056 .120 .052 .120 .058 .136 .100 .228 .086 .216 

 5 .034 .062 .068 .164 .068 .156 .076 .154 .122 .262 .118 .260 

 2 .046 .090 .046 .094 .032 .118 .082 .160 .094 .180 .092 .212 

Note: The alpha levels are one-sided alpha levels for the test for cluster bias and two-sided alpha levels for the RFA tests.  
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Figure 6. Case D – Case I (False positives) . False positive rates of the test for cluster bias and the two RFA tests with various sample sizes in conditions without bias (upper part), with small bias 

(middle part) and with large bias (lower part), with the LRT (left part) and the Wald test (right part). In conditions with bias, the bias was in Indicator 1, while we tested bias in Indicator 2.Note: On 

the X-axis, B100_W25 refers to the condition with 100 clusters with 25 observations per cluster, B50_W25 to the condition with 50 clusters with 25 observations per cluster, and so on. Note: The 

nominal alpha level is marked with a straight dotted line.   
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Table 4. Case G, Case H and Case I: False positives with misspecified model. 
False positive rates of the likelihood ratio test and the Wald test in conditions with bias, using the cluster bias model and the RFA model. Based on 500 replications per condition.  

  α = .05 α = .10

  Cluster bias RFA RFA free Θ Cluster bias RFA RFA free Θ 

Size  
bias 

N 
between 

N 
within 

LRT 
 

Wald test LRT 
 

Wald test LRT 
 

Wald test LRT 
 

Wald test LRT 
 

Wald test LRT 
 

Wald test 

    

Large 100 25 .164 .242 .910 .950 .236 .380 .284 .394 .954 .982 .342 .552 

 5 .054 .088 .330 .464 .238 .452 .100 .190 .448 .600 .336 .632 

 2 .052 .104 .120 .208 .100 .206 .094 .204 .214 .338 .182 .338 

 50 25 .082 .136 .636 .770 .152 .262 .194 .296 .762 .868 .242 .374 

 5 .038 .070 .210 .332 .144 .272 .072 .158 .314 .484 .240 .418 

 2 .050 .102 .116 .178 .098 .180 .100 .180 .180 .272 .172 .300 

Small 100 25 .054 .112 .330 .464 .206 .334 .120 .222 .446 .610 .304 .504 

 5 .048 .084 .122 .214 .112 .208 .090 .186 .204 .320 .188 .318 

 2 .034 .092 .088 .176 .070 .174 .080 .194 .164 .260 .160 .262 

 50 25 .040 .072 .196 .310 .132 .248 .092 .162 .278 .450 .216 .340 

 5 .034 .052 .106 .202 .088 .190 .066 .148 .154 .300 .146 .292 

 2 .044 .086 .054 .114 .052 .124 .074 .166 .112 .196 .104 .226 

Note: The alpha levels are one-sided alpha levels for the test for cluster bias and two-sided alpha levels for the RFA tests. 
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conditions with large sample sizes. With smaller sample sizes these percentages drop 

considerably, and with 50 clusters with 2 observations the false positive rates are around 5% 

for both tests. With large bias in Indicator 1, the RFA test without estimated residual 

variance identified Indicator 2 as biased in almost all cases (91%) with large sample size, 

while the RFA test with residual variance identified  24% of the cases as biased, and the 

test for cluster bias falsely detected bias in only 16% of the cases. The Wald test shows 

similar results, but has slightly higher false positive rates overall. In the RFA models, the 

significant direct effects on Indicator 2 were all negative. The false positive rates of testing 

cluster bias, while the bias is already accounted for by the violator, are given in Table 5. In 

all conditions, the false positive rates of the LRT are under the nominal level of 

significance and the false positive rates of the Wald test fluctuate around the expected 

alpha level.  

 

Table 5. Case J. False positive rates of the likelihood ratio test and the Wald test in conditions with 
bias, using the cluster bias test after accounting for the bias in the RFA model (Figure 4). Based on 
500 replications per condition.  

   Cluster bias

     α = .05 α = .10 

 

Size  

bias 

 

N 

between 

 

N 

within

LRT

 

Wald test LRT

 

Wald test 

   

Large 100 25 .014 .040 .064 .142

  5 .032 .058 .064 .140

  2 .030 .078 .082 .142

 50 25 .030 .058 .062 .118

  5 .022 .054 .072 .140

  2 .032 .066 .056 .146

Small 100 25 .026 .046 .060 .142

  5 .038 .056 .064 .156

  2 .038 .094 .090 .200

 50 25 .026 .042 .052 .100

  5 .036 .050 .066 .130

  2 .034 .058 .064 .130
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Figure 7. The effect of smaller cluster size. False positive rates (upper part) and power (lower part) of the 

test for cluster bias and the two RFA tests using the LRT (left part) and the Wald test (right part), with 

various cluster sizes leading to a total sample size of 1250. Note: On the X-axis, B50_W25 refers to the 

condition with 50 clusters with 25 observations per cluster, B125_W10 to the condition with 125 clusters 

with 10 observations per cluster, and so on. The nominal alpha level is marked with a straight dotted line.  

 

The results show that the true and false positive rates of all tests vary with the total sample 

size, irrespective of the sample size at the within or between level. To check whether the 

within level or between level sample size has a greater effect on the performance of the 

cluster bias test, we additionally investigated the effect of the within level sample size, 

relative to the between level sample size. We expected that the false positive rates would 

increase with smaller cluster sizes, because more random error would be aggregated to the 

between level. We investigated the false positive rates and the power to detect small bias of 

the three tests in 4 conditions with a total sample size of 1250 (50 clusters with 25 

observations, 125 clusters with 10 observations, 250 clusters with 5 observations and 625 

clusters with 2 observations). Figure 7 shows the false positive rates and true positive rates 

as obtained with the LRT and the Wald test. in the four conditions. With the Wald test, 

but not with the LRT, there seems to be an upward trend in the false positive rates of the 

test for cluster bias, but not for the RFA tests. However, the false positive rates of the test 

for cluster bias are still below the nominal level of significance in all conditions, except for 

the condition with 625 clusters with 2 observations (where the false positive rate is 7%). 
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The RFA tests detect almost all bias in all conditions, but the power of the test for cluster 

bias shows a gradual decrease when cluster size becomes smaller.  

 

DISCUSSION 

The results of the simulation study show that the inclusion of the violating variable in the 

analysis adds considerably to the likelihood of detecting the bias. So, in fitting a series of 

models in order to investigate measurement bias in multilevel data (Jak, Oort & Dolan, in 

press), the finding that cluster bias is absent, does not exclude the possibility that this is a 

false negative and that significant bias with respect to a Level 2 violator may be found 

using a RFA model. Of course, the RFA model requires the availability of a violating 

variable. So, although the test for cluster bias is less powerful, an advantage of the test is 

that the cause of the bias does not need to be operationalized, or even known.  

Another advantage of the test for cluster bias is that the false positive rates were generally 

acceptable, while the RFA tests had high false positive rates in conditions where the bias 

was in another indicator than the indicator actually subject to the test. The high false 

positive rates with the RFA test show that when the model does not account for 

measurement bias, the common factor is contaminated by the bias. For example, suppose 

that the trait of interest is closeness between teacher and child, and Indicator 1 is biased by 

teacher gender, meaning that for equal levels of closeness, women on average attain higher 

scores on this indicator than men do. Indicator 1 is then not only an indicator of closeness, 

but also an indicator of gender (and gender related characteristics). Not accounting for this 

bias results in the contamination of the closeness factor with gender. The interpretation of 

the factor is then closeness and (probably to a smaller extend) being a woman. Indicator 2 

is actually not an indicator of gender, so an effect of gender on Indicator 2 will be negative 

in order to compensate for the contamination by the common factor. 

The false positive rates of the RFA test without residual variance were higher than the 

rates of the test with residual variance. This makes sense, as by estimating residual variance 

in the indicators, we account for part of the bias. Although false positive rates of the RFA 

test with residual variance are still higher than the chosen level of significance, based on 

the false positive rate, the RFA test with residual variance is preferred.  

In practice, researchers can avoid incorrectly identifying indicators as biased, by employing 

an iterative bias detection procedure. In an iterative procedure, a researcher starts by 

including a direct effect to the indicator that improves model fit most. The choice of 

which direct effect to include first can be based on testing direct effects on all indicators 

one by one, or by inspecting modification indices from the model without any direct 

effects. In our example, if bias would be tested in the unbiased indicator, while the bias in 
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Indicator 1 was already accounted for, the factor would not be contaminated, and 

Indicator 2 would not be marked as biased.  

In conclusion, although the test for cluster bias has several advantages, this study showed 

that including the presumed cause of Level 2 bias in the model to detect measurement bias 

is a more powerful approach than the test for cluster bias. If a researcher’s goal is to 

investigate measurement bias with respect to (Level 1 and) Level 2 violators, we advise to 

follow the 5-step approach (Jak et al. in press), and test for Level 2 bias in step 5, while 

taking cluster bias into account. This study also showed that the power of the test for 

cluster bias is larger with a smaller number of clusters with a larger size, relative to more 

clusters with a smaller size.   
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CHAPTER 5  

 

Measurement bias in multilevel data 

 

Abstract Measurement bias can be detected using structural equation modeling (SEM), by 

testing measurement invariance with multi group factor analysis (MGFA; Jöreskog, 1971; 

Sörbom, 1974; Meredith, 1993), MIMIC modeling (Muthén, 1989) or with restricted factor 

analysis (RFA; Oort, 1992, 1998). In educational research, data often have a nested, 

multilevel structure, for example when data are collected from children in classrooms.  

Multilevel structures may complicate measurement bias research. In two-level data, the 

potentially “biasing trait” or “violator” can be a Level 1 variable (e.g., pupil sex), or a Level 

2 variable (e.g., teacher sex). One can also test measurement invariance with respect to the 

clustering variable (e.g. classroom). In this paper, we provide a stepwise approach for the 

detection of measurement bias with respect to these three types of violators. We propose 

working from Level 1 upwards, so the final model accounts for all bias and substantive 

findings at both levels. The 5 proposed steps are illustrated with data concerning teacher-

child relationships.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Jak, S., Oort, F.J. & Dolan, C.V. (in press). Measurement bias in multilevel data. 

Structural Equation Modeling. 
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INTRODUCTION 

In the presence of measurement bias, systematic differences between observed test scores 

are not completely attributable to true differences in the trait(s) that the test is supposed to 

measure. Suppose given male and female respondents have the same score on a latent trait. 

In the absence of bias, the expected observed test of these respondents (conditional on 

their common latent trait score) is equal. In the presence of sex bias, this does not hold 

and we consider the test biased with respect to sex. Sex is a nominal variable, but 

measurement bias may be tested with respect to any variable. Measurement bias can be 

detected using structural equation modeling (SEM), by testing measurement invariance 

with multi-group factor analysis (MGFA; Jöreskog, 1971; Meredith, 1993; Sörbom, 1974), 

MIMIC modeling (Muthen, 1989), or with restricted factor analysis (RFA; Oort, 1992, 

1998).  

With multilevel data structures, the investigation of measurement bias is not 

straightforward. For instance, consider the case of pupils nested in classes. First, the 

standard SEM approaches need to be adjusted in order to account for the multilevel 

structure. Second, the variable with respect to which measurement bias is to be 

investigated may be defined at different levels. For example, a Level 1 variable may be sex 

of the pupils; a Level 2 variable may be sex of the teachers. The biasing variable may also 

be class itself, i.e., the clustering variable, which we view as a special kind of Level 2 

variable. 

Here, we propose a 5-step procedure to investigate measurement bias (or to establish 

measurement invariance) in the two-level case. First, we give a short description of 

multilevel SEM and the investigation of measurement invariance. Then, we describe the 

situations in which measurements are biased with respect to a Level 1 variable, a Level 2 

variable, or with respect to the clustering variable itself. We present our 5-step procedure 

to detect bias in these three situations, and illustrate the procedure with an analysis of data 

of teacher-pupil relationships.  

 

MULTILEVEL SEM 

In educational and psychological research, cluster sampling methods are often used. 

Cluster sampling refers to randomly selecting higher level units, and consequently selecting 

lower level units within these higher level units. Common multilevel data structures are 

two-level structures, e.g., children nested in classrooms or employees nested in teams. 

Individuals who are members of the same group, share group level characteristics, and may 

therefore be more similar to members of their own group than to members of different 

groups. Multilevel models take into account the dependence of observations in nested 
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datasets (see Bryk & Raudenbush, 1992; Goldstein, 1995; Longford, 1993; Snijders & 

Bosker, 1999).  

Multilevel SEM allows for different models for variances and covariances of within group 

differences and between group differences (Muthén, 1994). We limit our presentation to 

two-level structures of individuals (Level 1) in groups (Level 2). Consider the multivariate 

response vector yij, with scores from subject i in group j, which is decomposed into a 

group mean (μj), and an individual deviation from the group mean (ηij): 

 

 yij = μj + ηij,                                      (1) 

 

where μj and ηij are independent. The covariances of y ( COV(y, y) = ΣTOTAL ) can be 

written as the sum of the covariances of μ ( COV(μ , μ ) = ΣBETWEEN ) and the covariances 

of η ( COV(η , η ) = ΣWITHIN  ): 

 

 ΣTOTAL = ΣBETWEEN + ΣWITHIN.                       (2) 

 

As ηij represents the individual deviations from the group mean, the expected value of ηij 

(μWITHIN) is zero, and the overall mean (μTOTAL) equals the expected value of μj (μBETWEEN):

  

 μTOTAL =  μBETWEEN.                        (3) 

 

One can postulate separate models for the within (Level 1) and between (Level 2) matrices. 

The within model describes the covariance structure within groups and the between model 

describes the covariance and mean structure between groups. For example, these may be 

common factor models: 

 

 ΣBETWEEN = ΛB ΦB ΛB’ + ΘB,            (4) 

 μBETWEEN = τB + ΛB κB,                                   (5) 

 ΣWITHIN = ΛW ΦW ΛW’ + ΘW,                       (6)
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Here, ΦB and ΦW are covariance matrices of the common factors at the between and 

within level respectively, ΘB and ΘW are (diagonal) matrices with variance of the residual 

factors at the between and within level respectively, κB is a vector with common factor 

means at the between level, ΛB and ΛW are matrices with factor loadings at the between 

and within level, respectively, and τB is a vector with intercepts at the between level. The 

dimensions of these matrices and the parameter estimates can be different over the two 

levels. For example, one may combine a three factor model at the within level with a single 

factor model at the between level. 

 

MEASUREMENT BIAS IN SINGLE LEVEL SEM 

We define measurement bias as a violation of measurement invariance (Mellenbergh, 1989). 

Consider some unobserved trait (T), which is assumed to be measured with observed 

indicators (X). Measurements are invariant with respect to some variable (V), if V 

influences the observed indicators (X) only indirectly via the trait (T) that X is supposed to 

measure. Measurement invariance holds if the conditional distribution of X given values of 

T and V is equal to the conditional distribution of X given values of T but for different 

levels of V:  

 

 f1 ( X | T = t , V = v ) = f2 ( X | T = t ).          (7) 

 

Note that given this formal definition, we can distinguish two kinds of bias (Mellenbergh, 

1989). If the violator V has a direct relationship with any indicator X, then this is called 

uniform bias: A main effect of V on X. The second kind of bias involves a direct effect of 

an interaction of the violator V and the trait T on the indicator X. This is called non-

uniform bias. Throughout this paper we adopt the terminology of Oort (1991), and call V 

a (potential) violator, because it is a variable that possibly violates measurement invariance. 

In the definition of measurement bias, X, T, and V may be nominal, ordinal, interval or 

ratio variables, they may be latent or manifest, and their relationships may be linear or 

nonlinear. Within SEM, X is typically observed continuous or ordinal (Flora & Curran, 

2004; Jöreskog & Moustaki, 2001, Millsap & Tein, 2004), T is a continuous unobserved 

common factor, and V can be continuous, ordinal or nominal, observed or unobserved. 

One possible way of testing measurement invariance in the case of a nominal variable V, 

e.g., sex, is through multi group factor analysis (MGFA). In this model, measurement 

invariance is tested by determining whether factor loadings and intercept are equal across 

the groups. Violations of the equality (over groups) of intercepts are interpreted as uniform 
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bias, violations of the equality (over groups) of the factor loadings and intercepts are 

interpreted as non-uniform bias. Equality of residual variances over groups can be tested 

as well, but is not required for correct comparisons of common factor means across 

groups. As explained in conceptual terms in Dolan, Roorda, and Wicherts (2004), these 

constraints can be shown to follow from eq. 7. For an overview of the use of MGFA for 

measurement invariance testing, see Vandenberg & Lance (2001), Millsap & Everson 

(1993), Millsap and Tein, (2004), and Little (1997).  

Another, more flexible, approach is the use of the RFA model (Oort, 1992, 1998) or the 

MIMIC model (Muthen, 1989). These models differ only in the treatment of the violator 

V. In the MIMIC model, T is regressed on V, while in the RFA model, the violator V is 

correlated with T. Measurement bias is detected by testing the significance of direct effects 

of the violator V on the measurements X.  

Advantages of the RFA method over MGFA are that with RFA, continuous violators can 

be incorporated without the need of creating groups, while multigroup analysis needs a 

split of the continuous variable into subgroups. Bias investigation with respect to several 

violators simultaneously is also more straightforward with RFA. With MGFA, testing more 

violators involves creating more subgroups with smaller sample sizes, while in RFA, it only 

involves the addition of covariates. A disadvantage of the RFA method is that the 

detection of non-uniform bias is less straightforward. However, recent developments using 

latent interaction terms or moderated factor analysis provide a viable method to investigate 

non-uniform bias in the RFA framework (Barendse, Oort & Garst, 2010; Barendse, Oort, 

Werner, Ligtvoet & Schermelleh-Engel, 2011; see also Molenaar, Dolan, Wicherts & van 

der Maas, 2010).   

 In this paper, we apply the RFA method, and restrict ourselves to testing uniform 

measurement bias only. Testing uniform bias is the first step in testing measurement bias 

with the RFA or MIMIC method and the power to detect non-uniform bias is generally 

lower than for uniform bias (Barendse et al., 2010; Woods, 2009). Besides this, non-

uniform bias is often hard to interpret, as it involves an effect of the interaction of V and 

T on X.  

 

MEASUREMENT BIAS IN TWO-LEVEL SEM 

In our two-level SEM procedure for bias detection, we consider a potential violator at 

Level 1 or Level 2. In the latter case, one possibility is that the Level 2 violator is the 

cluster identifier itself (i.e., a nominal variable with as many values as there are groups or 

classes). We treat the cluster identifier as a special type of violator. The different levels of 

the violator variable require different models for bias detection.  
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Violator is a Level 1 variable 

The violator is a Level 1 variable if it has variance within clusters. If data come from 

children within classrooms, possible Level 1 violators are all variables that vary over 

children within classes. Examples are children’s sex, children’s ethnicity, or education level 

of the parents.  

 

Violator is the clustering variable 

We call measurement bias with respect to the clustering variable cluster bias (Jak, Oort & 

Dolan, 2013). If data come from children within classrooms, cluster bias means that the 

test does not measure the same construct over the classes. In this case, two pupils in 

different classes with identical values of the latent trait, may differ with respect to their 

expected observed test score. As explained in Jak et al. (2013), the presence of cluster bias 

can be tested by imposing specific constraints on the models for ΣWITHIN and ΣBETWEEN.  

These constraints ensure that differences between the cluster means are exclusively 

attributable to differences in the common factor means.   

Cluster bias can only be caused by Level 2 variables. Therefore, if cluster bias is not 

present, it is suggested that there is no measurement bias with respect to any Level 2 

variable. Testing for cluster bias thus serves as a first step before the investigation of bias 

with respect to specific Level 2 variables. Of course, one should bear in mind that the 

power to detect bias with respect to specific measured Level 2 variables may be greater 

than the power of the overall test for cluster bias.  

 

Violator is a level 2 variable 

Violators at Level 2 have variance between clusters. Level 2 violators can be aggregates of 

Level 1 violators, such as the proportion of boys in the class, the proportion of children 

from a minority group or average socio economic status. Level 2 violators can also be 

specific to Level 2, such as teacher sex, teacher age or number of pupils in a class.  These 

violators can only violate measurement invariance at the between level, as they do not vary 

within clusters. For example, children in classes with a male teacher may show different 

response behavior to a certain test than children in classes with a female teacher. Teacher 

sex has no direct influence on the within level, because children within the same class have 

the same teacher.  
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THE 5-STEP PROCEDURE 

To facilitate the practice of bias investigation with respect to the three types of violators, 

we propose a 5-step procedure for the investigation of measurement bias in two-level data. 

This procedure includes the detection of measurement bias with respect to Level 1 

violators, cluster bias, and measurement bias with respect to Level 2 violators. The five 

steps we propose are:  

 

1. Test whether there is Level 2 variance and covariance. 

2. Establish a measurement model at Level 1. 

3. Investigate bias with respect to Level 1 violators. 

4. Investigate cluster bias. 

5. Investigate bias with respect to Level 2 violators. 

 

In this procedure, Step 3 comprises the findings from Step 2, and Step 5 comprises the 

findings from Step 4. As there are several issues that should be considered, there are other 

procedures that could be followed. For example, one could test for cluster bias first, and 

subsequently investigate bias with respect to the Level 1 violators. Alternatively, one could 

investigate bias with respect to the Level 2 violators with a saturated Level 1 model. 

However, a convenient property of this 5-step approach is that the final model from Step 

5 includes all relevant results from the previous steps. Starting the analysis at Level 1 and 

then working upwards to Level 2 is in line with Bryk and Raudenbush’s (1992) two-phase 

approach in ordinary multilevel regression, and with the stepwise modeling approach of 

multilevel mediation effects of Preacher, Zyphur, and Zhang (2010).  

If the interest is in Level 1 violators only, one can stop the analysis after Step 3. If the 

interest is in Level 2 variables only, one can limit the modeling to the ΣBETWEEN covariance 

matrix, and specify a saturated model for ΣWITHIN. After explaining the five steps in the 

next subsections, we illustrate the approach with data from teacher-child relationship 

research in Section 3. 

 

STEP 1: TEST WHETHER THERE IS LEVEL 2 VARIANCE AND COVARIANCE 

Multilevel modeling is only required if there is variance at Level 2. Fitting structural 

equation models to Level 2 is only relevant if there is covariance on Level 2. The intra class 

correlation of a given variable (ICC) reflects the proportion of the variance that can be 

attributed to Level 2. Besides qualifying the magnitude of the between variance, one may 
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wish to test whether the Level 2 variance deviates significantly from zero. The significance 

of the between variance and covariance can be tested by fitting a null-model (ΣBETWEEN = 0) 

and independence model (ΣBETWEEN is diagonal) to the between covariance matrix, while 

specifying a saturated model for ΣWITHIN (Hox, 2002; Muthén, 1994). If the χ2 test statistic 

of the null model is significant, we conclude that there is significant Level 2 variance. If the 

χ2 test statistic of the independence model is significant, we conclude that there is 

significant Level 2 covariance. Testing significance of variances and covariances in this 

manner is common, but not strictly correct (Stoel, Garre, Dolan & van den Wittenboer, 

2006). Correct testing requires the derivation of an asymptotic distribution of the 

likelihood ratio test statistic, which may be a complex mixture of many different χ2 

distributions. In this stage, we accept that the testing procedure is not correct, and keep in 

mind that it leads to an over-conservative test, so the conclusion will too often be that the 

Level 2 variance or covariance is not significant.  

If there is no Level 2 variance, single level techniques may be used. If there is Level 2 

variance, but no Level 2 covariance, Step 2 can still be performed using the pooled within 

covariance matrix, with the sample size set equal to M – N, where M is the total number of 

subjects and N is the number of clusters (Muthén, 1994).  Step 3, 4 and 5 are redundant in 

this case. 

 

STEP 2: ESTABLISH A MEASUREMENT MODEL AT LEVEL 1  

In the second step, we establish a measurement model for ΣWITHIN, while leaving ΣBETWEEN 

unconstrained. So, both levels are analyzed simultaneously, while specifying a saturated 

model at the between level.  

 

STEP 3: INVESTIGATE BIAS WITH RESPECT TO LEVEL 1 VIOLATORS 

In Step 3, we take the measurement model that we established in Step 2, and using this 

model, we investigate bias with respect to Level 1 violators. In this step, we still do not 

model the Level 2 covariance matrix, i.e., the Level 2 model remains saturated.  

MGFA is not suitable for bias investigation with respect to Level 1 violators. This is 

because by creating groups based on a Level 1 violator, part of the clustering structure in 

the model is lost.  For example, if we split children in classes in a group with boys and a 

group with girls, we disregard that some boys and girls have the same teacher. Considering 

this, the RFA method is better suited to investigate bias on the within level. So, the Level 1 

violators of interest are added as covariates, and the direct effects of the violators on the 

indicators are tested. All direct effects that are considered significant and relevant should 

be added to the model. The significance of direct effects could be tested one by one by 

likelihood ratio tests between a model with and without the estimated direct effect. 
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Alternatively, modification indices of the direct effects in the most constrained model 

could be used (Sorbom, 1989). Modification indices reflect the expected decrease in the 

models chi-square, if the associated parameter (direct effect) would be freely estimated.  

 

STEP 4: INVESTIGATE CLUSTER BIAS  

The fourth step involves establishing measurement invariance with respect to the cluster 

variable by the imposition of appropriate constraints in the two-level model. We refer to 

measurement bias with respect to the cluster variable as cluster bias. Cluster bias is caused 

by one or more (measured or unmeasured) Level 2 variables. Investigation of cluster bias 

can therefore be seen as an overall test for measurement bias with respect to all possible 

Level 2 violators. As explained in Jak et al. (2013), in the absence of cluster bias, the 

following model holds: 

 

 ΣBETWEEN = Λ ΦB Λ’,  and      

 ΣWITHIN = Λ ΦW Λ’ + ΘW.            (8) 

 

 I.e. a model with equal factor loadings across Level 1 and Level 2, and no residual 

variance at Level 2. The test for cluster bias implies constraining factor loadings to be 

equal across levels and testing whether the residual variances at Level 2 are zero. If the 

factor loadings are not equal over levels, the common factors do not have the same 

interpretation over levels (Muthén, 1990; Rabe-Hesketh, Skrondal & Pickles, 2004), so the 

Level 2 common factor(s) cannot be interpreted as the aggregate of the Level 1 common 

factor(s). If the residual variance of a given indicator is found to be greater than zero, then 

the indicator is affected by cluster bias.  

Three issues about the model specification in the test of cluster bias require attention. The 

first concerns the scaling of the common factors. With freely estimated factor loadings at 

both levels, the common factors on Level 1 and Level 2 can be given a metric by fixing 

their variances at unity. With equality constrained factor loadings, and the factor variances 

at Level 1 fixed at unity, the factor variances at Level 2 are identified by the equality 

constraints on the factor loadings and can be freely estimated.  

The second issue concerns correlated residuals. The test for cluster bias is based on the 

factor structure established in Step 2. If this factor model includes correlated residuals, the 

model should be reparameterized. This is because in the test of cluster bias, the residual 

variance on Level 2 has to be zero, while the same structure is imposed on the within and 

between level (Eq. 8). Instead of correlated residuals, an additional common factor can be 

introduced. With the two factor loadings fixed at 1, the estimate of the common factor’s 
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variance is equal to the (possibly negative) estimate of the covariance between the residuals. 

Note that this common factor should be uncorrelated to the other factors in the model, 

and its variance should be estimated at both levels.  

The third issue concerns testing the significance of the Level 2 residual variance. Because 

variances are on the boundary of the parameter space under the hypothesis that they are 

zero, the omnibus likelihood ratio test may be a complex mixture of χ2 distributions (Stoel 

et al., 2006). This pertains to the same problem as in Step 1. However, in the test of cluster 

bias we can simplify the distribution of the likelihood ratio statistic by testing a single 

variance parameter at a time.  The distribution of this likelihood ratio is a relative simple 

50/50 mixture of a χ2 distribution with 0 degrees of freedom (so half of the area under the 

curve equals zero) and a χ2 distribution with 1 degree of freedom. When testing whether a 

single residual variance equals zero, the likelihood ratio test requires only a simple 

adjustment of the chosen alpha level. In this case alpha is multiplied by two, which is 

similar to the procedure in one-sided instead of two-sided testing. For example, with one 

degree of freedom, the critical χ2 value associated with an alpha level of .05 is 3.84 for a 

two-sided test and 2.71 for a one-sided test.  

 

STEP 5: INVESTIGATE BIAS WITH RESPECT TO LEVEL 2 VIOLATORS 

The model we propose to use in Step 5 is the final model of Step 4, but with residual 

variance at Level 2, and with all Level 1 and Level 2 violators as covariates. At Level 1, this 

corresponds to the final RFA model from Step 3. If the factor loadings are still constrained 

to be equal across Level 1 and Level 2, the common factor(s) have the same interpretation 

at both levels. We propose to estimate residual variance at Level 2 for all indicators here, 

even for indicators were cluster bias was not found in Step 4.  

With respect to Level 2 violators, the pros and cons of MGFA and RFA (or the MIMIC 

model) coincide with those of single level analysis.  We apply the RFA method, because it 

facilitates the investigation of uniform bias with respect to all aggregated Level 1 violators 

and the specific Level 2 violators simultaneously. See Muthén, Khoo and Gustafsson (1997) 

and Spilt, Koomen & Jak (2011) for examples of MGFA with Level 2 violators.  

If bias with respect to Level 2 violators has been found, it can be tested whether all cluster 

bias is explained by the Level 2 violators. This implies testing cluster bias again, but now 

controlling for the detected bias at Level 2.  
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ILLUSTRATION 

DATA 

The Closeness scale of a Dutch translation of the Student-Teacher Relationship Scale 

(STRS; Koomen, Verschueren & Pianta, 2007; Pianta, 2001) comprises 11 items. Closeness 

refers to the degree of warmth and open communication. The closeness items are given in 

Appendix A. Data of 1493 students were gathered from 659 primary school teachers (182 

men, 477 women) from 92 regular elementary schools. 182 Male teachers reported on 242 

boys and 227 girls; 477 female teachers reported on 463 boys and 561 girls. The children 

were in grades 1 through 6. Responses were given on a 5-point scale ranging from 1 

(definitely does not apply) to 5 (definitely does apply). 

 

STATISTICAL ANALYSIS 

Measurement bias was investigated with respect to pupil sex (Level 1) and teacher sex 

(Level 2). For simplicity, we treat the item responses as continuous, while in fact they are 

ordinal. For examples of fitting multilevel models to ordinal item responses we refer to 

(among others) Grilli and Rampichini (2007), Ansari and Jedidi (2000) and Goldstein and 

Browne (2005). We used robust maximum likelihood estimation (MLR) in Mplus (Muthén 

& Muthén, 2007) to obtain parameter estimates. This estimation method provides a test 

statistic that is asymptotically equivalent to the Yuan-Bentler T2 test statistic (Yuan & 

Bentler, 2000), and standard errors that are robust for non-normality. A correction factor 

for the chi-squares is used to calculate chi-square differences between nested models 

(Satorra & Bentler, 2001).  

In addition to the adjusted χ2 statistic, the root mean squared error of approximation 

(RMSEA; Steiger & Lind, 1980) and the comparative fit index (CFI; Bentler, 1990) were 

used as measures of overall goodness-of-fit. RMSEA values smaller than .05 indicate close 

fit, and values smaller than .08 are still considered satisfactory. CFI values over .95 indicate 

reasonably good fit (Hu & Bentler, 1999). 

We used restricted factor analysis (Oort, 1992, 1998) to investigate measurement bias with 

respect to pupil’s sex and teacher’s sex. Sex was entered as an exogenous variable that is 

correlated with the common factor, and that has no direct effects on the item scores. 

Direct effects were added if the modification index was significant at a Bonferroni 

corrected level of significance (two-sided α = .05 / number of possible effects). However, 

we included direct effects only, if the standardized direct effect was larger than .10. When 

testing cluster bias, we started with a fully constrained model, and freed parameters if 

needed. We tested the residual variances one by one at a one-sided level of significance 

of .05 (i.e., .10 two-sided) divided by the number of constrained variances at the between 
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level. The one-sided level of significance is used here because we are testing a variance 

(Stoel et al. 2004). The equality of factor loadings over levels was tested at α = .05 / 

number of constrained factor loadings.    

 

RESULTS 

Step 1: Test whether there is Level 2 variance and covariance 

The intraclass correlations (ICC’s) for the closeness items varied between .13 (for Item 8) 

and .28 (for Item 3 and Item 5). The Level 2 variance and covariance was significant, 

indicated by a significant χ2 for the null model (χ2 (66) = 702.16, p < .05, RMSEA = .080 

and CFI=.87) and for the independence model (χ2 (55) = 178.35, p < .05, RMSEA = .039 

and CFI = .98). Although the RMSEA and the CFI of the independence model indicate 

satisfactory fit, the χ2 shows that there is significant covariance.  

 

Step 2. Establish a  measurement model at the within level 

A one-factor model fitted well to the Level 1 covariance matrix (χ2 (44) = 111.15, p < .05, 

RMSEA = .032, and CFI = .99). The fit of this model could be further improved by 

adding a correlation between the residuals of Item 1 and Item 4. However, in previous 

research the closeness scale is always regarded to be unidimensional (Koomen , Verschueren, 

van Schooten, Jak & Pianta, 2011; Webb & Neuharth-Pritchett, 2010), and the RMSEA 

indicates close fit already. Therefore, we accept the one-factor model as the measurement 

model.  

 

Step 3. Investigate measurement bias with respect to pupil’s sex 

The RFA model with pupil’s sex as an exogenous variable fitted well (χ2 (54) = 174.91, p < 

.05, RMSEA = .039, and CFI = .98). However, modification indices suggested direct 

effects of pupil’s sex on Item 2 and Item 3. Adding these direct effects significantly 

improved model fit (Δχ2 (2) = 34.96, p < .05). The correlation between the common factor 

closeness, and pupil’s sex was positive and significant (r = .25, p < .05). As boys were 

scored 0 and girls 1, this means that teachers experience more closeness with girls than 

with boys. The standardized direct effects on Item 2 and Item 3 were both positive (β 
= .10 and β = .10), indicating that for equal levels of closeness, girls received higher scores 

than boys on these items.   
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Step 4. Test for cluster bias (are we measuring the same across teachers?) 

The model with equal factor loadings at the within and between level, and no residual 

variance at the between level did not fit the data satisfactory (χ2 (109) = 831.67, p < .05, 

RMSEA = .067, and CFI = .85). One by one freeing of the Level 2 residual variance of the 

indicators with the highest modification indices resulted in a model with all Level 2 

residual variance estimated. This model fitted well (χ2 (98) = 322.77, p < .05, RMSEA = 

.039, and CFI = .95). However, for three indicators, the factor loadings could not be 

considered equal across Level 1 and Level 2. Therefore, the factor loadings of Item 5, Item 

8 and Item 10 were freely estimated. This resulted in a very well fitting model, χ2 (95) = 

275.23, p < .05, RMSEA = .036, and CFI = .96.  Items 5 and Item 10 were more indicative 

(i.e. had higher factor loadings) of closeness at Level 2, and Item 8 was more indicative of 

closeness at Level 1. Therefore, the Level 2 common factor cannot directly be interpreted 

as the aggregated version of the Level 1 factor. 

The presence of cluster bias in all closeness items shows that there are other factors than 

teacher’s closeness with pupils that cause differences on the closeness items. Teacher sex 

could be one explanation for these differences.  

 

Step 5. Investigate measurement bias with respect to teacher’s sex 

An RFA model with teachers sex and aggregated pupil’s sex as exogenous variables at the 

between level and the final RFA model from Step 3 at the within level fitted the data well, 

χ2 (123) = 351.36, p < .05, RMSEA = .035, and CFI = .96. In this model, all factor 

loadings, except for Items 5, 8 and 10 were constrained to be equal across Level 1 and 

Level 2, and all residual variance at Level 2 was estimated. Step by step inspection of 

modification indices and standardized parameter change, pointed to teacher sex bias in 

Items 2 and Item 3. Addition of two direct effects from teacher sex to these items resulted 

in good model fit, χ2 (121) = 330.47, p < .05, RMSEA = .034, and CFI = .96. A graphical 

representation with parameter estimates of this model is shown in Figure 1. The 

correlation between closeness and teacher sex is .34, indicating that female teachers 

experience more closeness than male teachers. The standardized direct effects were both 

positive, β = .17 for Item 2 and β = .19 for Item 3.These items are thus considered more 

applicable by female teachers, i.e. with equal levels of closeness, female teachers give 

higher scores on these items than male teachers. 

Fixing the Level 2 residual variance at zero for the two biased items, significantly 

deteriorated model fit (Δχ2 (2) = 185.58, p < .05). So, not all cluster bias in these items is 

explained by teacher sex.  
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Unstandardized parameter estimates 

 

 

Standardized parameter estimates 

 

 

Figure 1. RFA model from Step 5. The upper figure shows the unstandardized parameter estimates, the 

lower figure shows the standardized parameter estimates (standardized within Level 1 and within Level 2). 

Non-significant parameter estimates are indicated by ‘(ns)’. 
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CONCLUSION 

The bias with respect to pupil’s sex in Item 2 and Item 3 shows that the difference 

between boys and girls on these items is larger than would be expected based on their 

common factor scores. In other words, even if the levels of closeness were equal, girls get 

somewhat higher scores on these items. Item 2 is about the child seeking comfort when 

he/she is upset. Apparently, in the perception of teachers, girls seek more comfort then 

boys do, given equal levels of closeness. Item 3 is about the children’s reaction on physical 

affection or touch from the teacher. So, with equal levels of closeness, girls seem to be 

more comfortable with physical affection than boys (in the perception of teachers).  

Items 2 and 3 were also biased with respect to teacher sex in the same direction. An 

explanation for this bias in Item 2 is that female teachers in general experience more 

comfort seeking from children. For Item 3, it is hypothesized that male teachers show 

their closeness less with physical affection or touch than female teachers do. A possible 

explanation could be that male teachers fear being accused of touching children in 

inappropriate ways (Jones, 2004).  

If one would not control for the bias in the two items, the correlation between closeness 

and sex would be slightly overestimated, (.26 instead of .24 for pupil sex, and .36 instead of 

.34 for teacher sex). In all items, cluster bias was still present, even after controlling for 

teacher sex bias. Apparently, other Level 2 violators are causing differences in the 

closeness items, so that not all differences between teachers can be attributed to 

differences in the average closeness of the teachers with their pupils.  

 

DISCUSSION 

This paper proposes a step-wise approach for the detection of measurement bias with 

respect to Level 1 violators, Level 2 violators and the clustering variable. We illustrated the 

approach using data from teacher-child interactions. The 5 steps of the approach were 

suggested based on the idea of working upward from Level 1, so that the final model 

comprises all bias and substantive findings at both levels. The 5-step approach seems the 

most obvious approach to us. However, we are not claiming this is the only way. The 

order of Step 3 (investigate bias with respect to Level 1 violators) and Step 4 (testing 

cluster bias) can be reversed without consequences for the final model in Step 5. Another 

possibility could be not to work upward from Level 1, but analyze the two levels separately, 

by investigating Level 2 bias with an unrestricted model at Level 1.  When we analyzed our 

data in this way, we found no Level 2 bias. This is probably the result of decreased 

statistical power. In general, the results in a multi-step analysis may depend on the details 

of the procedure. In most situations, a universally optimal procedure is unlikely to exist. 
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We expect that different procedures will generally identify the same items as being biased, 

but the power to detect the bias may vary. If one is unsure whether the bias finding should 

be taken seriously, being able to explain the bias substantively may be the ultimate check.  

In our application, we do not test the absence of non-uniform measurement bias with 

respect to the Level 1 and Level 2 violators. As pointed out in the introduction, there are 

ways within RFA to test for nonuniform measurement bias (Barendse, Oort & Garst, 2010; 

Molenaar, Dolan, Wicherts & van der Maas, 2010). However, these methods have yet to be 

evaluated in the multilevel setup. Until these methods are available in multilevel situations, 

MGFA can be used to investigate non-uniform bias with respect to Level 2 violators. 

When applying MGFA to our data, we did not find non-uniform bias with respect to 

teacher sex, while the same uniform bias (in Item 2 and Item 3) was found.  

Varying choices can be made, when investigating measurement bias in multilevel data. We 

aimed at providing some guidance by presenting a 5 step approach, which facilitates the 

investigation of measurement bias with respect to Level 1 and Level 2 violators. Using this 

approach, the final model takes all bias and substantive findings into account.  

 

 

Appendix A. Closeness items  

 

1. I share an affectionate, warm relationship with this child.  

2. If upset, this child will seek comfort from me.  

3. This child is uncomfortable with physical affection or touch from me (reverse scored).  

4. This child values his/her relationship with me.  

5. When I praise this child, he/she beams with pride.  

6. This child tries to please me.  

7.  It is easy to be in tune with what this child is feeling.  

8. This child openly shares his/her feelings and experiences with me.  

9. My interactions with this child make me feel effective and confident.  

10. This child allows himself/herself to be encouraged by me.  

11. This child seems to feel secure with me. 
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SUMMARY AND GENERAL DISCUSSION 

In this thesis we presented methods and procedures to test and account for measurement 

bias in multilevel data. Multilevel data are data with a clustered structure, for instance data 

of children  grouped in classrooms, or data of employees in teams. For example, with data 

of children in classes, we can distinguish two levels in the data: we denote the child level 

Level 1 or the within level, and the class level Level 2 or the between level. Children in the 

same class share class level characteristics, such as the teacher, classroom composition, and 

class size. Such class level characteristics may affect child level variables, leading to 

structural differences between the responses of children from different classes. With 

multilevel structural equation modeling (multilevel SEM), we can accommodate such 

differences by specifying models at the different levels of multilevel data. Such models can 

be constrained to test substantive and psychometric hypotheses. In this thesis, we 

considered specifically the psychometric hypothesis of measurement invariance.   

Measurement bias is defined as a violation of measurement invariance (Mellenbergh, 1989). 

Suppose that item X is designed to measure latent  attribute T. Measurement invariance 

with respect to a variable V holds if the conditional distribution of X, given T and V, is 

equal to the conditional distribution of X, given T. In other words, measurement 

invariance holds if all influence of V on X runs via T. Within (single level) structural 

equation modeling, the two prevalent models to investigate measurement bias are 

multigroup models (Sörbom, 1974; Horn & McArdle, 1992; Little, 1997; Widaman & Reise, 

1997) and Restricted Factor Analysis (RFA; Oort, 1992, 1998) or, equivalently, MIMIC 

(Muthén, 1989) models.   

This thesis focusses on the combination of measurement bias and multilevel data. In 

Chapter 1 we introduced the concept of measurement bias, and in Chapter 2 we presented 

a test for cluster bias, which serves as an overall test of measurement bias with respect to 

any Level 2 variable. We extended the test for cluster bias to discrete or ordinal data in 

Chapter 3. In Chapter 4, we compared the performance of the test for cluster bias with the 

RFA test. To conclude, in Chapter 5, we presented a five step procedure facilitating the 

investigation of measurement bias with respect to Level 1 and Level 2 violators of 

measurement invariance. In the next section, we summarize the main findings of these five 

chapters, and we discuss the outcomes, contributions, and limitations of this thesis. 

 

MEASUREMENT BIAS AND MULTIDIMENSIONALITY 

Chapter 1 shows two examples of measurement bias detection using RFA. We investigated 

measurement bias with respect to age and gender in a mathematical ability test and in a 

spatial visualization test. Preceding the detection of measurement bias, examination of the 
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dimensionality of the measurement models led to two multidimensional measurement 

models. We stressed the importance of establishing the correct measurement model, as 

omitting important dimensions from the measurement model may lead to spurious 

findings of measurement bias. We ended the chapter with the conclusion that 

measurement bias and multidimensionality are closely related, but not equivalent. 

Measurement bias implies multidimensionality, but multidimensionality appears as 

measurement bias only if multidimensionality is not properly accounted for in the 

measurement model. 

 

A TEST FOR CLUSTER BIAS 

In Chapter 2 we presented a test to investigate measurement bias with respect to the 

clustering variable in multilevel data. We showed how measurement invariance 

assumptions across clusters imply measurement invariance across levels in a two-level 

factor model. Cluster bias is investigated by testing whether the within level factor loadings 

are equal to the between level factor loadings, and whether the between level residual 

variances are zero. We illustrated the test with an example from educational research. In a 

simulation study, we showed that with continuous data from five items, the chi-square 

difference test has sufficient power to detect cluster bias, given a large enough number of 

clusters. With 50 clusters with 25 observations per cluster, the power to detect cluster bias 

was sufficient if the bias accounted for 3% or more of the total variance of the indicator. 

With only 20 clusters with 25 observations each, power to detect cluster bias was still 

sufficient, if bias accounted for at least 5% of the total variance. The proportions of false 

positives were higher than the nominal level of significance in conditions with 100 clusters, 

but lower in conditions with 20 clusters. 

 

TESTING FOR CLUSTER BIAS USING TWO-LEVEL ORDINAL FACTOR ANALYSIS 

In Chapter 3 we extended the test for cluster bias to ordinal item responses, using the 

ordinal two-level factor model (Grilli & Rampichini, 2007). Based on a simulation study, 

we concluded that cluster bias can be tested in ordinal data with the likelihood ratio test 

and Wald test. Both tests demonstrated sufficient power to detect large bias, and show 

acceptable false positive rates. The scaled likelihood ratio test, as implemented in the 

program Mplus, is not recommended for cluster bias testing, as substantive numbers of 

inadmissible results were obtained in all conditions. The chapter included an illustration of 

the test with data concerning research on teacher – student relations.   
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TESTING FOR CLUSTER BIAS AS A GLOBAL TEST OF MEASUREMENT BIAS 

The cause of cluster bias is by definition a cluster level variable. For example, in the case of 

data of children in classes, cluster bias may be caused by bias with respect to the teacher's 

teaching ability. In the test of cluster bias, the actual violator of measurement invariance (if 

any) does not have to be measured. Therefore, the test for cluster bias can serve as a global 

test of measurement bias with respect to all class level variables. In Chapter 4, we 

compared the power and false positive rate of the test for cluster bias and the RFA test. As 

was expected, the RFA test has more power than the test for cluster bias. The test for 

cluster bias showed a smaller false positive rate overall. We conclude that non-detection of 

cluster bias does not rule out the possibility that significant bias with respect to a Level 2 

violator may be found using the RFA test. 

 

A FIVE STEP APPROACH TO DETECT MEASUREMENT BIAS IN MULTILEVEL DATA 

In the final chapter of this dissertation we proposed a step-wise approach for the detection 

of measurement bias with respect to Level 1 violators, Level 2 violators, and the clustering 

variable. In this procedure, Step 1 involves testing the necessity of applying multilevel 

modeling, Step 2 consists of establishing a measurement model at Level 1, Step 3 involves 

testing for measurement bias at Level 1, Step 4 concerns testing for cluster bias, and Step 5 

refers to explaining the cluster bias with observed Level 2 variables. The five steps of the 

approach were based on the idea of working bottom-up from Level 1, so that the final 

model considers all bias and substantive findings at both levels. The five steps are 

illustrated with data about the closeness between teachers and students.  

 

DISCUSSION 

In this dissertation we presented a test for cluster bias, i.e. a test for measurement bias with 

respect to clusters in multilevel data. The cluster bias test is integrated in a framework to 

test for measurement bias with respect to specific Level 1 and Level 2 variables. The major 

contribution of this thesis is that it provides researchers guidance to investigate 

measurement bias in their multilevel data in a viable and systematic way. In the following 

section, we elaborate on the differences and similarities of our approach in comparison 

with existing approaches, we discuss multidimensionality in the light of cluster bias. Finally, 

we identify some limitations of the current work.  
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ALTERNATIVE APPROACHES TO THE INVESTIGATION OF MEASUREMENT BIAS IN LARGE 

NUMBERS OF GROUPS 

The test for cluster bias is a useful addition to the existing set of structural equation 

modeling tools to investigate measurement bias. However, it is not the only test that can 

be used to investigate measurement invariance across clusters in multilevel data. One of 

the alternatives to the test for cluster bias is to test for measurement bias in a fixed effects 

model, i.e. in a multigroup model in which each cluster is a group. The equal factor 

loadings and intercepts across groups (clusters) in a multigroup model represent absence 

of cluster bias. Although this approach is possible in principle, it is hardly practical when 

the number of clusters is large or when the within cluster sample size is relatively small. 

The latter results in instability, the former results in tests with potentially prohibitively large 

number of degrees of freedom.  

Muthén and Asparouhov (2013) describe an alternative way to circumvent the 

cumbersome strategy of multigroup modeling with large numbers of groups, using a 2-step 

procedure with Bayesian estimation. They introduce the concept of “approximate 

measurement invariance”, referring to the analysis of measurement invariance across 

several groups using Bayesian SEM (BSEM). In Step 1 of the procedure (the analysis of 

approximate measurement invariance), in each group the difference between the group 

specific measurement parameter (factor loading or intercept) and the average of the 

particular parameter across all groups is estimated. The researcher can then identify the 

group with the largest difference between its measurement parameter and the average 

parameter as the most deviant group. In the next step, using BSEM, one estimates a model 

in which all factor loadings and intercepts are equal across groups, except for the groups 

that were identified as deviant in the previous step. This is similar to the use of 

modification indices with maximum likelihood estimation in a multigroup model, where 

the most deviant group will show the largest modification index in an analysis with equal 

factor loadings and intercepts. An advantage of the BSEM method is that it works well for 

the analysis of categorical variables, while maximum-likelihood estimation with categorical 

variables often leads to computational problems due to the numerical integration involved 

(a phenomenon that we encountered in the examples in Chapters 2 and Chapter 3). A 

disadvantage of the approximate measurement invariance approach is that it relies on prior 

distributions for the model parameters, and different priors may yield different outcomes. 

Muthén and Asparouhov recommend zero-mean, small-variance priors for the difference 

parameters. However, the optimal size of the small-variance of the priors is a subject of 

debate.  

A framework for the detection of measurement bias across large numbers of groups within 

Bayesian Item Response Theory (IRT) is given by Verhagen and Fox (2012), using 

multilevel random item effects models (De Jong, Steenkamp & Fox, 2007; Fox & 
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Verhagen, 2010). Verhagen en Fox estimate a random effects parameter for all 

measurement parameters in the model (i.e. discrimination parameters and difficulty 

parameters in an IRT model), and test which of the measurement parameters have 

significant variance across clusters using Bayes factors or using the Deviance Information 

Criterion (DIC). Consequently, the cluster level variance in item parameters may be 

explained by adding covariates to the model. The approach of Verhagen en Fox is similar 

to the approach in this thesis in some respects. Both approaches treat groups as randomly 

drawn from a population of groups. Both approaches test the hypothesis of zero variance 

of parameters at the cluster level, and both allow for the explanation of non-zero variance 

by cluster level variables. The main differences between the two approaches relate to the 

modeling framework (multilevel IRT versus multilevel SEM), and the estimation method 

(Bayesian estimation versus frequentist (maximum likelihood) estimation). It is an 

interesting topic of future research to compare the outcomes of the two methods, for 

example by reanalyzing the data from Chapter 4 (about testing for cluster bias with ordinal 

data), using multilevel random item effects modeling. 

 

MULTIDIMENSIONALITY AND CLUSTER BIAS 

In Chapter 1 we showed that measurement bias and multidimensionality are closely related. 

We discussed that in a one-dimensional model, all items are really affected by two factors: 

the single common factor and an item-specific residual factor (Spearman, 1928). If all 

residual variance is only random error variance then measurement bias is absent by 

definition. If part of the residual variance represents structural variance, then this may stem 

from a biasing factor. In Chapters 2 to 5 we used a test of zero residual variance as an 

overall test for measurement bias at the between level in a two-level factor model. At the 

between level of a two-level factor model, non-zero residual variance always represents 

measurement bias. This is not the case in single level data (or at the within level), as we 

cannot distinguish variance caused by item specific factors from random measurement 

error variance. In the next paragraph we will explain the difference between residual 

variance in a single (or within) level model and residual variance in a between level model.  

 In a factor model, residual variance stems from a residual factor (δ) that consists of 

two components, a structural component, s, and a random component, e (Bollen, 1989). 

With VAR( ) denoting variance: 

 

 VAR(δ) = VAR(s) + VAR(e) ,           (1) 

 

in which s represents a specific component, that is unique to the indicator, causing 

systematic variance in the item score. The remaining part of the residual variance is caused 
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by a random component, e, representing measurement error.  The expected value, denoted 

E( ) of the structural component s may be non-zero, and could be interpreted as the 

intercept in a factor model: 

 

  E(s) = τ.              (2) 

 

The random component is unsystematic and has an expected value of zero: 

   

  E(e) = 0.              (3) 

 

The residual variance of each indicator is thus equal to the sum of the variance of the two 

components, and the mean of the residual factor is equal to the mean of the structural 

component.  

Zero structural residual variance represents invariance of the indicator with respect to all 

variables. As mentioned, in a single level model we cannot distinguish structural residual 

variance from measurement error variance, rendering it impossible to identify  nonzero 

residual variance as measurement bias. At the second (and higher) level of a multilevel 

model, it is possible to test whether structural variance is present. Given that the cluster 

mean of the random component is expected to be zero (Equation 3), all residual variance 

at aggregated levels represents structural variance. Of course, if the number of 

observations per cluster is very small, some random error variance may be aggregated to 

the higher level. However, in Chapter 4 it appeared that the test for cluster bias did not 

falsely identify random residual variance as cluster bias even with cluster sizes as small as 2. 

 

LIMITATIONS 

The approaches to investigate measurement bias in multilevel data, that we presented in 

this thesis, were conceptualized within the framework of structural equation modeling. As 

such they are subject to the assumptions of multivariate normality of continuous data, or 

multivariate normality of the unobserved continuous responses underlying observed 

categorical data. Deviations from normality can lead to bias in the model parameters and in 

goodness of fit measures. Molenaar, Dolan & Verhelst (2010) and Molenaar, Dolan & De 

Boeck (2012) present models that take different sources of non-normality of the data into 

account. In future research, it would be interesting to find out how the models presented 

in this thesis may be combined with models to account for non-normality in the data.  

All tests for measurement invariance in this thesis require that the majority of the 

indicators in a factor model are measurement invariant. For example, when testing the 
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invariance of the closeness scale with respect to child gender, the results are only valid if 

the majority of indicators is not biased with respect to gender. If all indicators were biased 

against boys, i.e. if for equal levels of closeness teachers report higher scores for girls, this 

bias will not be detected. Overall gender differences are captured by the common factor, 

so bias against boys in all indicators will lead to biased factor mean differences in a 

multigroup model, or biased correlations between gender and closeness in the RFA model. 

Such bias could be detected if we could identify one indicator that is truly invariant across 

gender. This indicator could then be used as an anchor indicator, by scaling the common 

factor’s variance and mean with respect to this indicator. However, it is impossible to 

know which, if any, indicator is invariant. 
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SAMENVATTING (SUMMARY IN DUTCH)  

In dit proefschrift worden methoden en procedures voorgesteld die gebruikt kunnen 

worden voor het toetsen van vraagonzuiverheid (measurement bias) in multilevel data.  

Stel dat een onderzoeker geïnteresseerd is in de invloed van motivatie op rekenvaardigheid 

bij kinderen. Na wekenlang scholen te hebben gebeld, vindt ze 200 leraren en 700 

leerlingen bereid aan haar onderzoek mee te werken. De leerlingen vullen een motivatie 

vragenlijst in met 10 items zoals “Ik denk dat leren rekenen goed voor me is” en “Ik vind 

rekenen leuk”, die gescoord worden op een 7-puntsschaal van 1 (helemaal niet mee eens) 

tot 7 (helemaal mee eens). De kinderen maken ook een rekenvaardigheidstoets met 60 

opgaven die goed of fout gemaakt kunnen worden.  

Voordat de onderzoeker een hypothese kan toetsen over de relatie tussen motivatie en 

rekenvaardigheid, wil zij eerst weten: Zijn deze metingen valide? Resulteren verschillen in 

motivatie en rekenvaardigheid inderdaad in verschillen in de itemresponsen (Borsboom, 

Mellenbergh & van Heerden, 2004)? En meten de items dezelfde eigenschappen voor 

verschillende (groepen) respondenten (Mellenbergh, 1989; Meredith, 1993; Oort, 1992, 

1993)? Als de rekenopgaven inderdaad hetzelfde meten voor bijvoorbeeld jongens en 

meisjes, dan zouden jongens en meisjes met gelijke rekenvaardigheid gemiddeld identieke 

test scores moeten behalen. Als dit het geval is, zijn de metingen meetinvariant ten 

opzichte van sekse. Als dit niet het geval is spreken we van vraagonzuiverheid. Om een 

voorbeeld te geven: een redactiesom zou makkelijker op te lossen kunnen zijn voor meisjes, 

doordat meisjes gemiddeld gezien beter kunnen lezen dan jongens (Wei et al., 2012). In dat 

geval zullen meisjes meer goede antwoorden op de som geven dan jongens, terwijl hun 

rekenvaardigheid gelijk is.  

In algemenere zin is vraagonzuiverheid gedefinieerd als een schending van meetinvariantie 

(Mellenbergh, 1989). Stel dat item X (bijvoorbeeld de redactiesom) ontworpen is om de 

latente trek T (rekenvaardigheid) te meten. X is meetinvariant ten opzichte van een 

variabele V (bijvoorbeeld sekse) als de conditionele verdeling van X, gegeven T en V, 

gelijk is aan de conditionele verdeling van X, gegeven T. Met andere woorden, 

meetinvariantie geldt als alle invloed van de potentiele schender V op X via T loopt. Zie 

het figuur op pagina 19 van dit proefschrift voor een grafische weergave van 

vraagonzuiverheid. De twee meest gebruikte typen modellen voor het onderzoeken van 

meetinvariantie door middel van structural equation modeling (SEM) zijn multigroep 

modellen (Sörbom, 1974; Horn & McArdle, 1992; Little, 1997; Widaman & Reise, 1997) en 

restrictieve factoranalyse (RFA; Oort, 1992, 1998) of equivalente MIMIC (Muthén, 1989) 

modellen.   

Een moeilijkheid is dat we geen directe maat hebben van de latente variabele waar we in 

geïnteresseerd zijn, zoals rekenvaardigheid of motivatie. We moeten werken met de 
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geobserveerde itemresponsen. De relatie tussen de geobserveerde itemresponsen en 

motivatie of rekenvaardigheid kan worden weergegeven in een meetmodel, zoals het 

lineaire factor model (Mellenbergh, 1994; Spearman, 1904, 1928). In het lineaire factor 

model wordt de variabele waarin we geïnteresseerd zijn weergegeven als een continue 

latente factor, die alle gedeelde variantie in de geobserveerde itemresponsen verklaart. 

Ieder item wordt ook beïnvloed door een unieke factor, die weer bestaat uit een structureel 

deel (dit deel zorgt voor item-specifieke variantie) en een random deel (de meetfout) 

(Bollen, 1989).  

Het onderzoeken van vraagonzuiverheid dient altijd voorafgegaan te worden door het 

vinden van een correct meetmodel. Hoofdstuk 1 van dit proefschrift dient als een 

introductie over vraagonzuiverheid. Door middel van twee voorbeelden uit een cognitieve 

vaardigheidstest lieten we zien dat vraagonzuiverheid en multidimensionaliteit nauw aan 

elkaar verbonden zijn. Een item dat onzuiver is, is multidimensioneel, aangezien het een 

dimensie meet die niet gemeten diende te worden. Als deze dimensie gerelateerd is aan 

potentiele schenders van meetinvariantie, (dit zijn vaak variabelen zoals sekse, etniciteit en 

leeftijd), dan zal dit item onzuiver blijken ten opzichte van deze variabele.  

Een andere vraag die de onderzoekster uit het voorbeeld kan stellen is: Worden 

rekenvaardigheid en motivatie zuiver gemeten in verschillende schoolklassen? Aangezien 

ze data verzameld heeft van kinderen die gegroepeerd zijn in klassen, hebben de data een 

multilevel structuur. We kunnen in dit voorbeeld twee niveaus  (“levels”) onderscheiden: 

het kindniveau noemen we Niveau 1 en het klasniveau noemen we Niveau 2. Met 

multilevel SEM kunnen we modellen specificeren op verschillende niveaus van de 

multilevel data. Kinderen die in dezelfde klas zitten delen kenmerken op klasniveau, zoals 

de leraar, de samenstelling van de klas en de grootte van de klas. Verschillen in deze 

kenmerken kunnen leiden tot verschillen in de gemiddelde testscores van kinderen uit 

verschillende klassen, die niet verklaard worden door de factoren rekenvaardigheid of 

motivatie. In Hoofdstuk 2 van dit proefschrift stellen we een toets voor die gebruikt kan 

worden om te toetsen of metingen onzuiver zijn ten opzichte van schoolklas. Deze toets is 

algemeen geschikt om onzuiverheid ten opzichte van de clusterende variabele in multilevel 

data te onderzoeken (bijvoorbeeld bij data van mensen in landen, patiënten in 

ziekenhuizen, kinderen in families, etc.), vandaar de naam “toets voor clusteronzuiverheid”. 

Clusteronzuiverheid kan onderzocht worden door te toetsen of de factor ladingen op 

Niveau 1 gelijk zijn aan de factor ladingen op Niveau 2, en of de residuele varianties op 

Niveau 2 nul zijn. De toets wordt geïllustreerd met data uit onderwijskundig onderzoek. 

Daarnaast laten we in een simulatie onderzoek zien dat met continue data afkomstig van 

vijf items, en een groot genoeg aantal clusters, de likelihood ratio test genoeg statistische 

power heeft om clusteronzuiverheid te ontdekken. Met 50 clusters van 25 observaties per 

cluster is de power voldoende als de onzuiverheid 3% of meer van de totale variantie van 

de indicator veroorzaakt. Met slechts 20 clusters met ieder 25 observaties is de power om 
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clusteronzuiverheid te ontdekken voldoende als de onzuiverheid zorgt voor meer dan 5% 

van de totale variantie. De proporties vals negatieven waren hoger dan het gekozen 

significantieniveau in de condities met 100 clusters, maar lager in de condities met 20 

clusters.  

In Hoofdstuk 3 breiden we de test voor clusteronzuiverheid uit naar ordinale 

itemresponsen, met behulp van het ordinale twee-niveau factor model (Grilli & 

Rampichini, 2007). Op basis van een simulatie onderzoek concluderen we dat 

clusteronzuiverheid in ordinale data getoetst kan worden met de likelihood ratio test en 

met de Wald test. Beide tests hebben voldoende power om aanzienlijke hoeveelheden 

onzuiverheid te detecteren, en hebben acceptabele proporties vals negatieve resultaten. De 

geschaalde likelihood ratio test, zoals geïmplementeerd in het programma Mplus, wordt 

niet aangeraden voor het toetsen van clusteronzuiverheid, aangezien in alle condities 

substantiële aantallen ontoelaatbare resultaten werden gevonden. De voorgestelde toetsen 

worden geïllustreerd met data over leerkracht-leerling relaties.  

De oorzaak van clusteronzuiverheid is per definitie een variabele op clusterniveau. In het 

voorbeeld van kinderen in klassen, kan de oorzaak van clusteronzuiverheid liggen in 

onzuiverheid ten opzichte van de didactische kwaliteiten van de leraar. Om de toets voor 

clusteronzuiverheid toe te passen, hoeft de werkelijke schender van meetinvariantie (als die 

er is) niet gemeten te zijn. De toets voor clusteronzuiverheid kan daarom gebruikt worden 

als een algemene toets voor onzuiverheid ten opzichte van alle mogelijke variabelen op 

clusterniveau. In Hoofdstuk 4 vergelijken we de power en de proporties vals positieven 

van de toets voor clusteronzuiverheid en de RFA-toets. Zoals verwacht heeft de RFA-

toets meer power dan de toets voor clusteronzuiverheid. De toets voor 

clusteronzuiverheid heeft in het algemeen een kleinere hoeveelheid vals positieve resultaten. 

We concluderen dat het niet vinden van clusteronzuiverheid niet uitsluit dat er significante 

onzuiverheid ten opzichte van een Niveau 2-variabele gevonden wordt met de RFA-toets. 

In het laatste hoofdstuk van dit proefschrift, Hoofdstuk 5, stellen we een stapsgewijze 

aanpak voor om vraagonzuiverheid te onderzoeken ten opzichte van een schender op 

Niveau 1, een schender op Niveau 2, en de cluster variabele. In deze procedure is de eerste 

stap het toetsen of multilevel-analyse werkelijk nodig is, Stap 2 is het vinden van een 

geschikt meetmodel op Niveau 1, Stap 3 is het toetsen van vraagonzuiverheid op Niveau 1, 

Stap 4 is het toetsen op clusteronzuiverheid, en in Stap 5 wordt de mogelijkheid getoetst 

dat de clusteronzuiverheid verklaard wordt door Niveau 2-variabelen.  De vijf stappen zijn 

zo ontworpen dat het uiteindelijke model alle bias en inhoudelijke resultaten op beide 

niveaus laat zien.  

Dit proefschrift biedt onderzoekers een methode om op een uitvoerbare en systematische 

manier vraagonzuiverheid te toetsen in multilevel data. 
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DANKWOORD 

Ik weet nog precies waar ik zat (rechts vooraan, tweede stoel) toen Conor Dolan bij het vak 

Latente Variabele Modellen uitlegde wat meetinvariantie is. Als ik het overdreven stel, zou ik 

zeggen dat ik toen op slag verliefd werd op het begrip meetinvariantie. Heel erg blij was ik dan 

ook, toen ik bij Frans Oort mocht gaan promoveren op het onderwerp, en grotendeels zelf 

mocht bepalen welke kant ik ermee op wilde. Met het onderwerp was er dus direct een warme 

band, één van de belangrijkste voorwaarden voor een geslaagd promotietraject. Misschien wel 

even belangrijk zijn de mensen met wie je werkt, en ook daar ben ik buitengewoon gelukkig mee 

geweest.  

Ten eerste natuurlijk Frans Oort, een betere begeleider en promotor had ik mij niet kunnen 

wensen. Uit respect voor al zijn kennis en ter onderschrijving van de leraar-leerling relatie heb ik 

Frans altijd met u aangesproken. Toen hij na enkele maanden vroeg wanneer ik daar eens mee op 

zou houden antwoordde ik: “als ik gepromoveerd ben”. Met het voorbijgaan van de jaren werd 

de band hechter en, hoewel ik het inmiddels gewend was, vonden collega’s het erg vreemd dat ik 

Frans niet gewoon tutoyeerde. Nu is het zover, en zal ik voortaan gewoon jij proberen te zeggen. 

Frans, dankjewel voor alles wat ik van je geleerd heb, over SEM en measurement bias, maar ook 

in bredere zin. Ik ben nog lang niet uitgeleerd, dus ik hoop dat we nog regelmatig samen zullen 

werken. 

Zoals gezegd begon de wens om onderzoek te doen bij de colleges van Conor Dolan, zonder 

hem had dit proefschrift waarschijnlijk niet bestaan (althans, niet met mij als auteur). 

Behulpzaam en aardig als hij is, bleef hij tijdens mijn project altijd betrokken bij het onderzoek, 

wat een rol als mede-promotor vanzelfsprekend maakte. Conor, dankjewel voor je interesse en je 

snelle en scherpe commentaar op mijn werk. Ook heel veel dank voor het aan mij uitlenen van je 

spiksplinternieuwe computer. Vers uit de verpakking, voor je zelf ook maar een analyse had 

gedaan, leende je jouw 8 processoren aan mij uit voor het draaien van de simulaties in hoofdstuk 

3. Het lijkt mij tekenend voor jouw onbaatzuchtigheid.  

Erik Thoonen, Helma Koomen en stagebedrijf Meurs HRM wil ik bedanken voor het delen van 

hun data, zodat ik de voorgestelde methoden met echte data kon illustreren. Helma, jij ook erg 

bedankt voor de fijne samenwerking bij verschillende artikelen buiten dit proefschrift om. 

Hoewel ik oorspronkelijk de enige methoden en technieken-aio bij de afdeling pedagogiek en 

onderwijskunde was, heb ik mij dankzij de vele leuke collega’s gelukkig nooit alleen gevoeld. Ik 

bedank hiervoor Lisette en Maren, kamergenoten van het eerste uur, en mijn latere 

kamergenoten: Rudy, Annemarie, Harry, Bonne, Hulya, Lisa, Ilona, Annette, Ed en Mathilde. 

Verder heb ik genoten van SEMmen, vlammetjes, schrijfweek, pubquiz of biertjes met Madelon, 

Britt, Marloes, Elsje, Debora, Bettina, Jaap, Marjolein, Bellinda en Mariska.  



Dankwoord 

 

112 
 

Het schrijven van dit dankwoord dwingt me terug te blikken op de afgelopen vier jaar. Ik kan er 

daarbij niet omheen dat parallel aan het fijne werk op de UvA, mijn persoonlijke leven zijn 

dieptepunt bereikte. Mijn lieve vader en moeder zijn overleden tijdens het werken aan dit 

proefschrift. Hierdoor heb ik bijzonder sterk ervaren wat een fijne mensen ik om mij heen heb. 

Hoewel onze band losstaat van dit proefschrift, maak ik van de gelegenheid gebruik om zwart op 

wit mijn dank aan jullie te betuigen.  

Ebba, Eva en Frédérique, dank voor jullie jarenlange vriendschap. Sinds we twaalf jaar oud 

waren zijn wij altijd nauw bij elkaars leven betrokken geweest, en ik ben er van overtuigd dat dit 

altijd zo zal blijven. Alleen die wetenschap is al genoeg om het leven aan te kunnen. Anke heeft 

mij onder andere opgebeurd door haar baby Olivier regelmatig in mijn armen te drukken en te 

beweren dat ze een troostbaby voor mij had gemaakt. Ook Sander is regelmatig koffie komen 

drinken met baby Maud, waarna het leven altijd lichter leek. Joost en Evelyne wil ik bedanken 

voor het zijn van hele lieve vrienden. Verder is mijn leven mede leuk gemaakt door de dames van 

Het Y, want er is niets zuiverender dan lekker waterpoloën en dan doorzakken in de Y-kelder.  

Nu onze ouders er niet meer zijn, wordt ons kerngezin gevormd door mijn zus Martine, mijn 

broers Remco en Wouter, en mijzelf. Gelukkig vinden wij elkaar allemaal fantastisch, en blijken 

we dat ook in de zwaarste omstandigheden nog te vinden. Ik wil jullie bedanken voor het zijn 

van de leukste broers en zus van de wereld. Wij, kinderen Jak, zouden het echter moeilijk redden 

zonder onze wederhelften, Daan, Barbara, Elien en Louise. Jullie wil ik oneindig bedanken voor 

jullie zorg en toewijding de afgelopen tijd. Ik vergeet alles om mij heen, als ik in de buurt ben van 

mijn lieve neefjes en nichtjes: Sietse, Mette, Anna, Simon en Jelle, dankjewel dat jullie er zijn. 

Mijn schoonfamilie wil ik bedanken voor de warmte waarmee ik in de familie verwelkomd ben.  

Beste collega Elffers, lieve Louise, van een vage bekende aan de overkant in de catacombe, werd 

je via New York, G0.04 en de Malediven, afgelopen voorjaar mijn vrouw. Jij bent het happy end 

van dit verhaal. En we leefden nog lang en gelukkig.  

 


