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CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL
DIMENSION 2 AND QUIVERS WITH POTENTIAL

by Claire AMIOT

ABSTRACT. — Let k be a field and A a finite-dimensional k-algebra of global
dimension < 2. We construct a triangulated category C4 associated to A which, if A
is hereditary, is triangle equivalent to the cluster category of A. When C4 is Hom-
finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object.
This new class of categories contains some of the stable categories of modules
over a preprojective algebra studied by Geiss-Leclerc-Schréer and by Buan-Iyama-
Reiten-Scott. Our results also apply to quivers with potential. Namely, we introduce
a cluster category C(Qyw) associated to a quiver with potential (Q,W). When it
is Jacobi-finite we prove that it is endowed with a cluster-tilting object whose
endomorphism algebra is isomorphic to the Jacobian algebra J(Q, W).

RESUME. — Soient k£ un corps et A une k-algébre de dimension finie et de di-
mension globale < 2. On construit une catégorie triangulée C 4 associée & A, qui est
triangle-équivalente a la catégorie amassée C4 si A est héréditaire. Lorsque C4 est
Hom-finie, on prouve qu’elle est 2-Calabi-Yau et munie d’un objet amas-basculant
canonique. Cette nouvelle classe de catégories contient certaines sous-catégories
stables de modules sur une algébre préprojective introduite par Geiss-Leclerc-
Schroer et par Buan-Iyama-Reiten-Scott. Ces résultats s’appliquent aussi aux car-
quois & potentiel. Plus précisément, on introduit une catégorie amassée C(Q, W)
associée a un carquois & potentiel (Q,W). Quand il est Jacobi-fini, on prouve
que cette catégorie est munie d’un objet amas-basculant dont ’algébre d’endomor-
phismes est isomorphe a ’algebre jacobienne.

Introduction

The cluster category associated with a finite-dimensional hereditary al-
gebra was introduced in [21] (and in [26] for the A,, case). It serves in the
representation-theoretic approach to cluster algebras introduced and stud-
ied by Fomin and Zelevinsky in a series of articles (cf. [34], [35], [36] and [13]

Keywords: Cluster category, Calabi-Yau category, cluster-tilting, quiver with potential,
preprojective algebra.
Math. classification: 16G20, 16E45.



2526 Claire AMIOT

with Berenstein). The link between cluster algebras and cluster categories
is in the spirit of ‘categorification’. Several articles (e.g. [69], [21], [28], [25],
[22], [23], [24], [27]) deal with the categorification of the cluster algebra Ag
associated with an acyclic quiver @) using the cluster category Cq associ-
ated with the path algebra of the quiver ). Another approach consists in
categorifying cluster algebras by subcategories of the category of modules
over a preprojective algebra associated to an acyclic quiver (cf. [42], [40],
[41], [43], [19]). In both approaches the categories C (or their associated
stable categories) satisfy the following fundamental properties:

> C is a triangulated category;

> C is 2-Calabi-Yau (2-CY for short);

> there exist cluster-tilting objects.

It has been shown that these properties alone imply many of the most
important theorems about cluster categories, respectively stable module
categories over preprojective algebras (cf. [54], [62], [63], [59], [71], [82]).
In particular by [54], in a category C with such properties it is possible to
‘mutate’ the cluster-tilting objects and there exist exchange triangles. This
is fundamental for categorification.

Let k be a field. In this article we want to generalize the construction
of the cluster category replacing the hereditary algebra k@ by a finite-
dimensional algebra A of finite global dimension. A candidate might be the
orbit category D?(A)/v[—2], where v is the Serre functor of the derived
category D(A). By [57], such a category is triangulated if A is derived
equivalent to an hereditary category H. However in general, it is not trian-
gulated. Thus a more appropiate candidate is the triangulated hull C4 of
the orbit category D(A)/v[—2]. It is defined in [57] as the stabilization of
a certain dg category and contains the orbit category as a full subcategory.
More precisely the category C4 is a quotient of a triangulated category 7°
by a thick subcategory N which is 3-CY. This leads us to the study of
such quotients in full generality. We prove that the quotient is 2-CY if the
objects of T are ‘limits’ of objects of ' (Theorem 1.3). In particular we
deduce that the cluster category C4 of an algebra of finite global dimension
is 2-CY if it is Hom-finite (Corollary 4.5).

We study the particular case where the algebra is of global dimension < 2.
Since k@ is a cluster-tilting object of the category Cq, the canonical can-
didate to be a cluster-tilting object in the category C4 would be A itself.
Using generalized tilting theory (cf. [56]), we give another construction of
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the cluster category. We find a triangle equivalence
Ca —— per I1/DPTI

where II is a dg algebra in negative degrees which is bimodule 3-CY and
homologically smooth. This equivalence sends the object A onto the im-
age of the free dg module II in the quotient. This leads us to the study
of the categories per I'/D'T where I is a dg algebra with the above prop-
erties. We prove that if the zeroth cohomology of T' is finite-dimensional,
then the category perI'/DT is 2-CY and the image of the free dg mod-
ule I' is a cluster-tilting object (Theorem 2.1). We show that the algebra
HOT is finite-dimensional if and only if the quotient per I'/D'T" is Hom-
finite. Thus we prove the existence of a cluster-tilting object in cluster
categories C4 associated with algebras of global dimension 2 which are
Hom-finite (Theorem 4.10). Moreover, this general approach applies to the
Ginzburg dg algebras [44] associated with a quiver with potential. There-
fore we introduce a new class of 2-CY categories C(g,w) endowed with a
cluster-tilting object associated with a Jacobi-finite quiver with potential
(Q, W) (Theorem 3.5).

Geiss, Leclerc and Schroer [43] construct subcategories Cps of mod A
(where A = Ag is a preprojective algebra of an acyclic quiver) associ-
ated with certain terminal k@Q-modules M. We show in the last part that
the stable category of such a Frobenius category Cy; is triangle equivalent
to a cluster category C4 where A is the endomorphism algebra of a post-
projective module over an hereditary algebra (Theorem 5.15). Another ap-
proach is given by Buan, Iyama, Reiten and Scott in [19]. They construct
2-Calabi-Yau triangulated categories SubA/Z,, where Z,, is a two-sided
ideal of the preprojective algebra A = Ag associated with an element w of
the Weyl group of Q. For certain elements w of the Weyl group (namely
those coming from preinjective tilting modules), we construct a triangle
equivalence between SubA/Z,, and a cluster category C4 where A is the
endomorphism algebra of a postprojective module over a concealed algebra
(Theorem 5.21).

Plan of the paper
The first section of this paper is devoted to the study of Serre functors in
quotients of triangulated categories. In Section 2, we prove the existence of

a cluster-tilting object in a 2-CY category coming from a bimodule 3-CY
dg algebra. Section 3 is a direct application of these results to Ginzburg dg
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2528 Claire AMIOT

algebras associated with quivers with potential. In particular we give the
definition of the cluster category C(q w) of a Jacobi-finite quiver with po-
tential (Q,W). In section 4 we define cluster categories of algebras of finite
global dimension. We apply the results of Sections 1 and 2 in subsection 4.3
to the particular case of global dimension < 2. The last section links the
categories introduced in [43] and [19] with these new cluster categories Cy.
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Notations

Throughout let k& be a field. By triangulated category we mean k-linear
triangulated category satisfying the Krull-Schmidt property. For all tri-
angulated categories, we will denote the shift functor by [1]. For a finite-
dimensional k-algebra A we denote by mod A the category of finite-
dimensional right A-modules. More generally, for an additive k-category
M we denote by mod M the category of finitely presented functors M°P —
mod k. Let D be the usual duality Hom (7, k). If A is a differential graded
(= dg) k-algebra, we will denote by D = DA the derived category of dg
A-modules and by DYA its full subcategory formed by the dg A-modules
whose homology is of finite total dimension over k. We write per A for the
category of perfect dg A-modules, i.e. the smallest triangulated subcategory
of DA stable under taking direct summands and which contains A.

1. Construction of a Serre functor in a quotient category
1.1. Bilinear form in a quotient category

Let 7 be a triangulated category and N a thick subcategory of 7T (i.e.
a triangulated subcategory stable under taking direct summands). We as-
sume that there is an auto-equivalence v in 7 such that v(N) C N. More-
over we assume that there is a non degenerate bilinear form

Byx : T(N,X)x T(X,vN) — k

ANNALES DE L’INSTITUT FOURIER
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which is bifunctorial in N € A and X € 7.

Construction of a bilinear form in 7 /A

— Let X and Y be objects in 7. The aim of this section is to construct
a bifunctorial bilinear form
By :TIN(X,Y)x T/N(Y,vX[-1]) — k.
We use the calculus of left fractions [84] in the triangle quotient 7/N.
Let s7tof: X Y andt log:Y — vX[-1] be two morphisms in 7 /N
We can construct a diagram

where the cone of s’ is isomorphic to the cone of s. Denote by N[1] the
cone of u. It is in A since N is v-stable. Thus we get a diagram of the form

N X X" NI1]

Z/X[—l} ﬂ Z/X//[—l] e I/N _— Z/X,

where the two horizontal rows are triangles of 7. We then define
ﬁfX,Y(S_l of, tto g) = ﬂN,Y’(vv ’LU).
LEMMA 1.1. — The form ' is well-defined, bilinear and bifunctorial.

Proof. — Tt is not hard to check that 8’ is well-defined (cf. [3]). Since
is bifunctorial and bilinear, 3’ satisfies the same properties. O

1.2. Non-degeneracy

In this section, we find conditions on X and Y such that the bilinear
form B - is non-degenerate.

TOME 59 (2009), FASCICULE 6



2530 Claire AMIOT

DEFINITION 1.2. — Let X and Y be objects in 7. A morphism
p:N—X

is called a local N -cover of X relative to Y if N is in N and if it induces
an exact sequence

0——T(X,Y) -2 T(N,Y).
Let Y and Z be objects in T. A morphism
i:Z — N’

is called a local N-envelope of Z relative to Y if N’ is in N and if it induces
an exact sequence

0——=T(Y,Z) —2= T(Y,N").

THEOREM 1.3. — Let X and Y be objects of T. If there exists a local
N-cover of X relative to Y and a local N -envelope of vX relative to Y,
then the bilienar form [ y constructed in the previous section is non-
degenerate.

For a stronger version of this theorem see also [29].

Proof. — Let f : X — Y be a morphism in 7 whose image in 7 /N is
in the kernel of 3. We have to show that it factorizes through an object

of V.

Let p: N — X be a local N-cover of X relative to Y, and let X’ be the
cone of p. The morphism f is in the kernel of ', thus for each morphism
g : Y — vN which factorizes through vX'[—1], 8(fp, g) vanishes.

X
|
Y
|
\

N

vX[-1] — vX'[-1] vN vX

p

N

X' N[1]

This means that the linear form S(fp, ?) vanishes on the image of the mor-
phism 7 (Y, vX'[-1]) — 7(Y,vN). This image is canonically isomorphic
to the kernel of the morphism 7 (Y,vN) — T (Y,vX).
Let vi : vX — vN’ be a local N-envelope of vX relative to Y. The
sequence
0——=7(Y,vX) ——T(Y,vN')
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is then exact. Therefore, the form G(fp,?) vanishes on Ker(7 (Y,vN) —
T(Y,uN')).

N X X' N1
f N’
e
Ve
e
y
Y
9
vX'[-1] vN vX vX'

Now [ is non-degenerate on
Coker (T(N',Y) — T(N,Y)) x Ker (T(Y,vN) — T(Y,vN")).

Thus the morphism fp lies in Coker(7(N',Y) — T(N,Y)), that is to say
that fp factorizes through ip. Since p : N — X is a local N -cover of X,
f factorizes through N’. O

PROPOSITION 1.4. — Let X and Y be objects in T. If for each N in N
the vector spaces T (N, X) and T (Y, N) are finite-dimensional, then the
existence of a local N'-cover of X relative toY is equivalent to the existence
of a local N -envelope of Y relative to X.

Proof. — Let g : N — X be alocal N-cover of X relative to Y. It induces
an injection

0—=T(X,Y) L= T(N,Y).

The space 7 (N,Y) is finite-dimensional by hypothesis. Fix a basis of this
space, say (f1, fa,..., fr). This space is in duality with the space 7 (Y,vN).
Let (f1, f4,---, f}) be the dual basis of the basis (f1, fo,..., fr). We show
that the morphism

v (f1oesf0) @VN

TOME 59 (2009), FASCICULE 6
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is a local N-envelope of Y relative to X. We have a commutative diagram

T(X,V) —rr o et P 7(x,vN)
9" lg*
FnfDe
T(N,Y) ——"——= TN,

If f is in the kernel of (f],...,f.)«, then for all ¢ = 1,...,r, the mor-
phism f! o f o g is zero. Thus f o g is orthogonal on the vectors of the
basis fi,..., f, and therefore vanishes. Since g is a local N-cover of X
relative to Y, f is zero, and the morphism

T(x,v) Ly T(x, )

is injective. Therefore, the morphism

y — (it EDI/N

is a local N-envelope of Y relative to X. The proof of the converse is
dual. a

Examples. — Let A be a finite-dimensional self-injective k-algebra. De-
note by 7 the derived category D’(mod A) and by N the triangulated
category per A. Since A is finite-dimensional, there is an inclusion N' C 7.
Moreover A is self-injective so of infinite global dimension. Therefore the
inclusion is strict. By [64], there is an exact sequence of triangulated cate-
gories:

0 — per A—— D’(mod A) — mod A —— 0.

The derived category D”(mod A) admits a Serre functor v = ?G%ADA
which stabilizes per A. Thus there is an induced functor in the quotient
mod A that we will also denote by v. Let ¥ be the suspension of the cat-
egory mod A. One can easily construct (cf. [3]) local N-covers and local
N-envelopes, so we can apply theorem 1.3 and the functor ¥~ o v is a

Serre functor for the stable category mod A.

G. Tabuada [82] gives an example of the converse construction. Let C be
an algebraic 2-Calabi-Yau category endowed with a cluster-tilting object.
The author constructs a triangulated category 7 and a triangulated 3-
Calabi-Yau subcategory N such that the quotient category 7 /N is triangle

ANNALES DE L’INSTITUT FOURIER
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equivalent to C. It is possible to show (cf. [3]) that the categories 7 and N
satisfy the hypotheses of Theorem 1.3.

2. Existence of a cluster-tilting object

Let A be a differential graded (= dg) k-algebra. We denote by A° the dg
algebra A°P ® A. Suppose that A has the following properties:

> A is homologically smooth (i.e. the object A, viewed as an A°-
module, is perfect);
> for each p > 0, the space HP A is zero;
> the space HYA is finite-dimensional;
> A is bimodule 3-CY, i.e. there is an isomorphism in D(A®)
RHom e (A, A®) ~ A[-3].

Since A is homologically smooth, the category DA is a subcategory
of per A (see [59], Lemma4.1). We denote by 7 the canonical projection
functor 7 : per A — C = per A/D?A. Moreover, by the same lemma, there
is a bifunctorial isomorphism

D Homp (L, M) ~ Homp (M, L[3])

for all objects L in D’ A and all objects M in per A. We call this property
the CY property.

The aim of this section is to show the following result:

THEOREM 2.1. — Let A be a dg k-algebra with the above properties.
The category C = per A/DYA is Hom-finite and 2-CY. Moreover, the ob-
ject w(A) is a cluster-tilting object. Its endomorphism algebra is isomorphic
to HOA.

2.1. t-structure on per A

The main tool of the proof of Theorem 2.1 is the existence of a canonical
t-structure in per A.

t-structure on DA

— Let D be the full subcategory of D whose objects are the dg modules
X such that HP X vanishes for all p > 0.

TOME 59 (2009), FASCICULE 6
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LEMMA 2.2. — The subcategory Dy is an aisle in the sense of Keller-
Vossieck [65].

Proof. — The canonical morphism 7¢<9A — A is a quasi-isomorphism
of dg algebras. Thus we can assume that AP is zero for all p > 0. The
full subcategory Do is stable under X +— X[1] and under extensions.
We claim that the inclusion D¢o“—— D has a right adjoint. Indeed, for
each dg A-module X, the dg A-module 7¢oX is a dg submodule of X,
since A is concentrated in negative degrees. Thus 7¢o is a well-defined
functor D — Dp. One can check easily that 7<g is the right adjoint of the
inclusion. U

PROPOSITION 2.3. — Let 'H be the heart of the t-structure, i.e. H is the
intersection D¢y N Dxo. We have the following properties:
(i) The functor H® induces an equivalence from H onto Mod H® A.

(ii) For all X and Y in H, we have an isomorphism
Extjyo4(X,Y) =~ Homp (X, Y1]).

Note that it is not true for general i that Exti, (X,Y) =~ Homp (X, Y[i]).

Proof. — (i) We may assume that A = 0 for all p > 0. We then have a
canonical morphism A — HYA. The restriction along this morphism yields
a functor ® : Mod H°A — ‘H such that H® o ® is the identity of Mod H°A.
Thus the functor H° : H — Mod H°A is full and essentially surjective.
Moreover, it is exact and an object N € H vanishes if and only if H'N
vanishes. Thus if f : L — M is a morphism of H such that H°(f) = 0,
then Im H°(f) = 0 implies that H°(Im f) = 0 and Im f = 0, so f = 0. Thus
H° : H — Mod HA is also faithful.

(ii) By Section 3.1.7 of [12] there exists a triangle functor D°(H) — D
which yields for X and Y in H and for n < 1 an isomorphism (¢bid.,
Remark (ii), Section 3.1.17, p. 85)

Hompy (X,Y[n]) ~ Homp (X, Y[n])

Applying this for n = 1 and using (i), we get the result. a

Hom-finiteness

PROPOSITION 2.4. — The category per A is Hom-finite.

LEMMA 2.5. — For each p, the space HP A is finite-dimensional.

ANNALES DE L’INSTITUT FOURIER
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Proof. — By hypothesis, HP A is zero for p > 0. We prove by induction
on n the following statement:

The space H™™A is finite-dimensional, and for all p > n + 1 the space
Homp(T<_nA, M[p]) is finite-dimensional for each M in mod H°A.

For n = 0, the space H°A is finite-dimensional by hypothesis. Let M be
in mod H®A. Since 7¢oA is ismorphic to A, Homp(r<oA, M[p]) is isomor-
phic to H°(M][p]), and so is zero for p > 1.

Suppose that the property holds for n. Form the triangle
(H " A)fn— 1] —> 7< a1 A —> 1<y A —> (H" A)fn.

Let p be an integer > n + 1. Applying the functor Homp(?, M[p]) we get
the long exact sequence:

-+ = Homp (1<_nA, M[p]) = Homp (1< _n—1 A, M([p])
— Homp ((H_"A)[n — 1],M[p]) e

By induction the space Homp(7<_, A, M[p]) is finite-dimensional.
Since M[p] is in DA we can apply the CY property. If p is > n + 3, we
have isomorphisms
Homp ((H_"A) [n—1], M[p]) ~ Homp ((H_"A), M[p—n+ 1])
~ D Homp (M[p —n—2], H_"A).
Since p —n — 2 is > 1, this space is zero.
If p = n 4+ 2, we have the isomorphisms.
Homp ((H™"A)[n — 1], M[n + 2]) ~ Homp ((H "A), M[3])
~ D Homp (M7 H*”A)
~ DHompgos(M,H "A).
The last isomorphism comes from Lemma 2.3 (i). By induction, H~"A is
finite-dimensional. Thus the space Homp((H "A)[n — 1], M[p]) is finite-
dimensional for p > n + 2.
If p = n+ 1 we have the isomorphisms
Homp ((H™"A)[n — 1], M[n + 1]) ~ Homp ((H "A), M[2])
~ D Homp (M, H " A[1])
~ D Extyo, (M, H ™A).

TOME 59 (2009), FASCICULE 6
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The last isomorphism comes from Lemma 2.3 (ii). By induction, since
H~™A is finite-dimensional, the space Homp((H "A)[n — 1], M[n + 1])
is finite-dimensional and so is Homp(7<_,—14, M[n + 1]).

Now, look at the triangle

T<n2Ad——>T¢ n1A—— (H " TA)n+ 1] — (1<—n—2A4)[1]

A

S MpA1<o o

The spaces Homp (7<_n—2A4, M[n+1]) and Homp((7<—n—24)[1], M[n+1])
vanish since M[n + 1] is in D5 _,_;1. Thus we have

Homp (Tg_n_lA[’n, — 1], M[n + 1]) ~ Homp ((H_"_lA)[n + 1], M[n+ 1])
~ Homp(H "1 A, M)
~ Hompgoa(H "1 A, M).
This holds for all finite-dimensional H° A-modules M. Thus it holds for the
compact cogenerator M = DH°A. The space
Hompoa(H " *A,DH°A) ~ DH " A

is finite-dimensional, and therefore H ("1 A4 is finite-dimensional. 0

Proof of Proposition 2.4. — The space Homp(A, Alp]) ~ HP(A) is
finite-dimensional by Lemma 2.5 for each integer p. The subcategory of
(per A)°P x per A whose objects are the pairs (X,Y") such that Homp(X,Y)
is finite-dimensional is stable under extensions and passage to direct fac-
tors. ]

Restriction of the t-structure to per A

LEMMA 2.6. — For each X in per A, there exist integers N and M such
that X belongs to D<n and T D¢y

Proof. — The object A belongs to D¢g. Moreover, since for X in DA,
the space Homp (A, X) is isomorphic to H°X, the dg module A belongs
to 2D« _;. Thus the property is true for A. For the same reasons, it is true
for all shifts of A. Moreover, this property is clearly stable under taking
direct summands and extensions. Thus it holds for all objects of per A. O

This lemma implies the following result:

PROPOSITION 2.7. — The t-structure on DA restricts to per A.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Let X be in per A, and look at the canonical triangle
T<oX —= X —— 750X —— (1<0X)[1].
Since per A is Hom-finite, the space
HPX =~ Homp (A, X[p])
is finite-dimensional for all p € Z and vanishes for all p > 0 by Lemma 2.6.
Thus the object 75X is in D’ A and so in per A. Since per A is a triangulated

subcategory, it follows that 7<oX also lies in per A. O

PROPOSITION 2.8. — Let 7 be the projection 7 : per A — C. Then for X
and Y in per A, we have

Home(n X, 7Y) = h_m) Homp (1<, X, 7<nY)

Proof. —Let X and Y be in per A. An element of lim Homp (7<, X, 7<,Y)

is an equivalence class of morphisms 7¢, X — 7¢,Y. Two morphisms
fim<nX — 7Y and g 1 ¢ X — T<nY with m > n are equivalent
if there is a commutative square

!
Tan _— TgnY

.

9
Tng e Tng

where the vertical arrows are the canonical morphisms. If f is a morphism
fi17<nX — 7<,Y, we can form the following morphism from X to Y in C:

where the morphisms 7¢, X — X and 7¢,Y — Y are the canonical mor-
phisms. This is a morphism from 7X to 7Y in C because the cone of the
morphism 7¢, X — X is in D’A. Moreover, if f : 7<, X — 7¢,Y and

TOME 59 (2009), FASCICULE 6
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g: T<mX — T<mY are equivalent, there is an equivalence of diagrams:

f
Tan— > TgnY

TN

\i
X Y
A

T

g9
T<mX e T Y

Thus we have a well-defined map from lim Homp (7¢, X, 7<,Y ) to
Hom,c (7 X, 7Y") which is injective. -
Now let 0%
PN
X Y

be a morphism in Home (7 X, 7Y"). Let X” be the cone of s. It is an object
of D?A, and therefore lies in D~,, for some n < 0. Thus there are no
morphisms from 7¢, X to X” and there is a factorization

Tan

RN

X! S X X" X’[l]

We obtain an isomorphism of diagrams
X/
/ \
X Y
~ /;

Tan

The morphism f : 7¢<,X — Y induces a morphism [’ : 7<, X — 7<,Y
which lifts the given morphism. Thus the map fromliin> Homp (T<n X, 7<nY)
to Home(mX,7Y") is surjective. O

2.2. Fundamental domain

Let F be the following subcategory of per A:
F=DgN LDg_g N per A.

The aim of this section is to show:
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PROPOSITION 2.9. — The projection functor m : per A — C induces a
k-linear equivalence between F and C.

add(A)-approximation for objects of the fundamental domain

LEMMA 2.10. — For each object X of F, there exists a triangle
P1 PO X P1 [1]
with Py and Py in add(A).

Proof. — For X in per A, the morphism
HomD(AaX) — HomH(H0A7H0X)a f’_’HO(f)

is an isomorphism since Homp (4, X) ~ H°X. Thus it is possible to find a
morphism Py — X, with Py a free dg A-module, inducing an epimorphism
H°Py — H°X. Now take X in F and Py — X as previously and form the
triangle

Pl PO X Pl[l}

Step 1: The object Py is in D¢y N J‘Dg,l,
The objects X and Py are in Dgp, so P; is in Dg;. Moreover, since
H°Py — H°X is an epimorphism, H'(P;) vanishes and P; is in Dgo.

Let Y be in D¢_1, and look at the long exact sequence
-+ —> Homp(Fy,Y) —— Homp(F1,Y)
— Homp(X[-1],Y) ——---.

The space Homp(X[—1],Y) vanishes since X is in *D¢_5 and Y is
in D¢_;. The object P is free, and H°Y is zero, so the space Homp (P, Y)
also vanishes. Consequently, the object P; is in L’Dg,l.

Step 2: HYPy is a projective H° A-module.

Since P is in D¢g there is a triangle
T<-1Pi ——= P, ——= HP, —— (1<_1P1)[1].
Now take an object M in the heart H, and look at the long exact sequence
-+ — Homp ((r<—1P1)[1], M[1]) — Homp (H°Py, M[1])
—— Homp (P, M[1]) — -+ .

The space Homp((7<_1P1)[1], M]1]) is zero because Homp(Dg_2,D>_1)
vanishes in a t-structure. Moreover, the space Homp(Py, M[1]) vanishes
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because Pj is in LDg_l. Thus Homp(H° Py, M[1]) is zero. But this space
is isomorphic to the space Ext%i(H VP, M) by Proposition 2.3. This proves
that HYP; is a projective HY A-module.

Step 3: Py is isomorphic to an object of add(A).

As previously, since HO P, is projective, it is possible to find an object P in
add(A) and a morphism P — P; inducing an isomorphism H°P — HOP;.
Form the triangle

Since P and P, are in D¢ and Ho(v) is surjective, the cone @ lies in D¢y.
But then w is zero since P; is in LDg,l. Thus the triangle splits, and P

is isomorphic to the direct sum P; & Q. Therefore we have a short exact
sequence

0 HQ HOP HOP, —— 0,

and HYQ vanishes. The object @ is in D¢_1, the triangle splits, and there
is no morphism between P and D¢_1, so @ is the zero object. O

Equivalence between the shifts of F

LEMMA 2.11. — The functor 7<_1 induces an equivalence from F to F[1]

Proof. — Step 1: The image of the functor T<_1 restricted to F is in F[1].

Recall that F is D¢ N D¢ _oNper A so F[1]is Dc_1 N D3N per A.
Let X be an object in F. By definition, 7¢<_1 X lies in D¢_; and there is a
canonical triangle

T<-1X X HYX <1 X[1] .
Now let Y be an object in D¢_3 and form the long exact sequence
-+ —— Homp(X,Y) —— Homp(r<_1X,Y)
— Homp((H°X)[-1],Y) ——=---.

Since X is in 2 D¢ _», the space Homp (X, Y') vanishes. The object H° X [—1]
is of finite total dimension, so by the CY property, we have an isomorphism
Homp (H°X[-1],Y) ~ D Homp (Y, H'X[2]).

But since Homp (D« _3, D> _2) is zero, the space Homp ((H°X)[—1],Y) van-
ishes and 7¢<_1 X lies in J‘Dg_g.

Step 2: The functor 7<_1 : F — F[1] is fully faithful.
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Let X and Y be two objects in F and f : 7¢«_1X — 7¢<_1Y be a mor-
phism:

HX[-1] —=T7¢< 1 X —= X ——= {'X
|
i \

HY[-1] —=1<1Y ——=Y —— gy
The space Homp (H X[—1],Y) is isomorphic to D Homp (Y, HY X [2]) by the
CY property. Since Y is in LD<_2, this space is zero, and the composition
i o f factorizes through the canonical morphism 7¢<_; X — X. Therefore,
the functor 7¢_; is full.

Let X and Y be objects of F and f : X — Y a morphism satisfying
T<—1f = 0. It induces a morphism of triangles

HOX[-1] —> 1< 1 X > X —> [gOX

N

HOY[—I] —_ > T<,1Y —Y —— Oy,

The composition f o4 vanishes, so f factorizes through H°X. But by the
CY property the space of morphisms Homp(H®X,Y) is isomorphic to
D Homp (Y, HYX[3]) which is zero since Y is in 1 D¢_5. Thus the func-
tor 7<—1 restricted to F is faithful.

Step 3: The functor 7<_1 : F — F[1] is essentially surjective.
Let X be in F[1]. By the previous lemma there exists a triangle

with Py and P; in add(A). Denote by v the Nakayama functor on the
projectives of mod H°A. Let M be the kernel of the morphism vH°P, —
vHOP,. It lies in the heart H.

Substep (i): There is an isomorphism of functors
Hom (?’X[l])IH ~ Hom (7, M).
Let L be in H. We then have a long exact sequence
-+ —> Homyp (L, Py[2]) —= Homp (L, X[1])

— Homp (L,Pl[?)]) — Homp (L’PO[?)D ...
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The space Homp (L, Py[2]) is isomorphic to D Homp(Py, L[1]) by the CY
property, and vanishes because Py is in J-Dg_l. Moreover, we have the
isomorphisms

Homp (L, P1[3]) ~ D Homp(P, L)
~ DHomy(HP;, L)
~ Homy (L, vH'Py).
Thus Homp (7, X[1])},, is isomorphic to the kernel of
Homy (7, vH°P;) — Homy(?,vH  Py),
which is just Homy (7, M).
Substep (ii): There is a monomorphism of functors
Exty,(?, M) & Homp(?, X[2])},, .
For L in H, look at the following long exact sequence:
-+ —> Homp (L, P1[3]) — Homp(L, P1[3])
— Homp (L, X[2]) — Homp (L, Pi[4]) — - -

The space Homp (L, P;[4]) is isomorphic to D Homp(Py[1], L) which is zero
since Pi[1] is in D¢y and L is in Dyo. Thus the functor Homp(?, X[2]),,,
is isomorphic to the cokernel of Homy (7, vH°P;) — Homs(?,vH"Py). By
definition, Ext}H(?, M) is the first homology of a complex of the form

-+ — 0 —> Homy(?,vHP;) — Homy (?,vH Py)
—— Homy(?,I) —— -+,
where I is an injective H° A-module. Thus we get the canonical injection
Ext%{(?, M) & Homp (?, X[Q])IH‘
Now form the following triangle:

X Y M X[1].

Substep (i11): Y is in F and 7<_1Y is isomorphic to X.
Since X and M are in D¢y, Y is in D¢p. Let Z be in D¢_5 and form
the long exact sequence

-+ —> Homp(X[1], Z) —> Homp(M, Z) — Homp(Y, Z)
—> Homp(X,Z) — Homp(M[-1],Z) — - -- .
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By the CY property and the fact that Z[2] is in D¢, we have isomorphisms
Homp(M[-1], Z) ~ D Homp (Z[-2], M)
~ D Homy(H *Z,M).
Moreover, since X is in ng_g, we have
Homp (X, Z) ~ Homp (X, (H*Z)[2])
~ DHomy, (H?Z, X[1]).

By substep (i) the functors Homy (7, M) and Homp(?, X[1])},,
phic. Therefore we deduce that the following morphism is an isomorphism:

are isomor-

Homp (X, Z) — Homp (M[-1], Z).
Now look at the triangle
T<—3Z — 7 —> H_2Z[2] — (T<_3Z)[1],

put To(T) = Homp (M, T), T1(T) = Homp(X[1],T) and form the commu-
tative diagram

To(T<_3Z) e To(Z) — TO (H722[2]) E—— TO (Tg_gz[l])

] d
Yi(r¢<—3Z) —= T1(Z) —= T1(H?Z[2]) — Y1 (1<-32[1]).
By the CY property and the fact that (7<_3Z)[—3] is in Do, we have
isomorphisms
Homp (M[—l]7 T<_3Z[—1]) ~ D Homp (T<_3Z[—3], M)
~ DHomy(H 32, M).
Since X is in 1D<_3, we have
Homp (X, (r<—3Z)[—1]) =~ Homp (X, H *Z[-2])
~ DHomy (H°Z, X1]).

Now we deduce from substep (i) that a[—1] is an isomorphism.

The space Homp (X [1], 7<_3Z[1]) is zero because X is -D¢_3. Moreover
there are isomorphisms

Homp (M, H *Z[2]) ~ DHomp (H *Z, M[1])
~ DExt; (H 22, M).
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The space Homp(X[1], H=2Z[2]) is isomorphic to D Homp(H 27, X[2]).
And by substep (ii), the morphism Ext;,(?, M) — Homp (7, X[2]),,,
jective, so c¢ is surjective. Therefore using a weak form of the five-lemma

is in-

we deduce that b is surjective.

Finally, we have the exact sequence
Homp(X([1], Z) —> Homp (M, Z) — Homp (Y, Z)
— Homp (X, Z) == Homp(M[-1], Z).

Thus the space Homp (M, Z) is zero, and Z is in 1 D¢ _s.

It is now easy to see that there is an isomorphism of triangles:

T<,1Y Y HOY T<_1Y[1]
X Y M X[1]. -

Proof of Proposition 2.9

Step 1: The functor w restricted to F is fully faithful.

Let X and Y be objects in F. By Proposition 2.3 (iii), Hom¢ (7 X, 1Y)
is isomorphic to the direct limit ILT{ Homp (1<, X, 7<»nY). A morphism be-
tween X and Y in C is a diagram of the form

Tan
X Y.
The canonical triangle

(ron X1 —> Ten X —> X —> 75,X

yields a long exact sequence
-+ —> Homp (75, X,Y) — Homp(X,Y)
— HomD(Tan,Y) — Homp ((7’>nX)[*1], }/) —

The space Homp ((75,X)[—1],Y) is isomorphic to D Homp (Y, (75, X)[2]).
The object X is in D¢, thus so is 75, X, and D Homp (Y, (75, X)[2]) van-
ishes. For the same reasons, the space Homp (7=, X, Y) vanishes. Thus there
are bijections

Homp(Tan, TgnY) s HomD(Tan, Y) ;> HomD(X, Y)
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Therefore, the functor 7 : F — C is fully faithful.

Step 2: For X in per A, there exists an integer N and an object Y of
F[—N] such that 71X and 7Y are isomorphic in C.

Let X be in per A. By Lemma 2.6, there exists an integer N such that X is
in “D¢n_o. For an object Y in D¢ y_o, the space Homp (7= 5 X)[—1],Y) is
isomorphic to D Homp (Y, (7= yX)[2]) and thus vanishes. Therefore, 7« v X
is still in *Dcy_o, and thus is in F[—N]. Since 7-xX is in DA, the
objects T¢y X and X are isomorphic in C.

Step 3: The functor m restricted to F is essentially surjective.

Let X be in per A and N such that 7¢yX is in F[—N]. By Lemma 2.11,
T<—1 induces an equivalence between F and F[1]. Thus since the functor
moTg<_1 : perA — C is isomorphic to =, there exists an object ¥ in F
such that 7(Y) and 7(X) are isomorphic in C. Therefore, the functor 7
restricted to F is essentially surjective.

PROPOSITION 2.12. — If X and Y are objects in F, there is a short
exact sequence:

0 — Extp(X,Y) —= Extz(X,Y) — DExtp (Y, X) —= 0.
Proof. — Let X and Y be in F. The canonical triangle
T<oX —= X —= 720X — (1< X)[1]
yields the long exact sequence
Homp ((150X)[—1],Y[1]) =<— Homp (T<0 X, Y[1])
<— Homp (X, Y[1]) =<—— Homp (750X, Y1]).

The space Homp (X [—1],Y[1]) is zero because X is in *D¢_5 and Y is
in D¢p. Moreover, the space Homp (750X, Y[1]) is zero because of the CY
property. Thus this long sequence reduces to a short exact sequence:

0 — Extp(X,Y) — Homp (70X, Y[1])
— Homp ((10X)[-1], Y[1]) — 0.

Step 1: There is an isomorphism Homp ((150X)[—1],Y) =~ D Extp (Y, X).

The space Homp (70X )[—1],Y[1]) is isomorphic to D Homp (Y, 750X [1])
by the CY property.
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LN

(T<oX)[1] X[ (720 X)[1] —— (T<0X)[2]

But since Homp (Y, (<0 X)[1]) and Homp(Y, (7<0X)[2]) are zero, we have
an isomorphism
Homp (750X[~1],Y) ~ DExtp(Y, X).
Step 2: There is an isomorphism Exté(wX7 7Y) ~ Homp (<1 X, Y[1]).
By Lemma 2.11, the object 7«9 X belongs to F[1] and clearly Y[1] belongs
to F[1]. By Proposition 2.9 (applied to the shifted ¢-structure), the functor

7 : per A — C induces an equivalence from F[1] to C and clearly we have
7(T<0X,Y[1]) — m(X). We obtain bijections

Homp (r<0 X, Y[1]) —— Homp (77«0 X, 7Y [1]) —— Homp (7 X, 7Y [1]).

O

Proof of Theorem 2.1

Step 1: The category C is Hom-finite and 2-CY.

The category F is obviously Hom-finite, hence so is C by Proposition 2.9.
The categories 7 = per A and N' = DY A C per A satisfy the hypotheses of
section 1. By [59], thanks to the CY property, there is a bifunctorial non
degenerate bilinear form

ﬂN,X : HomD(N,X) X HomD (X,N[3]) — k
for N in D’A and X in per A. Thus, by Section 1, there exists a bilinear
bifunctorial form

By : Home(X,Y) x Home (Y, X[2]) — k

for X and Y in C = per A/D*A. We would like to show that it is non
degenerate. Since per A is Hom-finite, by Theorem 1.3 and Proposition 1.4,
it is sufficient to show the existence of local A-envelopes. Let X and Y be
objects of per A. Therefore by Lemma 2.6, X is in D¢ x. Thus there is an
injection
0 — Homp(X,Y) — Homp (X, 7= nY)
and Y — 7> nY is a local AM-envelope relative to X. Therefore, C is 2-CY.
Step 2: The object wA is a cluster-tilting object of the category C.
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Let A be the free dg A-module in per A. Since H'A is zero, the space
Exth(A, A) is also zero. Thus by the short exact sequence

0 —> Extp,(A, A) — Ext}(7mA,m1A) —> DExtp(A, A) —= 0

of Proposition 2.12, w(A) is a rigid object of C. Now let X be an object
of C. By Proposition 2.9, there exists an object Y in F such that 7Y is
isomorphic to X. Now by Lemma 2.10 , there exists a triangle in per A

P, Py Y Py[1]

with Py and Py in add(A). Applying the triangle functor m we get a triangle
inC

TP 7Py X wPi[1]

with 7P, and 7Py in add(wA). If Exts (A, X) vanishes, this triangle splits
and X is a direct factor of mPy. Thus, the object wA is a cluster-tilting
object in the 2-CY category C.

3. Cluster categories for Jacobi-finite quivers with
potential

3.1. Ginzburg dg algebra

Let @ be a finite quiver. For each arrow a of @), we define the cyclic
derivative with respect to a 0, as the unique linear map

Oa : kQ/[kQ, kQ] — kQ

which takes the class of a path p to the sum Zp:uav vu taken over all
decompositions of the path p (where u and v are possibly idempotents e;

associated to a vertex i of Q).

An element W of kQ/[kQ, kQ)] is called a potential on Q. It is given by
a linear combination of cycles in Q.

DEFINITION 3.1 (see Ginzburg [44, Section 4.2)]). — Let Q be a finite
quiver and W a potential on Q). Let @ be the graded quiver with the same
vertices as () and whose arrows are

> the arrows of @ (of degree 0),
> an arrow a* : j — 1 of degree —1 for each arrow a : 1 — j of Q,
> a loop t; : i — i of degree —2 for each vertex i of Q.
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The Ginzburg dg algebra I'(Q,W) is a dg k-algebra whose underlying
graded algebra is the graded path algebra kQ). Its differential is the unique
linear endomorphism homogeneous of degree 1 which satisfies the Leibniz
rule

d(uwv) = (du)v + (—1)Pudo,

for all homogeneous u of degree p and all v, and takes the following values
on the arrows of Q:

> da = 0 for each arrow a of Q,
> d(a*) = 9, W for each arrow a of Q,
> d(t;) = e (D>, la,a*])e; for each vertex i of Q where e; is the idem-

potent associated to i and the sum runs over all arrows of Q.

The strictly positive homology of this dg algebra clearly vanishes. More-
over B. Keller showed the following result:

THEOREM 3.2 (Keller [60]). — Let @ be a finite quiver and W a poten-
tial on Q). Then the Ginzburg dg algebra I'(Q, W) is homologically smooth
and bimodule 3-CY.

3.2. Jacobian algebra

DEFINITION 3.3. — Let @ be a finite quiver and W a potential on Q.
The Jacobian algebra J(Q,W) is the zeroth homology of the Ginzburg
algebra T'(Q,W). This is the quotient algebra

kQ/(9W.a € Q1)
where (0,W,a € Q1) is the two-sided ideal generated by the 9, W .
Remark: We follow the terminology of H. Derksen, J. Weyman and
A. Zelevinsky [30, Def. 3.1].
B. Keller [60] and A.Buan, O.Iyama, I. Reiten and D. Smith [20] have

shown independently in recent works the following result:

THEOREM 3.1 (Keller, Buan-Iyama-Reiten-Smith). — Let T be a
cluster-tilting object in the cluster category Cqg associated to an acyclic
quiver (). Then there exists a quiver with potential (Q', W) such that
Endc,, (T') is isomorphic to J(Q', W).
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3.3. Jacobi-finite quiver with potentials

The quiver with potential (Q, W) is called Jacobi-finite if the Jacobian
algebra J(Q, W) is finite-dimensional.

DEFINITION 3.4. — Let (Q, W) be a Jacobi-finite quiver with potential.
Denote by I" the Ginzburg dg algebra T'(Q, W). Let perI" be the thick sub-
category of DI' generated by I' and DT the full subcate