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CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL

DIMENSION 2 AND QUIVERS WITH POTENTIAL

by Claire AMIOT

Abstract. — Let k be a field and A a finite-dimensional k-algebra of global
dimension 6 2. We construct a triangulated category CA associated to A which, if A
is hereditary, is triangle equivalent to the cluster category of A. When CA is Hom-
finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object.
This new class of categories contains some of the stable categories of modules
over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-
Reiten-Scott. Our results also apply to quivers with potential. Namely, we introduce
a cluster category C(Q,W ) associated to a quiver with potential (Q,W ). When it
is Jacobi-finite we prove that it is endowed with a cluster-tilting object whose
endomorphism algebra is isomorphic to the Jacobian algebra J (Q,W ).

Résumé. — Soient k un corps et A une k-algèbre de dimension finie et de di-
mension globale 6 2. On construit une catégorie triangulée CA associée à A, qui est
triangle-équivalente à la catégorie amassée CA si A est héréditaire. Lorsque CA est
Hom-finie, on prouve qu’elle est 2-Calabi-Yau et munie d’un objet amas-basculant
canonique. Cette nouvelle classe de catégories contient certaines sous-catégories
stables de modules sur une algèbre préprojective introduite par Geiss-Leclerc-
Schröer et par Buan-Iyama-Reiten-Scott. Ces résultats s’appliquent aussi aux car-
quois à potentiel. Plus précisément, on introduit une catégorie amassée C(Q,W )
associée à un carquois à potentiel (Q,W ). Quand il est Jacobi-fini, on prouve
que cette catégorie est munie d’un objet amas-basculant dont l’algèbre d’endomor-
phismes est isomorphe à l’algèbre jacobienne.

Introduction

The cluster category associated with a finite-dimensional hereditary al-

gebra was introduced in [21] (and in [26] for the An case). It serves in the

representation-theoretic approach to cluster algebras introduced and stud-

ied by Fomin and Zelevinsky in a series of articles (cf. [34], [35], [36] and [13]

Keywords: Cluster category, Calabi-Yau category, cluster-tilting, quiver with potential,
preprojective algebra.
Math. classification: 16G20, 16E45.



2526 Claire AMIOT

with Berenstein). The link between cluster algebras and cluster categories

is in the spirit of ‘categorification’. Several articles (e.g. [69], [21], [28], [25],

[22], [23], [24], [27]) deal with the categorification of the cluster algebra AQ
associated with an acyclic quiver Q using the cluster category CQ associ-

ated with the path algebra of the quiver Q. Another approach consists in

categorifying cluster algebras by subcategories of the category of modules

over a preprojective algebra associated to an acyclic quiver (cf. [42], [40],

[41], [43], [19]). In both approaches the categories C (or their associated

stable categories) satisfy the following fundamental properties:

⊲ C is a triangulated category;

⊲ C is 2-Calabi-Yau (2-CY for short);

⊲ there exist cluster-tilting objects.

It has been shown that these properties alone imply many of the most

important theorems about cluster categories, respectively stable module

categories over preprojective algebras (cf. [54], [62], [63], [59], [71], [82]).

In particular by [54], in a category C with such properties it is possible to

‘mutate’ the cluster-tilting objects and there exist exchange triangles. This

is fundamental for categorification.

Let k be a field. In this article we want to generalize the construction

of the cluster category replacing the hereditary algebra kQ by a finite-

dimensional algebra A of finite global dimension. A candidate might be the

orbit category Db(A)/ν[−2], where ν is the Serre functor of the derived

category Db(A). By [57], such a category is triangulated if A is derived

equivalent to an hereditary category H. However in general, it is not trian-

gulated. Thus a more appropiate candidate is the triangulated hull CA of

the orbit category Db(A)/ν[−2]. It is defined in [57] as the stabilization of

a certain dg category and contains the orbit category as a full subcategory.

More precisely the category CA is a quotient of a triangulated category T

by a thick subcategory N which is 3-CY. This leads us to the study of

such quotients in full generality. We prove that the quotient is 2-CY if the

objects of T are ‘limits’ of objects of N (Theorem 1.3). In particular we

deduce that the cluster category CA of an algebra of finite global dimension

is 2-CY if it is Hom-finite (Corollary 4.5).

We study the particular case where the algebra is of global dimension 6 2.

Since kQ is a cluster-tilting object of the category CQ, the canonical can-

didate to be a cluster-tilting object in the category CA would be A itself.

Using generalized tilting theory (cf. [56]), we give another construction of

ANNALES DE L’INSTITUT FOURIER
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the cluster category. We find a triangle equivalence

CA
∼ // per Π/DbΠ

where Π is a dg algebra in negative degrees which is bimodule 3-CY and

homologically smooth. This equivalence sends the object A onto the im-

age of the free dg module Π in the quotient. This leads us to the study

of the categories per Γ/DbΓ where Γ is a dg algebra with the above prop-

erties. We prove that if the zeroth cohomology of Γ is finite-dimensional,

then the category per Γ/DbΓ is 2-CY and the image of the free dg mod-

ule Γ is a cluster-tilting object (Theorem 2.1). We show that the algebra

H0Γ is finite-dimensional if and only if the quotient per Γ/DbΓ is Hom-

finite. Thus we prove the existence of a cluster-tilting object in cluster

categories CA associated with algebras of global dimension 2 which are

Hom-finite (Theorem 4.10). Moreover, this general approach applies to the

Ginzburg dg algebras [44] associated with a quiver with potential. There-

fore we introduce a new class of 2-CY categories C(Q,W ) endowed with a

cluster-tilting object associated with a Jacobi-finite quiver with potential

(Q,W ) (Theorem 3.5).

Geiss, Leclerc and Schröer [43] construct subcategories CM of mod Λ

(where Λ = ΛQ is a preprojective algebra of an acyclic quiver) associ-

ated with certain terminal kQ-modules M . We show in the last part that

the stable category of such a Frobenius category CM is triangle equivalent

to a cluster category CA where A is the endomorphism algebra of a post-

projective module over an hereditary algebra (Theorem 5.15). Another ap-

proach is given by Buan, Iyama, Reiten and Scott in [19]. They construct

2-Calabi-Yau triangulated categories SubΛ/Iw where Iw is a two-sided

ideal of the preprojective algebra Λ = ΛQ associated with an element w of

the Weyl group of Q. For certain elements w of the Weyl group (namely

those coming from preinjective tilting modules), we construct a triangle

equivalence between SubΛ/Iw and a cluster category CA where A is the

endomorphism algebra of a postprojective module over a concealed algebra

(Theorem 5.21).

Plan of the paper

The first section of this paper is devoted to the study of Serre functors in

quotients of triangulated categories. In Section 2, we prove the existence of

a cluster-tilting object in a 2-CY category coming from a bimodule 3-CY

dg algebra. Section 3 is a direct application of these results to Ginzburg dg

TOME 59 (2009), FASCICULE 6



2528 Claire AMIOT

algebras associated with quivers with potential. In particular we give the

definition of the cluster category C(Q,W ) of a Jacobi-finite quiver with po-

tential (Q,W ). In section 4 we define cluster categories of algebras of finite

global dimension. We apply the results of Sections 1 and 2 in subsection 4.3

to the particular case of global dimension 6 2. The last section links the

categories introduced in [43] and [19] with these new cluster categories CA.
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Notations

Throughout let k be a field. By triangulated category we mean k-linear

triangulated category satisfying the Krull-Schmidt property. For all tri-

angulated categories, we will denote the shift functor by [1]. For a finite-

dimensional k-algebra A we denote by modA the category of finite-

dimensional right A-modules. More generally, for an additive k-category

M we denote by modM the category of finitely presented functorsMop →

modk. Let D be the usual duality Homk(?, k). If A is a differential graded

(= dg) k-algebra, we will denote by D = DA the derived category of dg

A-modules and by DbA its full subcategory formed by the dg A-modules

whose homology is of finite total dimension over k. We write perA for the

category of perfect dg A-modules, i.e. the smallest triangulated subcategory

ofDA stable under taking direct summands and which contains A.

1. Construction of a Serre functor in a quotient category

1.1. Bilinear form in a quotient category

Let T be a triangulated category and N a thick subcategory of T (i.e.

a triangulated subcategory stable under taking direct summands). We as-

sume that there is an auto-equivalence ν in T such that ν(N ) ⊂ N . More-

over we assume that there is a non degenerate bilinear form

βN,X : T (N,X)× T (X, νN) −→ k

ANNALES DE L’INSTITUT FOURIER
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which is bifunctorial in N ∈ N and X ∈ T .

Construction of a bilinear form in T /N

— Let X and Y be objects in T . The aim of this section is to construct

a bifunctorial bilinear form

β′X,Y : T /N
(
X,Y )× T /N (Y, νX[−1]

)
−→ k.

We use the calculus of left fractions [84] in the triangle quotient T /N .

Let s−1 ◦f : X → Y and t−1 ◦ g : Y → νX[−1] be two morphisms in T /N .

We can construct a diagram

X

f ��?
??

? Y

syytttttt

g ''OOOOOOO νX[−1]

twwppp
pp

νu[−1]
rr

Y ′

%%JJ
JJ

J νX ′[−1]
s′

wwooooo

νX ′′[−1]

where the cone of s′ is isomorphic to the cone of s. Denote by N [1] the

cone of u. It is in N since N is ν-stable. Thus we get a diagram of the form

N //

v

//

X
u //

f

��

X ′′ // N [1]

Y ′

��

w

��
νX[−1]

νu[−1]
// νX ′′[−1] // νN // νX,

where the two horizontal rows are triangles of T . We then define

β′X,Y (s−1 ◦ f, t−1 ◦ g) = βN,Y ′(v, w).

Lemma 1.1. — The form β′ is well-defined, bilinear and bifunctorial.

Proof. — It is not hard to check that β′ is well-defined (cf. [3]). Since β

is bifunctorial and bilinear, β′ satisfies the same properties. �

1.2. Non-degeneracy

In this section, we find conditions on X and Y such that the bilinear

form β′X,Y is non-degenerate.

TOME 59 (2009), FASCICULE 6



2530 Claire AMIOT

Definition 1.2. — Let X and Y be objects in T . A morphism

p : N −→ X

is called a local N -cover of X relative to Y if N is in N and if it induces

an exact sequence

0 // T (X,Y )
p∗ // T (N,Y ).

Let Y and Z be objects in T . A morphism

i : Z −→ N ′

is called a local N -envelope of Z relative to Y if N ′ is in N and if it induces

an exact sequence

0 // T (Y, Z)
i∗ // T (Y,N ′).

Theorem 1.3. — Let X and Y be objects of T . If there exists a local

N -cover of X relative to Y and a local N -envelope of νX relative to Y ,

then the bilienar form β′X,Y constructed in the previous section is non-

degenerate.

For a stronger version of this theorem see also [29].

Proof. — Let f : X → Y be a morphism in T whose image in T /N is

in the kernel of β′. We have to show that it factorizes through an object

of N .

Let p : N → X be a local N -cover of X relative to Y , and let X ′ be the

cone of p. The morphism f is in the kernel of β′, thus for each morphism

g : Y → νN which factorizes through νX ′[−1], β(fp, g) vanishes.

N
p // X //

f

��

X ′ // N [1]

Y

���
�
�

g

$$I
IIIIIIIII

νX[−1] // νX ′[−1] // νN // νX

This means that the linear form β(fp, ?) vanishes on the image of the mor-

phism T (Y, νX ′[−1]) −→ T (Y, νN). This image is canonically isomorphic

to the kernel of the morphism T (Y, νN) −→ T (Y, νX).

Let νi : νX → νN ′ be a local N -envelope of νX relative to Y . The

sequence

0 // T (Y, νX) // T (Y, νN ′)

ANNALES DE L’INSTITUT FOURIER
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is then exact. Therefore, the form β(fp, ?) vanishes on Ker(T (Y, νN) −→

T (Y, νN ′)).

N
p // X //

f

��

i

!!C
CC

CC
CC

C X ′ // N [1]

N ′

||z
z

z
z

Y

g

��
νX ′[−1] // νN //

//

νX

νi

""E
EE

EE
EE

EE
// νX ′

νN ′

Now β is non-degenerate on

Coker
(
T (N ′, Y )→ T (N,Y )

)
× Ker

(
T (Y, νN)→ T (Y, νN ′)

)
.

Thus the morphism fp lies in Coker(T (N ′, Y ) → T (N,Y )), that is to say

that fp factorizes through ip. Since p : N → X is a local N -cover of X,

f factorizes through N ′. �

Proposition 1.4. — Let X and Y be objects in T . If for each N in N

the vector spaces T (N,X) and T (Y,N) are finite-dimensional, then the

existence of a local N -cover of X relative to Y is equivalent to the existence

of a local N -envelope of Y relative to X.

Proof. — Let g : N → X be a localN -cover ofX relative to Y . It induces

an injection

0 // T (X,Y )
g∗ // T (N,Y ).

The space T (N,Y ) is finite-dimensional by hypothesis. Fix a basis of this

space, say (f1, f2, . . . , fr). This space is in duality with the space T (Y, νN).

Let (f ′1, f
′
2, . . . , f

′
r) be the dual basis of the basis (f1, f2, . . . , fr). We show

that the morphism

Y
(f ′1,...,f

′

r) //
r⊕

i=1

νN

TOME 59 (2009), FASCICULE 6



2532 Claire AMIOT

is a local N -envelope of Y relative to X. We have a commutative diagram

T (X,Y )
��

g∗

��

(f ′1,...,f
′

r)∗ //
⊕
T (X, νN)

g∗

��

T (N,Y )
(f ′1,...,f

′

r)∗ //
⊕
T (N, νN).

If f is in the kernel of (f ′1, . . . , f
′
r)∗, then for all i = 1, . . . , r, the mor-

phism f ′i ◦ f ◦ g is zero. Thus f ◦ g is orthogonal on the vectors of the

basis f ′1, . . . , f
′
r and therefore vanishes. Since g is a local N -cover of X

relative to Y , f is zero, and the morphism

T (X,Y )
(f ′1,...,f

′

r)∗ //
⊕
T (X, νN)

is injective. Therefore, the morphism

Y
(f ′1,...,f

′

r) //
r⊕

i=1

νN

is a local N -envelope of Y relative to X. The proof of the converse is

dual. �

Examples. — Let A be a finite-dimensional self-injective k-algebra. De-

note by T the derived category Db(modA) and by N the triangulated

category perA. Since A is finite-dimensional, there is an inclusion N ⊂ T .

Moreover A is self-injective so of infinite global dimension. Therefore the

inclusion is strict. By [64], there is an exact sequence of triangulated cate-

gories:

0 // perA // Db(modA) // modA // 0.

The derived category Db(modA) admits a Serre functor ν = ?
L

⊗ADA

which stabilizes perA. Thus there is an induced functor in the quotient

modA that we will also denote by ν. Let Σ be the suspension of the cat-

egory modA. One can easily construct (cf. [3]) local N -covers and local

N -envelopes, so we can apply theorem 1.3 and the functor Σ−1 ◦ ν is a

Serre functor for the stable category modA.

G. Tabuada [82] gives an example of the converse construction. Let C be

an algebraic 2-Calabi-Yau category endowed with a cluster-tilting object.

The author constructs a triangulated category T and a triangulated 3-

Calabi-Yau subcategory N such that the quotient category T /N is triangle

ANNALES DE L’INSTITUT FOURIER
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equivalent to C. It is possible to show (cf. [3]) that the categories T and N

satisfy the hypotheses of Theorem 1.3.

2. Existence of a cluster-tilting object

Let A be a differential graded (= dg) k-algebra. We denote by Ae the dg

algebra Aop ⊗A. Suppose that A has the following properties:

⊲ A is homologically smooth (i.e. the object A, viewed as an Ae-

module, is perfect);

⊲ for each p > 0, the space HpA is zero;

⊲ the space H0A is finite-dimensional;

⊲ A is bimodule 3-CY, i.e. there is an isomorphism in D(Ae)

RHomAe(A,A
e) ≃ A[−3].

Since A is homologically smooth, the category DbA is a subcategory

of perA (see [59], Lemma 4.1). We denote by π the canonical projection

functor π : perA → C = perA/DbA. Moreover, by the same lemma, there

is a bifunctorial isomorphism

DHomD(L,M) ≃ HomD
(
M,L[3]

)

for all objects L in DbA and all objects M in perA. We call this property

the CY property.

The aim of this section is to show the following result:

Theorem 2.1. — Let A be a dg k-algebra with the above properties.

The category C = perA/DbA is Hom-finite and 2-CY. Moreover, the ob-

ject π(A) is a cluster-tilting object. Its endomorphism algebra is isomorphic

to H0A.

2.1. t-structure on perA

The main tool of the proof of Theorem 2.1 is the existence of a canonical

t-structure in perA.

t-structure on DA

— Let D60 be the full subcategory of D whose objects are the dg modules

X such that HpX vanishes for all p > 0.

TOME 59 (2009), FASCICULE 6
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Lemma 2.2. — The subcategory D60 is an aisle in the sense of Keller-

Vossieck [65].

Proof. — The canonical morphism τ60A → A is a quasi-isomorphism

of dg algebras. Thus we can assume that Ap is zero for all p > 0. The

full subcategory D60 is stable under X 7→ X[1] and under extensions.

We claim that the inclusion D60
� � // D has a right adjoint. Indeed, for

each dg A-module X, the dg A-module τ60X is a dg submodule of X,

since A is concentrated in negative degrees. Thus τ60 is a well-defined

functor D → D60. One can check easily that τ60 is the right adjoint of the

inclusion. �

Proposition 2.3. — Let H be the heart of the t-structure, i.e. H is the

intersection D60 ∩ D>0. We have the following properties:

(i) The functor H0 induces an equivalence from H onto ModH0A.

(ii) For all X and Y in H, we have an isomorphism

Ext1
H0A(X,Y ) ≃ HomD

(
X,Y [1]

)
.

Note that it is not true for general i that ExtiH(X,Y ) ≃ HomD(X,Y [i]).

Proof. — (i) We may assume that Ap = 0 for all p > 0. We then have a

canonical morphism A→ H0A. The restriction along this morphism yields

a functor Φ : ModH0A→ H such that H0 ◦Φ is the identity of ModH0A.

Thus the functor H0 : H → ModH0A is full and essentially surjective.

Moreover, it is exact and an object N ∈ H vanishes if and only if H0N

vanishes. Thus if f : L → M is a morphism of H such that H0(f) = 0,

then ImH0(f) = 0 implies that H0(Im f) = 0 and Im f = 0, so f = 0. Thus

H0 : H → ModH0A is also faithful.

(ii) By Section 3.1.7 of [12] there exists a triangle functor Db(H) → D

which yields for X and Y in H and for n 6 1 an isomorphism (ibid.,

Remark (ii), Section 3.1.17, p. 85)

HomDH
(
X,Y [n]

)
≃ HomD

(
X,Y [n]

)
.

Applying this for n = 1 and using (i), we get the result. �

Hom-finiteness

Proposition 2.4. — The category perA is Hom-finite.

Lemma 2.5. — For each p, the space HpA is finite-dimensional.

ANNALES DE L’INSTITUT FOURIER
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Proof. — By hypothesis, HpA is zero for p > 0. We prove by induction

on n the following statement:

The space H−nA is finite-dimensional, and for all p > n + 1 the space

HomD(τ6−nA,M [p]) is finite-dimensional for each M in modH0A.

For n = 0, the space H0A is finite-dimensional by hypothesis. Let M be

in modH0A. Since τ60A is ismorphic to A, HomD(τ60A,M [p]) is isomor-

phic to H0(M [p]), and so is zero for p > 1.

Suppose that the property holds for n. Form the triangle

(H−nA)[n− 1] // τ6−n−1A // τ6−nA // (H−nA)[n].

Let p be an integer > n + 1. Applying the functor HomD(?,M [p]) we get

the long exact sequence:

· · · // HomD
(
τ6−nA,M [p]

)
// HomD(τ6−n−1A,M [p])

// HomD
(
(H−nA)[n− 1],M [p]

)
// · · · .

By induction the space HomD(τ6−nA,M [p]) is finite-dimensional.

Since M [p] is in DbA we can apply the CY property. If p is > n+ 3, we

have isomorphisms

HomD
(
(H−nA)[n− 1],M [p]

)
≃ HomD

(
(H−nA),M [p− n+ 1]

)

≃ DHomD
(
M [p− n− 2],H−nA

)
.

Since p− n− 2 is > 1, this space is zero.

If p = n+ 2, we have the isomorphisms.

HomD
(
(H−nA)[n− 1],M [n+ 2]

)
≃ HomD

(
(H−nA),M [3]

)

≃ DHomD
(
M,H−nA

)

≃ DHomH0A(M,H−nA).

The last isomorphism comes from Lemma 2.3 (i). By induction, H−nA is

finite-dimensional. Thus the space HomD((H−nA)[n − 1],M [p]) is finite-

dimensional for p > n+ 2.

If p = n+ 1 we have the isomorphisms

HomD
(
(H−nA)[n− 1],M [n+ 1]

)
≃ HomD

(
(H−nA),M [2]

)

≃ DHomD
(
M,H−nA[1]

)

≃ D Ext1
H0A(M,H−nA).

TOME 59 (2009), FASCICULE 6
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The last isomorphism comes from Lemma 2.3 (ii). By induction, since

H−nA is finite-dimensional, the space HomD((H−nA)[n − 1],M [n + 1])

is finite-dimensional and so is HomD(τ6−n−1A,M [n+ 1]).

Now, look at the triangle

τ6−n−2A //

0

--

τ6−n−1A //

��

(H−n−1A)[n+ 1] //

vvnnnnnnnnnnnn
(τ6−n−2A)[1]

0ppM [n+ 1]

The spaces HomD(τ6−n−2A,M [n+1]) and HomD((τ6−n−2A)[1],M [n+1])

vanish since M [n+ 1] is in D>−n−1. Thus we have

HomD
(
τ6−n−1A[n− 1],M [n+ 1]

)
≃ HomD

(
(H−n−1A)[n+ 1],M [n+ 1]

)

≃ HomD(H−n−1A,M)

≃ HomH0A(H−n−1A,M).

This holds for all finite-dimensional H0A-modulesM . Thus it holds for the

compact cogenerator M = DH0A. The space

HomH0A(H−n−1A,DH0A) ≃ DH−n−1A

is finite-dimensional, and therefore H−(n+1)A is finite-dimensional. �

Proof of Proposition 2.4. — The space HomD(A,A[p]) ≃ Hp(A) is

finite-dimensional by Lemma 2.5 for each integer p. The subcategory of

(perA)op×perA whose objects are the pairs (X,Y ) such that HomD(X,Y )

is finite-dimensional is stable under extensions and passage to direct fac-

tors. �

Restriction of the t-structure to perA

Lemma 2.6. — For each X in perA, there exist integers N and M such

that X belongs to D6N and ⊥D6M .

Proof. — The object A belongs to D60. Moreover, since for X in DA,

the space HomD(A,X) is isomorphic to H0X, the dg module A belongs

to ⊥D6−1. Thus the property is true for A. For the same reasons, it is true

for all shifts of A. Moreover, this property is clearly stable under taking

direct summands and extensions. Thus it holds for all objects of perA. �

This lemma implies the following result:

Proposition 2.7. — The t-structure on DA restricts to perA.
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Proof. — Let X be in perA, and look at the canonical triangle

τ60X // X // τ>0X // (τ60X)[1].

Since perA is Hom-finite, the space

HpX ≃ HomD
(
A,X[p]

)

is finite-dimensional for all p ∈ Z and vanishes for all p≫ 0 by Lemma 2.6.

Thus the object τ>0X is inDbA and so in perA. Since perA is a triangulated

subcategory, it follows that τ60X also lies in perA. �

Proposition 2.8. — Let π be the projection π : perA→ C. Then for X

and Y in perA, we have

HomC(πX, πY ) = lim
−→

HomD(τ6nX, τ6nY )

Proof. — LetX and Y be in perA. An element of lim
→

HomD(τ6nX, τ6nY )

is an equivalence class of morphisms τ6nX → τ6nY . Two morphisms

f : τ6nX → τ6nY and g : τ6mX → τ6mY with m > n are equivalent

if there is a commutative square

τ6nX
f //

��

τ6nY

��
τ6mX

g // τ6mY

where the vertical arrows are the canonical morphisms. If f is a morphism

f : τ6nX → τ6nY , we can form the following morphism from X to Y in C:

τ6nX

||zzzzzzzz

f //

##H
HHHHHHHH
τ6nY

��
X Y,

where the morphisms τ6nX → X and τ6nY → Y are the canonical mor-

phisms. This is a morphism from πX to πY in C because the cone of the

morphism τ6nX → X is in DbA. Moreover, if f : τ6nX → τ6nY and
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g : τ6mX → τ6mY are equivalent, there is an equivalence of diagrams:

τ6nX

��

||xxxxxxxx

f //

$$IIIIIIIIII
τ6nY

��

��

X Y

τ6mX

bbFFFFFFFF
g //

::uuuuuuuuuu

τ6mY

OO

Thus we have a well-defined map from lim
−→

HomD ( τ6nX, τ6nY ) to

Hom,C (πX, πY ) which is injective.

Now let
X ′ s

!!C
C

}}zz
X Y

be a morphism in HomC(πX, πY ). Let X ′′ be the cone of s. It is an object

of DbA, and therefore lies in D>n for some n ≪ 0. Thus there are no

morphisms from τ6nX to X ′′ and there is a factorization

τ6nX

��

0

""E
EE

EE
EE

EE

||
X ′

s // X // X ′′ // X ′[1]

We obtain an isomorphism of diagrams

X ′

$$I
II

Is

zzuuu
u

X Y

τ6nX
f

;;wwww
ccHHHH

OO

The morphism f : τ6nX → Y induces a morphism f ′ : τ6nX → τ6nY

which lifts the given morphism. Thus the map from lim
−→

HomD(τ6nX, τ6nY )

to HomC(πX,πY ) is surjective. �

2.2. Fundamental domain

Let F be the following subcategory of perA:

F = D60 ∩
⊥D6−2 ∩ perA.

The aim of this section is to show:
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Proposition 2.9. — The projection functor π : perA → C induces a

k-linear equivalence between F and C.

add(A)-approximation for objects of the fundamental domain

Lemma 2.10. — For each object X of F , there exists a triangle

P1
// P0

// X // P1[1]

with P0 and P1 in add(A).

Proof. — For X in perA, the morphism

HomD(A,X) −→ HomH(H0A,H0X), f 7−→ H0(f)

is an isomorphism since HomD(A,X) ≃ H0X. Thus it is possible to find a

morphism P0 → X, with P0 a free dg A-module, inducing an epimorphism

H0P0 →→ H
0X. Now take X in F and P0 → X as previously and form the

triangle

P1
// P0

// X // P1[1].

Step 1: The object P1 is in D60 ∩
⊥D6−1.

The objects X and P0 are in D60, so P1 is in D61. Moreover, since

H0P0 → H
0X is an epimorphism, H1(P1) vanishes and P1 is in D60.

Let Y be in D6−1, and look at the long exact sequence

· · · // HomD(P0, Y ) // HomD(P1, Y )

// HomD(X[−1], Y ) // · · · .

The space HomD(X[−1], Y ) vanishes since X is in ⊥D6−2 and Y is

in D6−1. The object P0 is free, and H0Y is zero, so the space HomD(P0, Y )

also vanishes. Consequently, the object P1 is in ⊥D6−1.

Step 2: H0P1 is a projective H0A-module.

Since P1 is in D60 there is a triangle

τ6−1P1
// P1

// H0P1
// (τ6−1P1)[1].

Now take an object M in the heart H, and look at the long exact sequence

· · · // HomD
(
(τ6−1P1)[1],M [1]

)
// HomD

(
H0P1,M [1]

)

// HomD
(
P1,M [1]

)
// · · · .

The space HomD((τ6−1P1)[1],M [1]) is zero because HomD(D6−2,D>−1)

vanishes in a t-structure. Moreover, the space HomD(P1,M [1]) vanishes
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because P1 is in ⊥D6−1. Thus HomD(H0P1,M [1]) is zero. But this space

is isomorphic to the space Ext1
H(H0P1,M) by Proposition 2.3. This proves

that H0P1 is a projective H0A-module.

Step 3: P1 is isomorphic to an object of add(A).

As previously, sinceH0P1 is projective, it is possible to find an object P in

add(A) and a morphism P → P1 inducing an isomorphism H0P → H0P1.

Form the triangle

Q
u // P

v // P1
w // Q[1].

Since P and P1 are in D60 and H0(v) is surjective, the cone Q lies in D60.

But then w is zero since P1 is in ⊥D6−1. Thus the triangle splits, and P

is isomorphic to the direct sum P1 ⊕ Q. Therefore we have a short exact

sequence

0 // H0Q // H0P // H0P1
// 0,

and H0Q vanishes. The object Q is in D6−1, the triangle splits, and there

is no morphism between P and D6−1, so Q is the zero object. �

Equivalence between the shifts of F

Lemma 2.11. — The functor τ6−1 induces an equivalence from F to F [1]

Proof. — Step 1: The image of the functor τ6−1 restricted to F is in F [1].

Recall that F is D60 ∩
⊥D6−2 ∩ perA so F [1] is D6−1 ∩

⊥D6−3 ∩ perA.

Let X be an object in F . By definition, τ6−1X lies in D6−1 and there is a

canonical triangle

τ6−1X // X // H0X // τ6−1X[1] .

Now let Y be an object in D6−3 and form the long exact sequence

· · · // HomD(X,Y ) // HomD(τ6−1X,Y )

// HomD((H0X)[−1], Y ) // · · · .

SinceX is in ⊥D6−2, the space HomD(X,Y ) vanishes. The objectH0X[−1]

is of finite total dimension, so by the CY property, we have an isomorphism

HomD
(
H0X[−1], Y

)
≃ DHomD

(
Y,H0X[2]

)
.

But since HomD(D6−3,D>−2) is zero, the space HomD((H0X)[−1], Y ) van-

ishes and τ6−1X lies in ⊥D6−3.

Step 2: The functor τ6−1 : F → F [1] is fully faithful.
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Let X and Y be two objects in F and f : τ6−1X → τ6−1Y be a mor-

phism:

H0X[−1] // τ6−1X //

f

��

X

��

// H0X

H0Y [−1] // τ6−1Y
i // Y // H0Y

The space HomD(H0X[−1], Y ) is isomorphic toDHomD(Y,H0X[2]) by the

CY property. Since Y is in ⊥D6−2, this space is zero, and the composition

i ◦ f factorizes through the canonical morphism τ6−1X → X. Therefore,

the functor τ6−1 is full.

Let X and Y be objects of F and f : X → Y a morphism satisfying

τ6−1f = 0. It induces a morphism of triangles

H0X[−1] //

��

τ6−1X
i //

0

��

X //

f

��

H0X

}} ��
H0Y [−1] // τ6−1Y // Y // H0Y .

The composition f ◦ i vanishes, so f factorizes through H0X. But by the

CY property the space of morphisms HomD(H0X,Y ) is isomorphic to

DHomD(Y,H0X[3]) which is zero since Y is in ⊥D6−2. Thus the func-

tor τ6−1 restricted to F is faithful.

Step 3: The functor τ6−1 : F → F [1] is essentially surjective.

Let X be in F [1]. By the previous lemma there exists a triangle

P1[1] // P0[1] // X // P1[2]

with P0 and P1 in add(A). Denote by ν the Nakayama functor on the

projectives of modH0A. Let M be the kernel of the morphism νH0P1 →

νH0P0. It lies in the heart H.

Substep (i): There is an isomorphism of functors

Hom
(
?, X[1]

)
|H
≃ HomH(?,M).

Let L be in H. We then have a long exact sequence

· · · // HomD
(
L,P0[2]

)
// HomD

(
L,X[1]

)

// HomD
(
L,P1[3]

)
// HomD

(
L,P0[3]

)
// · · · .
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The space HomD(L,P0[2]) is isomorphic to DHomD(P0, L[1]) by the CY

property, and vanishes because P0 is in ⊥D6−1. Moreover, we have the

isomorphisms

HomD(L,P1[3]) ≃ DHomD(P1, L)

≃ DHomH(H0P1, L)

≃ HomH(L, νH0P1).

Thus HomD(?, X[1])|H is isomorphic to the kernel of

HomH(?, νH0P1) −→ HomH(?, νH0P0),

which is just HomH(?,M).

Substep (ii): There is a monomorphism of functors

Ext1
H(?,M)

� � // HomD(?, X[2])|H .

For L in H, look at the following long exact sequence:

· · · // HomD(L,P1[3]) // HomD(L,P1[3])

// HomD(L,X[2]) // HomD(L,P1[4]) // · · · .

The space HomD(L,P1[4]) is isomorphic to DHomD(P1[1], L) which is zero

since P1[1] is in D6−1 and L is in D>0. Thus the functor HomD(?, X[2])|H
is isomorphic to the cokernel of HomH(?, νH0P1)→ HomH(?, νH0P0). By

definition, Ext1
H(?,M) is the first homology of a complex of the form

· · · // 0 // HomH(?, νH0P1) // HomH(?, νH0P0)

// HomH(?, I) // · · · ,

where I is an injective H0A-module. Thus we get the canonical injection

Ext1
H(?,M)

� � // HomD
(
?, X[2]

)
|H
.

Now form the following triangle:

X // Y // M // X[1].

Substep (iii): Y is in F and τ6−1Y is isomorphic to X.

Since X and M are in D60, Y is in D60. Let Z be in D6−2 and form

the long exact sequence

· · · // HomD(X[1], Z) // HomD(M,Z) // HomD(Y, Z)

// HomD(X,Z) // HomD(M [−1], Z) // · · · .
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By the CY property and the fact that Z[2] is in D60, we have isomorphisms

HomD(M [−1], Z) ≃ DHomD
(
Z[−2],M

)

≃ DHomH(H−2Z,M).

Moreover, since X is in ⊥D6−3, we have

HomD(X,Z) ≃ HomD
(
X, (H−2Z)[2]

)

≃ DHomH
(
H−2Z,X[1]

)
.

By substep (i) the functors HomH(?,M) and HomD(?, X[1])|H are isomor-

phic. Therefore we deduce that the following morphism is an isomorphism:

HomD(X,Z) −→ HomD
(
M [−1], Z

)
.

Now look at the triangle

τ6−3Z // Z // H−2Z[2] // (τ6−3Z)[1],

put Υ0(T ) = HomD(M,T ), Υ1(T ) = HomD(X[1], T ) and form the commu-

tative diagram

Υ0(τ6−3Z) // Υ0(Z) // Υ0

(
H−2Z[2]

)
// Υ0

(
τ6−3Z[1]

)

Υ1(τ6−3Z) //

a

OO

Υ1(Z) //

b

OO

Υ1

(
H−2Z[2]

)
//

c

OO

Υ1

(
τ6−3Z[1]

)
.

d

OO

By the CY property and the fact that (τ6−3Z)[−3] is in D60, we have

isomorphisms

HomD
(
M [−1], τ6−3Z[−1]

)
≃ DHomD

(
τ6−3Z[−3],M

)

≃ DHomH(H−3Z,M).

Since X is in ⊥D6−3, we have

HomD(X,
(
τ6−3Z)[−1]

)
≃ HomD

(
X,H−3Z[−2]

)

≃ DHomH
(
H−3Z,X[1]

)
.

Now we deduce from substep (i) that a[−1] is an isomorphism.

The space HomD(X[1], τ6−3Z[1]) is zero because X is ⊥D6−3. Moreover

there are isomorphisms

HomD
(
M,H−2Z[2]

)
≃ DHomD

(
H−2Z,M [1]

)

≃ D Ext1
H(H−2Z,M).
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The space HomD(X[1],H−2Z[2]) is isomorphic to DHomD(H−2Z,X[2]).

And by substep (ii), the morphism Ext1
H(?,M) → HomD(?, X[2])|H is in-

jective, so c is surjective. Therefore using a weak form of the five-lemma

we deduce that b is surjective.

Finally, we have the exact sequence

HomD(X[1], Z) // // HomD(M,Z) // HomD(Y, Z)

// HomD(X,Z)
∼ // HomD(M [−1], Z).

Thus the space HomD(M,Z) is zero, and Z is in ⊥D6−2.

It is now easy to see that there is an isomorphism of triangles:

τ6−1Y //

��

Y // H0Y //

��

τ6−1Y [1]

��
X // Y // M // X[1]. �

Proof of Proposition 2.9

Step 1: The functor π restricted to F is fully faithful.

Let X and Y be objects in F . By Proposition 2.3 (iii), HomC(πX, πY )

is isomorphic to the direct limit lim
−→

HomD(τ6nX, τ6nY ). A morphism be-

tween X and Y in C is a diagram of the form

τ6nX

""F
FFFFF

||xxxxxx

X Y.

The canonical triangle

(τ>nX)[−1] // τ6nX // X // τ>nX

yields a long exact sequence

· · · // HomD(τ>nX,Y ) // HomD(X,Y )

// HomD(τ6nX,Y) // HomD
(
(τ>nX)[−1], Y

)
// · · · .

The space HomD((τ>nX)[−1], Y ) is isomorphic to DHomD(Y, (τ>nX)[2]).

The object X is in D60, thus so is τ>nX, and DHomD(Y, (τ>nX)[2]) van-

ishes. For the same reasons, the space HomD(τ>nX,Y ) vanishes. Thus there

are bĳections

HomD(τ6nX, τ6nY )
∼ // HomD(τ6nX,Y )

∼ // HomD(X,Y )
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Therefore, the functor π : F → C is fully faithful.

Step 2: For X in perA, there exists an integer N and an object Y of

F [−N ] such that πX and πY are isomorphic in C.

LetX be in perA. By Lemma 2.6, there exists an integerN such thatX is

in ⊥D6N−2. For an object Y in D6N−2, the space HomD((τ>NX)[−1], Y ) is

isomorphic to DHomD(Y, (τ>NX)[2]) and thus vanishes. Therefore, τ6NX

is still in ⊥D6N−2, and thus is in F [−N ]. Since τ>NX is in DbA, the

objects τ6NX and X are isomorphic in C.

Step 3: The functor π restricted to F is essentially surjective.

Let X be in perA and N such that τ6NX is in F [−N ]. By Lemma 2.11,

τ6−1 induces an equivalence between F and F [1]. Thus since the functor

π ◦ τ6−1 : perA → C is isomorphic to π, there exists an object Y in F

such that π(Y ) and π(X) are isomorphic in C. Therefore, the functor π

restricted to F is essentially surjective.

Proposition 2.12. — If X and Y are objects in F , there is a short

exact sequence:

0 // Ext1
D(X,Y ) // Ext1

C(X,Y ) // D Ext1
D(Y,X) // 0.

Proof. — Let X and Y be in F . The canonical triangle

τ<0X // X // τ>0X // (τ<0X)[1]

yields the long exact sequence

HomD
(
(τ>0X)[−1], Y [1]

)
HomD

(
τ<0X,Y [1]

)
oo

HomD
(
X,Y [1]

)
oo HomD

(
τ>0X,Y [1]

)
.oo

The space HomD(X[−1], Y [1]) is zero because X is in ⊥D6−2 and Y is

in D60. Moreover, the space HomD(τ>0X,Y [1]) is zero because of the CY

property. Thus this long sequence reduces to a short exact sequence:

0 // Ext1
D(X,Y ) // HomD

(
τ<0X,Y [1]

)

// HomD
(
(τ>0X)[−1], Y [1]

)
// 0.

Step 1: There is an isomorphism HomD((τ>0X)[−1], Y ) ≃ D Ext1
D(Y,X).

The space HomD((τ>0X)[−1],Y [1]) is isomorphic to DHomD(Y, τ>0X[1])

by the CY property.
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Y

0

yy �� %%KKKKKKKKKK 0

��
(τ<0X)[1] // X[1] // (τ>0X)[1] // (τ<0X)[2]

But since HomD(Y, (τ<0X)[1]) and HomD(Y, (τ<0X)[2]) are zero, we have

an isomorphism
HomD

(
τ>0X[−1], Y

)
≃ D Ext1

D(Y,X).

Step 2: There is an isomorphism Ext1
C(πX, πY ) ≃ HomD(τ6−1X,Y [1]).

By Lemma 2.11, the object τ<0X belongs to F [1] and clearly Y [1] belongs

to F [1]. By Proposition 2.9 (applied to the shifted t-structure), the functor

π : perA → C induces an equivalence from F [1] to C and clearly we have

π(τ<0X,Y [1])
∼
−→ π(X). We obtain bĳections

HomD
(
τ<0X,Y [1]

) ∼ // HomD
(
πτ<0X,πY [1]

) ∼ // HomD
(
πX, πY [1]

)
.

�

Proof of Theorem 2.1

Step 1: The category C is Hom-finite and 2-CY.

The category F is obviously Hom-finite, hence so is C by Proposition 2.9.

The categories T = perA and N = DbA ⊂ perA satisfy the hypotheses of

section 1. By [59], thanks to the CY property, there is a bifunctorial non

degenerate bilinear form

βN,X : HomD(N,X)× HomD
(
X,N [3]

)
−→ k

for N in DbA and X in perA. Thus, by Section 1, there exists a bilinear

bifunctorial form

β′X,Y : HomC(X,Y )× HomC
(
Y,X[2]

)
−→ k

for X and Y in C = perA/DbA. We would like to show that it is non

degenerate. Since perA is Hom-finite, by Theorem 1.3 and Proposition 1.4,

it is sufficient to show the existence of local N -envelopes. Let X and Y be

objects of perA. Therefore by Lemma 2.6, X is in ⊥D6N . Thus there is an

injection

0 // HomD(X,Y ) // HomD(X, τ>NY )

and Y → τ>NY is a local N -envelope relative to X. Therefore, C is 2-CY.

Step 2: The object πA is a cluster-tilting object of the category C.
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Let A be the free dg A-module in perA. Since H1A is zero, the space

Ext1
D(A,A) is also zero. Thus by the short exact sequence

0 // Ext1
D(A,A) // Ext1

C(πA, πA) // D Ext1
D(A,A) // 0

of Proposition 2.12, π(A) is a rigid object of C. Now let X be an object

of C. By Proposition 2.9, there exists an object Y in F such that πY is

isomorphic to X. Now by Lemma 2.10 , there exists a triangle in perA

P1
// P0

// Y // P1[1]

with P1 and P0 in add(A). Applying the triangle functor π we get a triangle

in C

πP1
// πP0

// X // πP1[1]

with πP1 and πP0 in add(πA). If Ext1
C(πA,X) vanishes, this triangle splits

and X is a direct factor of πP0. Thus, the object πA is a cluster-tilting

object in the 2-CY category C.

3. Cluster categories for Jacobi-finite quivers with

potential

3.1. Ginzburg dg algebra

Let Q be a finite quiver. For each arrow a of Q, we define the cyclic

derivative with respect to a ∂a as the unique linear map

∂a : kQ/[kQ, kQ] −→ kQ

which takes the class of a path p to the sum
∑
p=uav vu taken over all

decompositions of the path p (where u and v are possibly idempotents ei
associated to a vertex i of Q).

An element W of kQ/[kQ, kQ] is called a potential on Q. It is given by

a linear combination of cycles in Q.

Definition 3.1 (see Ginzburg [44, Section 4.2)]). — Let Q be a finite

quiver and W a potential on Q. Let Q̂ be the graded quiver with the same

vertices as Q and whose arrows are

⊲ the arrows of Q (of degree 0),

⊲ an arrow a∗ : j → i of degree −1 for each arrow a : i→ j of Q,

⊲ a loop ti : i→ i of degree −2 for each vertex i of Q.
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The Ginzburg dg algebra Γ(Q,W ) is a dg k-algebra whose underlying

graded algebra is the graded path algebra kQ̂. Its differential is the unique

linear endomorphism homogeneous of degree 1 which satisfies the Leibniz

rule

d(uv) = (du)v + (−1)pudv,

for all homogeneous u of degree p and all v, and takes the following values

on the arrows of Q̂:

⊲ da = 0 for each arrow a of Q,

⊲ d(a∗) = ∂aW for each arrow a of Q,

⊲ d(ti) = ei(
∑
a[a, a

∗])ei for each vertex i of Q where ei is the idem-

potent associated to i and the sum runs over all arrows of Q.

The strictly positive homology of this dg algebra clearly vanishes. More-

over B. Keller showed the following result:

Theorem 3.2 (Keller [60]). — Let Q be a finite quiver and W a poten-

tial on Q. Then the Ginzburg dg algebra Γ(Q,W ) is homologically smooth

and bimodule 3-CY.

3.2. Jacobian algebra

Definition 3.3. — Let Q be a finite quiver and W a potential on Q.

The Jacobian algebra J(Q,W ) is the zeroth homology of the Ginzburg

algebra Γ(Q,W ). This is the quotient algebra

kQ/〈∂aW,a ∈ Q1〉

where 〈∂aW,a ∈ Q1〉 is the two-sided ideal generated by the ∂aW .

Remark: We follow the terminology of H. Derksen, J. Weyman and

A. Zelevinsky [30, Def. 3.1].

B. Keller [60] and A. Buan, O. Iyama, I. Reiten and D. Smith [20] have

shown independently in recent works the following result:

Theorem 3.1 (Keller, Buan-Iyama-Reiten-Smith). — Let T be a

cluster-tilting object in the cluster category CQ associated to an acyclic

quiver Q. Then there exists a quiver with potential (Q′,W ) such that

EndCQ(T ) is isomorphic to J(Q′,W ).
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3.3. Jacobi-finite quiver with potentials

The quiver with potential (Q,W ) is called Jacobi-finite if the Jacobian

algebra J(Q,W ) is finite-dimensional.

Definition 3.4. — Let (Q,W ) be a Jacobi-finite quiver with potential.

Denote by Γ the Ginzburg dg algebra Γ(Q,W ). Let per Γ be the thick sub-

category of DΓ generated by Γ and DbΓ the full subcategory of DΓ of the

dg Γ-modules whose homology is of finite total dimension. The cluster cat-

egory C(Q,W ) associated to (Q,W ) is defined as the quotient of triangulated

categories per Γ/DbΓ.

Combining Theorem 2.1 and Theorem 3.2 we get the result:

Theorem 3.5. — Let (Q,W ) be a Jacobi-finite quiver with potential.

The cluster category C(Q,W ) associated to (Q,W ) is Hom-finite and 2-CY.

Moreover the image T of the free module Γ in the quotient per Γ/DbΓ

is a cluster-tilting object. Its endomorphim algebra is isomorphic to the

Jacobian algebra J(Q,W ).

As a direct consequence of this theorem we get the corollary:

Corollary 3.6. — Each finite-dimensional Jacobi algebra J (Q,W ) is

2-CY-tilted in the sense of I. Reiten (cf. [73]), i.e. it is the endomorphism

algebra of some cluster-tilting object of a 2-CY category.

Definition 3.7. — Let (Q,W ) and (Q′,W ′) be two quivers with po-

tential. A triangular extension between (Q,W ) and (Q′,W ′) is a quiver

with potential (Q,W ) where

⊲ Q0 = Q0 ∪Q
′
0;

⊲ Q1 = Q1 ∪Q
′
1 ∪{ai, i ∈ I}, where for each i in the finite index set I,

the source of ai is in Q0 and the tail of ai is in Q′0;

⊲ W =W +W ′.

Proposition 3.8. — Denote by JF the class of Jacobi-finite quivers

with potential. The class JF satisfies the properties:

1) it contains all acyclic quivers (with potential 0);

2) it is stable under mutation of quivers with potential defined in [30];

3) it is stable under triangular extensions.

Proof. — 1) This is obvious since the Jacobi algebra J(Q, 0) is isomor-

phic to kQ.

2) This is Corollary 6.6 of [30].
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3) Let (Q,W ) and (Q′,W ′) be two quivers with potential in JF and

(Q,W ) a triangular extension. Let Q1 = Q1 ∪Q
′
1 ∪ F be the set of arrows

of Q. We have then

kQ = kQ′ ⊗R′ (R′ ⊕ kF ⊕R)⊗R kQ

where R is the semi-simple algebra kQ0 and R′ is kQ′0. Let W be the

potential W +W ′ associated to the triangular extension. If a is in Q1, then

∂aW = ∂aW , if a is inQ′1 then ∂aW = ∂aW
′ and if a is in F , then ∂aW = 0.

Thus we have isomorphisms

J(Q,W ) = kQ/〈∂aW,a ∈ Q1〉

≃ kQ′ ⊗R′ (R′ ⊕ kF ⊕R)⊗R kQ/〈∂aW,a ∈ Q1, ∂bW
′, b ∈ Q′1〉

≃ kQ′/〈∂bW
′, b ∈ Q′1〉 ⊗R′ (R′ ⊕ kF ⊕R)⊗R kQ/〈∂aW,a ∈ Q1〉

≃ J(Q′,W ′)⊗R′ (R′ ⊕ kF ⊕R)⊗R J(Q,W ).

Thus if J(Q′,W ′) and J(Q,W ) are finite-dimensional, J(Q,W ) is finite-

dimensional since F is finite. �

In a recent work [66], B. Keller and D. Yang proved the following:

Theorem 3.9 (Keller-Yang). — Let (Q,W ) be a Jacobi-finite quiver

with potential. Assume that Q has no loops nor 2-cycles. For each vertex i

of Q, there is a derived equivalence

DΓ
(
µi(Q,W )

)
≃ DΓ(Q,W ),

where µi(Q,W ) is the mutation of (Q,W ) at the vertex i in the sense

of [30].

Remark: in fact Keller and Yang proved this theorem in a more general

setting. This also true if (Q,W ) is not Jacobi-finite, but then there is a

derived equivalence between the completions of the Ginzburg dg algebras.

An other link between mutation of quivers with potential and mutations

of cluster-tilting objects is given in [20, Theorem 5.1]:

Theorem 3.10 (Buan-Iyama-Reiten-Smith). — Let C be a 2-CY tri-

angulated category with a cluster-tilting object T . If the endomorphism

algebra EndC(T ) is isomorphic to the Jacobian algebra J(Q,W ) for some

quiver with potential (Q,W ), and if no 2-cycles start in the vertex i of Q,

then we have an isomorphism

EndC
(
µi(T )

)
≃ J
(
µi(Q,W )

)
.

Combining these two theorems with Theorem 3.5, we get the corollary:
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Corollary 3.11. — 1) If Q is an acyclic quiver, andW = 0, the cluster

category C(Q,W ) is canonically equivalent to the cluster category CQ.

2) Let Q be an acyclic quiver and T a cluster-tilting object of CQ. If

(Q′,W ) is the quiver with potential associated with the cluster-tilted al-

gebra EndCQ(T ) (cf. [60], [20]), then the cluster category C(Q,W ) is triangle

equivalent to the cluster category CQ′ .

Proof. — 1) The cluster category C(Q,0) is a 2-CY category with a cluster-

tilting object whose endomorphism algebra is isomorphic to kQ. Thus

by [63], this category is triangle equivalent to CQ.

2) In a cluster category, all cluster-tilting objects are mutation equivalent.

Thus there exists a sequence of mutations which links kQ to T . Moreover

the quiver of a cluster-tilted algebra has no loops nor 2-cycles. Thus by

Theorem 5.1 of [20], the quiver with potential (Q,W ) is mutation equivalent

to (Q′, 0). Then the theorem of Keller and Yang [66] applies and we have

an equivalence

DΓ(Q,W ) ≃ DΓ(Q′, 0).

Thus the categories C(Q,W ) and C(Q′,0) are triangle equivalent. By 1) we

get the result. �

4. Cluster categories for non hereditary algebras

4.1. Definition and results of Keller

Let A be a finite-dimensional k-algebra of finite global dimension. The

category DbA admits a Serre functor νA = ?
L

⊗ADA where D is the duality

Homk(?, k) over the ground field. The orbit category

DbA/νA ◦ [−2]

is defined as follows:

⊲ the objects are the same as those of DbA;

⊲ if X and Y are in DbA the space of morphisms is isomorphic to the

space ⊕

i∈Z

HomDA
(
X, (νiAY [−2i]

)
.

By Theorem 1 of [57], this category is triangulated if A is derived equivalent

to an hereditary category. This happens if A is the endomorphism algebra

of a tilting module over an hereditary algebra, or if A is a canonical algebra

(cf. [50], [47]).
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In general it is not triangulated and we define its triangulated hull as the

algebraic triangulated category CA with the following universal property:

⊲ There exists an algebraic triangulated functor π : DbA→ CA.

⊲ Let B be a dg category and X an object of D(Aop⊗B). If there exists

an isomorphism in D(Aop ⊗ B) between DA
L

⊗AX[−2] and X, then

the triangulated algebraic functor ?
L

⊗AX : DbA → DB factorizes

through π.

Let B be the dg algebra A⊕DA[−3]. Denote by p : B → A the canonical

projection. It induces a triangulated functor

p∗ : DbA −→ DbB.

Let 〈A〉B be the thick subcategory of DbB generated by the image of p∗. By

Theorem 2 of [57] (cf. also [61]), the triangulated hull of the orbit category

DbA/νA ◦ [−2] is the category

CA = 〈A〉B/ perB.

We call it the cluster category of A. Note that if A is the path algebra of

an acyclic quiver, there is an equivalence

CQ = Db(kQ)/ν ◦ [−2] ≃ 〈kQ〉B/ perB.

4.2. 2-Calabi-Yau property

The dg B-bimodule DB is clearly isomorphic to B[3], so it is not hard

to check the following lemma:

Lemma 4.1. — For each X in perB and Y in DbB there is a functorial

isomorphism

DHomDB(X,Y ) ≃ HomDB
(
Y,X[3]

)
.

So we can apply results of Section 1 and construct a bilinear bifunctorial

form:

β′X,Y : HomCA(X,Y )× HomCA
(
Y,X[2]

)
−→ k.

Theorem 4.2. — Let X and Y be objects in D = DbB. If the spaces

HomD(X,Y ) and HomD(Y,X[3]) are finite-dimensional, then the bilinear

form

β′X,Y : HomCA(X,Y )× HomCA
(
Y,X[2]

)
−→ k

is non-degenerate.
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Before proving this theorem, we recall some results about inverse limits

of sequences of vector spaces that we will use in the proof. Let

· · · → Vp
ϕ
−→ Vp−1

ϕ
−→ · · · → V1

ϕ
−→ V0

be an inverse system of vector spaces (or vector space complexes) inverse

system. We then have the exact sequence

0→ V∞ = lim
←−
Vp −→

∏

p

Vp
Φ
−→
∏

q

Vq −→
1

lim
←−
Vp → 0

where Φ is defined by Φ(vp) = vp − ϕ(vp) ∈ Vp ⊕ Vp−1 where vp is in Vp.

Recall two classical lemmas due to Mittag-Leffler:

Lemma 4.3. — If, for all p, the sequence Wi = Im(Vp+i → Vp) of vector

spaces is stationary, then lim
←−

1 Vp vanishes.

This happens in particular when all vector spaces Vp are finite-dimen-

sional.

Lemma 4.4. — Let · · · → Vp
ϕ
−→ Vp−1

ϕ
−→ · · · → V1

ϕ
−→ V0 be an

inverse system of finite-dimensional vector spaces such that V∞ = lim
←−
Vp

is also finite-dimensional. Let V ′p be the image of V∞ in Vp. The sequence V ′p
is stationary and we have V ′∞ = lim

←−
V ′p = V∞.

Proof of Theorem 4.2. — Let X and Y be objects of DbB such that

HomDbB(X,Y ) is finite-dimensional. We will prove that there exists a local

perB-cover of X relative to Y . Let

P• : · · · → Pn+1 −→ Pn −→ Pn−1 → · · · → P0

be a projective resolution of X. The complex P• has components in perB,

and its homology vanishes in all degrees except in degree zero, where it

is X. Let P6n and P>n be the natural truncations, and denote by Tot(P )

the total complex associated to P•. For all n ∈ N, there is an exact sequence

of dg B-modules:

0→ Tot(P6n) −→ Tot(P ) −→ Tot(P>n)→ 0.

The complex Tot(P ) is quasi-isomorphic to X, and the complex Tot(P6n)

is in perB. Moreover, Tot(P ) is the colimit of Tot(P6n). Thus by definition,

we have the equalities

Hom•B
(

Tot(P ), Y
)

= Hom•B
(

colim
−−→

Tot(P6n), Y
)

= lim
←−
Hom•B

(
Tot(P6n), Y

)
.
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Denote by Vp the complex Hom•B(Tot(P6p), Y ). In the inverse system

· · · → Vp
ϕ
−→ Vp−1

ϕ
−→ · · · −→ V1

ϕ
−→ V0,

all the maps are surjective, so by Lemma 4.3, there is a short exact sequence

0→ V∞ −→
∏

p

Vp
Φ
−−−→

∏

q

Vq → 0

which induces a long exact sequence in cohomology

· · ·

∏
q
H
−1
Vq

)) ))SSS
// H0(V∞)

'' ''OOO
//∏H0

Vp
//∏H0

Vq · · ·

lim
←−

1
H
−1
Vp

66
66mmm

lim
←−

H
0
Vp

77
77ooo

.

We have the equalities

H0(V∞) = H0
(
Hom•B(Tot(P ), Y )

)

= HomH
(

Tot(P ), Y
)

= HomD(X,Y ).

Denote by Wp the complex HomD(Tot(P6p), Y ) and by Up the com-

plex H−1(Vp) = HomD(Tot(P6p), Y [−1]). The spaces (Up)p are finite-

dimensional, so by Lemma 4.3, lim
←−

1 Up vanishes and we have an isomor-

phism

H0( lim
←−
Vp) = H0(V∞) ≃ lim

←−
H0(Vp).

The system (Wp)p satisfies the hypothesis of Lemma 4.4. In fact, for each

integer p, HomD(Tot(P6p), Y ) is finite-dimensional because Tot(P6p) is

in perB. Moreover, by the last two equalities

W∞ = lim
←−
Wp

is isomorphic to HomD(X,Y ) which is finite-dimensional by hypothesis.

By Lemma 4.4, the system (W ′p)p formed by the image of W∞ in Wp is

stationary. More precisely, there exists an integer n such thatW ′n = lim
←−
W ′p.

Moreover W ′n is a subspace of Wn = HomD(Tot(P6n), Y ) and there is an

injection

HomD(X,Y ) � � // HomD
(

Tot(P6n), Y
)
.

This yields a local perB-cover of X relative to Y .

The spaces HomD(N,X) and HomD(X,N) are finite-dimensional for N

in perB and X in DbB. Thus by Proposition 1.4, there exists local perB-

envelopes. Therefore Theorem 1.3 applies and β′ is non-degenerate. �

Corollary 4.5. — Let A be a finite-dimensional k-algebra with finite

global dimension. If the cluster category CA is Hom-finite, then it is 2-CY

as a triangulated category.
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Proof. — Denote by p∗ : DbA→ DbB the restriction of p : B → A.

Let X and Y be in Db(A). By hypothesis, the vector spaces
⊕

p∈Z

HomDbA
(
X, νpAY [−2p]

)
and

⊕

p∈Z

HomDbA
(
Y, νpAX[−2p+ 3]

)

are finite-dimensional. But by [57], the space HomDbB(p∗X, p∗Y ) is isomor-

phic to ⊕

p>0

HomDbA
(
X, νpAY [−2p]

)
,

so is finite-dimensional. For the same reasons, the space HomDbB(Y,X[3])

is also finite-dimensional. Applying Theorem 4.2, we get a non-degenerate

bilinear form β′p∗X,p∗Y . The non-degeneracy property is extension closed,

so for each M and N in 〈A〉B , the form β′MN is non-degenerate. �

4.3. Case of global dimension 2

In this section we assume that A is a finite-dimensional k-algebra of

global dimension 6 2.

Criterion for Hom-finiteness

The canonical t-structure on the derived category D = DbA satisfies the

property:

Lemma 4.6. — We have the inclusions

ν(D>0) ⊂ D>−2 and ν−1(D60) ⊂ D62.

Moreover, HomD(U, V ) vanishes for all U in D>0 and all V in D6−3.

Proposition 4.7. — Let X be the A-A-bimodule Ext2
A(DA,A). The

endomorphism algebra Ã = EndCA(A) is isomorphic to the tensor algebra

TAX of X over A.

Proof. — By definition, the endomorphism space EndCA(A) is isomor-

phic to ⊕

p∈Z

HomD
(
A, νpA[−2p]

)
.

For p > 1, the object νpA[−2p] is in D>2 since νA is in D>0. So since A is

in D60, the space HomD(A, νpA[−2p]) vanishes.
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The functor ν = ?
L

⊗ADA admits an inverse ν−1 =−
L

⊗A RHomA(DA,A).

Since the global dimension of A is 6 2, the homology of the complex

RHomA(DA,A) is concentrated in degrees 0, 1 and 2 :

H0
(
RHomA(DA,A)

)
= HomD(DA,A),

H1
(
RHomA(DA,A)

)
= Ext1

A(DA,A),

H2
(
RHomA(DA,A)

)
= Ext2

A(DA,A).

Let us denote by Y the complex RHomA(DA,A)[2]. We then have

ν−pA[2p] = A
L

⊗A(Y
L

⊗Ap) = Y
L

⊗Ap.

Therefore we get the equalities

HomDA
(
A, ν−pA[−2p]

)
= HomDA(A, Y

L

⊗Ap) = H0(Y
L

⊗Ap).

Since H0(Y ) = X, we conclude using the following easy lemma. �

Lemma 4.8. — Let M and N be two complexes of A-modules whose

homology is concentrated in negative degrees. Then there is an isomorphism

H0(M
L

⊗AN) ≃ H0(M)⊗A H
0(N).

Proposition 4.9. — Let A be a finite-dimensional algebra of global

dimension 2. The following properties are equivalent:

1) the cluster category CA is Hom-finite;

2) the functor ?⊗A Ext2(DA,A) is nilpotent;

3) the functor TorA2 (?, DA) is nilpotent;

4) there exists an integer N such that there is an inclusion

ΦN (D>0) ⊂ D>1

where Φ is the autoequivalence νA[−2] of the category D = DbA and D>0

is the right aisle of the natural t-structure of DbA.

Proof. — 1)⇒ 2) is obvious by Proposition 4.7.

2)⇔ 3)⇔ 4). Let Φ be the autoequivalence νA[−2] of DbA. The functor

Tor2
A(?, DA) is isomorphic to H0 ◦ Φ and ?⊗A Ext2

A(DA,A) is isomorphic

to H0 ◦ Φ−1. Thus it is sufficient to check that there are isomorphisms

H0Φ ◦H0Φ ≃ H0Φ2 and H0Φ−1 ◦H0Φ−1 ≃ H0Φ−2.

This is easy using Lemma 4.8 since A has global dimension 6 2.

4) ⇒ 1). Suppose that there exists some N > 0 such that ΦN (D>0) is

included in D61. For each object X in CA, the class of the objects Y such
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that the space HomCA(X,Y ) (resp. HomCA(Y,X)) is finite-dimensional, is

extension closed. Therefore, it is sufficient to show that for all simples S, S′,

and each integer n, the space HomCA(S, S′[n]) is finite-dimensional.

There exists an integer p0 such that for all p > p0 Φp(S′) is in D>n+1.

Therefore, because of the defining properties of the t-structure, the space⊕
p>p0

HomD(S,Φp(S′)[n]) vanishes. Similary, there exists an integer q0
such that for all q > q0, we have Φq(S) ∈ D>−n+3. Since the algebra A

is of global dimension 6 2, the space
⊕
q>q0

HomD(Φq(S), S′[n]) vanishes.

Thus the space

⊕

p∈Z

HomD
(
S,Φp(S′)[n]

)
=

p0⊕

p=−q0

HomD
(
S,Φp(S′)[n]

)

is finite-dimensional. �

Cluster-tilting object

In this section we prove the following theorem:

Theorem 4.10. — Let A be a finite-dimensional k-algebra of global

dimension 6 2. If the functor TorA2 (?, DA) is nilpotent, then the cluster

category CA is Hom-finite, 2-CY and the object A is a cluster-tilting object.

We denote by Θ a cofibrant resolution of the dg A-bimodule

RHom•A(DA,A).

Following [59] and [60], we define the 3-derived preprojective algebra as the

tensor algebra

Π3(A) = TA
(
Θ[2]
)
.

The complex RHom•A(DA,A)[2] has its homology concentrated in de-

grees −2, −1 and 0, and we have

H−2
(
Θ[2]
)
≃ HomDA(DA,A),

H−1
(
Θ[2]
)
≃ Ext1

A(DA,A)

H0
(
Θ[2]
)
≃ Ext2

A(DA,A).

Thus the homology of the dg algebra Π3(A) vanishes in strictly positive

degrees and we have

H0Π3A = TA Ext2
A(DA,A) = Ã.

By Proposition 4.9, it is finite-dimensional. Moreover, Keller [60] showed

that Π3(A) is homologically smooth and bimodule 3-CY. Thus we can apply

Theorem 2.1 and we have the following result:
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Corollary 4.11. — The category C = per Π3A/D
bΠ3A is 2-CY and

the free dg module Π3A is a cluster-tilting object in C.

To complete the proof of Theorem 4.10 we now construct a triangle

equivalence between CA and C sending A to Π3A.

Let us recall a theorem of Keller (see [56], or [4, Theorem 8.5, p. 96]):

Theorem 4.12 (Keller). — Let B be a dg algebra and T an object of

DB. Denote by C the dg algebra RHom•B(T, T ). Denote by 〈T 〉B the thick

subcategory of DB generated by T . The functor RHom•B(T, ?) : DB → DC

induces an algebraic triangle equivalence

RHom•B(T, ?) : 〈T 〉B
∼ // perC.

Let us denote by Ho( dgalg ) the homotopy category of dg algebras,

i.e. the localization of the category of dg algebras at the class of quasi-

isomorphisms.

Lemma 4.13. — In Ho(dgalg), there is an isomorphism between Π3A

and RHomB(AB , AB).

Proof. — The dg algebra B is A ⊕ (DA)[−3]. Denote by X a cofibrant

resolution of the dg A-bimodule DA[−2]. Now look at the dg submodule

of the bar resolution of B seen as a bimodule over itself (see the proof of

Theorem 7.1 in [57]):

bar(X,B) : · · · → B ⊗A X
⊗A2 ⊗A B −→ B ⊗A X ⊗A B −→ B ⊗A B → 0.

This is a cofibrant resolution of the dg B-bimodule B. Thus A⊗B bar(X,B)

is a cofibrant resolution of the dg B-module A. Therefore, we have the

isomorphisms

RHom•B(AB , AB) ≃ Hom•B
(
A⊗B bar(X,B), A

)

≃
∏

n>0

Hom•B(A⊗A X
⊗An ⊗A B,AB)

≃
∏

n>0

Hom•A(X⊗An,HomB(B,AB)A)

≃
∏

n>0

Hom•A(X⊗An, AA),

where the differential on the last complex is induced by that of X⊗An. Note

that

Hom•A(X,A) = RHom•A
(
DA[−2], A

)
= RHom•A(DA,A)[2] = Θ[2].

We can now use the following lemma:
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Lemma 4.14. — Let A be a dg algebra, and L and M dg A-bimodules

such that MA is perfect as right dg A-module. There is an isomorphism in

D(Aop ⊗A)

RHom•A(L,A)
L

⊗ARHom
•

A(M,A) ≃ RHom•A(M
L

⊗AL,A).

Proof. — LetX andM be dg A-bimodules. The morphism of D(Aop⊗A)

X
L

⊗ARHomA(M,A) −→ RHomA(M,X), x⊗ ϕ 7−→
(
m 7→ xϕ(m)

)

is clearly an isomorphism for M = A. Thus it is an isomorphism if M is

perfect as a right dg A-module. Applying this to the right dg A-module

RHomA(L,A), we get an isomorphism of dg A-bimodules

RHomA(L,A)
L

⊗ARHomA(M,A) ≃ RHomA
(
M,RHomA(L,A)

)
.

Finally, by adjunction we get an isomorphism of dg A-bimodules

RHomA(L,A)
L

⊗ARHomA(M,A) ≃ RHomA(M
L

⊗AL,A). �

Therefore, Hom•A(X⊗An, AA) is isomorphic to (Θ[2])⊗An, and there is

an isomorphism of dg algebras

RHom•B(AB , AB) ≃
⊕

n>0

(
θ[2]
)L

⊗An = Π3(A)

because for each p ∈ Z, the group Hp(θ[2]
L

⊗An) vanishes for all n≫ 0. �

By Theorem 4.12, the functor RHom•B(AB , ?) induces an equivalence

between the thick subcategory 〈A〉B of DB generated by A, and per Π3(A).

Thus we get a triangle equivalence that we will denote by F :

F = RHom•B(AB , ?) : 〈A〉B
∼ // per Π3A

This functor sends the object AB of DbB onto the free module Π3A and

the free B-module B onto RHom•B(AB , B) ≃ RHom•B(AB , DB[−3]), that

is to say onto (DA)[−3]Π3A. So F induces an equivalence

F : perB = 〈B〉B
∼ //
〈
DA[−3]

〉
Π3A

= 〈A〉Π3A.

Lemma 4.15. — The thick subcategory 〈A〉Π3A of DΠ3A generated

by A is DbΠ3A.

TOME 59 (2009), FASCICULE 6



2560 Claire AMIOT

Proof. — The algebra A is finite-dimensional, thus 〈A〉Π3A is obviously

included in DbΠ3A. Moreover, the category DbΠ3A equals

〈modH0(Π3A)〉Π3A by the existence of the t-structure. The dg algebra

Π3A is the tensor algebra TA(θ[2]) thus there is a canonical projection

Π3A → A which yields a restriction functor DbA → Db(Π3A) respecting

the t-structure

modH0Π3A = H
� � // Db(Π3A)

modA

OO

� � // DbA

OO

This restriction functor induces a bĳection in the set of isomorphism classes

of simple modules because the kernel of the map H0(Π3A)→ A is a nilpo-

tent ideal (namely the sum of the tensor powers over A of the bimodule

Ext2
A(DA,A)). Thus each simple of modH0Π3A is in 〈A〉Π3A and we have

〈A〉Π3A ≃
〈
modH0(Π3A)

〉
Π3A
≃ DbΠ3A. �

Proof of Theorem 4.10. — By Proposition 4.9 and Corollary 4.5, the

cluster category is Hom-finite and 2-CY. Furthermore, the functor F =

RHom•B(AB , ?) induces the commutative square

F : 〈A〉B
∼ // per Π3A

perB
∼ //?�

OO

DbΠ3A.
?�

OO

Thus F induces a triangle equivalence

CA = 〈A〉B/ perB
∼ // per Π3A/D

bΠ3A = C

sending the object A onto the free module Π3A. By Theorem 2.1, A is

therefore a cluster-tilting object of the cluster category CA. �

Quiver of the endomorphism algebra of the cluster-tilting object

Let A = kQ/I be a finite-dimensional k-algebra of global dimension 6 2.

Suppose that I is an admissible ideal generated by a finite set of minimal

relations ri, i ∈ J where for each i ∈ J , the relation ri starts at the

vertex s(ri) and ends at the vertex t(ri). Let Q̃ be the quiver:

⊲ the set of the vertices of Q̃ equals that of Q;

⊲ the set of arrows of Q̃ is obtained from that of Q by adding a new

arrow ρi with source t(ri) and target s(ri) for each i in J .
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We then have the following proposition, which has essentially been proved

by I. Assem, T. Brüstle and R. Schiffler [6, Thm 2.6].The proposition is also

proved in [60].

Proposition 4.16. — If the algebra EndCA(A)=Ã is finite-dimensional,

then its quiver is Q̃.

Proof. — Let B be a finite-dimensional algebra. The vertices of its quiver

are determined by the quotient B/ rad(B) and the arrows are determined

by rad(B)/ rad2(B). Denote by X the A-A-bimodule Ext2
A(DA,A). Since

X ⊗AX is in rad2(B), the quiver of Ã = TAX is the same as the quiver of

the algebra A⋊X. The proof is then exactly the same as in [6, Thm 2.6].

�

Example

We refer to [42] for this example. Let Q be a Dynkin quiver. Let A

be its Auslander algebra. The algebra A is of global dimension 6 2. The

category modA is equivalent to the category mod (modkQ) of finitely pre-

sented functors (modkQ)op → modk. The projective indecomposables of

modA are the representable functors U∧ = HomkQ(?, U) where U is an

indecomposable kQ-module. Let S be a simple A-module. Since A is finite-

dimensional, this simple is associated to an indecomposable U of modkQ.

If U is not projective, then it is easy to check that in Db(A) the simple SU
is isomorphic to the complex

· · ·
// 0
−3

// (τU)∧
−2

// E∧
−1

// U∧
0

// 0
1

//
· · ·

where 0 // τU // E // U // 0 is the Auslander-Reiten sequence as-

sociated to U . Thus Φ(SU ) = νSU [−2] is the complex

· · ·
// 0
−1

// (τU)∨
0

// E∨
1

// U∨
2

// 0
3

//
· · ·

where U∨ is the injective A-module DHomkQ(U, ?). It follows from the

Auslander-Reiten formula that this complex is quasi-isomorphic to the sim-

ple SτU .

If U is projective, then SU is isomorphic in Db(A) to

· · ·
// 0
−2

// (radU)∧
−1

// U∧
0

// 0
1

//
· · · ,
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and then Φ(SU ) is in D>1. Since for each indecomposable U there is some N

such that τNU is projective, there is some M such that ΦM (D>0) is in-

cluded in D>1. By Proposition 4.9, the cluster category CA is Hom-finite,

and 2-CY by corollary 4.5.

The quiver of A is the Auslander-Reiten quiver of modkQ. The minimal

relations of the algebra A are given by the mesh relations. Thus the quiver

of Ã is the same as that of A in which arrows τx → x are added for each

non projective indecomposable x.

For instance, if Q is A4 with the orientation 1 // 2 // 3 // 4, then

the quiver of the algebra Ã is

•
��@

@@

•

??~~~

��@
@@

•oo

��@
@@

•

??~~~

��@
@@

•oo

??~~~

��@
@@

•oo

��@
@@

•

??~~~
•oo

??~~~
•oo

??~~~
•oo

5. Stable module categories as cluster categories

5.1. Definition and first properties

Let B be a concealed algebra [79], i.e. the endomorphism algebra of

a preinjective tilting module over a finite-dimensional hereditary algebra.

LetH be a postprojective slice of modB. We denote by add(H) the smallest

subcategory of modB which contains H and which is stable under taking

direct summands. Let Q be the quiver such that EndB(H) is the path

algebra kQ and let Q0 = {1, . . . , n} be its set of vertices. By Happel [45],

there is a triangle equivalence:

Db(B)
DRHomB(?,H) //

Db(kQ).

(D?)
L

⊗kQH

oo

Notice that these functors induce quasi-inverse equivalences between

add(H) and the subcategory of finite-dimensional injective kQ-modules.

Define M as the following subcategory of modB:

M =
{
X ∈ modB | Ext1

B(X,H) = 0
}

=
{
X ∈ modB | X is cogenerated by H

}
.
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We denote by τB the AR-translation of the category modB and by τD
the AR-translation of DbB.

The following proposition is a classical result in tilting theory (see [79]

for example).

Proposition 5.1. — 1) For each X in M there exists a triangle

X // H0
// H1

// X[1]

in Db(modB) functorial in X with H0 and H1 in add(H);

2) M ⊂ modB is closed under kernels so in particular, M is closed

under τB ;

3) for each indecomposable X in M there exists a unique q > 0 such

that τ−qB X is in add(H);

4) the category M has finitely many indecomposables.

Hom-finiteness

LetM be the quotientM/ add(H). Denote by p :M→M the canonical

projection. Since H is a slice, we have the following properties.

Proposition 5.2. — 1) The category M is equivalent to the full sub-

category ofM whose objects do not have non zero direct factors in add(H).

We denote by i :M→M the associated inclusion.

2) The categoryM⊂ modB is closed under kernels, and hence under τB .

3) The right exact functor i : modM→ modM induced by i :M→M

is isomorphic to the restriction along p.

Proposition 5.3. — Let A be the endomorphism algebra

EndB

( ⊕

M∈indM

M
)
.

The global dimension of A is at most 2.

Proof. — There is an equivalence of categories between modA and

modM. Since M is stable under kernels, the global dimension of A is

6 2. �

Theorem 5.4. — The cluster category CA is a Hom-finite, 2-CY cate-

gory, and the object A is a cluster-tilting object in CA.

Proof. — Using Corollary 4.5 and Theorem 4.9, we just have to check

that the functor Tor2
A(?, DA) is nilpotent. Since there are finitely many

indecomposables in M, the proof is the same as for an Auslander algebra

(cf. the examples of Section 4.3). �
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Construction of the functor F : modM→ f.l.Λ

Denote by I(kQ) the subcategory of the preinjective modules of modkQ.

Proposition 5.5. — There exists a k-linear functor P : I(kQ) → M

unique up to isomorphism such that

⊲ P restricted to subcategory of the injective kQ-modules is isomorphic

to the restriction of the functor D(?)⊗kQ H;

⊲ for each indecomposable X in I(kQ) such that P (X) is not projective,

the image

0 // P (τDX)
Pi // P (E)

Pp // P (X) // 0

of an Auslander-Reiten sequence in modkQ ending at X

0 // τDX
i // E

p // X // 0

is an Auslander-Reiten sequence in modB ending at P (X).

Moreover, the functor P is full, essentially surjective, and satisfies

P ◦ τD ≃ τB ◦ P.

Proof. — The Auslander-Reiten quivers ΓI of I(kQ) and ΓM of M

are connected translation quivers. Each vertex of ΓI is of the form τ qDx

with q > 0 and x indecomposable injective. Each vertex of ΓM is of the

form τ qBx where x is in add(H) (item 3) of Proposition 5.1). Moreover,

there is a canonical isomorphism of quivers P : ΓDkQ → Γadd(H). Thus we

can inductively construct a morphism of quivers (that we will still denote

by P ) P : ΓI → ΓM extending P such that:

⊲ P (τDx) = τBP (x) for each vertex x of ΓI ;

⊲ P (σDα) = σBP (α) for each arrow α : x → y of ΓI , where σDα

(resp. σBβ) denotes the arrow τDy → x (resp. τBy → x) such that the

mesh relations in ΓI (resp. ΓM) are of the form
∑
t(α)=x σD(α)α (resp.∑

t(β)=x σB(β)β).

Clearly, this morphism of translation quivers induces surjections in the

sets of vertices and the sets of arrows.

The categories I(kQ) and M are standard, i.e. k-linearly equivalent to

the mesh categories of their Auslander-Reiten quivers. Up to isomorphism,

an equivalence k(ΓI)→ I(kQ) is uniquely determined by its restriction to

a slice. Thus there exists a k-linear functor P : I(kQ) →M unique up to

isomorphism which is equal to D(?) ⊗kQ H on the slice of the injectives
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and such that the square

k(ΓI)

P
��

∼ // I(kQ)

P

��
k(ΓM)

∼ //M

is commutative. This functor P sends Auslander-Reiten sequences

0 // τDX
i // E

p // X // 0

to Auslander-Reiten sequences

0 // τBP (X)
Pi // P (E)

Pp // P (X) // 0

if P (X) is not projective. Since P is surjective, P is full and essentially

surjective. �

Lemma 5.6. — Let X and Y be indecomposables in I(kQ). The kernel

of the map HomkQ(X,Y )→ HomB(PX,PY ) is generated by compositions

of the form X → Z → Y where Z is indecomposable and P (Z) is zero.

Proof. — If P (X) or P (Y ) is zero this is obviously true. Suppose they are

not. The mesh relations are minimal relations of the k-linear category M

and P is full. Thus the kernel of the functor P is the ideal generated by

the morphisms of the form U
g // V

h // W where

0 // P (U)
Pg // P (V )

Ph // P (W ) // 0

is an Auslander-Reiten sequence in M. Since P (U) is isomorphic to

τBP (W ), the indecomposable U is isomorphic to τD(W ). By the con-

struction of P , V is a direct factor of the middle term of the Auslander-

Reiten sequence ending at W , and we can ‘complete’ the composition

τDW
g // V

h // W into an Auslander-Reiten sequence

0 // τDW

( g
g′
)

// V ⊕ V ′
(h h′ ) // W // 0

with P (V ′) = 0 and P (g′) = P (h′) = 0. Thus the morpism hg = −h′g′

factors through an object in the kernel of P . �

Now let Λ be the preprojective algebra associated to the acyclic quiver Q.

It is defined as the quotient kQ/(c) where Q is the double quiver of Q which

is obtained from Q by adding to each arrow a : i → j an arrow a∗ : j → i
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pointing in the opposite direction, and where (c) is the ideal generated by

the element

c =
∑

a∈Q1

(a∗a+ aa∗)

where Q1 is the set of arrows of Q. We denote by ei the idempotent of Λ

associated with the vertex i. We then have a natural functor

projΛ −→ IΠ(kQ), eiΛ 7−→
∏

p>0

τpDIi

where IΠ(kQ) is the closure of I(kQ) under countable products. Com-

posing this functor with the natural extension of P to IΠ(kQ), we get a

functor

projΛ −→M, eiΛ 7−→
⊕

p>0

τpBHi.

Therefore the restriction along this functor yields a functor F : modM→

mod Λ. Moreover, since M has finitely many indecomposables, the func-

tor F takes its values in the full subcategory f.l.Λ formed by the Λ-modules

of finite length.

This is an exact functor since it is a restriction. If M is an M-module,

then the vector space F (M)ej is isomorphic to
⊕
p>0M(τpBHj). For X

in M, there exists i ∈ Q0 and q > 0 such that τ qHi = X. It is then easy

to check that the image F (SX) of the simple associated to X is the simple

Λ-module Si.

Fundamental propositions

Proposition 5.7. — For X inM, there exists a functorial sequence in

mod Λ of the form

0 // F ◦ i∗(X∧) // F (H∧0 ) // F (H∧1 ) // F ◦ i∗(X∨) // 0

where i∗ :modM→modMis the right exact functor induced by i :M→M,

and where H0 and H1 are in add(H).

Proof. — Let X be in M, and iX its image in M. By 1) of Proposi-

tion 5.1, there exists a triangle functorial in X

iX // H0
// H1

// (iX)[1]

with H0 and H1 in add(H). It yields a long exact sequence in modM:

0 // (iX)∧ // H∧0 // H∧1

// Ext1
B(?, iX)|M

// Ext1
B(?,H0)|M

// · · · .
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By definition, the functor Ext1
B(?,H0)|M is zero. The Auslander-Reiten for-

mula gives us an isomorphism

Ext1
B(?, iX)|M ≃ DHomB(τ−1

B iX, ?)|M/ projB.

Since F is an exact functor, we get the following exact sequence in f.l.Λ:

0 // F
(
(iX)∧

)
// F (H∧0 ) // F (H∧1 )

// F
(
(τ−1
B iX)∨/ projB

)
// 0.

By definition, we have F ((iX)∧) ≃ (F ◦ i∗)(X
∧). For j = 1, . . . , n, we have

an isomorphism

F
(
(τ−1
B iX)∨/ projB

)
ej ≃
⊕

p>0

DHomB(τ−1
B iX, τ

p
BHj)/ projB.

For p > 0, we have τpB(Hj) = τ−1
B (τp+1

B Hj) if and only if τpBHj is not

projective. Thus we have a vector space isomorphism

F
(
(τ−1
B iX)∨/ projB

)
ej ≃
⊕

p>0

DHomB(τ−1
B iX, τ

−1
B τ

p+1
B Hj)/ projB.

A morphism f : τ−1X → τ−1Y factorizes through a projective object if

and only if τ(f) : X → Y is not zero. Thus we have

F
(
(τ−1
B iX)∨/ projB

)
ej ≃
⊕

p>1

DHomB(iX, τpBHj)

≃
⊕

p>0

DHomB(X, τpBHj)/[add(H)]

≃ (F ◦ p∗)(X∨)ej ≃ (F ◦ i∗)(X
∨)ej .

Therefore we get this exact sequence in f.l.Λ, functorial in X:

0 // (F ◦ i∗)(X∧) // F (H∧0 ) // F (H∧1 ) // (F ◦ i∗)(X∨) // 0.

�

Proposition 5.8. — Let U and V be indecomposables inM. We have

an isomorphism

HomCA(U∧, V ∧) ≃
⊕

p>0

M(τpBU, V )/[add τpBH]

where M(τpBU, V )/[add τpBH] is the cokernel of the composition map

M(τpBU, τ
p
BH)⊗M(τpBH,V ) −→M(τpBU, V ).

We first show the following lemma:
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Lemma 5.9. — Let eU and eV be the idempotents of A associated to

the indecomposables U and V . We have an isomorphism

eU Ext2
A(DA,A)eV ≃M(τBU, V )/[add τBH]

where M(τBU, V )/[addτBH] is the cokernel of the composition map

M(τBU, τBH)⊗M(τBH,V ) −→M(τBU, V ).

Proof. — We have the isomorphisms

eU Ext2
A(DA,A)eV = Ext2

A(D(eUA), AeV )

≃ HomD(M)

(
DM(U, ?),M(?, V )[2]

)
.

Denote by M the category M/ projB. The functor τB induces an equiva-

lence of k-linear categories τB :M→M. Thus we get the isomorphisms

HomD(M)

(
DM(U, ?),M(?, V )[2]

)

≃ HomD(M)

(
DM(τ−1

B U, τ
−1
B ?),M(τ−1

B ?, τ−1
B V )[2]

)

≃ HomD(M)

(
DM(τ−1

B U, ?),M(?, τ−1
B V )[2]

)

≃ HomD(M)(DM
(
τ−1
B U, ?)/ projB,M(?, τ−1

B V )/ projB[2]
)
.

But by the previous lemma, we know a projective resolution in modM of

the module DM(τ−1
B U, ?)/ projB. Namely, there exists an exact sequence

in modM of the form

0 //M(?, U) //M(?,H0) //M(?,H1) // DM(τ−1
B U, ?)/ projB // 0

where H0 and H1 are in add(H). Thus we get (using Yoneda’s Lemma)

HomD(M)

(
DM(U, ?),M(?, V )[2]

)

≃ HomD(M)

(
M(?, U),M(?, τ−1

B V
)
/ projB)/[addM(?,H)]

≃M(U, τ−1
B V )/[addH]

≃M(τBU, V )/[add τBH].

Since V is in M, a non zero morphism of M(τBU, V ) cannot factorize

through add(H). Thus we get

M(τBU, V )/[add τBH] ≃M(τBU, V )/[add τBH]. �

Proof of Proposition 5.8. — In this proof, for simplicity we denote τB
by τ . Let Ã be the algebra EndCA(A). By Proposition 4.7, we have a vector

space isomorphism

eU ÃeV ≃ eUAeV ⊕ eU Ext2
A(DA,A)eV ⊕ eU Ext2

A(DA,A)⊗A2eV ⊕ · · · .
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We prove by induction that

eU Ext2
A(DA,A)⊗ApeV ≃M(τpU, V )/[add τpH].

For p = 0, eUAeV is isomorphic toM(U, V ) by Yoneda’s Lemma, and so to

M(U, V )/[add(H)]. Suppose the proposition holds for an integer p−1 > 0.

We then have

eu Ext2
A(DA,A)⊗ApeV ≃

∑

W∈ind(M)

euExt2
A(DA,A)⊗Ap−1eW⊗ eW Ext2

A(DA,A)eV .

The sum means here the direct sum modulo the mesh relations of the

categoryM. Thus this vector space is the sum over the indecomposablesW

of M of

M(τp−1U,W )/[add(τp−1H)]⊗M(τW, V )/[add(τH)]

modulo the mesh relations ofM. This is isomorphic to the cokernel of the

map ϕp−1
τp−1U,W ⊗ 1τW,V + 1τp−1U,W ⊗ ϕ

1
τW,V where

ϕjX,Y :M(X, τ jH)⊗M(τ jH,Y ) −→M(X,Y )

is the composition map and where

1X,Y :M(X,Y ) −→M(X,Y )

is the identity. The cokernel of this map is isomorphic to the cokernel of

the map ϕpτpU,τW ⊗ 1τW,V + 1U,τW ⊗ ϕ
1
τW,V . But we have an isomorphism

∑

W∈indM

M(τpU, τW )⊗M(τW, V ) ≃M(τpU, V ).

Finally we get

Coker
( ∑

W∈indM

ϕpτpU,τW ⊗1τW,V +1U,τW ⊗ϕ
1
τW,V

)
≃ Coker(ϕpτpU,V +ϕ1

τpU,V ).

Furthermore, a morphism in M(τpU, V ) which factorizes through τH fac-

torizes through τpH since H is a slice and U is in M. Thus this cokernel

is in fact isomorphic to the cokernel of ϕpτpU,V that is to say to the space

M(τpU, V )/[add τpH]. �
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5.2. Case where B is hereditary

Results of Geiss, Leclerc and Schröer

LetQ be a finite connected quiver without oriented cycles with n vertices.

Denote by P the postprojective component of the Auslander-Reiten quiver

of modkQ, and by P1, . . . , Pn the indecomposable projectives.

Definition 5.10 (Geiss-Leclerc-Schröer [43]). — A kQ-module M =

M1⊕· · ·⊕Mr, where theMi are pairwise non isomorphic indecomposables,

is called initial if the following conditions hold:

⊲ for all i = 1, . . . , r, Mi is postprojective;

⊲ if X is an indecomposable kQ-module with HomkQ(X,M) 6= 0, then X

is in add(M);

⊲ and Pi ∈ add(M) for each indecomposable projective kQ-module Pi.

We define the integers ti as

ti = max
{
j > 0 | τ−j(Pi) ∈ add(M)− {0}

}
.

Denote by Λ the preprojective algebra associated to Q. There is a canon-

ical embedding of algebras kQ
� � // Λ . Denote by πQ : mod Λ → modkQ

the corresponding restriction functor.

Theorem 5.11 (Geiss-Leclerc-Schröer [43]). — LetM be an initial kQ-

module, and let CM = π−1
Q (add(M)) be the subcategory of all Λ-modules X

with πQ(X) ∈ add(M). The following holds:

(i) the category CM is a Frobenius category with n projective-injectives;

(ii) the stable category CM is a 2-CY triangulated category.

Recall that the category mod Λ can be seen as modkQ(τ−1, 1) (see Ringel

[80]). The objects are pairs (X, f) whereX is in modkQ and f : τ−1X → X

is a morphism in modkQ. The morphisms ϕ between (X, f) and (Y, g) are

commutative squares:

τ−1X
f //

τ−1ϕ

��

X

ϕ

��
τ−1Y

g // Y

The image of an object (X, f) under πQ : mod Λ → modkQ is then the

module X.
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Let X = τ−ℓPi be an indecomposable summand of an initial module M .

Let RX = (Y, f) be the following object in modkQ(τ−1, 1) ≃ mod Λ:

Y =

ℓ⊕

j=0

τ−jPi and f :

ℓ+1⊕

j=1

τ−jPi −→
ℓ⊕

j=0

τ−jPi

is given by the matrix

f =




0

1
. . .

. . .
. . .

1 0



.

Proposition 5.12 (Geiss-Leclerc-Schröer [43]). — The category CM
has a canonical maximal rigid object R =

⊕
X∈ind add(M)RX . The projec-

tive-injectives of CM are the Rτ−tiPi , i = 1, . . . , n. Therefore, R is a cluster-

tilting object in CM .

Endomorphism algebra of the cluster-tilting object

Let Q be a connected quiver without oriented cycles and denote by B

the path algebra kQ. LetM be an initial B-module. Let H be the following

postprojective slice H =
⊕n
i=1 τ

−tiPi of modB. Let Q′ be the quiver such

that EndB(H) is isomorphic to kQ′.

Let us define the subcategory M of Db(modkQ), as in the previous

section:

M =
{
X ∈ modkQ | Ext1

B(X,H) = 0
}
.

It is then obvious that M = add(M). As previously, we denote by Λ the

preprojective algebra associated with Q′. It is isomorphic to the one asso-

ciated with Q because Q and Q′ have the same underlying graph. Recall

that we have M = M/ add(H), and that A = EndB(M) is an algebra of

global dimension 2. Note that in this case τB and τD coincide on the objects

of modB which have no projective direct summands since B is hereditary.

We will denote it by τ in this section.

Lemma 5.13. — Let U and V be indecomposables in M. We have

HomΛ(RU , RV ) ≃
⊕

j>0

M(τ jU, V ).
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Proof. — LetP andQbe projective indecomposables such that U=τ−qQ

and V =τ−pP .

⊲ Case 1: p 6 q. — An easy computation gives the equalities

HomΛ(RU , RV ) ≃

p⊕

j=0

M(Q, τ−jP ) ≃

p⊕

j=0

M(τ−p+jQ, τ−pP )

≃

p⊕

j=0

M(τ−p+j+q(τ−qQ), τ−pP ) ≃

q⊕

j=q−p

M(τ jU, V ).

Since M(τkU, V ) vanishes for k 6 q − p+ 1 and since τkU vanishes for

k > q + 1 we get an isomorphism

HomΛ(RU , RV ) ≃
⊕

j>0

M(τ jU, V ).

⊲ Case 2: p > q. — In this case, a morphism from RU to RV is given by

morphisms aj ∈M(Q, τ−jP ), with j = 0, . . . , p such that τ−q+1aj = 0 for

j = 0, . . . , p− q−1. But since τ−q+1−jP is not zero for j = 0, . . . , p− q−1,

the morphism τ−q+1aj : τ−q+1Q → τ−q+1−jP vanishes if and only if aj
vanishes. Thus we get

HomΛ(RU , RV ) ≃

p⊕

j=p−q

M(Q, τ−jP ) ≃

p⊕

j=p−q

M(τ−p+jQ, τ−pP )

≃

p⊕

j=p−q

M(τ−p+j+q(τ−qQ), τ−pP ) ≃

q⊕

j=0

M(τ jU, V ).

Since τ jU vanishes for j > q + 1 we get

HomΛ(RU , RV ) ≃
⊕

j>0

M(τ jU, V ). �

Corollary 5.14. — Let U and V be indecomposable objects in M.

We have

HomC
M

(RU , RV ) ≃ eU ÃeV

and therefore the algebras Ã and EndC
M

(R) are isomorphic.

Proof. — The projective-injectives in the category CM are the RHi with

i = 1, . . . , n. Denote by RH the sum
⊕n
i=1RHi . Thus HomC

M
(RU , RV ) is

the cokernel of the composition map

HomCM (RU , RH)⊗ HomCM (RH , RV ) −→ HomCM (RU , RV ).
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By the previous lemma this map is isomorphic to

⊕

i,j>0

M(τ iU,H)⊗M(τ jH,V ) Φ //
⊕

p>0

M(τpU, V ).

Given two morphisms f ∈ M(τ iU,H) and M(τ jH,V ), Φ(f ⊗ g) is the

composition τ jf ◦ g ∈ M(τ i+jU, V ). Thus the cokernel of this map is the

cokernel of the map

⊕

p>0

p⊕

i=0

M(τpU, τ iH)⊗M(τ iH,V ) Φ //
⊕

p>0

M(τpU, V ).

Since H is a slice and since U is in M, a morphism in M(τpU, V ) which

factorizes through τ iH with i 6 p factorizes through τpH. Finally we get

HomC
M

(RU , RV ) ≃
⊕

p>0

M(τpU, V )/[add τpH],

and we conclude using Proposition 5.8. �

Triangle equivalence

Theorem 5.15. — The functor F ◦ i∗ : modM→ f.l.Λ yields a triangle

equivalence between CM and CM .

Proof. — Let X = τ−ℓB Pi be an indecomposable of M. Let X∧ be

the projective M-module HomB(?, X)|M . The underlying vector space of

F (X∧) is

F (X∧) ≃
⊕

q>0

HomB(τ qBH, τ
−ℓ
B Pi) ≃

⊕

q>0

HomB(τ−qB B, τ
−ℓ
B Pi)

≃
⊕

q>0

HomB(B, τ q−ℓB Pi) ≃
ℓ⊕

q=0

τ−qB Pi.

It is then not hard to see that F (X∧) is equal to RX . Thus each pro-

jective X∧ is sent onto an object of CM . Therefore F induces a functor

F : Db(M) → Db(CM ). Moreover for i = 1, . . . , n, F (H∧i ) is equal to

Rτ−tiPi ,i.e. a projective-injective of CM . We have the composition

Db(M) ≃ Db(A)

?
L

⊗ADA[−2]

VV
i∗ // Db(M)

F // Db(CM )
π // Db(CM )/ per CM ≃ CM .
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The functor F ◦ i∗ is clearly isomorphic to the left derived tensor product

with the A-Λ-bimodule R = F ◦ i∗(A). By Proposition 5.7, for X inM, we

have the exact sequence, functorial in X,

0 // F ◦ i∗(X∧) // F (H∧0 ) // F (H∧1 ) // F ◦ i∗(X∨) // 0

with H0 and H1 in add(H). It yields a morphism

F ◦ i∗(DA) −→ F ◦ i∗(A)[2]

in the derived category of A-Λ-bimodules. Since the objects F (H∧0 ) and

F (H∧1 ) vanish in the stable category CM , the image

F ◦ i∗(DA) −→ F ◦ i∗(A)[2]

of this morphism in the category of A-B-bimodules is invertible, where B is

a dg category whose perfect derived category is algebraically equivalent to

the stable category CM . In other words, in the derived category D(Aop⊗B),

we have an isomorphism

DA
L

⊗AπFi∗(A) ≃ πFi∗(A)[−2].

By the universal property of the orbit category, we have the factorization

Db(M)
?

L

⊗AR //
++WWWWW CM .

CM

44

This factorization is an algebraic functor between 2-CY categories which

sends the cluster-tilting object A onto the cluster-tilting object R. Moreover

by corollary 5.14, it yields an equivalence between the categories add(A)

and add(R). Thus it is an algebraic triangle equivalence. �

Note that if M is the initial module kQ ⊕ τ−1kQ, Geiss, Leclerc and

Schröer proved, using a result of Keller and Reiten [62], that the 2-CY

category CM is triangle equivalent to the cluster category CQ. Here, H

is τ−1kQ and then M is kQ, so we get another proof of this fact.

5.3. Relation with categories Sub Λ/Iw

Results of Buan, Iyama, Reiten and Scott

Let Q be a finite connected quiver without oriented cycles and Λ the

associated preprojective algebra. We denote by {1, . . . , n} the set of vertices

of Q. For a vertex i of Q, we denote by Ii the ideal Λ(1 − ei)Λ of Λ. We
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denote by W the Coxeter group associated to the quiver Q. The group W

is defined by the generators 1, . . . , n and the relations:

⊲ i2 = 1 for all i in {1, . . . , n};

⊲ ij = ji if there are no arrows between the vertices i and j;

⊲ iji = jij if there is exactly one arrow between i and j.

Let w = i1i2 . . . ir be aW -reduced word. For m 6 r, let Iwm be the ideal

Iwm = Iim · · · Ii2 Ii1 .

For simplicity we will denote Iwr by Iw. The category Sub Λ/Iw is the

subcategory of f.l.Λ generated by the sub-Λ-modules of Λ/Iw.

Theorem 5.16 (Buan-Iyama-Reiten-Scott [19]). — The category

Sub Λ/Iw

is a Frobenius category and its stable category SubΛ/Iw is 2-CY. The

object Tw =
⊕r
m=1 eimΛ/Iwm is a cluster-tilting object.

Note that this theorem is written only for non Dynkin quivers in [19],

but the Dynkin case is an easy consequence of Theorem II.2.8 and Corol-

lary II.3.5 of [19].

Construction of a reduced word

Let B be a concealed algebra, and H a postprojective slice in modB.

Let Q the quiver of EndB(H). It is a finite quiver without oriented cy-

cles. We denote by {1, . . . , n} its set of vertices and by Λ its preprojective

algebra. We define as previously M = {X ∈ modB | Ext1
B(X,H) = 0}.

Let us order the indecomposables X1, . . . , XN ofM in such a way: if the

morphism space HomB(Xi, Xj) does not vanish, i is smaller than j. This

is possible since Q has no oriented cycles.

By Proposition 5.1, for Xi ∈ M there exists a unique q > 0 such that

τ−qB Xi ≃ Hϕ(i) for a certain integer ϕ(i). So we get a function

ϕ : {1, . . . , N} −→ {1, . . . , n}.

Let w be the word ϕ(1)ϕ(2) . . . ϕ(N).

Proposition 5.17. — The word w is W -reduced.

Proof. — The proof is in several steps:

Step 1: For two integers i < j in {1, . . . , N}, we have ϕ(i) = ϕ(j) if and

only if there exists a positive integer p such that Xi = τpBXj.

TOME 59 (2009), FASCICULE 6



2576 Claire AMIOT

Step 2: The element w of the Coxeter group does not depend on the order

on the indecomposables of M.

Let i be in {1, . . . , N − 1}. Assume there is an arrow ϕ(i) → ϕ(i + 1)

in Q. We show that there is an arrow Xi → Xi+1 in the Auslander-Reiten

quiver ofM. By Proposition 5.1, there exist positive integers p and q such

that Xi = τ qBHϕ(i) and Xi+1 = τpBHϕ(i+1). By hypothesis there is an arrow

between Hϕ(i) and Hϕ(i+1). Thus we want to show that p is equal to q.

Suppose that p > q + 1, then since M is closed under τB , the objects

τ qBHϕ(i+1) and τ q+1
B Hϕ(i+1) are non zero and are inM. Let ℓ be the integer

in {1, . . . , N} such that Xℓ = τ q+1
B Hϕ(i+1). We have an arrow

Xi = τ qBHϕ(i) −→ τ
q
BHϕ(i+1) = τ−1

B Xℓ.

Thus, by the property of the AR-translation, there is an arrow Xℓ → Xi.

Thus i should be strictly greater than ℓ. But by step 1, and the hypothesis

p > q + 1, we have i+ 1 6 ℓ. This is a contradiction.

The cases q > p + 1, and ϕ(i + 1) → ϕ(i) in Q can be solved in the

same way.

Step 3: It is not possible to have ϕ(i) = ϕ(i+ 1).

Suppose we have ϕ(i) = ϕ(i+1). By step 1 there exists a positive integer p

such that Xi = τpBXi+1. Suppose that p is > 2, then τBXi+1 = τ−p+1
B Xi is

in M, it is isomorphic to an Xk for an integer k with ϕ(k) = ϕ(i). But k

must be strictly greater than i and strictly smaller than i + 1 which is

clearly impossible. Thus p is equal to 1. There should exist an Xℓ in M

such that Hom(Xi, Xℓ) 6= 0 and Hom(Xℓ, Xi+1) 6= 0. Thus ℓ must be

strictly between i and i+ 1 which is impossible.

Step 4: It is not possible to have ϕ(i) = ϕ(i+ 2) and ϕ(i+ 1) = ϕ(i+ 3)

with exactly one arrow in Q between ϕ(i) and ϕ(i+ 1).

In this case we have, by step 1, Xi = τpBXi+2 and Xi+1 = τ qBXi+3. By

the same argument as in step 3, p and q have to be equal to 1. Thus the AR

quiver of M has locally the form

%%

��

// Xi+1

%%JJ
J

Xi+3

;;

//

  // Xi

;;www
Xi+2

99ttt
//

''
>>

The module Xi+1 is the unique direct predecessor of Xi+2. Indeed, sup-

pose there is an Xk with an arrow Xk → Xi+2. Thus there is an arrow

τBXi+2 = Xi → Xk and k must be strictly between i and i + 2. By the
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same argument, there is only one arrow with tail Xi+3, one arrow with

source Xi and one arrow with source Xi+1. Thus we have the following AR

sequences in modB:

0 // Xi // Xi+1
// Xi+2

// 0 and 0 // Xi+1
// Xi+2

// Xi+3
// 0

which is clearly impossible.

Step 5: There is no subsequence of type jkjlkl in w with an arrow between j

and k and an arrow between k and ℓ

Suppose we have ϕ(i) = ϕ(i + 2) = j, ϕ(i + 1) = ϕ(i + 4) = k and

ϕ(i + 3) = ϕ(i + 5) = ℓ. As previously, we have Xi = τBXi+2, Xi+1 =

τBXi+4 and Xi+3 = τBXi+5. There is an arrow Xi+1 → Xi+2 so there is

an arrow Xi+2 → Xi+4. There is an arrow Xi+3 → Xi+4 thus there is an

arrow Xi+1 → Xi+3. As in step 4 it is easy to see that the AR quiver ofM

locally looks like

''

##

// Xi+3

%%JJ
J

Xi+5

;;

//

  // Xi+1

99ttt

%%JJ
J

Xi+4

99ttt
//

%%// Xi

;;www
Xi+2

99ttt
//

''
>>

Thus we have the three following AR sequences in modB:

0 // Xi // Xi+1
// Xi+2

// 0, 0 // Xi+3
// Xi+4

// Xi+5
// 0

and 0 // Xi+1
// Xi+3 ⊕Xi+2

// Xi+4
// 0

A simple argument of dimension permits us to conclude that Xi and Xi+5

must be zero, that is a contradiction.

By the second step, we know that using the relation of commutativity is

the same as changing the order on the indecomposables ofM. Moreover we

just saw that locally we can not reduce the word w. Thus it is reduced. �

Image of the cluster-tilting object

Let F : modM→ f.l.Λ be the functor constructed in section 5.1.

Proposition 5.18. — We have an isomorphism in f.l.Λ

F (X∧i ) ≃ eϕ(i)Λ/Iwi , i = 1, . . . , N,

where wi is the word ϕ(1) · · ·ϕ(i).
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Proof. — The functor F is right exact and sends the simple functor SXi
onto the simple Sϕ(i). Since F (X∧i ) surjects onto F (SXi), there is a mor-

phism eϕ(i)Λ→ F (X∧i ). Explicitly, we will take the morphism given in this

way:

The object Xi is of the form τ qBHϕ(i) for a q > 0. If j is in {1, . . . , n},

the vector space eϕ(i)Λej is isomorphic to
∏
p>0 HomkQ(τpDIj , Iϕ(i)) where

Ij is the injective indecomposable module of modkQ corresponding to the

vertex j. Let f be a morphism in HomkQ(τpDIj , Iϕ(i)), then τ qD(f) is a mor-

phism in HomkQ(τp+qD Ij , τ
q
DIϕ(i)), and then P (τ qDf) = τ qBP (f) is a mor-

phism in M from τp+qB Hj to τ qBHϕ(i) = Xi, thus is in F (X∧i )ej .

Step 1: The morphism eϕ(i)Λ→ F (X∧i ) vanishes on the ideal Iwi .

A word j1j2 · · · jr will be called a subword of wi if there exist integers

1 6 ℓ1 < ℓ2 < · · · < ℓr 6 i such that j1j2 · · · jr = ϕ(ℓ1)ϕ(ℓ2) · · ·ϕ(ℓr). It is

easy to check that the vector space eϕ(i)Iwiej is generated by the paths

from j to ϕ(i) such that there exists a factorization

j ///o/o/o j1 ///o/o/o j2 ///o/o/o · · · ///o/o/o jr ///o/o/o ϕ(i)

with jj1j2 · · · jrϕ(i) not a subword of wi.

Let f be a morphism τpDIj → Iϕ(i) in I(kQ) given by such a path. Assume

that the image P (τ qDf) of f in F (X∧i ) is non zero. Let

τpDIj
f0 // τp1

D Ij1
f1 // τp2

D Ij2
f2 // · · · // τprD Ijr

fr // Iϕ(i)

be the factorization of f given by the above factorization of the path.

Therefore P (τ qDf) is equal to the composition

// τpr+q
B Hjr

// τ qBHϕ(i) = Xi

// · · · // τpr+q
B Hjr

// τ qBHϕ(i) = Xi.

Since P (τ qDf) is not zero, all morphisms P (τ qDfℓ) are not zero, and all ob-

jects τpℓ+qB Hjℓ are non zero. Thus the objects τpℓ+qB Hjℓ are of the form Xhℓ
with h0 < h1 < · · · < hr < i. Furthermore, we have ϕ(hℓ) = jℓ. Thus

jj1 · · · jrϕ(i) = ϕ(h0)ϕ(h1) · · ·ϕ(hr)ϕ(i) is a subword of wi. This contra-

diction shows that the image of f in F (X∧i ) must be zero.

Step 2: The morphism eϕ(i)Λ→ F (X∧i ) is surjective.

Let f be a morphism τp+qB Hj → τ
q
BHϕ(i) = Xi in M. Hence τ−qB f is a

morphism τpBHj → Hϕ(i) in M. Since P is full (cf. Proposition 5.5), there

exists a morphism g : τpDIi → Iϕ(i) such that P (g) = τ−qB f . Thus we have

P (τ qDg) = τ qBP (g) = f .
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Step 3: The morphism eϕ(i)Λ/Iwi → F (X∧i ) is injective.

Let f be a non zero morphism τpDIj → Iϕ(i) in I(kQ) such that P (τ qDf)

is zero. By Lemma 5.6, we can assume that there exists a factorization

of τ qDf of the form

τ q+pD Ij
h // Y

g // τ qDIϕ(i)

with Y indecomposable and P (Y ) = 0. The object Y is of the form τhDIℓ
with h > q and we have τhBHℓ = 0.

The morphism g is a sum of compositions of irreducible morphisms be-

tween indecomposables. Let

τhDIℓ
g0 // Y1

g1 // Y2

g2 // · · · // Ys
gs // τ qDIϕ(i)

be such a summand of g. The objects Yk, 1 6 k 6 s are indecomposable

and so are of the form τ rkD Ijk , and the morphisms gk, 0 6 k 6 s are

irreducible. We will show that the word ℓj1j2 · · · jsϕ(i) is not a subword

of wi. Without loss of generality, we may assume that for 1 6 k 6 s,

P (Yk) is not zero, so there exist integers ℓk such that P (Yk) = Xℓk . Since

the morphisms gk are irreducible, P (gk) does not vanish, and we have

1 6 ℓ1 < ℓ2 < · · · < ℓs < i. The word j1j2 . . . jsϕ(i) is equal to the word

ϕ(ℓ1)ϕ(ℓ2) · · ·ϕ(ℓs)ϕ(i), so j1j2 · · · jsϕ(i) is a subword of wi.

Substep 1: The sequence 1 6 ℓ1 < ℓ2 < · · · < ℓs < i is the maximal

element of the set

{
1 6 i1 < i2 < · · · < is < is+1 6 i

| ϕ(i1) = j1, . . . , ϕ(is) = js, ϕ(is+1) = ϕ(i)
}

for the lexicographic order.

We prove by decreasing induction that ℓk is the maximal integer with

ℓk < ℓk+1 and ϕ(ℓk) = jk. For k = s + 1 it is obvious. Now suppose there

exists an integer ik such that ϕ(ℓk) = ϕ(ik) = jk and ℓk < ik < ℓk+1.

Thus by step 1 of Proposition 5.17, there exists an integer r > 1 such

that Xℓk = τ rBXik . The morphism P (gk) : Xℓk → Xℓk+1
is irreducible, so

there exists a non zero irreducible morphism Xℓk+1
→ τ−1

B Xℓk . The object

τ−1
B Xℓk is inM since Xℓk and τ−rB Xℓk = Xik are inM. It is of the form Xt,

and we have ℓk+1 < t. Since r is > 1, t is 6 ik by step 1 of Proposition 5.17.

This implies ℓk+1 < ik which is a contradiction.

Substep 2: ℓ does not belong to the set {ϕ(1), ϕ(2), . . . , ϕ(ℓ1 − 1)}.
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Suppose that there exists an integer 1 6 k 6 N such that ϕ(k) is equal

to ℓ. Thus there exists an integer r > 0 such that Xk is equal to τ rBHℓ.

Since τhBHℓ = P (τhDIℓ) is zero, r is 6 h− 1.

Since the morphism g0 : τhDIℓ → Y1 is an irreducible morphism of

I(kQ), there exists an irreducible morphism Y1 → τ
h−1
D Iℓ in I(kQ). Thus

there exists an irreducible morphism τ r−h+1
D Y1 → τ

r
DIℓ in I(kQ). The

object P (τ rDIℓ) = τ rBHℓ = Xk is not zero and lies in M, so the object

P (τ r−h+1
D Y1) = τ r−h+1

B Xℓ1 is not zero and lies in M since M is stable

by kernel. Thus there is an irreducible morphism τ r−h+1
B Xℓ1 = Xt → Xk

in M. Therefore t has to be < k. Moreover since r − h + 1 6 0, ℓ1 is 6 s

by step 1 of Proposition 5.17. Finally we get ℓ1 < k.

Combining substep 1 and substep 2, we can prove that ℓj1j2 . . . jsϕ(i)

can not be a subword of wi. Indeed, assume ℓj1j2 . . . jsϕ(i) is a subword

of wi. There exist 1 6 i0 < i1 < · · · < is < is+1 6 i such that

ϕ(i0)ϕ(i1) · · ·ϕ(is+1) = ℓj1j2 · · · jsϕ(i).

In particular, j1j2 · · · jsϕ(i) is a subword of wi and 1 6 i1 < · · · < is <

is+1 6 i is in the set of substep 1. Thus by substep 1, i1 has to be 6 ℓ1.

By substep 2, i0 can not exist. �

Endomorphism algebra of the cluster-tilting object

Lemma 5.19. — Let Xi and Xj be indecomposables ofM. We have an

isomorphism of vector spaces

HomΛ(eϕ(j)Λ/Iwj , eϕ(i)Λ/Iwi) ≃
⊕

p>0

M(τpBXj , Xi).

Proof. — Case 1: j > i

By [19, Lemma II.1.14] we have an isomorphism

HomΛ(eϕ(j)Λ/Iwj , eϕ(i)Λ/Iwi) ≃ eϕ(i)Λ/Iwieϕ(j).

By Proposition 5.18, this is isomorphic to the space
⊕

p>0

M(τpBHϕ(j), Xi).

By definition of ϕ, there exists some q > 1 such that Xj = τ qBHϕ(j). Thus

we can write the sum

⊕

p>0

M(τpBHϕ(j), Xi) =

q⊕

p=1

M(τ−pB Xj , Xi)⊕
⊕

p>0

M(τpBXj , Xi)
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Since j > i, there is no morphism from τ−pB Xj to Xi for p > 1, and the

first summand is zero. Therefore we get the result.

Case 2: j < i

By [19, Lemma II.1.14] we have an isomorphism

HomΛ(eϕ(j)Λ/Iwj , eϕ(i)Λ/Iwi) ≃ eϕ(i)(Iϕ(i) . . . Iϕ(j+1)/Iwi)eϕ(j).

By Proposition 5.18, this space is a subspace of the space
⊕

p>0

M(τpBHϕ(j), Xi) ≃
⊕

p>1

M(τ−pB Xj , Xi)⊕
⊕

p>0

M(τpBXj , Xi).

Step 1: If f is a non zero morphism in M(τ−pB Xj , Xi) with p > 1 then f

is not in the space eϕ(i)Iϕ(i) · · · Iϕ(j+1)eϕ(j).

Let Xℓ0 be the indecomposable τ−pB Xj . Since p > 1 then ℓ0 is 6 j + 1.

The morphism is a sum of composition of the form

Xℓ0 // Xℓ1 // · · · // Xℓr // Xi

with the Xℓk indecomposables. Since f is not zero, we have j + 1 6 ℓ0 <

ℓ1 < · · · < ℓr < i. Thus the word ϕ(ℓ0)ϕ(ℓ1) . . . ϕ(ℓr)ϕ(i) is a subword

of ϕ(j + 1)ϕ(j + 2) · · ·ϕ(i). Since it holds for each factorization of f , the

morphism f is not in the space eϕ(i)Iϕ(i) · · · Iϕ(j+1)eϕ(j).

Step 2: If f is a morphism in M(τpBXj , Xi) with p > 0 then f is in the

space eϕ(i)Iϕ(i) . . . Iϕ(j+1)eϕ(j).

Let Xℓ0 be the indecomposable τpBXj . Since p is > 0, we have ℓ0 6 j.

Let us show that if f is a composition of irreducible morphisms

Xℓ0 // Xℓ1 // · · · // Xℓr // Xℓr+1
= Xi

then ϕ(ℓ0)ϕ(ℓ1) · · ·ϕ(ℓr)ϕ(i) is not a subword of ϕ(j + 1)ϕ(j + 2) · · ·ϕ(i).

We have ℓ0 < ℓ1 < · · · < ℓr < i. Since ℓ0 < j+1 and i 6 j+1, there exists

1 6 k 6 r + 1 such that ℓk−1 < j + 1 6 ℓk. Therefore ϕ(ℓk) · · ·ϕ(ℓr)ϕ(i) is

a subword of ϕ(j + 1)ϕ(j + 2) · · ·ϕ(i), and the sequence ℓk < ℓk+1 < · · · <

ℓr < i is the maximal element of the set
{
j + 1 6 ik < · · · < ir+1 6 i

| ϕ(ik) = ϕ(ℓk), . . . , ϕ(ir) = ϕ(ℓr), ϕ(ir+1) = ϕ(i)
}

for the lexicographic order (exactly for the same reasons as in substep 1 of

Proposition 5.18). Now we can prove exactly as in substep 2 of Proposi-

tion 5.18 that ϕ(ℓk−1) does not belong to the set {ϕ(j+ 1), . . . , ϕ(ℓk− 1)}.

Thus the word ϕ(ℓk−1)ϕ(ℓk) · · ·ϕ(ℓr)ϕ(i) cannot be a subword of the word

ϕ(j + 1)ϕ(j + 2) · · ·ϕ(i).
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Finally, let f = f1 + f2 be a morphism in
⊕

p>0

M(τpBHϕ(j), Xi) ≃
⊕

p>1

M(τ−pB Xj , Xi)⊕
⊕

p>0

M(τpBXj , Xi).

By step 2, f2 is in the space eϕ(i)Iϕ(i) · · · Iϕ(j+1)eϕ(j). By step 1 the mor-

phism f is in eϕ(i)Iϕ(i) · · · Iϕ(j+1)eϕ(j) if and only if f1 is zero. Thus we get

an isomorphism

HomΛ(eϕ(j)Λ/Iwj , eϕ(i)Λ/Iwi) ≃
⊕

p>0

M(τpBXj , Xi). �

Corollary 5.20. — If Xi and Xj are indecomposables of M, then

HomSubΛ/Iw(eϕ(j)Λ/Iwj , eϕ(i)Λ/Iwi) ≃ eXj ÃeXi .

Proof. — The proof is exactly the same as the proof of Corollary 5.14.

�

Triangle equivalence

Theorem 5.21. — The functor F ◦ i∗ : modM → f.l.Λ induces an

algebraic triangle equivalence between CM and SubΛ/Iw.

Proof. — By Proposition 5.18, the functor F sends the projectives of

modM onto the summands of the cluster-tilting object Tw of the category

Sub Λ/Iw. For i = 1, . . . , n, the projective H∧i is sent to the projective-

injective Λ/Iwei. Furthermore, by Corollary 5.20, F ◦ i∗ induces an equiva-

lence between the subcategories add(A) and add(Tw). Thus we can conclude

as in the proof of Theorem 5.15. �

5.4. Example

We refer to [3] for more examples. Let Q be the quiver 1 // 2 3oooo .

The preinjective component of modkQ looks as follows:

· · · [ 4 16 9 ]

&&LLLL

&&LLLL
[ 2 6 3 ]

%%KK
K

%%KK
K

[ 0 2 1 ]

%%KK
KK

%%KK
KK;;wwwwww

;;wwwwww

##G
GGG [ 3 11 6 ]

88rrr 88rrr

&&LLLL
[ 1 4 2 ]

99ssss
99ssss

%%KK
K

[ 0 1 0 ]

· · · [ 3 8 4 ]

88rrr

[ 0 3 2 ]

99ssss
[ 1 1 0 ]

99sss
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Here we denote the kQ-modules by their dimension vectors in order to

lighten the writing. For example the module [ 1 4 2 ] has the composition

series 2 2 2 2
3 1 3 .

If we mutate the tilting object [ 2 6 3 ] ⊕ [ 1 4 2 ] ⊕ [ 1 1 0 ] in the direction

[ 1 4 2 ], we stay in the preinjective component. We get the tilting object

T = [ 2 6 3 ]⊕ [ 3 8 4 ]⊕ [ 1 1 0 ] .

The algebra B = EndkQ(T ) is a concealed algebra and is given by the

quiver:

2
b

��=
==

==

b′ ��=
==

==

1

a
@@�����
a′

@@�����
3

with the relation ba+ b′a′ = 0.

The functor RHomkQ(T, ?) yields an equivalence between Db(kQ) and

DbB. Denote by H the image of D(kQ) through this equivalence. This is

a postprojective slice of modB. Moreover, this equivelence restricts to an

equivalence between the category M = {X ∈ modB | Ext1
B(X,H) = 0}

and the category M′ = {X ∈ modkQ | Ext1
kQ(T,X) = 0}. The indecom-

posable objects of M′ are

[ 3 8 4 ] , [ 2 6 3 ] , [ 1 4 2 ] , [ 1 1 0 ] , [ 0 2 1 ] , and [ 0 1 0 ] .

The quiver of M′ with an admissible ordering is

2
��=

==

��=
==

5
��=

==

��=
==

oo

1

@@���
@@���

3

@@���
@@���

��=
==

oo 6oo

4

@@���

The dotted arrows represent the Auslander translation τB . The projective

indecomposables of modM have the dimension vectors

[
0 0

1 0 0
0

]
,
[

1 0
2 0 0

0

]
,
[

2 0
3 1 0

0

]
,
[

2 0
3 1 0

1

]
,
[

3 1
4 2 0

0

]
,
[

6 2
8 4 1

1

]
.

Now let Λ be the preprojective associated to the quiver Q. The functor

F : modM→ mod Λ sends the simples M-modules

S1 =
[

0 0
1 0 0

0

]
, S3 =

[
0 0

0 1 0
0

]
and S6 =

[
0 0

0 0 1
0

]
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on the simple Λ-module S2 =
[

0
1
0

]
.

2
��=

==

��=
==

5
��=

==

��=
==

3

1

@@���
@@���

3

@@���
@@���

��=
==

6 2

4

@@���
1

.

It sends the simpleM-modules S2 =
[

1 0
0 0 0

0

]
and S5 =

[
0 1

0 0 0
0

]
on the

simple Λ-module S1 =
[

1
0
0

]
, and the simple M-module S4 =

[
0 0

0 0 0
1

]
on

the simple Λ-module S3 =
[

0
0
1

]
. Since it is exact, it preserves the composi-

tion series and then it is easy to compute the image of the indecomposable

projective M-modules. We get

[
0
1
0

]
,
[

1
2
0

]
,
[

2
4
0

]
,
[

2
4
1

]
,
[

4
6
0

]
and

[
8

13
1

]
.

The projectives of the preprojective algebra associated to Q have the

composition series

1
2

3 3
2 2 2

3 1 3 3 1 3 3 1 3
...

...
...

,

2
3 1 3

2 2 2 2
3 1 3 3 1 3 3 1 3

...
...

...

, and

3
2 2

3 1 3 1 3
2 2 2 2 2 2

...
...

The word w associated with the ordering is w = 232132. Thus the max-

imal rigid object of the category Sub Λ/Iw is

R = 2 ⊕ 3
2 2 ⊕

2
3 3

2 2 2
⊕

1
2

3 3
2 2 2

⊕
3

2 2
3 3 3

2 2 2 2

⊕
2

3 1 3
2 2 2 2

3 3 3 3 3 3
2 2 2 2 2 2 2 2

.

It is easy to check that R is the image by F of the projective indecomposable

M-modules. The last three summands are the projective-injectives of the

Frobenius category Sub Λ/Iw. This confirms Proposition 5.18.

Now take the module X = 1 in M. It corresponds to the module [ 3 8 4 ]

in modkQ. We have the injective resolution in modkQ:

0 // [ 3 8 4 ] // [ 0 2 1 ]
4 ⊕ [ 1 1 0 ]

3 // [ 0 1 0 ]
3 // 0

Thus the short exact sequence in M: 0 // X // H0
// H1

// 0 is

0 // 1 // 43 ⊕ 54 // 63 // 0.
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Therefore, the sequence 0 // X∧ // H∧0 // H∧1 // (τ−1X)∨/ projB // 0
in modM becomes

0 //
[

0 0
1 0 0

0

]
//
[

2 0
3 1 0

1

]3
⊕
[

3 1
4 2 0

0

]4

//
[

6 2
8 4 1

1

]3
//
[

0 2
0 1 3

0

]
// 0,

where
[

0 2
0 1 3

0

]
is the quotient of (τ−1

B 1)∨ = 3∨ =
[

0 2
0 1 4

1

]
by the

projectives. Applying the projection functor we get the exact sequence in

mod Λ:

0 //
[

0
1
0

]
//
[

2
4
1

]3
⊕
[

4
6
0

]4
//
[

8
13
1

]3
//
[

2
4
0

]
// 0.

The algebra A is the endomorphism algebra of the direct sum of the in-

decomposables of M =M/ addH ≃M′/ addD(kQ). Thus the algebra A

is given by the quiver

2
b

��=
==

=

b′ ��=
==

=

1

a
@@����
a′

@@����
3

and the relation ba+ b′a′ = 0.

By Theorem 5.4 the cluster category CA associated with the algebra A is

2-Calabi-Yau, Hom-finite and A ∈ CA is a cluster-tilting object. Moreover

by Proposition 4.16, the quiver of the cluster-tilted algebra Ã = EndCA(A)

has the form

2

��=
==

=

��=
==

=

1

@@����
@@����

3oo

The injective A-module I1 = 1∨|
M

has dimension vector

[ 2
1 3 ] =

3 3 3
2 2

1

Its image by i∗ is theM-module
[

2 0
1 3 0

0

]
. Its image through F is the same

as the image of theM-module
[

0 2
0 1 3

0

]
, indeed we have F◦i∗(1

∨
|
M

) =
[

2
4
0

]
.

By the exact sequence above, there is an isomorphism in SubΛ/Iw between
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F ◦i∗(I1) and F ◦i∗(P1)[2] where P1 is the projective A-module with vector

dimension [ 0
1 0 ].
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