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Abstract Road traffic in urban areas is recognized to be

associated with urban mobility and public health, and it

is often the main source of noise pollution. Lately, noise

maps have been considered a powerful tool to estimate

the population exposure to environmental noise, but

they need to be validated by measured noise data. The

retrieved from a low-cost monitoring network. Indeed,

the first objective should improve the spatial sampling

based on the legislative road classification, as this clas-

sification is mainly based on the geometrical character-

istics of the road, rather than its noise emission. The

present paper describes the statistical approach of the

methodology under development and the results of its

preliminary application to a limited sample of roads in

the city of Milan. The resulting categorization of roads,

based on clustering the 24-h hourly LAeqh, looks prom-

ising to optimize the spatial sampling of noise monitor-

ing toward a description of the noise pollution due to

complex urban road networks more efficient than that

based on the legislative road classification.

Keywords Road noise . Urban area .Monitoring

techniques . Statistical analysis

Introduction

Road traffic in urban areas is one of the key issues for a

variety of aspects associated with municipal, regional,

and national policies due to its strong connection with

urban mobility and public health. In particular, the

Directive 2002/49/EC of the European Parliament and

of the Council has addressed a common approach aimed

at avoiding, preventing, and reducing the harmful ef-

f ec t s o f exposu re to env i ronmenta l no i se

(Directive 2002, ec.europa 2015). Road traffic is the

main source of noise in urban areas, and its assessment

and management is, therefore, strictly linked to the

aforementioned issues. For this reason, monitoring traf-

fic and noise in urban areas has been the object of many

studies (i.e.,Fidel 1978, Brown and Lam 1987, Kumar

and Jain 1994, Miedema and Vos 1998, Garcia and Faus

1991, Fields 1993, Barrigon et al. 2005). and their

results have been used to construct noise maps to esti-

mate the relevant population exposure.

To draw noise maps, both numerical models of out-

door sound propagation and monitoring stations are

used, the latter usually located near receivers where

sound levels are dominated by specific sources. Noise

maps updating is achieved scaling the noise levels of
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pre-calculated (basic) noise maps as a function of the

difference observed between measured and calculated

original grid data.

The process of linking the output of sound level

meters to noise calculation models in order to produce

automatic and updated noise maps was applied some

years ago. For instance, in 2003, Madrid Environmental

Administration, together with Brüel & Kjær, decided to

develop a new concept of data post-processing, based on

dynamic no i se maps (SADMAM, Si s t ema

Actualización Dinámica Mapa Acústico and Spain

(2006)). In the same years, Paris authorities published

dynamic noise maps on internet. In this case, the noise

maps were and are still currently fed by road traffic

noise measurements on a daily basis (Bruitparif 2015).

At present, software developers implementing acoustic

models provide application modules to link sound level

meters with their acoustic simulation software. This oper-

ation, although extremely appealing from a technical per-

spective, requires large investment, due to the cost of the

devices currently available to measure sound levels.

The need of developing and implementing a low cost

monitoring network was tackled by another interesting

experience in the project SENSEable (SENSEable PISA

2011). This idea is going to be further developed in the

recently approved DYNAMAP (Dynamic Acoustic

Mapping), an EU co-funded project in the LIFE 2013

framework (DYNAMAP - LIFE13 ENV/IT/001254).

The project is aimed at developing dynamic noise maps

through customized low-cost monitoring devices for data

collection, their transmission to central processing server

to calculate maps scaling through the implementation of

a GIS-based software application in order to reduce

calculation load. To develop and validate the methodol-

ogy, two pilot areas have been identified: the first one is

in the city ofMilan and covers a significant portion of the

city, including different types of roads and acoustical

scenarios. The second pilot area is located along a busy

motorway, namely the ring road enclosing the city of

Rome. Sensors will be installed in hot spots where traffic

counting is unavailable to feed the dynamic mapping

system with real-time information on noise levels.

The present paper deals with the preliminary study

carried out in the city of Milan to provide a scheme of

the approach to be applied throughout the DYNAMAP

project. The approach briefly consists in applying to a

sample of roads, a statistical analysis with the aim of

grouping together roads with similar 24-h noise time

patterns, in associating each cluster time pattern with a

non-acoustic characteristics (e.g., vehicle flow rate) and

then extend the cluster classification (connection to a

specific group) to the rest of un-sampled roads accord-

ing to the available non-acoustic characteristic of each

road. Thus, each un-sampled road can be allocated to a

specific group (cluster).

Acoustic database

26 Page 2 of 11 Environ Monit Assess (2016) 188: 26

The preliminary data sample refers to 58 sites corre-

sponding to 8 legislative road classes. Their characteris-

tics are described in BAcoustic database^ section. As an

alternative to the legislative road classes, BStatistical

analysis^ section describes the reduced number of road

types obtained by the cluster analysis, having homoge-

neous noise level patterns over the day and night periods

to be used as a reference. Each cluster is also

cross-checked by non-acoustic information (e.g., rush

hour traffic flow or average daily traffic volume) in order

to assign road segments to the relevant clusters. The

statistical fundamentals applied to optimize the number

of monitoring sites are described in BStratified sampling

by legislative road classification and by mean cluster

profiles^ section. This issue related to spatial sampling

has a significant impact on future investment costs.

BEstimate of daytime LAeqd from the hourly LAeqh^ sec-

tion deals with temporal sampling within the 24 h. This

technique offers the advantage, by reducing the measure-

ment time, to save resources which can be fruitfully used

to improve the resolution of spatial sampling. The values

of the noise descriptors on medium or long term estimat-

ed by those measured at shorter sampling time are affect-

ed by uncertainty. Studies on this aspect have been carried

out in Alberola et al. (2005), Bellucci et al. (2003). ,

Proceedings Euronoise (2003), Bordone and Sacerdote

(1977). Makarewicz (2012). Gaja et al.(2003), Heiß

(2013)). Discussion and conclusions are reported in

Discussion and BConclusions^ sections, respectively.

The dataset considered in the present work refers to road

traffic noise in the city of Milan, Italy, and is formed by

138 patterns of 24-h continuous monitoring of the hour-

ly equivalent levels, LAeqh, in 58 different sites, belong-

ing to eight legislative road classes, named A (motor-

ways), D (thoroughfare roads), E (district roads), and F

(local roads), the last two divided into two and four

sub-groups, respectively. In the present study, the

sub-groups in E and F classes were merged. In the road

network of Milan, the road A length is 3.3 %, that of D



Data were recorded on weekdays and in the absence

of rain, as required by the Italian decree D.M. Ambiente

16/3/1998 (Decreto Ministero dell’Ambiente 16

marzo 1998). Because of the non-homogeneity of

LAeqh level dataset, due to different monitoring condi-

tions, such as different distances from the road and also

to the configuration of the street itself (its geometry, the

presence of reflecting surfaces and obstacles along

sound propagation and types of paving), each ith hourly

LAeqhij level of the jth 24-h pattern was referred to its

corresponding daytime level, LAeqdj, as follows:

δi j ¼ LAeqhi j ‐LAeqdj dB½ � i¼1; ::::::::::; 24 h; j¼1; ::::::::::; 58ð Þ ð1Þ

The daytime level, LAeqd, was chosen as reference for

the hourly LAeqh because this descriptor is more often

Statistical analysis

In addition to the legislative road classification, it was

chosen to classify roads according to statistic criteria

applied to their noise emission. Generally, such
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roads is 2.0 %, E roads have a length of 13.8 %, and

local roads (F) are the largest percentage (61.0 %).

available than the nighttime value, LAeqn. For all the 58

sites, the vehicle flow rate at rush hour (time interval

7:30–8:30 a.m.) was available too. In 32 sites, where the

monitoring extended over more days, the median of the

δij hourly values was considered, as this parameter is

less influenced by the presence of outliers. Figure 1

shows the 24-h mean pattern δim(green line, with m =

A, D, E, F) and the corresponding ± the standard error of

the mean for each legislative road class (light green

area).

Fig. 1 24-h mean patterns δim (green line) and the corresponding ± the standard error of the mean for each legislative road class (light green

area)



emission depends on the road activity, its use in the

urban context, its width, the presence of reflecting sur-

faces, obstacles, type of paving, etc.. Some of these

parameters are considered in the legislative road classi-

fication, but this classification very often does not reflect

the actual use of the roads. For a more adequate descrip-

tion of the real temporal behavior of noise in complex

urban scenarios, such as the mobility network of the city

of Milan, the issue was faced considering an agglomer-

ation method to search for similarities among the 24-h

continuous monitoring of the hourly equivalent LAeqh
levels. After computing the δij values, the corresponding

time pattern provides a tool to group together roads

following the same vehicular dynamics, therefore

allowing a more adequate description of such road net-

works rather than that obtained by the legislative road

classification. For this reason, unsupervised clustering

algorithms were applied to group together patterns

found to be Bsimilar^ to one another. Various algorithms

(hierarchical agglomeration using Ward algorithm

(Ward 1963). K-means algorithm (Hartigan and Wong

1979), Partitioning Around Medoids (Kaufman and

Rousseeuw 1990). ExpectationMaximization algorithm

implemented by the Bmclust^ module (Fraley 2012)

were considered, and their results compared. The num-

ber of clusters was chosen as a compromise between

satisfactory discrimination and the need to limit the

number of groups. The range of solutions for clustering

was set from four groups (for a straightforward compar-

ison with the legislative road classes considered) to two

(corresponding to the minimal discrimination).

Euclidean distance was chosen as the metric of the

distance among observations. The statistical software

R, an open-source software environment for statistical

computing and graphics, was applied for the clustering

(http://www.r-project.org/). A detailed discussion on the

statistical analysis is given in Zambon et al. (2014)

where a validating test of the clustering results was

carried out by the BclValid^ package (Brock et

al. 2008) in order to assess the quality of the clustering

and assign a score to the different clustering algorithms.

The results obtained by the best performing algorithms

were further tested to check for their independence,

confirming the robustness of the obtained clusters.

The resulting two clusters were formed of roads be-

longing to different legislative classes, as reported in

Table 1. For the four-group solution, which is directly

comparable to the legislative road classes, a poor

Table 1 Composition of the two clusters according to the legis-

lative road classes

Cluster Legislative road class Total

A D E F

1 1 (33.3 %) 5 (55.6 %) 6 (31.6 %) 19 (70.4 %) 31 (53 %)

2 2 (66.7 %) 4 (44.4 %) 13 (68.4 %) 8 (29.6 %) 27 (47 %)

Fig. 3 Histogram and probability density vs. vehicle flow rate at

rush hour for the K-means two-cluster results
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Fig. 2 Mean cluster profiles, δik , and the corresponding ± stan-

dard deviation

http://www.r-project.org/


matching is observed between road and cluster

partitioning. The F class roads are distributed over all

the four groups, whereas the remaining classes are dis-

tributed in the first two groups. This confirms that the

road traffic is primarily linked to the effective urban

mobility rather than its legislative classification, as shown

also by the outcomes of previous studies, such as in

Brambilla and Gallo (2010). where the monitoring data

of road traffic noise collected in 244 sites distributed in

37 Italian cities were analyzed by K-means clustering.

The two-cluster solution represents a satisfying bal-

ance between an adequate differentiation among time

patterns and the need to get a solution easy to be applied.

As shown in Table 1, the two clusters are formed pri-

marily of the contributions from different temporal pro-

files belonging to roads of F class for cluster 1 (made up

of 31 temporal profiles corresponding to 53 % of total)

and to roads of class A and E for cluster 2 (made up of

27 temporal profiles corresponding to 47 % of total).

Class D roads are almost equally distributed over the

two clusters. This result confirms that the noise time

patterns are not directly linked to the legislative road

Fig. 5 Histogram and probability density vs. night minimum

vehicle flow rate for the K-means two-cluster results

Fig. 6 Box plots of the night minimum vehicle flow rate for the

two mean cluster profiles
Fig. 4 Box plots of the traffic flow rate at rush hour for the two

mean cluster profiles
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classification. Figure 2, which accounts for the

two-cluster solution reported in Table 1, shows the

profiles of mean cluster values, δik with k = 1, 2, and

the corresponding ± the standard error of the mean for

each cluster. Cluster 1 (blue line) presents two peaks: the

first at the hourly interval 8–9 and the second at 17 h. It

remains close to LAeqd until 19 h, afterwards, it goes

down in the night period till 3 h and then it starts raising

again. Cluster 2 (red line) shows just one lower peak at

8–9 h and higher values at nighttime. In the remaining

time period, it shows a similar behavior of cluster 1.

By the above clusters, it is possible to estimate the

daytime LAeqd and nighttime LAeqn levels from the value

of a single hourly LAeqh.

Unlike the legislative classification of roads, the

two obtained cluster profiles cannot be applied in a

straightforward way without any indication linking

them to a specific feature. Such limitation can be



overcome by associating each mean cluster profile

with the corresponding traffic flow rate at rush hour

and with the minimum vehicle flow rate for each of

the 58 roads. The traffic data were provided by the

AMAT agency, in charge of the traffic mobility

management of the city of Milan.1 Figures 3, 4,

5, and 6 show the probability density and the box

plots of the vehicle flow rate at rush hour for the

two mean cluster profiles. In particular, the density

distributions are quite separate between the two

clusters (Fig. 3), and their interquartile range does

not overlap (Fig. 4). Thus, a vehicular flow rate at

rush hour of 2000 vehicles per hour can be consid-

ered as threshold between the two profiles, that is

roads featuring higher values (>2000 vehicles/h)

can be associated with cluster 2, whereas lower

flow rates (<2000 vehicles/h) can be allocated to

cluster 1. For the night minimum vehicle flow rate

parameter, the density distributions show different

behaviors: cluster 1 shows a sharp profile centered

around zero vehicles per hour, whereas cluster 2

shows a flatter distribution though peaked at higher

values (Fig. 5). The corresponding box plot shows

a clear distinction between the interquartile ranges

for the two clusters (Fig. 6). In this case, the

threshold value between the clusters is around 40

vehicles per hour.

Stratified sampling by legislative road classification

and by mean cluster profiles

Further the categorization of roads by clustering, a

general method to determine and optimize the num-

ber of sites to be monitored for the calibration of the

acoustic model and for the updating of noise maps is

needed. For this purpose, the spatial stratified sam-

pling was selected to reduce the number of measure-

ment points required for the above calibration. By

and large, in spatial stratified sampling, the sample

can often be split up into sub-samples. This has the

advantage to decrease the variance of each sub-sam-

ple, to use partly non-random methods applied to

sub-groups/clusters or to study strata individually

(Kish 1965). Regarding road traffic noise, the strat-

ified sampling is often applied, as reported in Brown

and Lam (1987) and has recently been applied in

nmin ¼
t2n−1;α

⋅s2

E2
ð2Þ

In general, applying Eq. (2) to the four legislative

road classes is not straightforward because usually

the sample standard deviation s of sound levels for

each road class is unknown, though its value could

be estimated as proposed in Pihur et al. (2007) and

in Van Bell (2008)). In the dataset under study, the

measured s values and the mean daytime LAeqd and

nighttime LAeqn levels were considered. Because of

the aforementioned non-homogeneity of the dataset

levels measured in different environmental

1 *http://www.amat-mi.it/it/mobilita/dati-strumenti-tecnologie/

Road class No. of 24-h

monitoring periods

Minimum sample

dimension nmin

Δd Δn

A 5 7 214

D 20 4 90

E 54 2 34

F 59 1 50

Cluster 1 71 2 38

Cluster 2 67 1 19
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Barrigon et al. (2005) and tested in Barrigón et al.

(2011). For instance, in Barrigón et al. (2011). it was

found that the categorization method yielded similar

results for the overall analysis of the city to those

obtained with the value of the points of the grid

method with considerably fewer sampling points.

The categorization method also seems to be a more

suitable predictor for new measurements, particular-

ly for levels in the noisiest streets of the town.

As well known, to estimate the mean of the popula-

tion within a predefined accuracy ± E, the minimum

number of elements of a sample, nmin, is calculated by

(for nmin < 30)

Table 2 Comparison between the minimum sample dimension,

nmin, as calculated for the functional classification of roads and the

statistical profiles according to Eq. (2) assuming an accuracy E =

±0.5 dB

where tn − 1,α
2 is the value of the Student's t distribu-

tion for a confidence level (1−α) and ν = (n−1)

number of observations and s is the sample standard

deviation.

http://www.amat-mi.it/it/mobilita/dati-strumenti-tecnologie/


54

92

69

77 77

62

69

85 85

100 100

85

77

54

62

31

38

69 69 69

62 62 62

85

77

69 69

54

23

31

38

15

6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

80

90

100

Road class E, j = 13

ε = ± 0.75 dB

ε = ± 0.50 dB

P
 [
%
]

Time [h]

53

65 65

47

65 65 65

47

59

65

71

53

59

53

47

41

41

53 53

41

53
47
53

29

47
41
47
53 53

41
35

24

6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

80

90

100
Road class F, j = 17

ε = ± 0.75 dB

ε = ± 0.50 dB

P
 [
%
]

Time [h]

Environ Monit Assess (2016) 188: 26 Page 7 of 11 26

conditions, each jth value was referred to the 24-h

LAeq24j reference value:

Δmj ¼ LAeqmj– LAeq24 j m ¼ d; n; j ¼ 1; ……::; 58ð Þ

ð3Þ

where d and n stand for the day and night period.

Considering an accuracy E = ± 0.5 dB for the esti-

mate of the referred mean Δd and Δn, Eq. (2)

provides the minimum sample dimension, nmin, re-

quired. The results shown in Table 2 show that the

data collected for the legislative road classes D, E,

and F are enough to estimate the mean referred

daytime level, Δd , within the fixed accuracy E as

they exceed nmin, whereas they are insufficient for

roads of class A, as well as to estimate the mean

referred nighttime level, Δn, for A and D roads.

Thus, for the considered level of accuracy E =

±0.5 dB, more measurements are required. The min-

imum sample dimension, nmin, strongly depends on

the variability of collected data and, therefore, it

would be recommended to choose representative

sites with a high variability (high s values) of sound

levels.

As highlighted above, there was not a complete

matching between the mean 24-h profiles obtained

by the legislative classification of roads and the

ones determined by the cluster analysis. Thus, the

minimum sample dimension, nmin, for each mean

cluster profile was calculated and reported in Table

2. The results show that the collected data enable

the mean referred daytime, Δd , and nighttime, Δn,

levels to be properly estimated within the given

accuracy, E = ±0.5 dB (n > nmin).

The redistribution of temporal profiles, operated by

the clustering algorithm, boosts the efficiency because

of a better correspondence between the statistical pro-

files and the measured sound sources than the one

observed for the legislative classification of roads.

Estimate of daytime LAeqd from the hourly LAeqh

Another important issue deals with the temporal sam-

pling of sound levels. By means of this technique, the

noise descriptors on medium or long term are estimated

by their values measured at shorter sampling time (Utley

1982). The reduced time length may represent a good

compromise between the need of sample accuracy and

costs of monitoring. However, the estimated values are

affected by uncertainty, whose amount depends on the

ratio between the measurement time and the medium

long-term time, as well as on the variability of the noise

immission at the measurement point; on this issue for

instance, see Makarewicz and Gałuszkab (2012), Can et

al. (2011), and Brocolini et al. (2013).

In the present study, the measured value of a single

hourly LAeqh has been considered to estimate the day-

time (from 6 to 22 h) equivalent level LAeqd, the exact

value of which is given by

LAeqd ¼ 10� log
1

16

X

16

i¼1

100:1LAeqhi

" #

dB Að Þ½ � ð4Þ

The hourly interval providing the most accurate esti-

mate of LAeqd can be identified among those ones satis-

fying the following condition for δij and the sample

standard deviation, s:

Fig. 7 Probability, P, that the error of the estimated LAeqd lies within the accuracy intervals, ε = ±0.50 dB and ε = ±0.75 dB
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The present analysis is limited to 35 sites out of

58, namely 19 out of 31 for cluster 1 and 13 out of

27 for cluster 2. A further criterion can be based on

the probability, P, that the error of LAeqd estimate,

calculated by the mean profile, lies in a predefined

accuracy interval, ε. We considered two accuracy

intervals, namely ε = ±0.50 dB and ε = ±0.75 dB.

For each road class, m, (with m = A, D, E, F) and

ith hourly interval, firstly, we evaluated the differ-

ence, δim−δi jm

� �

, between the mean profile, δim, and

the corresponding jth profile, δijm, and then we cal-

culated the ratio, Pm, between the differences falling

within the selected accuracy interval, ε, and the total

number of profiles in each road class, Njm:

In Fig. 7, the calculated probability values, Pm, that is

the probability, in percentage, that the errors of the

estimated LAeqd fall within the selected accuracy inter-

val, ε, are shown for E and F road classes. The results for

A and D classes are not reported due to their poor

sample size. The hourly intervals providing the most

accurate estimate of LAeqd level can be easily identified,

that is those with the highest values of P. For local road

(type F) values of P lower than those corresponding to

the E class are observed. As expected, a wider accuracy

interval (ε = ±0.75 dB) yields higher probability, Pm.

For each road class, m, and ith time interval, the root

mean square error, RMSEim, was calculated too:

Fig. 9 Probability, Pik, that the error of the estimate of LAeqd falls within the accuracy intervals, ε = ±0.50 dB and ε = ±0.75 dB
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Fig. 10 Probability, Pik, that the error of the estimate of LAeqd falls

within the accuracy intervals ε = ±0.50 dB obtained for the road

class F and the cluster profile P1

where δim−δi jm

� �

is the difference, for the ith time

interval, between the mean profile, δim, and the corre-

spondent single profile, δijm. Figure 8 shows the calcu-

lated RMSEim values, which are higher during the night

period, with peaks in the hourly intervals between 2 and

4 h. The hourly intervals with the lowest RMSEim values

both for the daytime (6–22 h) and nighttime (22–6 h)

periods are reported in green.

The above analysis was applied also to the two mean

cluster profiles, k, (with k = P1, P2). Figure 9 shows for

each profile the probability, Pik, that the error on the

calculated estimate of LAeqd falls within the assigned

accuracy interval, ε.

Because cluster profile P1 is largely formed by roads

belonging to class F (70.4 %, see Table 1), the obtained

probability values Pi for the cluster P1 and legislative

road class F have been compared and shown in Fig. 10

for the accuracy interval ε = ±0.50 dB. It can be seen

that for the majority of the hourly intervals the cluster

profile P1 provides higher Pi values than those given by

the road class F.

For each profile, k, and ith time interval, we

calculated the RMSEik by Eq. (7). The results, re-

ported in Fig. 11, show generally higher RMSEik

values during the night period. The hourly intervals

more suitable for estimating the daytime levels,

LAeqd, are highlighted in green.

Discussion

The database used to set up the proposed procedure for

classifying roads in urban areas based on their noise

immission is rather limited in number of sites and refers

to the city of Milan only. Thus, it can be considered only

as a preliminary step toward collecting a wider data set

more representative of the road traffic reality in Milan.

Notwithstanding, the cluster profile procedure per-

forms better than that based on legislative road classifi-

cation and, at least for the estimate of the mean value of

LAeqn − LAeq24, the proposed procedure looks to be

promising, as it requires a lower number of monitoring

sites than those demanded by the legislative road

classification.



Of course, due to the nature of current samples, the

results at this stage cannot be generalized to the entire

road network of Milan and, even more, to other cities.

For this reason, road traffic noise monitoring is still in

progress to enlarge the database and refining the results

to improve their statistical robustness.

Thus, the proposed procedure should be viewed as a

methodological approach, hopefully to stimulate its fur-

ther applications in other cities, also looking at differ-

ences and similarities.

Conclusions

The cluster analysis applied to the 24-h continuous

monitoring of the hourly equivalent levels LAeqh using

the hierarchical method was confirmed by K-means and

PAM algorithms. It showed that the dataset of measure-

ments can be suitably grouped into two mean profiles to

be applied to roads with vehicular flow rate greater

(cluster 2) and less (cluster 1) than 2000 vehicles per

hour at rush hour and the threshold value is around 40

vehicles per hour for the night minimum vehicle flow

rate.

Dealing with the minimum sample size for the spatial

stratified sampling, the two clusters were more efficient

to estimate of the mean LAeqd and LAeqn levels, as they

required less monitoring sites than those obtained from

the legislative road classification because of a better

correspondence between the statistical profiles and the

measured sound sources. Such trend profiles represent a

tool to group together roads following the same vehic-

ular dynamics, therefore allowing a more real descrip-

tion of complex road networks and a proper description

of the noise indicators considered compared to the leg-

islative road classification.

In terms of temporal sampling, the procedure

may represent a good compromise between the

need of sample accuracy and costs investment of

the monitoring campaign. Considering the hourly

intervals suitable for an accurate estimate of the

daytime equivalent level, LAeqd, those between

11 and 15 h and between 22 and 24 h are the most

appropriate for each legislative road class with a

RMSEim between about 0.5 and 1.5 dB and be-

tween about 1 and 2 dB, respectively. The same

was observed for the two-cluster solution, as for the

hourly intervals between 11 and 15 h and between

22 and 24 h, the obtained RMSEik was between

about 0.5 and 1.5 dB and between about 1 and

2.5 dB, respectively.
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