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CLUSTER CHARACTERS FOR 2-CALABI–YAU

TRIANGULATED CATEGORIES

by Yann PALU

Abstract. — Starting from an arbitrary cluster-tilting object T in a 2-Calabi–
Yau triangulated category over an algebraically closed field, as in the setting of
Keller and Reiten, we define, for each object L, a fraction X(T, L) using a formula
proposed by Caldero and Keller. We show that the map taking L to X(T, L)
is a cluster character, i.e. that it satisfies a certain multiplication formula. We
deduce that it induces a bĳection, in the finite and the acyclic case, between the
indecomposable rigid objects of the cluster category and the cluster variables, which
confirms a conjecture of Caldero and Keller.

Résumé. — Etant donné un objet amas-basculant T quelconque dans une ca-
tégorie triangulée 2-Calabi–Yau sur un corps algébriquement clos (comme dans le
cadre de Keller et Reiten), il est possible de définir, pour chaque objet L, une
fraction rationnelle X(T, L), en utilisant une formule proposée par Caldero et
Keller. On montre, de plus, que l’application associant X(T, L) à L est un ca-
ractère amassé ; c’est-à-dire qu’elle vérifie une certaine formule de multiplication.
Cela permet de prouver qu’elle induit, dans les cas fini et acyclique, une bĳection
entre objets rigides indécomposables de la catégorie amassée et variables d’amas
de l’algèbre amassée correspondante, confirmant ainsi une conjecture de Caldero
et Keller.

Introduction

Cluster algebras were invented and studied by S. Fomin and A. Zelevin-

sky in [12], [13], [11] and in collaboration with A. Berenstein in [1]. They

are commutative algebras endowed with a distinguished set of generators

called the cluster variables. These generators are gathered into overlapping

sets of fixed finite cardinality, called clusters, which are defined recursively

from an initial one via an operation called mutation. A cluster algebra is

Keywords: Calabi–Yau triangulated category, cluster algebra, cluster category, cluster-
tilting object.
Math. classification: 16G20, 18E30.
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said to be of finite type if it only has a finite number of cluster variables.

The finite type cluster algebras were classified in [13].

It was recognized in [26] that the combinatorics of cluster mutation are

closely related to those of tilting theory in the representation theory of

quivers and finite dimensional algebras. This discovery was the main mo-

tivation for the invention of cluster categories (in [7] for the An-case and

in [4] for the general case). These are certain triangulated categories [20]

which, in many cases, allow one to ‘categorify’ cluster algebras: In the cat-

egorical setting, the cluster-tilting objects play the role of the clusters, and

their indecomposable direct summands the one of the cluster variables.

In [17], [16], [15], the authors study another setting for the categorifi-

cation of cluster algebras: The module categories of preprojective algebras

of Dynkin type. They succeed in categorifying a different class of cluster

algebras, which also contains many cluster algebras of infinite type.

Both cluster categories and module categories of preprojective algebras

of Dynkin type are 2-Calabi–Yau categories in the sense that we have bi-

functorial isomorphisms

Ext1(X, Y ) ≃ D Ext1(Y, X),

which are highly relevant in establishing the link with cluster algebras. This

motivates the study of more general 2-Calabi–Yau categories in [23], [22],

[27], [24], [18], [19], [3]. In order to show that a given 2-Calabi–Yau category

“categorifies” a given cluster algebra, a crucial point is

a) to construct an explicit map from the set of indecomposable factors

of cluster-tilting objects to the set of cluster variables, and

b) to show that it is bĳective.

Such a map was constructed for module categories of preprojective al-

gebras of Dynkin type in [17] using Lusztig’s work [25]. For cluster cate-

gories, it was defined by P. Caldero and F. Chapoton in [8]. More generally,

for each object M of the cluster category, they defined a fraction XM in

Q(x1, . . . , xn). The bĳectivity property of the Caldero–Chapoton map was

proved in [8] for finite type and in [10], cf. also [2], for acyclic type.

A crucial property of the Caldero–Chapoton map is the following. For

any pair of indecomposable objects L and M of C whose extension space

C(L,ΣM) is one-dimensional, we have

XLXM = XB + XB′ ,

where Σ denotes the suspension in C and where B and B′ are the middle

terms of “the” two non-split triangles with outer terms L and M . We define,

ANNALES DE L’INSTITUT FOURIER
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in defintion 1.2 a cluster character to be a map satisfying this multiplication

formula.

This property has been proved in [9] in the finite case, in [15] for the

analogue of the Caldero–Chapoton map in the preprojective case, and in

[10] in the acyclic case.

The main result of this article is a generalisation of this multiplication

formula. Starting from an arbitrary cluster-tilting object T in an arbitrary

2-Calabi–Yau category C over an algebraically closed field (as in the setting

of [23]), we define, for each object L of C, a fraction XT
L using a formula

proposed in [9, 6.1]. We show that the map L 7→ XT
L is a cluster charac-

ter. We deduce that it has the bĳectivity property in the finite and the

acyclic case, which confirms conjecture 2 of [9]. Here, it yields a new way

of expressing cluster variables as Laurent polynomials in the variables of a

fixed cluster. Our theorem also applies to stable categories of preprojective

algebras of Dynkin type and their Calabi–Yau reductions studied in [14]

and [3].

Let k be an algebraically closed field, and let C be a 2-Calabi–Yau Hom-

finite triangulated k-category with a cluster-tilting object T (see section 1).

The article is organised as follows: In the first section, the notations are

given and the main result is stated. In the next two sections, we investigate

the exponents appearing in the definition of XT
L . In section 2, we define

the index and the coindex of an object of C and show how they are related

to the exponents. Section 3 is devoted to the study of the antisymmetric

bilinear form

〈 , 〉a

on mod EndCT . We show that this form descends to the Grothendieck group

K0(mod EndCT ), confirming conjecture 1 of [9, 6.1]. In section 4, we prove

that the same phenomenon of dichotomy as in [10, section 3] (see also

[15]) still holds in our setting. The results of the first sections are used in

section 5 to prove the multiplication formula. We draw some consequences

in section 5.2. Two examples are given in section 6.
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1. Main result

Let k be an algebraically closed field, and let C be a k-linear triangu-

lated category with split idempotents. Denote by Σ its suspension functor.

Assume moreover that the category C

a) is Hom-finite: For any two objects X and Y in C, the space of

morphisms C(X, Y ) is finite-dimensional,

b) is 2-Calabi–Yau: There exist bifunctorial isomorphisms

C(X, ΣY ) ≃ DC(Y,ΣX),

where D denotes the duality functor Homk(?, k), and

c) admits a cluster-tilting object T , which means that

i) C(T, ΣT ) = 0 and

ii) for any X in C, if C(X, ΣT ) = 0, then X belongs to the full

subcategory add T formed by the direct summands of sums of

copies of T .

For two objects X and Y of C, we often write (X, Y ) for the space of

morphisms C(X, Y ) and we denote its dimension by [X, Y ]. Similarly, we

write 1(X, Y ) for C(X, ΣY ) and 1[X, Y ] for its dimension. Let B be the

endomorphism algebra of T in C, and let mod B be the category of finite-

dimensional right B-modules. As shown in [6], cf. also [23], the functor

F : C −→ mod B , X 7−→ C(T,X),

induces an equivalence of categories

C/(ΣT )
≃
−→ mod B,

where (ΣT ) denotes the ideal of morphisms of C which factor through a

direct sum of copies of ΣT .

The following useful proposition is proved in [23] and [24]:

Proposition 1.1. — Let X
f
→ Y

g
→ Z → ΣX be a triangle in C. Then

• The morphism g induces a monomorphism in mod B if and only if

f ∈ (ΣT ).

• The morphism f induces an epimorphism in mod B if and only if

g ∈ (ΣT )

Moreover, if X has no direct summands in add ΣT , then FX is projective

(resp. injective) if and only if X lies in add (T ) (resp. in add (Σ2T ) ).

ANNALES DE L’INSTITUT FOURIER
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Definition 1.2. — A cluster character on C with values in a commu-

tative ring A is a map

χ : obj(C) −→ A

such that

• for all isomorphic objects L and M , we have χ(L) = χ(M),

• for all objects L and M of C, we have χ(L⊕M) = χ(L)χ(M),

• for all objects L and M of C such that dim Ext1C(L,M) = 1, we

have

χ(L)χ(M) = χ(B) + χ(B′),

where B and B′ are the middle terms of ‘the’ non-split triangles

L→ B →M → ΣL and M → B′ → L→ ΣM

with end terms L and M .

Let N be a finite-dimensional B-module and e an element of K0(modB).

We write Gre(N) for the variety of submodules N ′ of N whose class in

K0(modB) is e. It is a closed, hence projective, subvariety of the classical

Grassmannian of subspaces of N . Let χ(Gre N) denote its Euler–Poincaré

characteristic with respect to the étale cohomology with proper support.

Let Ksp
0 (modB) denote the ‘split’ Grothendieck group of mod B, i.e. the

quotient of the free abelian group on the set of isomorphism classes [N ]

of finite-dimensional B-modules N , modulo the subgroup generated by all

elements

[N1 ⊕N2]− [N1]− [N2].

We define a bilinear form

〈 , 〉 : Ksp
0 (modB)×Ksp

0 (modB) −→ Z

by setting

〈N,N ′〉 = [N,N ′] − 1[N,N ′]

for all finite-dimensional B-modules N and N ′. We define an antisymmetric

bilinear form on Ksp
0 (modB) by setting

〈N,N ′〉a = 〈N,N ′〉 − 〈N ′, N〉

for all finite-dimensional B-modules N and N ′. Let T1, . . . , Tn be the

pairwise non-isomorphic indecomposable direct summands of T and, for

i = 1, . . . , n, let Si be the top of the projective B-module Pi = FTi. The

set {Si, i = 1, . . . , n} is a set of representatives for the isoclasses of simple

B-modules.

We need a lemma, the proof of which will be given in section 3.1.

TOME 58 (2008), FASCICULE 6



2226 Yann PALU

Lemma 1.3. — For any i = 1, . . . , n, the linear form 〈Si, ?〉a :

Ksp
0 (modB)→ Z induces a well-defined form

〈Si, ?〉a : K0(modB)→ Z.

Let ind C be a set of representatives for the isoclasses of indecompos-

able objects of C. Define, as in [9, 6.1], a Caldero–Chapoton map, XT
? :

ind C → Q(x1, . . . , xn) by

XT
M =

{

xi if M ≃ ΣTi
∑

e χ(Gre FM)
∏n

i=1 x
〈Si,e〉a−〈Si,FM〉
i else.

Extend it to a map XT
? : C → Q(x1, . . . , xn) by requiring that XT

M⊕N =

XT
MXT

N . When there are no possible confusions, we often denote XT
M by

XM . The main result of this article is the following

Theorem 1.4. — The map XT
? : C → Q(x1, . . . , xn) is a cluster char-

acter.

We will prove the theorem in section 5.1, illustrate it by examples in

section 6 and draw some consequences in section 5.2.

2. Index, coindex and Euler form

In the next two sections, our aim is to understand the exponents appear-

ing in the definition of XM . More precisely, for two objects L and M of C,

we want to know how the exponents in XB depend on the choice of the

middle term B of a triangle with outer terms L and M .

2.1. Index and coindex

Let X be an object of C. Define its index indX ∈ K0(projB)

as follows. There exists a triangle (see [KR1])

TX
1 → TX

0 → X → ΣTX
1

with TX
0 and TX

1 in add T . Define indX to be the class [FTX
0 ]− [FTX

1 ] in

K0(projB). Similarly, define the coindex of X, denoted by coindX, to be

the class [FT 0
X ]− [FT 1

X ] in K0(projB), where

X → Σ2T 0
X → Σ2T 1

X → ΣX

is a triangle in C with T 0
X , T 1

X ∈ add T .

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.1. — We have the following properties:

(1) The index and coindex are well defined.

(2) indX = − coindΣX.

(3) indTi = [Pi] and ind ΣTi = −[Pi] where Pi = FTi.

(4) indX − coindX only depends on FX ∈ mod B.

Proof. — A right add T -approximation of an object X of C is a mor-

phism T ′ f
−→ X with T ′ ∈ add T such that any morphism T ′′ −→ X

with T ′′ ∈ add T factors through f . It is called minimal if, moreover, any

morphism T ′ g
−→ T ′ such that fg = f is an isomorphism. A minimal ap-

proximation is unique up to isomorphism.

Assertions (2) and (3) are left to the reader.

(1) In any triangle of the form

TX
1 → TX

0
f
→ X → ΣTX

1 ,

the morphism f is a right add T -approximation. Therefore, any such trian-

gle is obtained from one where f is minimal by adding a trivial triangle

T ′ → T ′ → 0→ ΣT ′

with T ′ ∈ add T . The index is thus well-defined. Dually, one can define left

approximations and show that the coindex is well-defined.

(4) Let T ′ be an object in add T . Take two triangles

TX
1 → TX

0 → X → ΣTX
1 and

X → Σ2T 0
X → Σ2T 1

X → ΣX

with TX
0 , TX

1 , T 0
X and T 1

X in add T . Then, we have two triangles

TX
1 ⊕ T ′ → TX

0 → X ⊕ ΣT ′ → Σ(TX
1 ⊕ T ′) and

X ⊕ ΣT ′ → Σ2T 0
X → Σ2(T 1

X ⊕ T ′)→ ΣX ⊕ Σ2T ′.

We thus have the equality:

ind(X ⊕ ΣT ′)− coind(X ⊕ ΣT ′) = indX − coindX.

�

Proposition 2.2. — Let X
f
→ Z

g
→ Y

ε
→ ΣX be a triangle in C. Take

C ∈ C (resp. K ∈ C) to be any lift of CokerFg (resp. Ker Ff). Then

indZ = indX + indY − indC − ind Σ−1C and

coindZ = coindX + coindY − coindK − coindΣK.

TOME 58 (2008), FASCICULE 6
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Proof. — Let us begin with the equality for the indices. First, consider

the case where FC = 0. This means that the morphism ε belongs to the

ideal (ΣT ). Take two triangles

TX
1 −→ TX

0 −→ X −→ ΣTX
1 and TY

1 −→ TY
0 −→ Y −→ ΣTY

1

in C, where the objects TX
0 , TX

1 , TY
0 , TY

1 belong to the subcategory add T .

Since the morphism ε belongs to the ideal (ΣT ), the composition TY
0 →

Y
ε
→ ΣX vanishes. The morphism TY

0 → Y thus factors through g. This

gives a commutative square

TX
0 ⊕ TY

0
//

��

TY
0

��
Z // Y.

Fit it into a nine-diagram

TX
1

//

��

Z ′ //

��

TY
1

//

��

ΣTX
1

TX
0

//

��

TX
0 ⊕ TY

0
//

��

TY
0

0 //

��

0

##H
HHHHHHHH

yys s
s

s
s

s
ΣTX

0

X //

��

Z
g //

��

Y
ε //

��

ΣX

ΣTX
1 ΣZ ′ ΣTY

1 ,

whose rows and columns are triangles. Since the morphism TY
1 → ΣTX

1

vanishes, the triangle in the first row splits, so that we have

Z ′ ≃ TX
1 ⊕ TY

1 and indZ = indX + indY.

Now, let us prove the formula in the general case. Let FY
a
−→ M be a

cokernel for Fg. Since the composition Fε Fg vanishes, the morphism Fε

factors through a:

FY
Fε //

a
!!D

DD
DD

DD
D FΣX.

M

b

;;w
w

w
w

Let Y
α
−→ C ′ be a lift of a in C, and let β be a lift of b. The images under

F of the morphisms ε and β α coincide, therefore the morphism β α − ε

ANNALES DE L’INSTITUT FOURIER
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belongs to the ideal (ΣT ). Thus there exist an object T ′ in add T and two

morphisms α′ and β′ such that the following diagram commutes:

Y
ε //

[α
α′ ] $$I

IIIIIIII ΣX.

C ′ ⊕ ΣT ′

[β β′]

99sssssssss

Let C be the direct sum C ′ ⊕ ΣT ′.

The octahedral axiom yields a commutative diagram

U

��

U

��
X // Z //

��

Y
ε //

[α
α′ ]

��

ΣX

X // V
γ′

//

γ

��

C
[β β′] //

γ′′

��

ΣX

ΣU ΣU,

whose two central rows and columns are triangles. Due to the choice of C,

the morphisms γ′, γ′′, hence γ belong to the ideal (ΣT ). We thus have the

equalities:

indY = indC + indU,

indX = indV + ind Σ−1C,

indZ = indV + indU,

giving the desired formula. Moreover, as seen in lemma 2.1 (4), the sum

indC + indΣ−1C = indC − coindC does not depend on the particular

choice of C. Apply this formula to the triangle

Σ−1X −→ Σ−1Z −→ Σ−1Y −→ X

and use lemma 2.1(2) to obtain the formula for the coindices. Remark

that the long exact sequence yields the equality of Coker(−FΣ−1g) and

Ker Ff . �

2.2. Exponents.

We now compute the index and coindex in terms of the Euler form.

TOME 58 (2008), FASCICULE 6
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Lemma 2.3. — Let X ∈ C be indecomposable. Then

indX =







−[Pi] if X ≃ ΣTi

∑n
i=1〈FX, Si〉[Pi] else,

coindX =







−[Pi] if X ≃ ΣTi

∑n
i=1〈Si, FX〉[Pi] else.

Proof. — Let X be an indecomposable object in C, non-isomorphic to

any of the ΣTi’s. Take a triangle

TX
1

f
−→ TX

0
g
−→ X

ε
−→ ΣTX

1

with the morphism g being a minimal right add T -approximation, as defined

in the proof of lemma 2.1. We thus get a minimal projective presentation

PX
1 −→ PX

0 −→ FX −→ 0

where PX
i = FTX

i , i = 0, 1. For any i, the differential in the complex

0 −→ (PX
0 , Si) −→ (PX

1 , Si) −→ · · ·

vanishes. Therefore, we have

[FX, Si] = [PX
0 , Si] = [PX

0 : Pi],
1[FX, Si] = [PX

1 , Si] = [PX
1 : Pi],

〈FX, Si〉 = [indX : Pi].

The proof for the coindex is analogous: We use a minimal injective copre-

sentation of FX induced by a triangle

X −→ Σ2T 0
X −→ Σ2T 1

X −→ ΣX.
�

Let us write xe for
∏n

i=1 x
[e:Pi]
i where e ∈ K0(projB) and [e : Pi] is the

ith coefficient of e in the basis [P1], . . . , [Pn]. Then, by lemma 2.3, for any

indecomposable object M in C, we have

XM = x− coind M
∑

e

χ(Gre FM)

n
∏

i=1

x<Si,e>a

i .

ANNALES DE L’INSTITUT FOURIER
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3. The antisymmetric bilinear form

In this part, we give a positive answer to the first conjecture of [9, 6.1]

and prove that the exponents in XM are well defined. The first lemma

is sufficient for this latter purpose, but is not very enlightening, whereas

the second proof of theorem 3.4 gives us a better understanding of the

antisymetric bilinear form. When the category C is algebraic, this form is,

in fact, the usual Euler form on the Grothendieck group of a triangulated

category together with a t-structure whose heart is the abelian category

mod B itself.

3.1. The map XT is well defined

Let us first show that any short exact sequence in mod B can be lifted

to a triangle in C.

Lemma 3.1. — Let 0 → x → y → z → 0 be a short exact sequence in

mod B. Then there exists a triangle in C

X −→ Y −→ Z −→ ΣX

whose image under F is isomorphic to the given short exact sequence.

Proof. — Let

0 −→ x
i
−→ y

p
−→ z −→ 0

be a short exact sequence in mod B. Let X
f
−→ Y be a lift of the monomor-

phism x
i
−→ y in C. Fix a triangle

TX
1 −→ TX

0 −→ X −→ ΣTX
1

and form a triangle

X −→ Y ⊕ ΣTX
1 −→ Z

ε
−→ ΣX .

The commutative left square extends to a morphism of triangles

X // Y ⊕ ΣTX
1

[0 1]

��

// Z

���
�

�

ε // ΣX

X // ΣTX
1

// ΣTX
0

// ΣX.

so that the morphism ε lies in the ideal (ΣT ). Therefore, the sequence

0 −→ x
i
−→ y −→ FZ −→ 0

is exact, and the modules FZ and z are isomorphic. �

TOME 58 (2008), FASCICULE 6
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Proof of lemma 1.3. — Let X be an object of the category C. Using

section 2.2 we have

coindX − indX =

n
∑

i=1

〈Si, FX〉a [Pi] .

Therefore, it is sufficient to show that the form

K0(modB) −→ Z

[FX] 7−→ coindX − indX

is well defined. We already know that coindX − indX only depends on

FX. Take 0 → x → y → z → 0 to be a short exact sequence in mod B.

Lift it, as in lemma 3.1, to a triangle

X −→ Y −→ Z −→ ΣX in C.

By proposition 2.2, we have

indY − coindY = (indX + indZ)− (coindX + coindZ)

which is the required equality. �

Corollary 3.2. — The map

XT
? : C −→ Q(x1, . . . , xn)

is well defined.

3.2. The antisymmetric bilinear form descends to the

Grothendieck group.

In this subsection, we prove a stronger result than in the previous one.

This gives a positive answer to the first conjecture in [9, 6.1].

Lemma 3.3. — Let T ′ be any cluster-tilting object in C. We have bi-

functorial isomorphisms

C/(T ′)(Σ
−1X, Y ) ≃ D(T ′)(Σ−1Y, X).

Proof. — Let X and Y be two objects of C, and let T ′
1 −→ T ′

0 −→ X
η
−→

ΣT ′
1 be a triangle in C, with T ′

0 and T ′
1 in add T ′. Consider the morphism

α : (T ′
1, Y ) −→ (Σ−1X, Y )

f 7−→ f ◦ Σ−1η.

We have

D(T ′)(Σ−1X, Y ) ≃ D Im α ≃ Im Dα.

ANNALES DE L’INSTITUT FOURIER
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Since the category C is 2-Calabi–Yau, the dual of α, Dα, is isomorphic to

α′ : (Σ−1Y, X) −→ (Σ−1Y,ΣT ′
1)

g 7−→ η ◦ g.

We thus have isomorphisms

D(T ′)(Σ−1X, Y ) ≃ Im α′

≃ (Σ−1Y, X)/ Ker α′

≃ C/(T ′)(Σ
−1Y, X). �

Theorem 3.4. — The antisymmetric bilinear form 〈 , 〉a descends to

the Grothendieck group K0(modB).

Proof. — Let X and Y be two objects in the category C. In order to

compute 〈FX, FY 〉 = [FX, FY ]− 1[FX, FY ], let us construct a projective

presentation in the following way. Let

Σ−1X
g
−→ TX

1
f
−→ TX

0 −→ X

be a triangle in C with TX
0 and TX

1 being two objects in the subcategory

add T . This triangle induces an exact sequence in mod B

FΣ−1X
Fg
−→ FTX

1
Ff
−→ FTX

0 −→ FX −→ 0,

where FTX
0 and FTX

1 are finite-dimensional projective B-modules. Form

the complex

(∗) 0 −→ HomB(FTX
0 , FY ) −→ HomB(FTX

1 , FY )

−→ HomB(FΣ−1X, FY ).

Since the object T is cluster-tilting in C, there are no morphisms from any

object in add T to any object in add ΣT . The complex (∗) is thus isomorphic

to the following one :

0 −→ C(TX
0 , Y )

f∗

−→ C(TX
1 , Y )

g∗

−→ C/(ΣT )(Σ
−1X, Y ),

where f∗ (resp. g∗) denotes the composition by f (resp. g). Therefore, we

have

HomB(FX, FY ) ≃ Ker f∗

Ext1B(FX, FY ) ≃ Ker g∗/ Im f∗.

We can now express the bilinear form as

〈FX, FY 〉 = dim Ker f∗ − dim Ker g∗ + rk f∗

= [TX
0 , Y ]− [TX

1 , Y ] + rk g∗,
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with the image of the morphism g∗ being the quotient by the ideal (ΣT )

of the space of morphisms from Σ−1X to Y , in C, which belong to the

ideal (T ):
Im g∗ = (T )/(ΣT )(Σ

−1X, Y ).

Similarily, using an injective copresentation given by a triangle of the form

X −→ Σ2T 0
X −→ Σ2T 1

X

β
−→ ΣX,

we obtain

〈FY, FX〉 = [Y,Σ2T 0
X ]− [Y,Σ2T 1

X ] + rkβ∗,

and Im β∗ = (Σ2T )/(ΣT )(Y,ΣX). By lemma 3.3, we have bifunctorial iso-

morphisms

(T )/(ΣT )(Σ
−1X, Y ) ≃ D(ΣT )/(T )(Σ

−1Y, X) ≃ D(Σ2T )/(ΣT )(Y,ΣX).

Therefore, we have the equality

〈FX, FY 〉a = [TX
0 , Y ]− [TX

1 , Y ]− [Y,Σ2T 0
X ] + [Y,Σ2T 1

X ]

= [FTX
0 , FY ]− [FTX

1 , FY ]− [FY, FΣ2T 0
X ] + [FY, FΣ2T 1

X ].

Since FT is projective and FΣ2T in injective, this formula shows that 〈 , 〉a
descends to a bilinear form on the Grothendieck group K0(modB). �

3.3. The antisymmetric bilinear form and the Euler form

In this subsection, assume moreover that the category C is algebraic, as in

[23, section 4]: There exists a k-linear Frobenius category with split idem-

potents E whose stable category is C. Denote by M the preimage, in E , of

add T via the canonical projection functor. The category M thus contains

the full subcategory P of E whose objects are the projective objects in E ,

and we haveM = add T . Let ModM be the category ofM-modules, i.e. of

k-linear contravariant functors fromM to the category of k-vector spaces.

The category modM of finitely presentedM-modules is identified with the

full subcategory of ModM of finitely presented M-modules vanishing on

P. This last category is equivalent to the abelian category mod B of finitely

generated B-modules. Recall that the perfect derived category perM is the

full triangulated subcategory of the derived category of DModM gener-

ated by the finitely generated projective M-modules. Define perMM to

be the full subcategory of perM whose objects X satisfy the following

conditions:

• for each integer n, the finitely presented M-module H
nX belongs

to modM,

• the module H
nX vanishes for all but finitely many n ∈ Z.
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It can easily be shown that perMM is a triangulated subcategory of perM.

Moreover, as shown in [27], the canonical t-structure on DModM induces

a t-structure on perMM, whose heart is the abelian category modM.

The following lemma shows that the Euler form

K0

(

perMM
)

× K0

(

perMM
)

−→ Z

([X], [Y ]) 7−→ 〈[X], [Y ]〉 =
∑

i∈Z

(−1)i dim perMM
(

X, ΣiY
)

is well defined.

Lemma 3.5. — Let X and Y belong to perMM. Then the vector spaces

perMM
(

X, ΣiY
)

are finite dimensional and only finitely many of them

are non-zero.

Proof. — Since X belongs to perM, we may assume that it is repre-

sentable: There exists M in M such that X = M .̂ Moreover, the module

H
nY vanishes for all but finitely many n ∈ Z. We thus may assume Y

to be concentrated in degree 0. Therefore, the space perMM
(

X, ΣiY
)

=

perMM(M ,̂Σi
H

0Y ) vanishes for all non-zero i. For i = 0, it equals

HomM

(

M ,̂H0Y
)

= H
0Y (M)

= HomM

(

M(?,M),H0Y
)

.

this last space being finite dimensional. �

This enables us to give another proof of theorem 3.4. This proof is less

general than the previous one, but is nevertheless much more enlightening.

Proof of theorem 3.4. — Let X and Y be two finitely presented M-

modules, lying in the heart of the t-structure on perMM. We have:

〈[X], [Y ]〉 =
∑

i∈Z

(−1)i dim perMM
(

X, ΣiY
)

=

3
∑

i=0

(−1)i dim perMM
(

X, ΣiY
)

(3.1)

= dim perMM(X, Y )− dim perMM(X, ΣY )

+dim perMM(X, Σ2Y )− dim perMM(X, Σ3Y )

= dim perMM(X, Y )− dim perMM(X, ΣY )(3.2)

+dim perMM(Y, X)− dim perMM(Y,ΣX)

= dim HomM(X, Y )− dim Ext1M(X, Y )

+dim HomM(Y, X)− dim Ext1M(Y, X)

= 〈[X], [Y ]〉a

TOME 58 (2008), FASCICULE 6



2236 Yann PALU

where the classes are now taken in K0(modB). Equalities (3.1) and (3.2)

are consequences of the 3-Calabi–Yau property of the category perMM,

cf. [23]. �

4. Dichotomy

Our aim in this part is to study the coefficients appearing in the definition

of XM . In particular, we will prove that the phenomenon of dichotomy

proved in [10] (see also [15]) remains true in this more general setting.

Recall that we write xe for
∏n

i=1 x
[e:Pi]
i where e ∈ K0(projB) and [e : Pi]

is the ith coefficient of e in the basis [P1], . . . , [Pn].

Lemma 4.1. — For any M ∈ C, we have

XM = x− coind M
∑

e

χ(Gre FM)

n
∏

i=1

x
〈Si,e〉a

i .

Proof. — We already know that this formula holds for indecomposable

objects of C, cf. section 2.2. Let us prove that it still holds for decomposable

objects, by recursion on the number of indecomposable direct summands.

Let M and N be two objects in C. As shown in [8], we have

χ (Grg F (M ⊕N)) =
∑

e+f=g

χ (Gre FM) χ (Grf FN) .

Therefore, we have XM⊕N = XMXN =
(

x− coind M
∑

e

χ(Gre FM)
n
∏

i=1

x<Si,e>a

i

)



x− coind N
∑

f

χ(Gre FN)
n
∏

i=1

x<Si,f>a

i





= x−(coind M+coind N)
∑

g

∑

e+f=g

χ (Gre FM) χ (Grf FN)

n
∏

i=1

x<Si,e+f>a

i

= x− coind(M⊕N)
∑

g

χ (Grg F (M ⊕N))

n
∏

i=1

x<Si,g>a

i

�

Lemma 4.2. — Let M
i
−→ B

p
−→ L

ε
−→ ΣM be a triangle in C, and

let U
iU−→ M and V

iV−→ L be two morphisms whose images under F are

monomorphisms. Then the following conditions are equivalent:

i) There exists a submodule E ⊂ FB such that

FV = (Fp)E and FU = (Fi)−1E,
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ii) There exist two morphisms e : Σ−1V −→ U and f : Σ−1L −→ U

such that

a) (Σ−1ε)(Σ−1iV ) = iUe

b) e ∈ (T )

c) iUf − Σ−1ε ∈ (ΣT ).

iii) Condition ii) where, moreover, e = fΣ−1iV .

The following diagrams will help the reader parse the conditions:

FΣ−1L
FΣ−1ε // FM

Fi // FB
Fp // FL

FU
?�

OO

// E
?�

OO

// FV
?�

OO

// 0,

Σ−1L
Σ−1ε //

f

""F
FF

FF
FF

FF
M

Σ−1V

Σ−1iV

OO

e
// U.

iU

OO

Proof. — Assume condition ii) holds. Then, by a), there exists a mor-

phism of triangles

Σ−1L
Σ−1ε // M

i // B
p // L

Σ−1V

Σ−1iV

OO

e // U

iU

OO

//___ W //___

j

OO�
�

�

V

iV

OO

Take E to be the image of the morphism Fj. The morphism e factors

through add T , so that we have FΣe = 0 and the functor F induces a

commutative diagram

FΣ−1L
FΣ−1ε //

Ff

��7
77

77
77

77
77

77
77

7 FM
Fi // FB

Fp // FL
Fε // FΣM

E
?�

OO

## ##F
F

F
F

F

FU
?�

FiU

OO

//

;;wwwwwwwww
FW //

OOOO

FV
?�

FiV

OO

// 0

whose rows are exact sequences. It remains to show that FU = (Fi)−1E.

We have FU ⊂ (Fi)−1E since (Fi)(FiU ) factors through the monomor-

phism E → FB. The existence of the morphism Ff shows, via diagram
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chasing, the converse inclusion.

Conversely, let E ⊂ FB be such that FV = (Fp)E and FU = (Fi)−1E.

In particular, FU contains Ker Fi = Im FΣ−1ε so that FΣ−1ε factors

through FiU . This gives us the morphism f , satisfying condition c). Define

the morphism e as follows. There exists a triangle

T1 −→ T0 −→ V −→ ΣT1,

where T1, T0 belong to add T . Applying the functor F to this triangle, we get

an epimorphism FT0 → FV with FT0 projective. This epimorphism thus

factors through the surjection E → FV , and composing it with E → FB

gives a commutative square

FT0
//

��

FV

��
FB // FL.

Since C(T,ΣT ) = 0, this commutative square lifts to a morphism of trian-

gles

Σ−1V

��

// T1

��

// T0

��

// V

��
Σ−1L // M // B // L.

The morphism T1 → M thus induced, factors through the morphism

U →M . Indeed, we have FU = (Fi)−1E and the following diagram com-

mutes :

FM // FB

FT1

;;xxxxxxxx
// FT0

<<yyyyyyyy

""E
EE

EE
EE

E

FU //?�

OO

E.
?�

OO

The morphism e is then given by the composition Σ−1V −→ T1 −→ U .

Let us show that condition ii) implies condition iii). By hypothesis, we have

iUe = (Σ−1ε)(Σ−1iV )

and

iUfΣ−1iV ≡ (Σ−1ε)(Σ−1iV ) mod (ΣT ).
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Therefore, the morphism iU
(

fΣ−1iV − e
)

belongs to the ideal (ΣT ). The

morphism FiU is a monomorphism, so that the morphism h := fΣ−1iV −e

lies in (ΣT ). There exists a morphism Σ−1L
l
−→ U such that h = lΣ−1iV :

Σ−1C
∈(T ) //

0
$$IIIIIIIIII Σ−1V

Σ−1iV //

h ∈(ΣT )

��

Σ−1L
c //

l
zzu

u
u

u
u

C

U .

Since the morphism Σ−1C → Σ−1V lies in the ideal (T ), there exists a

morphism of triangles

Σ−1C //

��

Σ−1V // Σ−1L
c //

v

��

C

��
T 1

V

u // Σ−1V // ΣT 0
V

// ΣT 1
V .

The composition lΣ−1iV belongs to the ideal (ΣT ), so that the composition

l(Σ−1iV )u vanishes. We thus have a morphism of triangles

T 1
V

u //

��

Σ−1V //

Σ−1iV

��

ΣT 0
V

//

w

��

ΣT 1
V

��
Σ−1C ′ // Σ−1L

l // U // C ′.

Therefore, we have (Σ−1iV )(l − wv) = 0, and there exists a morphism

C
l′

−→ U such that l − wv = l′c. The morphism l0 = l − l′c thus factors

through ΣT1. Put f0 = f − l0. We have

f0Σ
−1iV = fΣ−1iV − lΣ−1iV + l′cΣ−1iV = e

and

iUf0 = iUf − iU l0

≡ iUf mod (ΣT )

≡ Σ−1ε mod (ΣT ).

�

Proposition 4.3. — Let L,M ∈ C be such that dim C(L,ΣM) = 1.

Let

∆ : M
i
−→ B

p
−→ L

ε
−→ ΣM

and ∆′ : L
i′

−→ B′ p′

−→M
ε′

−→ ΣL
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be non-split triangles. Then conditions i) to iii) hold for the triangle ∆ if

and only if they do not for the triangle ∆′.

Proof. — Define maps

and

(Σ−1L,U)⊕ (Σ−1L,M)
α
−→ C/(T )

(

Σ−1V,U
)

⊕ (Σ−1V,M)

⊕ C/(ΣT )
(

Σ−1L,M
)

(f, η) 7−→ (fΣ−1iV , iUfΣ−1iV − ηΣ−1iV , iUf − η)

(Σ−1U,L)⊕ (Σ−1M,L)
α′

←− (T )(Σ−1U, V )⊕ (Σ−1M,V )

⊕ (ΣT )(Σ−1M,L)

(iV e′ + g′Σ−1iU + iV f ′Σ−1iU ,−g′ − iV f ′)←− [ (e′, f ′, g′).

Since the morphism space C(L,ΣM) is one-dimensional, the morphism

ε satisfies condition iii) if and only if the composition

β : Kerα
� � // (Σ−1L,U)⊕ (Σ−1L,M) // // (Σ−1L,M)

does not vanish. Assume condition iii) to be false for the triangle ∆. This

happens if and only if the morphism β vanishes, if and only if its dual Dβ

vanishes. Since the category C is 2-Calabi–Yau, lemma 3.3 implies that the

morphism Dβ is isomorphic to the morphism:

β′ : (Σ−1M,L)
� � // (Σ−1U,L)⊕ (Σ−1M,L) // // Cokerα′.

Therefore, β′(Σ−1ε) = 0 is equivalent to Σ−1ε being in Im α′, which is

equivalent to the existence of three mophisms e′, f ′, g′ as in the diagram

Σ−1M
g′

//

f ′

""F
FF

FF
FF

FF
L

Σ−1U

Σ−1iU

OO

e′

// V

iV

OO

such that














e′ ∈ (T )

g′ ∈ (ΣT )

Σ−1ε′ = iV f ′ + g′

iV e′ = (Σ−1ε′)(Σ−1iU ).

We have thus shown that condition iii) does not hold for the triangle ∆ if

and only if condition ii) holds for the triangle ∆′. �
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5. The multiplication formula

We use sections 2 and 4 to prove the multiplication formula, and apply

it to prove conjecture 2 in [9].

5.1. Proof of theorem 1.4

We use the same notations as in the statement of theorem 1.4.

Define, for any classes e, f, g in the Grothendieck group K0(modB), the

following varieties

Xe,f = {E ⊂ FB s.t. [(Fi)−1E] = e and [(Fp)E] = f}

Ye,f = {E ⊂ FB′ s.t. [(Fi′)−1E] = f and [(Fp′)E] = e}

Xg
e,f = Xe,f ∩Grg(FB)

Y g
e,f = Ye,f ∩Grg(FB′).

We thus have

Grg(FB) =
∐

e,f

Xg
e,f and Grg(FB′) =

∐

e,f

Y g
e,f .

Moreover, we have

χ (Gre(FM)×Grf (FL)) = χ (Xe,f ⊔ Ye,f )

= χ (Xe,f ) + χ (Ye,f )

=
∑

g

(

χ
(

Xg
e,f

)

+ χ
(

Y g
e,f

))

.

where the first equality is a consequence of the dichotomy phenomenon as

follows: Consider the map

Xe,f ⊔ Ye,f −→ Gre(FM)×Grf (FL)

which sends a submodule E of FB to the pair of submodules
(

(Fi)−1E, (Fp)E
)

. By proposition 4.3, it is surjective, and, as shown in [8],

its fibers are affine spaces.

Lemma 5.1. — Let e, f and g be classes in K0(modEndC(T )). Assume

that Xg
e,f is non-empty. Then, we have

∑

〈Si, g〉a[Pi]− coindB =
∑

〈Si, e + f〉a[Pi]− coindM − coindL.

Proof. — Let E be a submodule of FB in Xg
e,f . Let U

iU−→ M and

V
iV−→ L be two morphisms in the category C such that FU ≃ (Fi)−1E,

FV ≃ (Fp)E and the images of iU and iV in mod B are isomorphic to the
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inclusions of FU in FM and FV in FL respectively. Let K ∈ C be a lift

of the kernel of Fi. By proposition 2.2, the following equality holds:

(1) coindB = coindM + coindL− coindK − coind(ΣK).

By diagram chasing, the kernel of Fi is also a kernel of the induced mor-

phism from FU to E. Therefore, in K0(modB), we have

(2) g = e + f − [FK].

We have the following equalities:
∑

〈Si, FK〉a[Pi] = coindK − indK (by lemma 2.3)

= coindK + coind(ΣK) (by lemma 2.1).

Equality (2) thus yields

(3)
∑

〈Si, g〉a[Pi] =
∑

〈Si, e + f〉a[Pi]− coindK − coind(ΣK).

It only remains to sum equalities (1) and (3) to finish the proof. �

Proof of theorem 1.4. — Using lemma 4.1, we have

XMXL = x− coind M−coind L
∑

e,f

χ(Gre FM)χ(Grf FL)

n
∏

i=1

x
〈Si,e+f〉a

i ,

XB = x− coind B
∑

g

χ(Grg FB)

n
∏

i=1

x
〈Si,g〉a

i and

XB′ = x− coind B′
∑

g

χ(Grg FB′)

n
∏

i=1

x
〈Si,g〉a

i .

Therefore

XMXL = x− coind M−coind L
∑

e,f

χ (Gre(FM))χ (Grf (FL))
∏

x
〈Si,e+f〉a

i

= x− coind M−coind L
∑

e,f,g

(

χ
(

Xg
e,f

)

+ χ
(

Y g
e,f

))

∏

x
〈Si,e+f〉a

i

= x− coind B
∑

e,f,g

χ
(

Xg
e,f

)

∏

x
〈Si,g〉a

i

+x− coind B′
∑

e,f,g

χ
(

Y g
e,f

)

∏

x
〈Si,g〉a

i

= x− coind B
∑

g

χ (Grg(FB))
∏

x
〈Si,g〉a

i

+x− coind B′
∑

g

χ (Grg(FB′))
∏

x
〈Si,g〉a

i

= XB + XB′ . �
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5.2. Consequences

Let Q be a finite acyclic connected quiver, and let C be the cluster cate-

gory associated to Q.

An object of C without self-extensions is called rigid. An object of C

is called basic if its indecomposable direct summands are pairwise non-

isomorphic. For a basic cluster-tilting object T of C, let QT denote the

quiver of End (T ), and AQT
the associated cluster algebra.

Proposition 5.2. — A cluster character χ on C with values in Q(x1,

. . . , xn) which sends a basic cluster-tilting object T of C to a cluster of AQT

sends any cluster-tilting object T ′ of C to a cluster of AQT
, and any rigid

indecomposable object to a cluster variable.

Proof. — Since the tilting graph of C is connected, cf. [4, proposition

3.5], we can prove the first part of the proposition by recursion on the

minimal number of mutations linking T ′ to T . Let T ′′ = T ′′
1 ⊕ · · · ⊕ T ′′

n

be a basic cluster-tilting object, whose image under χ is a cluster of AQT
.

Assume that T ′ = T ′
1 ⊕ T ′′

2 ⊕ · · · ⊕ T ′′
n is the mutation in direction 1 of T ′′.

Since χ is a cluster character, it satisfies the multiplication formula, and

theorem 6.1 of [5] shows that the mutation, in direction 1, of the cluster

(χ(T ′′
1 ), . . . , χ(T ′′

n )) is the cluster (χ(T ′
1), χ(T ′′

2 ), . . . , χ(T ′′
n )). We have thus

proved that the image under χ of any cluster-tilting object is a cluster. It

is proved in [4, proposition 3.2] that any rigid indecomposable object of C

is a direct summand of a basic cluster-tilting object. Therefore, the image

under χ of any rigid indecomposable object is a cluster variable of AQT
. �

Remark. — As a corollary of the proof of proposition 5.2, a cluster

character is characterised, on a set of representatives for the isoclasses of

indecomposable rigid objects of C by the image of each direct summand of

any given cluster-tilting object. In fact, using [3, 1.10], this remains true

in the more general context of [3]: Let C be a Hom-finite triangulated 2-

Calabi–Yau category having maximal rigid objects without loops nor strong

2-cycles. Denote by n the number of non-isomorphic indecomposable direct

summands of any maximal rigid object.

Lemma 5.3. — Let χ1 and χ2 be two cluster characters on C with values

in Q(x1, . . . , xn). Assume that χ1 and χ2 coincide on all indecomposable

direct summands of a cluster-tilting object T in C. Then χ1 and χ2 coincide

on all direct summands of the cluster-tilting objects in C which are obtained

from T by a finite sequence of mutations.

The following corollary was conjectured for the finite case in [9]: Let C

be the cluster category of the finite acyclic quiver Q.
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Corollary 5.4. — Let T be any basic cluster-tilting object in C, and

let QT denote the quiver of End (T ). Denote by T a set of representatives

for the isoclasses of indecomposable rigid objects of C. Then XT induces

a bĳection from the set T to the set of cluster variables of the associated

cluster algebra AQT
, sending basic cluster-tilting objects to clusters.

Proof. — In view of theorem 1.4, proposition 5.2 shows that the map XT

sends rigid indecomposable objects to cluster variables and cluster-tilting

objects to clusters. It remains to show that it induces a bĳection. This

follows from [10, theorem 4], where it is proved for the Caldero-Chapoton

map XkQ.

As in the proof of proposition 5.2, we proceed by induction on the min-

imal number of mutations linking T to kQ.

Let T ′ be a basic cluster-tilting object such that the map XT ′

induces a

bĳection from the set T to the set of cluster variables. Assume that T is the

mutation in direction 1 of T ′. Denote by f the canonical isomorphism from

AQT ′
to AQT

. Theorem 6.1 of [5] shows that the two cluster characters

XT and f ◦XT ′

coincide on the indecomposable direct summands of ΣT .

Therefore, they coincide on all rigid objects and the map XT also induces

a bĳection. �

Remark. — We have shown that, for any basic cluster-tilting object T ,

we have a commutative diagram

T

~~}}
}}

}}
}} XT

!!C
CC

CC
CC

C

AQ AQT

≃oo

where the arrow on the left side is the Caldero–Chapoton map.

6. Examples

6.1. The cluster category CA4

The Auslander–Reiten quiver of CA4
is

ΣT4

##GG
GG

76540123T4

""E
EE

EE
E ΣT1

##HH
HH

""E
EE

EE
E

<<yyyyy
MC

!!D
DD

DD

==zzzz

##H
HHHHHH

;;vvvvv
ΣT2

��@
@@

@

ΣT2

""E
EE

E

<<yyyyy
76540123T2

##G
GG

GG
G

;;wwwww

""E
EE

EE

<<yyyyyyy

##H
HHHHH

;;vvvvv

��@
@@

@

ΣT1

;;vvvv
76540123T1

<<yyyyy

==zzzzzz
ΣT3

;;vvvvv
76540123T3

??~~~~~
ΣT4
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The object T := T1 ⊕ T2 ⊕ T3 ⊕ T4 is cluster-tilting. Indeed, it is obtained

from the image of the kQ-projective module kQ in CA4
by the mutation of

the third vertex.

The quiver of B = EndCA4
(T ) is

1 2oo

α

��

4
γoo

3

β

@@�������
.

with relations βα = γβ = αγ = 0. For i = 1, . . . , n, let Pi be the image of

Ti in mod B, let Ii be the image of Σ2Ti and let Si be the simple top of Pi.

Let M be the finite-dimensional B-module given by:

M = k koo

��

0oo

0

@@��������
.

The shape and the relations of the AR–quiver of B are obtained from

the ones of CA4
by deleting the vertices corresponding to the objects ΣTi

and all arrows ending to or starting from these vertices.

S3

��

P3 = I4
oo

S1 = P1
// P2

��

// M

��

// P4 = I1

��
I3

// S2
// I2

��
S4

JJ

Let MC be an indecomposable lift of M in CA4
. The triangles

T3 −→ T2 −→MC −→ ΣT3 and T1 −→ T4 −→ Σ−1MC −→ ΣT1

allows us to compute the index and coindex of MC :

indMC = [P2]− [P3]

coindMC = [P1]− [P4].
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Up to isomorphism, the submodules of M are 0, the simple S1, and M

itself. We thus have

XMC
=

x4x2 + x4 + x3x1

x1x2
.

6.2. The cluster category CD4

The Auslander–Reiten quiver of CD4
is

76540123T1

��?
??

??
?

��<
<<

<<
<<

��?
??

??
?? ΣT1

��?
??

??
?

76540123T1

//

??������

��?
??

??
? ΣT0

// //

��<
<<

<<
<<

AA������� 76540123T0
// //

��?
??

??
??

??�������
ΣT3

// //

��?
??

??
?

??������ 76540123T3
// //

��?
??

??
?

??������
ΣT0

76540123T2

??������

AA�������

??�������
ΣT2

??������
76540123T2

The object T := T1 ⊕ T2 ⊕ T3 ⊕ T4 is cluster-tilting.

The quiver of B = EndCD4
(T ) is

1

��>
>>

>>
>

0

@@������

��>
>>

>>
> 3oo

2

@@������

with the following relations: Any composition with the middle arrow van-

ishes, and the square is commutative.

For i = 1, . . . , n, let Pi be the image of Ti in mod B, let Ii be the image

of Σ2Ti and let Si be the simple top of Pi. Let M and N be the finite-

dimensional B-modules given by:

k

��=
==

==
= k

��>
>>

>>
>

M : k

��>
>>

>>
>

@@������
0oo N : 0

@@������

��=
==

==
= koo

k

@@������
k

@@������

As in the previous example, one can easily compute the AR-quiver of B.
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P3 = I0





P1

  @
@@

@@
@@

@
S2

##G
GGGGGGGG I1

  @
@@

@@
@@

S3

  A
AA

AA
AA

>>}}}}}}}
N //

##G
GGGGGGGG

;;wwwwwwwww
P0 = I3

// M

  @
@@

@@
@@

@

>>~~~~~~~~
S0

qq

P2

>>~~~~~~~~
S1

;;wwwwwwwww
I2

>>~~~~~~~

The submodules of M are, up to isomorphism, 0, S1, S2, S1 ⊕ S2 and

M . Let MC be an indecomposable lift of M in CD4
. Either by using add T -

approximations and add ΣT -approximations or by [21, section 5.2], one can

compute the triangles

T3 −→ T0 −→MC −→ ΣT3 and T1⊕T2 −→ T0 −→ Σ−1M −→ ΣT1⊕ΣT2.

We thus have

indMC = [P0]− [P3], coindMC = [P1] + [P2]− [P0]

and

XMC
=

(x0 + x3)
2 + x1x2x3

x0x1x2
.
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