
Cluster Computing in Zero Knowledge

Alessandro Chiesa1(B), Eran Tromer3, and Madars Virza2

1 ETH Zurich, Zürich, Switzerland
alessandro.chiesa@inf.ethz.ch

2 MIT, Cambridge, USA
madars@csail.mit.edu

3 Tel Aviv University, Tel Aviv, Israel
tromer@cs.tau.ac.il

Abstract. Large computations, when amenable to distributed parallel
execution, are often executed on computer clusters, for scalability and
cost reasons. Such computations are used in many applications, includ-
ing, to name but a few, machine learning, webgraph mining, and statis-
tical machine translation. Oftentimes, though, the input data is private
and only the result of the computation can be published. Zero-knowledge
proofs would allow, in such settings, to verify correctness of the output
without leaking (additional) information about the input.

In this work, we investigate theoretical and practical aspects of zero-

knowledge proofs for cluster computations. We design, build, and evaluate
zero-knowledge proof systems for which: (i) a proof attests to the cor-
rect execution of a cluster computation; and (ii) generating the proof is
itself a cluster computation that is similar in structure and complexity
to the original one. Concretely, we focus on MapReduce, an elegant and
popular form of cluster computing.

Previous zero-knowledge proof systems can in principle prove a
MapReduce computation’s correctness, via a monolithic NP statement
that reasons about all mappers, all reducers, and shuffling. However, it
is not clear how to generate the proof for such monolithic statements
via parallel execution by a distributed system. Our work demonstrates,
by theory and implementation, that proof generation can be similar in
structure and complexity to the original cluster computation.

Our main technique is a bootstrapping theorem for succinct non-inter-
active arguments of knowledge (SNARKs) that shows how, via recursive
proof composition and Proof-Carrying Data, it is possible to transform
any SNARK into a distributed SNARK for MapReduce which proves, piece-
wise and in a distributed way, the correctness of every step in the original
MapReduce computation as well as their global consistency.

Keywords: Computationally-sound proofs · Proof-carrying data · Zero
knowledge · Cluster computing · MapReduce

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 371–403, 2015.
DOI: 10.1007/978-3-662-46803-6 13

372 A. Chiesa et al.

1 Introduction

We study theoretical and concrete aspects of zero-knowledge proofs for cluster
computations, seeking proofs for which: (i) the output of the cluster computation
carries a zero-knowledge proof of its correctness; and (ii) generating a proof is
itself a cluster computation that is similar in structure and complexity to the
original one.

1.1 Motivation

Consider the following motivating example. A server owns a private database �,
and a client wishes to learn � := F (�) for a public function F , selected either by
himself or someone else. A (hiding) commitment cm to � is known publicly. For
example, � may be a database containing genetic data, and F may be a machine-
learning algorithm that uses the genetic data to compute a classifier �. On the
one hand, the client seeks integrity of computation: he wants to ensure that the
server reports the correct output � (because the classifier � may be used for
critical medical decisions). On the other hand, the server seeks confidentiality
of his own input: he is willing to disclose � to the client, but no additional
information about � beyond � (because the genetic data � may contain sensitive
personal information).

Zero-knowledge proofs. Achieving the combination of the aforementioned
security requirements seems paradoxical; after all, the client does not have the
input �, and the server is not willing to share it. Nevertheless, cryptography
offers a powerful tool that is able to do just that: zero-knowledge proofs [48].
More precisely, the server, acting as the prover, attempts to convince the client,
acting as the verifier, that the following NP statement is true: “there exists �̃

such that � = F (�̃) and �̃ is a decommitment of cm”. Indeed: (a) the proof
system’s soundness property addresses the client’s integrity concern, because
it guarantees that, if the NP statement is false, the prover cannot convince
the verifier (with high probability);1 and (b) the proof system’s zero-knowledge
property addresses the server’s confidentiality concern, because it guarantees
that, if the NP statement is true, the prover can convince the verifier without
leaking any information about � (beyond was is leaked by the output �).

Cluster computations. When F is amenable to parallel execution by a dis-
tributed system, it is often desirable, for scalability and cost reasons, to compute
� := F (�) on a computer cluster. A computer cluster consists of nodes (e.g.,
commodity machines) connected via a network, and each node performs local
computations as coordinated via messages with other nodes. Thus, to compute
F (�), a cluster may break � down into chunks and use these to assign sub-tasks
to different nodes; the results of these sub-tasks may require further computa-
tion, so that nodes further coordinate, deduce more sub-tasks, and so on, until

1 Sometimes a property stronger than soundness is required: proof of knowledge [4,48],
which guarantees that, whenever the client is convinced, not only can he deduce that
a witness exists, but also that the prover knows one such witness.

Cluster Computing in Zero Knowledge 373

the final result � can be collected. Parallel execution by a distributed system is
possible in many settings, including the aforementioned one of running machine-
learning algorithms on private genetic data. Indeed, “cloud” service providers
do offer users distributed programming interfaces (e.g., Amazon’s “EMR” and
Rackspace’s “Big Data”, both of which use the Hadoop framework).

The problem: how to do cluster computing in zero knowledge? In
principle, any zero-knowledge proof system for NP can be used to express an
NP statement that captures F ’s correct execution. However, while F may have
been efficient to execute on a computer cluster, the process of generating a proof
attesting to its correctness may not be. Suppose, for example, that the NP state-
ment to be proved must be expressed as an instance of circuit satisfiability. Then,
one would have to construct a single circuit that expresses the correctness of the
computation of every node in the cluster, as well as the correctness of communi-
cation among them. Proving the satisfiability of the resulting monolithic circuit
via off-the-shelf zero-knowledge proof systems is a computation that looks noth-
ing like the original one and, moreover, may not be suitable for efficient execution
on a cluster. Ideally, the proving process should be a distributed computation
that is similar to the original one, in that the complexity of producing the proof
is not much larger than that of the original computation and, likewise, has a
cluster-friendly communication structure. In sum: To what extent can one effi-
ciently perform cluster computing in zero knowledge?

1.2 Our Focus: MapReduce

Cluster computing is a hypernym that encompasses numerous forms of dis-
tributed computing, as determined by the cluster’s architecture (i.e., its pro-
gramming model and its execution framework). Indeed, a cluster’s architecture
often depends on the class of envisioned applications (e.g., indexing the World
Wide Web, performing astrophysical N -body simulations, executing machine-
learning algorithms on genetic data, and so on).

In this work, we focus on a concrete, yet elegant and powerful, distributed
architecture: MapReduce [35]. We review MapReduce later (in Section 2), and
now only say that MapReduce can express many useful computations, including
ones used for machine learning [26,67,82], graph mining and processing [52,58],
statistical machine translation [20,38,57,70], document similarity [56], and bioin-
formatics [54,71]. For concreteness, we specialize to MapReduce the question
raised in Section 1.1:

Can one obtain zero-knowledge proofs attesting to the correctness of
MapReduce computations, in which the proving process is itself dis-
tributed and can be efficiently expressed via MapReduce computations?

1.3 Our Contributions

In this paper we present two main results, both contributing to the feasibility of
cluster computing in zero knowledge.

374 A. Chiesa et al.

1. MapReduce in zero knowledge. Under knowledge-of-exponent assump-
tions [5,31,50], we construct a zero-knowledge proof system in which: (i) a
proof attests to the correct execution of a MapReduce computation; and
(ii) generating a proof consists of MapReduce computations with similar
complexity as the original one. Moreover, the proof system is succinct and
non-interactive, i.e., is a zk-SNARK [12,15,44].

2. A working prototype. We design, build, and evaluate a working prototype
for the aforementioned construction.

At the heart of our construction (and implementation) lies a new bootstrap-
ping theorem for zk-SNARKs. Informally:

Assuming collision-resistant hashing, there is an efficient transforma-
tion that takes as input a zk-SNARK (even one with expensive pre-
processing) and outputs a distributed zk-SNARK for MapReduce, i.e., a
zk-SNARK for MapReduce where the prover can be efficiently imple-
mented via MapReduce.

The transformation consists of the following two steps.

– Step I: use a given (non-distributed) zk-SNARK to obtain a proof-carrying
data (PCD) system [24,25], a cryptographic primitive that enforces local
invariants, the compliance predicates, in distributed computations.

– Step II: use the PCD system on a specially-crafted predicate to obtain a
distributed zk-SNARK for MapReduce.

The theory for the first step is due to [13]; a special case was implemented in [8],
and our implementation generalizes it to support the MapReduce application.
The second step is novel and is an example of using “compliance engineering”
to conduct and prove correctness of non-trivial distributed computations. From
an implementation standpoint, both steps require significant and careful engi-
neering, as we explain later.

1.4 Prior Work

zk-SNARKs. We study zero-knowledge proofs [48] that are non-interactive
[16,17,66]. Specifically, we study non-interactive zero-knowledge proofs that are
succinct, i.e., short and easy to verify [63]; these are known as zk-SNARKs [12,
15,44].

There are many zk-SNARK constructions in the literature, with different prop-
erties in efficiency and supported languages. In preprocessing zk-SNARKs, the
complexity of the setup of public parameters grows with the size of the computa-
tion being proved [3,7,9,15,30,33,39,43,49,53,59–61,69,81,83]; in fully-succinct
zk-SNARKs, that complexity is independent of computation size [8,11–14,32,36,
47,63,64,79]. Working prototypes have been achieved both for preprocessing
zk-SNARKs [7,9,30,53,69,83] and for fully-succinct ones [8]. Several works have
also explored more in depth various applications of zk-SNARKs [6,21,23,34,41].

Cluster Computing in Zero Knowledge 375

Prior work has not sought (or achieved) distributed zk-SNARKs for
MapReduce. Of course, non-distributed zk-SNARKs for MapReduce (i.e., where
the prover is not amenable to parallel distributed execution) can be achieved,
trivially, via any zk-SNARK for NP: (a) express (the correctness of) the
MapReduce computation via a suitable NP statement; then (b) prove satisfi-
ability of that NP statement by using the zk-SNARK.

Proof-carrying data. Proof-Carrying Data (PCD) [24,25] is a framework for
enforcing local invariants in distributed computations; it is captured via a cryp-
tographic primitive called PCD system. Proof-Carrying Data covers, as special
examples, incrementally-verifiable computation [79] and targeted malleability
[19]. Its role in bootstrapping zk-SNARKs was shown in [13], and an implemen-
tation of it was achieved in [8].

Outsourcing MapReduce computations. Braun et al. [21] construct (and
implement) an interactive protocol for verifiably outsourcing MapReduce compu-
tations to untrusted servers. While interacting with the prover, the client has to
perform himself the MapReduce shuffling phase; hence, their protocol is neither
succinct nor zero knowledge. (In particular, their protocol is not a zk-SNARK
and, a fortiori, nor a distributed zk-SNARK.)

Other works on outsourcing computations. Numerous works [2,10,18,21,
22,27–29,40,42,46,51,68,73–78,80] seek to verifiably outsource various classes
of computation to untrusted powerful servers, e.g., in order to leverage cheaper
cycles or storage. Some of these works have achieved working prototypes of their
protocols.

Verifiable outsourcing of computations is not our goal. Rather, we study the-
oretical and practical aspects of zero-knowledge proofs for cluster computations.
Zero-knowledge proofs are useful even when applied to relatively-small compu-
tations, and even with high overheads (e.g., see [65] for a recent example).2

1.5 Summary of Challenges and Techniques

Our construction (and implementation) rely on a new bootstrapping theorem for
zk-SNARKs: any zk-SNARK can be transformed into a distributed zk-SNARK
for MapReduce. The transformation is done in two steps, as follows.

From the zk-SNARK to a Multi-predicate PCD System The trans-
formation’s first step uses the given zk-SNARK to construct a PCD system
[24,25], a cryptographic primitive that enforces a given local invariant, known
as the compliance predicate, in distributed computations. Such a transformation
was described by [13], following [79] and [24]. It was implemented by [8], and

2 In this paper’s setting, the client does not have the server’s input, and so cannot
conduct the computation on his own. It is thus not meaningful to compare “efficiency
of outsourced computation at the server” and “efficiency of native execution at the
client”, since the latter was never an option.

376 A. Chiesa et al.

used for obtaining scalable zero-knowledge proofs for random-access machine
executions.

These prior works are constrained to enforcing a single compliance predicate
at all nodes in the distributed computation. However, in MapReduce computa-
tions (as in many others), different nodes are subject to different requirements.
In principle one can create a single compliance predicate expressing the disjunc-
tion of all these requirements; but the resulting predicate is large (its size is the
sum of each requirement’s size) and entails a large cost in proving time.

We thus extend [8] to define, construct, and implement a multi-predicate PCD
system, where different nodes may be subject to different compliance predicates,
and yet the cost of producing the proof, at each node, depends merely on the
compliance predicate to which this particular node is subject. The presence of
multiple compliance predicates complicates the construction of the arithmetic
circuits for performing recursive proof composition, as these must now verify a
zk-SNARK proof relative to one out of a (potentially large) number of compli-
ance predicates, each with its own verification key, at a cost that is essentially
independent of the predicates that are not locally relevant.

Additional restrictions in the prior works, which we also relax, are that node
arity (the number of input messages to a node) was fixed, and that a node’s
input lengths had to equal its output length. While not fundamental, these
limitations cause sizable overheads in heterogenous distributed computations
(of which MapReduce is an example).

From a Multi-predicate PCD System to a Distributed zk-SNARK for
MapReduce The transformation’s second step uses the aforementioned multi-
predicate PCD system to construct a distributed zk-SNARK for MapReduce.

For each individual map node or reduce node, correctness of the local com-
putation is independent of other computations; so it is fairly straightforward
to distill local “map” and “reduce” compliance predicates. However, the shuf-
fle phase of the MapReduce computation is a global computation that involves
all of the mappers’ outputs. We wish to ensure globally correct shuffling, while
only enforcing (via the PCD system) the preservation of a compliance predicate,
locally at each node. (Of course, one could always consider a big shuffler node
that takes all the shuffled messages as inputs, but doing so would prevent the
proof generation from being distributed.)

We thus show how to decompose correct shuffling into a collection of simple
local predicates, while preserving zero knowledge (which introduces subtleties).
Roughly, we show that there is a parallel distributed algorithm to simultaneously
compute, for each unique key k, a proof attesting that the list of values associated
to k in the output of the shuffling process contains all the those values, and only
those, that were paired with k by some mapper.

Subsequently, we use the map and reduce compliance predicates, along with
those used to prove correct shuffling, and obtain a collection of compliance predi-
cates with the property that any distributed computation that is complaint with
these corresponds to a correct MapReduce computation.

Cluster Computing in Zero Knowledge 377

Note how the extensions to basic PCD, mentioned in Section 1.5, come into
play. First, we specify multiple compliance predicate, for the different stages of
the computation, and only pay for the applicable one at every point. Second,
because MapReduce computation has a communication pattern that is input-
dependent and not very homogenous, we require PCD to support (directly and
thus more efficiently) flexible communication patterns, with variable node arity
and varying input and output message lengths.

2 Preliminaries

We give notations and definitions needed for this paper’s technical discussions.
We denote by λ the security parameter. We write f = Oλ(g) to mean that

there is c > 0 such that f = O(λcg). We write |a| to denote the number of
bits needed to store a (whether a be a vector, a circuit, and so on). Finally, to
simplify notation, we do not make explicit adversaries’ auxiliary inputs.

2.1 Commitments

A commitment scheme is a pair COMM = (COMM.Gen,COMM.Ver) with the
following syntax:
– COMM.Gen(z) → (cm, trp). On input data z, the commitment generator

COMM.Gen probabilistically samples a commitment cm of z and a correspond-
ing trapdoor trp.

– COMM.Ver(z, cm, trp) → b. On input data z, commitment cm, and trapdoor
trp, the commitment verifier COMM.Ver outputs b = 1 if cm is a valid com-
mitment of z with respect to the trapdoor trp (and b = 0 otherwise).

The scheme COMM satisfies the natural completeness, (computational) binding,
and (statistical) hiding properties. We assume that cm does not even leak |z|,
and thus |cm| is a fixed polynomial in the security parameter.

2.2 Merkle Trees

We use Merkle trees [62] (based on some collision-resistant function) as non-
hiding succinct commitments to lists of values, in the familiar way. A Merkle-
tree scheme is a tuple MERKLE = (MERKLE.GetRoot,MERKLE.GetPath,)
MERKLE.CheckPath with the following syntax:
– MERKLE.GetRoot(z) → rt. Given list z = (zi)

n
i=1, the root generator

MERKLE.GetRoot deterministically computes a root rt of the Merkle tree with
the list z at its leaves.

– MERKLE.GetPath(z, i) → ap. Given input list z and index i, the authentication
path generator MERKLE.GetPath deterministically computes the authentica-
tion path ap for zi.

– MERKLE.CheckPath(rt, i, zi, ap) → b. Given root rt, input data zi, index i, and
authentication path ap, the path checker MERKLE.CheckPath outputs b = 1 if
ap is a valid path for zi as the i-th leaf in a Merkle tree with root rt.

The scheme MERKLE satisfies the natural completeness and (computational)
binding properties.

378 A. Chiesa et al.

2.3 MapReduce

Overview of MapReduce MapReduce is a programming model for describing
data-parallel computations to be run on computer clusters [35]. A MapReduce
job consists of two functions, Map and Reduce, and an input, �, which is a list
of key-value pairs; executing the job results into an output, �, which also is a
list of key-value pairs. Computing � requires three phases: (i) Map phase: the
function Map is separately invoked on each key-value pair in the list �; each such
invocation produces an intermediate sub-list of key-value pairs. (ii) Shuffle phase:
all the intermediate sub-lists of key-value pairs are jointly shuffled so that pairs
that share the same key are gathered together into groups. (iii) Reduce phase: the
function Reduce is separately invoked on each group of key-value pairs; each such
invocation produces an output key-value pair; all these pairs are concatenated
(in some order) to form �.

Naturally, efficiently computing the three phases on a computer cluster requires
a suitable framework to assign computers to Map tasks, implement the distributed
shuffle of intermediate key-value pairs, assign computers to Reduce tasks, and col-
lect the various outputs; this is typically orchestrated by a master node. For now,
we focus on the definition of the programming model and not the details of a frame-
work that implements it.

Notation for MapReduce We introduce notation that enables us to discuss
MapReduce in more detail.

Keys,values,andrecords. First,wediscuss thedataassociatedtoaMapReduce
job. The main “unit of data” is a record, which is a pair (k, v) where k is its key and v

is its value. We distinguish between different kinds of records, depending on which
phase they belong to: input records are of phase 1 and lie in K1 × V1; intermediate
records are of phase 2 and lie in K2 × V2; and output records are of phase 3 lie in
K3 × V3.

MapReduce pairs. Next, we discuss the functions associated to a MapReduce
job. A MapReduce pair is a pair (Map,Reduce) where Map : K1×V1 → (K2×V2)∗

is its Map function and Reduce : K2 × (V2)∗ → (K3 × V3) is its Reduce function;
both must run in polynomial time. In other words, on input a phase-1 record
(k1, v1) ∈ (K1 × V1), Map outputs a list of phase-2 records

(

(k2
i , v

2
i)

)

i
∈ (K2 ×

V2)∗. Instead, on input a phase-2 key k2 ∈ K2 and a list of phase-2 values
(v2

i)i ∈ (V2)∗, Reduce outputs a phase-3 record (k3, v3) ∈ (K3 × V3).

MapReduce executions. Finally, we discuss how functions operate on data
so to execute a MapReduce job. Given a MapReduce pair (Map,Reduce) and
an input � ∈ (K1 × V1)∗, the output of the execution of (Map,Reduce) on �,
denoted [Map,Reduce](�), is the result � ∈ (K3 ×V3)∗ of the following (abstract)
computation.
1. Map step. For each i ∈ {1, . . . , |�|}, letting (k1

i , v
1
i) be the i-th phase-1 record

in �, compute the list of phase-2 records
(

(k2
i,j , v

2
i,j)

)

j
:= Map(k1

i , v
1
i). This

step produces a list of intermediate records � =
(

(k2
i,j , v

2
i,j)

)

i,j
.

Cluster Computing in Zero Knowledge 379

2. Shuffle step. Shuffle the list � so that records with the same key are grouped
together. This step induces, for each unique key k2 appearing in �, a corre-
sponding list v2 of values paired with k2.

3. Reduce step. For each unique phase-2 key k2 in � and its corresponding list
of phase-2 values v2, compute the phase-3 record (k3, v3) = Reduce(k2,v2).
The output � equals the concatenation of all of these phase-3 records.

We note that MapReduce jobs enjoy certain “symmetries” (which simplify the
task of execution on clusters): the order of records in � or in � is irrelevant.3 In
terms of complexity measures, we say that the execution of (Map,Reduce) on �

is (m, r, p)-bounded if each individual execution of Map takes at most m time,
each individual execution of Reduce takes at most r time, and |�| ·m+ |�| · r ≤ p

(where � := [Map,Reduce](�)).4

The MapReduce language. We express, via a suitable language, the notion
of “correct” MapReduce executions:

Definition 1. For a MapReduce pair (Map,Reduce), the language L(Map,Reduce)

consists of the tuples (�,�) for which � = [Map,Reduce](�).5

In this work, we consider the setting where an input � is not known to the user,
but only its commitment cm is (as � is private). Thus, we work with a related
relation, RCOMM

(Map,Reduce), derived from L(Map,Reduce) and a commitment scheme

COMM = (COMM.Gen,COMM.Ver) (using the syntax introduced in Section 2.1).
In contrast to L(Map,Reduce), instances in RCOMM

(Map,Reduce) contain cm instead of �,

and witnesses are extended to contain decommitment information (i.e., the input
and commitment trapdoor). More precisely, we define the relation RCOMM

(Map,Reduce)

as follows.

Definition 2. For a MapReduce pair (Map,Reduce) and commitment scheme
COMM, the relation RCOMM

(Map,Reduce) consists of instance-witness pairs
(

(cm,�),

(�, trp)
)

such that COMM.Ver(�, cm, trp) = 1 and (�,�) ∈ L(Map,Reduce).

MapReduce sequences. A single MapReduce execution is at times insufficient
to run an algorithm. In such cases, instead of a single MapReduce pair, we

consider a MapReduce sequence S: a list
(

(Ii,Mapi,Reducei)
)d

i=1
such that, for

each i, Ii ⊆ {0, . . . , i − 1} and (Mapi,Reducei) is a MapReduce pair. We call d

the depth of S. The output of the execution of S on an input �, denoted S(�), is
the result � obtained as follows: (1) set �(0) := �; (2) for i = 1, . . . , d, compute
�

(i) := [Mapi,Reducei](�
(i)) where �(i) is the concatenation of all �(j) with j ∈ Ii;

(3) output � := �
(d).In terms of complexity measures, similarly to above, we say

that the execution of S on � is (m, r, p)-bounded if each individual execution of

3 One only considers Map and Reduce functions that do not introduce asymmetries
(by, e.g., leveraging the order of elements in a list).

4 For simplicity, we ignore the cost of shuffling because it is typically on the order of
the input and output sizes [45].

5 Due to symmetry, (�,�) ∈ L(Map,Reduce) if and only if
(

π(�), π′(�)
)

∈ L(Map,Reduce) for
any two permutations π and π′ (of records).

380 A. Chiesa et al.

any Mapi takes at most m time, each individual execution of any Reducei takes

at most r time, and
∑d

i=1(|�
(i−1)| · m + |�(i)| · r) ≤ p.

Family of MapReduce sequences. A family of MapReduce sequences is
a family (SN)N∈N where each SN is a MapReduce sequence

(

(IN,i,MapN,i,

ReduceN,i)
)dN

i=1
.

3 Definition of Distributed zk-SNARKs for MapReduce

We (informally) define non-distributed zk-SNARKs for MapReduce, and then
distributed zk-SNARKs for MapReduce. Throughout, we assume familiarity with
the notations and definitions for MapReduce introduced in Section 2.3.

3.1 Non-distributed zk-SNARKs for MapReduce

A (non-distributed) zk-SNARK for MapReduce is a zk-SNARK for proving knowl-
edge of witnesses in RCOMM

(Map,Reduce), for a user-specified MapReduce pair (Map,

Reduce) and a fixed choice of commitment scheme COMM. That is, it is a crypto-
graphic primitive that provides short and easy-to-verify non-interactive
zero-knowledge proofs of knowledge for the relation RCOMM

(Map,Reduce). Concretely, the

primitive consists of a tuple (COMM,MR.KeyGen,MR.Prove,MR.Verify) with the
following syntax.

– MR.KeyGen(1λ,Map,Reduce) → (pk, vk). On input a security parameter λ

(presented in unary) and a MapReduce pair (Map,Reduce), the key generator
MR.KeyGen probabilistically samples a proving key pk and a verification key
vk. We assume, without loss of generality, that pk contains (a description of)
the MapReduce pair (Map,Reduce).

The keys pk and vk are published as public parameters and can be used, any num-
ber of times, to prove/verify knowledge of witnesses in the relation RCOMM

(Map,Reduce),
as follows.

– MR.Prove(pk, cm,�,�, trp) → πMR. On input a proving key pk, instance (cm,�),
and witness (�, trp), the prover MR.Prove outputs a proof πMR for the state-
ment “there is (�, trp) such that

(

(cm,�), (�, trp)
)

∈ RCOMM
(Map,Reduce)”.

– MR.Verify(vk, cm,�, πMR) → b. On input a verification key vk, commitment
cm, output �, and proof πMR, the verifier MR.Verify outputs b = 1 if he is
convinced that there is (�, trp) such that

(

(cm,�), (�, trp)
)

∈ RCOMM
(Map,Reduce).

As in other zk-SNARKs, the above tuple satisfies (variants of) the properties of
completeness, succinctness, (computational) proof of knowledge, and (statistical)
zero knowledge; we describe these in the full version. Here we recall succinctness:
an honestly-generated proof πMR has Oλ(1) bits, and MR.Verify(vk, cm,�, πMR)
runs in time Oλ(|�|).

Costs of key generation. The above implies that (pk, vk) is generated in
time Oλ(1) · poly(|Map| + |Reduce|), that |pk| = Oλ(1) · poly(|Map| + |Reduce|),

Cluster Computing in Zero Knowledge 381

and that |vk| = Oλ(1) (since MR.Verify runs in time Oλ(|�|) for any �). These
key-generation costs are between those of a preprocessing zk-SNARK (where
key generation costs as much as the entire computation being proved) and a
fully-succinct zk-SNARK (where key generation costs only a fixed polynomial in
λ), because they do not depend on the number of mappers and reducers in the
MapReduce computation.

One could strengthen the definition above to require “full succinctness”, i.e.,
to further require that key generation depends polynomially on the security
parameter only (and, in particular, that the MapReduce pair is not hard-coded
into the keys). The results presented in this paper extend to achieve this stronger
definition.

3.2 Distributed zk-SNARKs for MapReduce

A distributed zk-SNARK for MapReduce is a zk-SNARK for MapReduce where
the prover consists of few MapReduce computations whose overall complexity
is similar to the MapReduce computation being proved. More precisely, when
producing proofs for the relation RCOMM

(Map,Reduce), MR.Prove(pk, ·, ·, ·, ·) is a family of

MapReduce sequences that is (Map,Reduce)-faithful, a property defined below.

Definition 3. Given a MapReduce pair (Map,Reduce), a family of MapReduce
sequences (SN)N∈N is (Map,Reduce)-faithful if, for all N ∈ N and

(

(cm,�),

(�, trp)
)

∈ RCOMM
(Map,Reduce) with |�| + |�| ≤ N :

– the depth of SN is logarithmic in N , i.e., dN = O(log N); and
– SN has a linear overhead compared to (Map,Reduce), i.e., for all m, r, p ∈ N, if
� is (m, r, p)-bounded then the execution of SN on (cm,�,�, trp) is (Oλ(m), Oλ

(r), Oλ(p))-bounded.

4 Definition of Multi-predicate PCD

Proof-carrying data (PCD) [24,25] is a cryptographic primitive that encapsu-
lates the security guarantees achievable via recursive composition of proofs. Since
recursive proof composition naturally involves multiple (physical or virtual) par-
ties, PCD is phrased in the language of a distributed computation among com-
puting nodes, who perform local computations, based on local data and input
messages, and then produce output messages. Given a compliance predicate Π

to express local checks, the goal of PCD is to ensure that any given message msg

in the distributed computation is Π-compliant, i.e., is consistent with a history
in which each node’s local computation satisfies Π. This formulation covers, as
special cases, incrementally-verifiable computation [79] and targeted malleability
[19].

Extending PCD to multiple predicates. The definition of PCD naturally
generalizes to compliance with respect to a vector Π of compliance predicates
(rather than a single predicate). Namely, a msg is Π-compliant if it is consistent
with a history in which each node’s local computation satisfies some predicate Π

382 A. Chiesa et al.

in the vector Π. Moreover, a message msg comprises two parts: the type, which
records what kind of node output msg, and the payload, which is the rest.

The above multi-predicate PCD can be “simulated” via a single-predicate
PCD, by folding all the predicates in the vector Π into a single predicate Π⋆ that
(a) reasons about which predicate in Π to use at a give node, and (b) enforces
a message’s type and payload separation. However, this simulation incurs a sig-
nificant overhead: the size of Π⋆ is the sum of the sizes of all the predicates
in Π, and this cost is incurred at every node regardless of which predicate is
actually used to check compliance at a node. In contrast, in our construction of
multi-predicate PCD (see Section 6), we incur, at each node, only the cost of
the predicate that is actually used to check compliance.

Implications for MapReduce. As we discuss in Section 5, reducing the
correctness of MapReduce computations to compliance of distributed computa-
tions involves multiple predicates that perform checks with different semantics:
a predicate for mapper nodes, a predicate for reducer nodes, and various other
predicates for other nodes that reason about shuffling. These predicates have
different sizes and, thus, it is crucial to leverage the flexibility offered by multi-
predicate PCD (so to then obtain a distributed zk-SNARK for MapReduce).

Next, we define distributed-computation transcripts (our formal notion of dis-
tributed computations), compliance of a transcript T with respect to a given
vector Π of compliance predicates, and multi-predicate PCD.

Transcripts. A (distributed-computation) transcript is a tuple T = (G, TYPE,

LOC,PAYLOAD), where:
– G = (V, E) is a directed acyclic graph with node set V and edge set E ⊆ V ×V ;
– TYPE: V → N are node labels;
– LOC: V → {0, 1}∗ are (another kind of) node labels; and
– PAYLOAD: E → {0, 1}∗ are edge labels.
The message of an edge (u, v) ∈ E is the pair MSG(u, v) := (TYPE(u),PAYLOAD
(u, v)). The outputs of the transcript T, denoted OUTS(T), is the set of messages
MSG(ũ, ṽ) where (ũ, ṽ) ∈ E and ṽ is a sink. Typically, we denote a message by
msg, and its type and payload by msg.type and msg.payload.

Compliant transcripts and messages. A compliance predicate Π is a func-
tion with a type, denoted type(Π). Given a vector Π of compliance predicates,
we say that:
– a transcript T = (G, LOC,TYPE,PAYLOAD) is Π-compliant, denoted

Π(T)
= OK, if:

(i) for each v ∈ V , TYPE(v) = 0 if and only if v is a source; and
(ii) for each non-source v ∈ V and each w ∈ children(v), there is Π ∈ Π

with TYPE(v) = type(Π) such that

Π
(

MSG(v, w),LOC(v),
(

MSG(u, v)
)

u∈parents(v)

)

accepts.

– a message msg is Π-compliant if there is a transcript T such that Π(T) = OK

and msg ∈ OUTS(T).

Cluster Computing in Zero Knowledge 383

A transcript T thus represents a distributed computation, in the following sense.
For each node v ∈ V , the function LOC specifies the local data used at v; and, for
each edge (u, v) ∈ E, the function MSG specifies the message sent from node u

to node v. A node v with parent nodes parents(v) and children nodes children(v)
uses the local data LOC(v) and the input messages

(

MSG(u, v)
)

u∈parents(v)
to

compute the output message MSG(v, w) for each child w ∈ children(v). As for
the function TYPE, it assigns to each node v ∈ V a quantity that determines the
type of every message output by v; this quantity also determines which compli-
ance predicates can be used to verify compliance of those messages (specifically,
the type of the predicate and message must equal).

Multi-predicate PCD systems. A multi-predicate PCD system is a triple of
polynomial-time algorithms (G, P, V), called key generator, prover, and verifier.
The key generator G is given as input a vector of predicates Π, and outputs a
proving key pk and a verification key vk; these keys allow anyone to prove/verify
that a message msg is Π-compliant. This is achieved by attaching a short and
easy-to-verify proof to each message: given pk, input messages msgin with proofs
πin, local data loc, and an output message msg (allegedly, Π-compliant), the
prover P computes a new proof π to attach to msg; the verifier V(vk,msg, π)
checks that msg is Π-compliant. The triple (G, P, V) must satisfy complete-
ness, succinctness, (computational) proof of knowledge, and (statistical) zero
knowledge; we describe these in the full version. Here we recall succinctness:
an honestly-generated proof π has Oλ(1) bits, and V(vk,msg, π) runs in time
Oλ(|msg|).

5 Step II: from Multi-predicate PCD to Distributed

zk-SNARKs

We discuss Step II of our bootstrapping theorem: constructing a distributed
zk-SNARK for MapReduce from a multi-predicate PCD system. This step itself
consists of two main parts.
– Compliance engineering (Section 5.1): a reduction from the correctness of

MapReduce computations to a question about the compliance of distributed
computations with respect to a certain vector ΠMR of predicates.

– Construction of the proof system (Section 5.2): suitably invoke the multi-
predicate PCD system on the vector ΠMR in order to construct a distributed
zk-SNARK for MapReduce.

5.1 Compliance Engineering for MapReduce

We show how, given any MapReduce pair (Map,Reduce), one can efficiently
construct a vector ΠMR of compliance predicates for which “suitable” ΠMR-
compliant transcripts correspond to instance-witness pairs in the relation
RCOMM

(Map,Reduce). First, we clarify what “suitable” means, via the following defi-
nition.

384 A. Chiesa et al.

Definition 4. For an instance (cm,�), a transcript T is (cm,�)-compatible if
OUTS(T) contains a message with type 1 and payload (cm, |�|) and, for each
i ∈ {1, . . . , |�|}, a message with type 2 and payload (cm,�i).

Next, via the following theorem, we show how one can translate a question of
the form

“Given an instance (cm,�), is there a witness (�, trp) such that
(

(cm,�), (�, trp)
)

is in RCOMM
(Map,Reduce)?”

to a question of the form

“Given an instance (cm,�), is there a ΠMR-compliant (cm,�)-compatible
transcript T?”

More precisely:

Theorem 1. There exists a commitment scheme COMM such that, for every
MapReduce pair (Map,Reduce), there exist a vector ΠMR of compliance predi-
cates and two algorithms Eval,Ext satisfying the following properties.
– Efficiency.

• The vector ΠMR consists of 7 predicates, with the following sizes:
|ΠMR[1]| = Oλ(|Map|), |ΠMR[2]| = Oλ(|Reduce|), and

|ΠMR[3]|, . . . , |ΠMR[7]| = Oλ(1),
where, above, |·| denotes per-input running time of the underlying algorithm.

• The algorithm Eval is (Map,Reduce)-faithful.
• The algorithm Ext is linear time.

– Completeness. For any instance (cm,�), if there is (�, trp) such that
(

(cm,�),

(�, trp)
)

is in RCOMM
(Map,Reduce), then there is a ΠMR-compliant (cm,�)-compatible

transcript T; moreover, Eval(cm,�,�, trp) outputs OUTS(T) by dynamically gen-
erating T “node by node”.

– Proof of knowledge. For any instance (cm,�), if there is a ΠMR-compliant
(cm,�)-compatible transcript T, then Ext(T) outputs (�, trp) such that

(

(cm,�),

(�, trp)
)

is in RCOMM
(Map,Reduce).

We now sketch a proof of the theorem. Recall proof of knowledge: we must
construct a vector ΠMR of predicates with the property that, given (cm,�), if
there is a distributed-computation transcript T that is both ΠMR-compliant and
(cm,�)-compatible, then we can find (�, trp) for which COMM.Ver(�, cm, trp) = 1
and � = [Map,Reduce](�). Intuitively, we achieve proof of knowledge by engi-
neering the predicates in ΠMR so that the transcript T is forced to encode within
it a history of a correct MapReduce execution. Technically, the main challenge
is that we are restricted to local checks: each predicate only sees input and
output messages of a single node; in contrast, correct execution of a MapReduce
computation (also) involves global properties, such as correct shuffling.

We introduce our approach in steps, by first describing two “failed attempts”.
For simplicity, we focus on the (artificial) case where each mapper outputs a
single phase-2 record; later, we explain how this restriction can be lifted.

Cluster Computing in Zero Knowledge 385

Failed Attempt #1 It is natural to begin by designing two predicates ΠMap
exe

and ΠReduce
exe that simply capture the correct execution of a mapper and reduce

node, respectively, as in Figure 2.
Now suppose that we see a (ΠMap

exe , ΠReduce
exe)-compliant message msg. What

can we deduce about the history of computations that led to msg? If msg.type =
type(ΠMap

exe), then msg was output by a node at which the predicate ΠMap
exe was

checked; conversely, if msg.type = type(ΠReduce
exe), then msg was output by a

node at which the predicate ΠReduce
exe was checked. Suppose, for example, that

msg.type = type(ΠReduce
exe). By construction of ΠReduce

exe , we deduce that:
(i) msg.payload is a phase-3 record (k3, v3), and (ii) there is a list of input mes-
sages msgin whose payloads contain phase-2 records

(

(k2
j , v

2
j)

)

j
that all share

the same key and, moreover, result in (k3, v3) when given as input to Reduce.
However, as soon as we try to “dig further into the past”, to see what properties
each phase-2 record (k2

j , v
2
j) satisfies, we run into issues not addressed by the

above construction of ΠMap
exe and ΠReduce

exe . Namely,
– Issue I: How can we ascertain that each phase-2 record (k2

i , v
2
i) was the correct

output of some mapper node?
– Issue II: Even if so, where did that mapper obtain its input phase-1 record?

Failed Attempt #2 We augment ΠMap
exe and ΠReduce

exe to address these issues.
Roughly, we address Issue I by inspecting message types: ΠMap

exe ensures that
its input messages have type 0 (i.e., are not output by previous nodes); while
ΠReduce

exe ensures that they have type type(ΠMap
exe). As for Issue II, we augment all

messages with a commitment cm to the (overall) input � and extend ΠMap
exe to

authenticate the phase-1 record it receives. We now describe these ideas.
First, we describe the commitment scheme COMM that we use to create cm.

Essentially, COMM consists of (i) a Merkle-tree followed by a commitment to
the resulting root, and also (ii) a commitment to the size of the committed data.
See Figure 1 for more details; we denote the underlying commitment scheme by
COMM′ and the Merkle-tree scheme by MERKLE (and use notation introduced
in Section 2.1 and Section 2.2).

Fig. 1. Choice of commitment scheme COMM (obtained from MERKLE and COMM′)

COMM.Gen(z) COMM.Ver(z, cm, trp)

1. Compute rt := MERKLE.GetRoot(z).
2. Compute n := |z|.
3. Compute (cmrt, traprt) ← COMM′.Gen(rt).
4. Compute (cmn, trapn) ← COMM′.Gen(n).
5. Set cm := (cmrt, cmn).
6. Set trp := (traprt, trapn).
7. Output (cm, trp).

1. Compute rt := MERKLE.GetRoot(z).
2. Compute n := |z|.
3. Parse cm as a pair (cmrt, cmn).
4. Parse trp as a pair (traprt, trapn).
5. Check that COMM′.Ver(rt, cmrt, traprt) = 1.
6. Check that COMM′.Ver(n, cmn, trapn) = 1.
7. Output 1 if the above checks succeeded (else, 0).

Next, in Figure 3, we describe the two (updated) predicates ΠMap
exe and ΠReduce

exe .
Now suppose that we see a (ΠMap

exe , ΠReduce
exe)-compliant message msg with

msg.type = type(ΠReduce
exe). By (the new) construction of ΠReduce

exe , we know that

386 A. Chiesa et al.

msg.payload = (cm, k3, v3), where cm is a commitment and (k3, v3) is a phase-3
record; moreover, we also know that there is a list of messages msgin such that:
(i) for each j, msgin[j].type = type(ΠMap

exe) and msgin[j].payload = (cm, k2, v2
j),

where (k2, v2
j) is a phase-2 record; (ii) (k3, v3) = Reduce(k2, (v2

j)j). In turn, each

message msgin[j] is (ΠMap
exe , ΠReduce

exe)-compliant and, by (the new) construction of
ΠMap

exe , we know that (k2, v2
j) is the result of running Map on some phase-1 record

authenticated with respect to cm.
Overall, each (ΠMap

exe , ΠReduce
exe)-compliant message msg with msg.type =

type(ΠReduce
exe) and msg.payload = (cm, k3, v3) is the result of applying Reduce

to some phase-2 records sharing the same key, each of which is in turn the result
of applying Map to some phase-1 record authenticated relative to cm. However,
these guarantees are not enough to imply a correct MapReduce computation, as
we still need to tackle the following issue.

– Issue III: How do we ascertain the correctness of the shuffling phase? Namely,
how do we ascertain that each list of phase-2 records (received by a particular
reducer node) contains all the records having that same key?

Indeed, in principle, some phase-2 records may have been duplicated, dropped,
or sent to the wrong reducer node (e.g., to different reducer nodes even if sharing
the same key).

Our Approach Unlike previous ones, the above issue is conceptually more
complex: tackling it requires ensuring correct shuffling, which is a global com-
putation involving all of the phase-2 (all the mappers’ outputs); in contrast, we
are restricted to only perform local checks encoded in compliance predicates.
Nevertheless, we show how we can further extend ΠMap

exe and ΠReduce
exe , and also

introduce other compliance predicates, to ensure correct shuffling in a distributed
way.

Further extending ΠMap
exe

and ΠReduce
exe

. Roughly, we extend ΠMap
exe to store, in

the output message, the index i relative to which the phase-1 record, contained
in the input message, was authenticated. Subsequently, when receiving several
input messages, ΠReduce

exe verifies that all the indices contained in them are dis-
tinct. This additional check prevents duplicate messages from being sent to the
same reduce node. However, the check does not prevent the same message from
being sent to two different reducer nodes, a message from being dropped alto-
gether, or messages with the same key from being sent to two different reducer
nodes. Additional “distributed bookkeeping” is required.

We thus further extend ΠReduce
exe to store in its output message two addi-

tional pieces of information: the phase-2 key k2 shared among its input messages
and the number din of these input messages. More precisely, only commitments
cmk2 , cmdin

to these are stored, to not violate zero knowledge (by storing infor-
mation about the internals of the computation in final outputs of the distributed
computation). As we now explain, other compliance predicates use the underly-
ing values k2, din; for now, in Figure 4, we summarize the changes to ΠMap

exe and
ΠReduce

exe (highlighted in blue).

Cluster Computing in Zero Knowledge 387

ΠMap
exe (msg, loc, msgin)

1. Parse msgin[1].payload as a phase-1 record

(k1, v1).
2. Parse msg.payload as a phase-2 record

(k2, v2).

3. Check that
(

(k2, v2)
)

= Map(k1, v1).

ΠReduce
exe (msg, loc, msgin)

1. Parse each msgin[j].payload as a phase-2

record (k2
j , v2

j).
2. Parse msg.payload as a phase-3 record

(k3, v3).

3. Check that all the k2
j ’s are equal, and let

v
2 := (v2

j)j

4. Check that (k3, v3) = Reduce(k2
1, v

2).

Fig. 2. Summary of the construction of ΠMap
exe and ΠReduce

exe for “Failed attempt #1” (see
Section 5.1)

ΠMap
exe (msg, loc, msgin)

1. Check that msgin[1].type = 0.
2. Parse msgin[1].payload as a tuple

(cm, i, k1, v1) where:
– cm is a commitment (for the scheme

COMM);
– i is an index;
– (k1, v1) is a phase-1 record.

3. Parse msg.payload as a tuple (cm′, k2, v2)
where:
– cm′ is a commitment (for the scheme

COMM);

– (k2, v2) is a phase-2 record.
4. Parse loc as a tuple (rt, M, trprt, trpM , ap)

where:
– rt is a commitment (for the scheme

MERKLE);
– M is a positive integer;
– trprt, trpM are trapdoors (for the scheme

COMM);
– ap is an authentication path (for the

scheme MERKLE).
5. Parse cm as a pair (cmrt, cmM) where

both components are commitments for the
scheme COMM′.

6. Check that COMM′.Ver(rt, cmrt, trprt) = 1.
7. Check that COMM′.Ver(M, cmM , trpM) =

1.
8. Check that 0 ≤ i < M .
9. Check that

MERKLE.CheckPath
(

rt, i, (k1, v1), ap
)

= 1.

10. Check that cm′ = cm.
11. Check that

(

(k2, v2)
)

= Map(k1, v1).

ΠReduce
exe (msg, loc, msgin)

1. Check that msgin[j].type = type(ΠMap
exe) for

each j.
2. Parse each msgin[j].payload as a tuple

(cm′
j , k2

j , v2
j) where:

– cm′
j is a commitment (for the scheme

COMM);

– (k2
j , v2

j) is a phase-2 record.

3. Parse msg.payload as a tuple (cm′′, k3, v3)
where:
– cm′′ is a commitment (for the scheme

COMM);

– (k3, v3) is a phase-3 record.
4. Check that cm′′ = cm′

j for each j.

5. Check that all the k2
i’s are equal, and let

v
2 := (v2

i)i.

6. Check that (k3, v3) = Reduce(k2
1, v

2).

Fig. 3. Summary of the construction of ΠMap
exe and ΠReduce

exe for “Failed attempt #2”

We now explain how we leverage, and verify, the messages’ new information
maintained by ΠMap

exe and ΠReduce
exe . At high level, we introduce new compliance

predicates, called Π
Map
fmt , ΠReduce

fmt , ΠMap
sum , ΠReduce

sum , and Πfin, for checking two main
distributed computations: a tree-like distributed computation that aggregates
information stored by all the messages output by mapper nodes, and another
tree-like distributed computation that aggregates information stored by all the
messages output by reducer nodes. By comparing the final outputs of these two
tree-like distributed computations, we can check if correct shuffling occurred.

388 A. Chiesa et al.

Fig. 4. Summary of the construction of ΠMap
exe and ΠReduce

exe for “Our approach” (see
Section 5.1). The text that is highlighted in blue denotes the differences from the
construction in Figure 3.

Aggregating mappers’ outputs. We describe each of these tree-like dis-
tributed computations, starting with the one for messages output by mapper
nodes. Each message output by a mapper node has a payload that looks like
(cm, i, k2, v2). We use, for each such message, a node to reformat the message
into a new with payload (cm, a⊥, a⊤, b, c) where a⊥ = a⊤ = i and b = c = 1.
Afterwards, we use a tree of nodes to aggregate all the resulting messages into a
final single one, by pairwise transforming two input messages (cm, a⊥

1 , a⊤
1 , b1, c2)

and (cm, a⊥
2 , a⊤

2 , b2, c2) into the new message (cm, a⊥
1 , a⊤

2 , b1 + b2, c1 + c2), pro-
vided that a⊤

1 < a⊥
2 . Intuitively, the second and third components of a message

denote the least and largest index seen so far, the fourth component counts the
number of mappers, and the fifth counts the number of mapper outputs. If M

denotes the number of mappers, the final message, output by the “root node”
has payload (cm, 1, M, M, M). If, however, some messages are either duplicated
or dropped, then at least one node will not satisfy its compliance predicate. We
realize this idea by designing two new compliance predicates, Π

Map
fmt and ΠMap

sum ,
respectively for enforcing the reformatting and aggregation of mapper nodes’
output messages.

Aggregating reducers’ outputs. We now turn to the tree-like distributed
computation to aggregate outputs of reducer nodes. Each message output by
a reducer node has a payload that looks like (cm, k3, v3, cmk2 , cmdin

). Similarly
to (but not exactly equal to) above, we use a node to reformat the message

Cluster Computing in Zero Knowledge 389

into a new with payload (cm, a⊥, a⊤, b, c) where a⊥ = a⊤ = k2, b = 1 c = din

(note that the values k2 and din can be obtained by receiving decommitment
information as part of the node’s local data loc). Afterwards, again similarly
to above, we use a tree of nodes to aggregate all the resulting messages into a
final single one, by pairwise transforming two input messages (cm, a⊥

1 , a⊤
1 , b1, c1)

and (cm, a⊥
2 , a⊤

2 , b2, c2) into a new message (cm, a⊥
1 , a⊤

2 , b1 + b2, c1 + c2), pro-
vided that a⊤

1 < a⊥
2 . The final message, output by the root node, looks like

(cm, k2
min, k2

max, R, M), where k2
min and k2

max are respectively the least and largest
keys encountered, R is the total number of reducer nodes, and M is the total
number of inputs received by reducer nodes. Again, we concretely realize the
above strategy by designing two new predicates, ΠReduce

fmt and ΠReduce
sum , respec-

tively for enforcing the reformatting and aggregation of reducer nodes’ output
messages; both take Oλ(1) to execute.

Consistency between aggregations. After both aggregations have taken
place, we are left with two messages msgMap

sum and msgReduce
sum , respectively with

payloads (cm, 1, M, M, M) and (cm, k2
min, k2

max, R, M), resulting in an output
message msgfin with payload (cm, R). A simple predicate Πfin performs consis-
tency checks, such as ensuring that the value of M is actually equal between the
two messages (and consistency with the commitment cmM stored in cm). The
message msgfin that the two messages msgMap

sum and msgReduce
sum have been success-

fully compared, which demonstrates that the outputs of all M mapper nodes
were correctly shuffled to R reducer nodes. (We exclude M from msgfin, for
zero-knowledge reasons.)

Throughout,we leveragemessage types to enforce communication flowbetween
nodes subject to different compliance predicates.

From sketch to proof. The above sketches how the Eval algorithm produces a
suitable graph of nodes, culminating in the transcript’s output, as stated in The-
orem 1. It skims over many details, some of which are provided in the full version.
For example, above we have not explained how to handle the case where a mapper
node (or even a reducer node) outputs more than one record. Moreover, not only
do we work out the details of a solution, but we also bring the solution to efficient
implementations of arithmetic circuits for each of the seven compliance predicates.

5.2 Construction of Distributed zk-SNARKs for MapReduce

Wegive the construction of our distributed zk-SNARK forMapReduce, by describ-
ing its key generator MR.KeyGen, prover MR.Prove, and verifier MR.Verify. (We
describe the commitment scheme COMM in Figure 1.)

The key generator MR.KeyGen(1λ, Map, Reduce) → (pk, vk). On input a
security parameter λ (presented in unary) and a MapReduce pair (Map,Reduce),
the key generator MR.KeyGen computes a key pair (pk, vk) as follows.
1. Use Theorem 1 to deduce, from (Map,Reduce), the vector ΠMR of compliance

predicates.
2. Use the PCD key generator G to compute a PCD key pair for ΠMR: (pk, vk) :=

G(1λ,ΠMR).

390 A. Chiesa et al.

3. Set pk := (Map,Reduce, pk) and vk := (vk); output (pk, vk).

The prover MR.Prove(pk, cm,�,�, trp) → πMR. On input a proving key pk,
an instance (cm,�), and a witness (�, trp), the prover MR.Prove computes a non-
interactive proof πMR for the statement “I know (�, trp) such that

(

(cm,�), (�, trp)
)

∈ RCOMM
(Map,Reduce)” as follows. By Theorem 1, we know that there is a ΠMR-compliant

(cm,�)-compatible transcript T and, moreover, that OUTS(T) can be obtained
via a (Map,Reduce)-faithful evaluator Eval, which takes as input the the instance
(cm,�) and its witness (�, trp). Thus, the prover MR.Prove computes πMR by recur-
sively invoking the PCD prover P on T, following Eval as it computes new nodes of
T, by providing to P, at each node, the relevant input messages and their proofs,
local data, and output message. At the end of this process, itself (Map,Reduce)-
faithful, MR.Prove sets πMR equal to the concatenation of the proofs of all messages
in OUTS(T).

The verifier MR.Verify(vk, cm,�, πMR) → b. On input a verification key vk,
commitment cm, output �, and proof πMR, the verifier MR.Verify computes a deci-
sion bit b as follows.
1. Parse vk as a PCD verification key vk.
2. Use the instance (cm,�) to construct the following output messages (recall Def-

inition 4):

msg0

{

.type := 1

.payload := (cm, |�|)
and, for each i ∈ {1, . . . , |�|},

msgi

{

.type := 2

.payload := (cm,�i)
.

3. Parse πMR a vector of PCD proofs (π0, π1, . . . , π| |).

4. For each i ∈ {0, 1, . . . , |�|}, check that the i-th output message is ΠMR-comp-
liant: V(vk,msgi, πi) = 1.

5. If all the above steps succeeded, output b := 1; otherwise output b := 0.
Indeed, if MR.Verify outputs 1, then we know that the prover that produced
πMR knows a ΠMR-compliant (cm,�)-compatible transcript T (by the proof-of-
knowledge property of the PCD system), and thus also knows a witness (�, trp) for
the instance (cm,�) (by Theorem 1).

As seen above, the combination of compliance engineering and PCD systems pro-
vides a powerful tool for constructing zero-knowledge proofs for distributed com-
putations: compliance engineering allows us to express the desired properties as
the compliance of distributed computations, while PCD systems allow us to prove,
in a distributed way (and in zero knowledge), the compliance of such distributed
computations.

Turning to security, we recall that, when invoking a PCD system to produce
proofs along a distributed computation, proof of knowledge is achieved by
recursively extracting “past proofs” from known ones. This process is technically
quite delicate, and a formal treatment of it is in [13]. Here we only note that the dis-
tributed computations considered in this paper are shallow (of logarithmic depth)
and are thus easily amenable to recursive proof extraction.

Cluster Computing in Zero Knowledge 391

6 Step I: Construction of Multi-predicate PCD

We discuss Step I of our bootstrapping theorem: constructing multi-predicate
PCD from (preprocessing) zk-SNARKs. As in [8], we consider compliance predi-
catesΠ expressed as F-arithmetic circuits, where F is a certain field of cryptograph-

ically-large prime size (determined by the underlying zk-SNARK). Throughout
this section, Fn denotes the field of size n, and we assume familiarity with finite
fields (and, for background on these, see [55]).

6.1 Arithmetic Circuits and Preprocessing zk-SNARKs

Arithmetic circuits. As mentioned, we work with circuits that are arithmetic,
rather than boolean. Given a finite field F, an F-arithmetic circuit takes inputs
that are elements in F, and its gates output elements in F; the circuits we consider
only have bilinear gates. The circuit satisfaction problem of an F-arithmetic circuit
C : F

n×F
h → F

l is defined by the relation RC = {(x, a) ∈ F
n×F

h : C(x, a) = 0l}.

Preprocessing zk-SNARKs. As in [9], a preprocessing zk-SNARK [13,15] for
F-arithmetic circuit satisfiability is a triple of polynomial-time algorithms (G, P,

V), called key generator, prover, and verifier. The key generator G, given a security
parameter λ and an F-arithmetic circuit C : F

n × F
h → F

l, samples a proving
key pk and a verification key vk; these are the proof system’s public parameters,
and are generated only once per circuit. After that, anyone can use pk to generate
non-interactive proofs of knowledge for witnesses in the relation RC , and anyone
can use the vk to check these proofs. Namely, given pk and any (x, a) ∈ RC , the
honest prover P (pk, x, a) produces a proof π for the statement “there is a such that
(x, a) ∈ RC”; the verifier V (vk, x, π) checks that π is a convincing proof for this
statement. A proof π is a (computational) proof of knowledge, and a (statistical)
zero-knowledge proof. The succinctness property requires that π has length Oλ(1)
and V runs in time Oλ(|x|).

6.2 Review of the [8] Construction

For efficiency reasons, Ben-Sasson et al. [8] construct a PCD system via two (pre-
processing) zk-SNARKs, (Gα, Pα, Vα) and (Gβ , Pβ , Vβ), that satisfy the follow-
ing. For two primes qα and qβ : (a) (Gα, Pα, Vα) proves/verifies satisfiability of
Fqβ

-arithmetic circuits, while Vα is an Fqα
-arithmetic circuit; instead, (b) (Gβ ,

Pβ , Vβ) proves/verifies satisfiability of Fqα
-arithmetic circuits, while Vβ is an Fqβ

-
arithmetic circuit. This property is achieved by instantiating the two zk-SNARKs
via a PCD-friendly 2-cycle of elliptic curves (see [8] for details on how to obtain
these), and facilitates recursive proof composition.

Specifically, the core of the PCD system construction is the design of two PCD
circuits: Cpcd,α over the field Fqβ

and Cpcd,β over the field Fqα
. For a given compli-

ance predicate Π, the two circuits work roughly as follows.

392 A. Chiesa et al.

– Cpcd,α: given input xα = msg and witness aα = (loc,msgin,πin), use Vβ to ver-
ify that each input message msgin[j] has a valid proof πin[j], and check that Π

accepts the output message msg, local data loc, and input messages msgin.
– Cpcd,β : given input xβ = msg and witness aβ = (πα), uses Vα to verify that the

message msg has a valid proof πα.
The aforementioned property ensures that fields “match up”: Cpcd,α is defined over
the same field as Vβ , and similarly for Cpcd,β and Vα. (Such field matching is not
possible when using a single elliptic curve.) The two PCD circuits are used as fol-
lows: Pα proves satisfiability of Cpcd,α, and the resulting proof πα attests to the
compliance ofmsg; andPβ proves the satisfiability ofCpcd,β , and the resulting proof
πβ provides a “translation” of πα so that πβ can in turn be used as part of a witness
to Cpcd,α. We refer to Cpcd,α as the compliance circuit, and Cpcd,β as the translation
circuit.

The above description omits several details (relevant to later discussions): to
reduce the size of the PCD circuits Cpcd,α and Cpcd,β , [8] additionally use hashing,
pre-computation, and hardcoding. First, the input xα to Cpcd,α is H(bits(vkβ)‖
bits(msg)), where H is a collision-resistant function mapping {0, 1}-vectors to Fqβ

-
vectors, vkβ is the verification key for Cpcd,β , and msg is the output message to be
checked by Π. This ensures that xα’s length equals H’s output length, which only
depends on λ. However, H’s output is an Fqβ

-vector, and thus cannot be passed as
input to Cpcd,β , which is an Fqα

-arithmetic circuit. This issue is addressed via two
“repacking circuits” that map information content from elements in Fqβ

to ones in
Fqα

and back, respectively. Second, a zk-SNARK verifier V can be viewed as two
functions, i.e., an “offline” function V offline (given the verification key vk, compute a
processed verification key pvk) and an “online” function V online (given pvk, an input
x, and proof π, compute the decision bit); the tradeoff between V and V online can
be exploited. Finally, vkα, the verification key for Cpcd,α, is hardcoded in Cpcd,β .
See [8] for more details.

From the point of view of this paper, the construction of [8] in insufficient,
because: (i) it supports a single compliance predicate at a time, while our set-
ting calls for multiple ones; and (ii) it requires the compliance predicate to be
“rigid” (i.e., accept a fixed number of messages and have input lengths equal out-
put length), while our setting calls for “flexible” predicates.

6.3 Overview of Our Construction

We overview the construction of our PCD system, which extends [8]’s so to achieve
native (and thus more efficient) support for multiple compliance predicates, vari-
able message arity, and varying message lengths.

At high level, our construction consists of the following two parts.
– Part 1: given a vector of compliance predicates Π, construct a vector Cpcd of

PCD circuits. Roughly, for each Π[i] in Π, we construct two circuits, Cpcd,α,i

and Cpcd,β,i, tasked with recursive proof composition relative to Π[i].
– Part 2: construct the PCD generator, prover, and verifier. Roughly, the PCD

generator G produces a zk-SNARK key pair for each circuit in Cpcd; the PCD
prover P, to prove compliance relative to Π[i], produces a zk-SNARK proof of

Cluster Computing in Zero Knowledge 393

satisfiability for Cpcd,α,i and then uses it to produce one for Cpcd,β,i; the PCD
verifier V verifies a zk-SNARK proof by using the appropriate verification key.

Below, we elaborate on these two parts. We also note that the above separation is
only conceptual, because the two parts are procedurally entangled (due to hard-
coding of certain values).

Part 1: the PCD circuits. For each compliance predicate Π[i] in Π, we con-
struct two PCD circuits: a compliance circuit Cpcd,α,i, tasked with checking com-
pliance with Π[i]; and a translation circuit Cpcd,β,i, tasked with checking proofs
attesting to the satisfiability of Cpcd,α,i.

The design of Cpcd,β,i is similar to [8]’s translation circuit. Namely, Cpcd,β,i pro-
vides a way to translate a zk-SNARK proof relative to the verification key vkα[i]
(generated for Cpcd,α,i and hardcoded in Cpcd,β,i) to one relative to the verification
key vkβ [i] (generated for Cpcd,β,i); the translation has the only goal of matching
fields up.

The design of Cpcd,α,i extends [8]’s compliance circuit, so to take into account
the fact that input messages may carry proofs relative to different verification keys
(depending on which compliance predicate was used to reason about their compli-
ance). So,while the inputxα to [8]’s compliance circuitwasH(bits(vkβ)‖bits(msg)),
we now take the input to Cpcd,α,i to be H(bits(rt)‖bits(msg)) where rt is the root of
the Merkle tree whose leaves consist of the vector vkβ .6 The circuit Cpcd,α,i then
receives, as part of the witness, an authentication path for the verification key
required of each input message, and checks this authentication path against rt.
Additional details of the construction (e.g., checking that the type of the output
message equals type(Π[i])) are discussed later.

Part 2: the PCD generator, prover, and verifier. Next, we outline below
the PCD generator, prover, and verifier.

– The PCD generator G, given a vector Π of compliance predicates, works as fol-
lows.
1. For each i, construct:

(a) the compliance circuit Cpcd,α,i and generate a zk-SNARK key pair
(pkα[i], vkα[i]) for it, and then

(b) the translation circuit Cpcd,β,i (hardcoding vkα[i]) and generate a
zk-SNARK key pair (pkβ [i], vkβ [i]) for it.

2. Compute rt, the root of the Merkle tree whose leaves consist of the vector vkβ .
3. Output the key pair (pk, vk), where pk := (pkα, vkα,pkβ , vkβ , rt) and vk =

(vkβ , rt).
– The PCD prover P, given a proving key pk, output message msg, local data loc,

and input messages msgin with proofs πin, works as follows.
1. Parse pk as a tuple (pkα, vkα,pkβ , vkβ , rt).
2. Let i⋆ be the index of the compliance predicate Π[i⋆] in Π that is satisfied

by (msg, loc,msgin).

6 Merely taking xα to be H(bits(vkβ)‖bits(msg)) would cause Cpcd,α,i’s to be linear,
instead of logarithmic, in the number of predicates.

394 A. Chiesa et al.

3. Construct a vector ap of authentication paths, where each ap[j] is the authen-
tication path, relative to the root rt, for the leaf vkβ [πin[j].idx].

4. Use rt, (msg, loc,msgin), and ap to construct an input xα and a witness aα

for Cpcd,α,i.
5. Use pkα[i⋆] to generate a zk-SNARK proof πα attesting that the compliance

circuit Cpcd,α,i accepts (xα, aα).
6. Use rt and msg to construct an input xβ and a witness aβ for Cpcd,β,i.
7. Use pkβ [i⋆] to generate a zk-SNARK proof πβ attesting that the translation

circuit Cpcd,β,i accepts (xβ , aβ).
8. Output the proof π, where π.idx := i⋆ and π.proof := πβ .

– The PCD verifier V, given a verification key vk, a message msg, and a proof π,
works as follows.
1. Parse vk as a tuple (vkβ , rt).
2. Set i⋆ := π.idx and πβ := π.proof.
3. Use rt and msg to construct the input xβ for Cpcd,β,i⋆ .
4. Use vkβ [i⋆] to check that πβ is a valid zk-SNARK proof for xβ .

6.4 Details of Our Construction

We provide more details about the construction of our PCD system.

Representation of a compliance predicate. The choice of representation of
a compliance predicate (e.g., whether the predicate is expressed via a machine or a
circuit) does not impact the main ideas behind the construction of multi-predicate
PCD (see Section 6.3). Yet, some efficiency optimizations depend on this choice,
and so henceforth we make it explicit: a compliance predicate Π is represented as
an arithmetic circuit. As in [8], this choice is not arbitrary but, rather, is inherited
from the “native” model of computation supported by the underlying zk-SNARK.

Notation for predicates as circuits. Arithmetic circuits are a “rigid” compu-
tation model, so we introduce additional notation to support a detailed
description of our construction. To each F-arithmetic compliance predicate Π, we
associate several quantities: (i) outlen(Π), the payload length of an output mes-
sage; (ii) loclen(Π), the length of local data; (iii) max-arity(Π), the maximum num-
ber of input messages; and (iv) inlen(Π), the vector for which inlen(Π)[j] is the
payload length for the j-th input message. As for the type of a message (which
is merely an integer), it will suffice to use a single element of F to represent it.
Moreover, in order for Π (which is a circuit) to “know” the number d ∈ {0, . . . ,

max-arity(Π)} of input messages, we let Π receive d explicitly (encoded as a single
field element).

In sum, if we view Π as a function, we can write that, for some l ∈ N,

Π : F
(1+outlen(Π)) × F

loclen(Π) × F

∑max-arity(Π)
j=1 (1+inlen(Π)[j]) × F → F

l.

Indeed, Π receives an output message msg of length (1+outlen(Π)); local data loc

of length loclen(Π); max-arity(Π) input messages, where the j-th input message
has length (1+ inlen(Π)[j]); and the arity d. For notational convenience, we write
Π(msg, loc,msgin, d) even when msgin contains less than max-arity(Π) messages
(and assume that msgin is extended with arbitrary padding to the correct length).

Cluster Computing in Zero Knowledge 395

Ingredients. In addition to the two (preprocessing) zk-SNARKs (Gα, Pα, Vα)
and (Gβ , Pβ , Vβ) (see Section 6.2), in the construction we make use of certain arith-
metic circuits that we now describe. All all of these circuits are discussed in [8] in
more detail, so here we review them only at high level.

Weuse nα andnβ to denote the size (number of field elements) of an input to the
PCD circuits Cpcd,α,i and Cpcd,β,i (for any i), respectively; these two sizes are fixed,

and they equal nα := dH,α and nβ := ⌈nα·⌈log rα⌉
⌊log rβ⌋ ⌉, where dH,α is the number of

elements output by the collision-resistant function H; nβ is the number of elements
in Frβ

needed to encode nα elements in Frα
. We use bitsα to denote a function

that, given an input y in F
ℓ
rα

(for some ℓ), outputs y’s binary representation; the
corresponding Frα

-arithmetic circuit is denoted Cbits,α and has ℓ · ⌈log rα⌉ gates.
We use the following circuits. An Frα

-arithmetic circuit CS,α→β implementing

Sα→β : F
nα
rα

→ F
nβ ·⌈log rβ⌉
rα , the re-packing function from Frα

to Frβ
; and an Frβ

-

arithmetic circuit CS,α←β implementing Sα←β : F
nβ
rβ → F

nα·⌈log rα⌉
rβ , the inverse

of Sα→β . An Frβ
-arithmetic circuit Conline

V,α implementing V online
α for inputs of nα

elements in Frα
(an input xα ∈ F

nα
rα

is given to Conline

V,α as a string of nα · ⌈log rα⌉
elements in Frβ

, each carrying a bit of xα). An Frα
-arithmetic circuit CV,β imple-

menting Vβ for inputs of nβ elements in Frβ
(an input xβ ∈ F

nβ
rβ is given to CV,β

as a string of nβ · ⌈log rβ⌉ elements in Frα
, each carrying a bit of xβ).

Moreover, for a given compliance predicate Π, we use various Frα
-arithmetic

circuits forhashing:Cout
H,α implements a collision-resistant functionHout

α : {0, 1}mout
H,α

→ F
dH,α
rα , and C in

H,α is a vector such that each C in
H,α[j] implements a collision-

resistant function H in
α [j] : {0, 1}mH,α,j → F

dH,α
rα ; parameters are such that mout

H,α =
(dH,α + 1 + outlen(Π)) · ⌈log rα⌉ and mH,α,j = (dH,α + 1 + inlen(Π)[j]) · ⌈log rα⌉.

Finally, we use an Frα
-arithmetic circuit for verification of Merkle-tree authen-

tication paths: CCheckPath,α,p implements the function MERKLE.CheckPath (see
Section 2.2) for paths of length ⌈log p⌉.

Construction of the PCD circuits. In Figure 5 we provide pseudocode for
MakePCDCircuitA and MakePCDCircuitB, the two functions that we use to con-
struct the compliance and translation PCD circuits (i.e., Cpcd,α,i and Cpcd,β,i).

Construction of the PCD generator, prover, and verifier. In Figure 6 we
provide pseudocode for the PCD generator G, prover P, and verifier V. The con-
struction works for a vector Π of Frα

-arithmetic compliance predicates Π. 7 For
convenience, we export i⋆, the index of the predicate with respect to which com-
pliance is proved, to P’s interface.

7 For comparison, [8] consider the following special case: Π = (Π), inlen(Π)[j] =
outlen(Π) for all j, and d = max-arity(Π). Also note that, in this case, there are only
two message types (namely, 0 and type(Π)), which is why [8] do not discuss message
types, and instead only distinguish between messages that are “base case” or not.

396 A. Chiesa et al.

MakePCDCircuitA(C in
H,α, Cout

H,α, CS,α→β , CV,β , CCheckPath,α,p, Π)

Set:
– the input size nα := dH,α; and
– the witness size hα := (1 + outlen(Π)) + loclen(Π) + 1 +
∑max-arity(Π)

j=1 ((1 + inlen(Π)[j]) + |π| + |vkβ(nβ)| + ℓap + 1).

Output the Frα -arithmetic circuit Cpcd,α that, given input xα ∈ F
nα
rα

and witness aα ∈ F
hα
rα

,
works as follows:
1. Parse the witness aα as (msg, loc, msgin, d, vkβ , rt, ap, πin, bres).
2. Check that msg.type = type(Π).
3. Check that 0 ≤ d ≤ max-arity(Π).
4. For j = 1, . . . , d:

(a) Compute σvk,β,j := Cbits,α(vkβ [j]).
(b) Check that CCheckPath,α,p(rt, πin[j].idx, σvk,β,j , ap[j]) = bres[j].

(c) Compute xin,α,j := C
in
H,α[j](Cbits,α(rt‖msgin[j].type‖msgin[j].payload)) ∈ F

nα
rα

.

(d) Compute xin,β,j := CS,α→β(xin,α,j) ∈ F
nβ ·⌈log rβ⌉
rα .

(e) Check that CV,β

(

vkβ [j], xin,β,j , πin[j].proof
)

= bres[j].
(f) Check that bres[j] ∈ {0, 1} and msgin[j].type · (1 − bres[j]) = 0 (that is, either msgin[j] is

a base-case message or its proof verified).
5. Check that xα = Cout

H,α(Cbits,α(rt‖msg.type‖msg.payload)).

6. Check that Π(msg, loc, msgin, d) accepts.

MakePCDCircuitB(pvkα, CS,α←β , Conline
V,α)

Set:

– the input size nβ :=
⌈

nα·⌈log rα⌉
⌊log rβ⌋

⌉

; and

– the witness size hβ := |πα|.

Output the Frβ
-arithmetic circuit Cpcd,β that, given input xβ ∈ F

nβ
rβ

and witness aβ ∈ F
hβ
rβ

,

works as follows:
1. Parse the witness aβ as a zk-SNARK proof πα.

2. Compute xα := CS,α←β(xβ) ∈ F
nα·⌈log rα⌉
rβ

.

3. Check that Conline
V,α

(

pvkα, xα, πα

)

= 1.

Fig. 5. Construction of PCD circuits for our multi-predicate PCD system

7 Implementation

Our system. We built a system that implements our constructions. First, we
implemented multi-predicate PCD, providing interfaces for the PCD generator G,
prover P, and verifier V; this realizes Step I (see Section 6). Next, we used multi-
predicate PCD to implement a distributed zk-SNARK for MapReduce, providing
interfaces for the zk-SNARK generator MR.KeyGen, prover MR.Prove, and verifier
MR.Verify; this realizes Step II (see Section 5).

The prover in our implementation is itself a MapReduce computation, cur-
rently running on an ad-hocMapReduce implementation; integrationwithHadoop
[1], an open-source MapReduce framework, is ongoing.

Integration with libsnark. We have integrated our code with libsnark [72],
a C++ library for zk-SNARKs.

Cluster Computing in Zero Knowledge 397

Fig. 6. Construction of a multi-predicate PCD system

398 A. Chiesa et al.

Our multi-predicate PCD provides an alternative to the single-predicate PCD
that was already part of libsnark. In fact, we have harmonized the two PCD inter-
faces: the object classes for a compliance predicate, messages, and local data are
shared across the two. In terms of concrete parameter choices, our multi-predicate
PCD uses the two zk-SNARKs (based on PCD-friendly 2-cycles of elliptic curves)
that are also used in the single-predicate PCD.

Our distributed zk-SNARK for MapReduce provides an additional choice of
proof system in libsnark. A MapReduce pair (Map,Reduce) can be specified via
the same “constraint formalism”used throughout libsnark (i.e., rank-1 constraint
systems), thereby facilitating the re-using and sharing of useful constraint systems.

Prototypical MapReduce example: word counting. For evaluation pur-
poses (see Section 8), we wrote a MapReduce pair (Map,Reduce) that implements
the prototypical MapReduce application of word counting [35], whose goal is to
count the number of occurrences of each word in a text (or a collection of texts).
Word counting can be cast in the MapReduce framework, e.g., as follows. Each
input record (k1, v1) represents a slice of, say, 100 words of the document: the key
k1 is the position of the slice in the document, and the value v1 is the list of words
in the slice. The mapper Mapwordcount, when invoked on an input record (k1, v1),
emits a list of intermediate records

(

(k2
1, v

2
1), . . . , (k

2
ℓ , v

2
ℓ)

)

, with ℓ ≤ 100, denoting
that the word k2

i appears v2
i times among the words in the slice v1. The reducer

Reducewordcount, when invoked on a particular word k2 and the vector of counts v2

for k2, emits the output record (k3, v3) = (k2,
∑

i v2[i]), which reports the total
number of occurrences of k2 in the collection of input records.

8 Evaluation

We evaluated our system by using it to execute the MapReduce application of word
counting (see Section 7).

Experimental results. We ran our system on the word counting example, on
our benchmarking system. Each of the reported times is relative to a commodity
compute node with a 3.40 GHz Intel Core i7-4770 CPU and 16 GB of RAM avail-
able and utilizing all 4 cores. We chose the immortal introduction of Diffie and
Hellman’s pioneering paper “New directions in cryptography” [37], divided into
slices of 100 words each, as the input to the MapReduce computation.

By analyzing our system’s components, we deduced a cost model of the prover’s
runtime as a function of M , the number of slices the document was divided into,
and R, the number of distinct words in the document:

M ·
(

cost(ΠMap
exe) + cost(ΠMap

fmt) + 2 · cost(ΠMap
sum)

)

+ R ·
(

cost(ΠReduce
exe) +

cost(ΠReduce
fmt) + 2 · cost(ΠReduce

sum)
)

+ cost(Πfin).

The above costs have the following meaning, and the following measured values on
our reference node: cost(ΠMap

exe) ≈ 9.3 s is the cost of proving execution of a mapper
node; cost(ΠReduce

exe) ≈ 45.2 s is the cost of proving execution of a reducer node;

cost(ΠMap
fmt) ≈ 13.6 s and cost(ΠMap

sum) ≈ 14.2 s, as well as cost(ΠReduce
fmt) ≈ 13.8 s

Cluster Computing in Zero Knowledge 399

and cost(ΠReduce
sum) ≈ 14.3 s denote the individual costs in proving the correctness

of aggregation of mapper nodes’ outputs and reducer nodes’ inputs, respectively;
and cost(Πfin) ≈ 14.3 s is the cost of producing the final proof.

Extrapolating the cost model. Our cost model accurately characterizes the
prover’s runtime for the word counting example. When changing the input, the
costs change as follows: (a) the costs of Π

Map
fmt and ΠMap

sum remain fixed for all
MapReduce computations; (b) the costs of ΠReduce

fmt , ΠReduce
sum and Πfin remain sta-

ble as they only exhibit a slight dependency on the length of k2, but do not other-
wise depend on the specific MapReduce computation; (c) the cost of ΠMap

exe changes
depending on Nmax, the maximum number of mapper outputs, and Map’s running
time. The cost of ΠReduce

exe is dominated by the cost incurred by performing dmax
in

proof verifications, each costing ≈ 90,000 gates.

References

1. Apache Hadoop
2. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient veri-

fication via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163.
Springer, Heidelberg (2010)

3. Backes, M., Fiore, D., Reischuk, R.M.: Nearly practical and privacy-preserving
proofs on authenticated data (2014)

4. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

5. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004)

6. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.:
Zerocash: decentralized anonymous payments from bitcoin. In: SP 2014 (2014)

7. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013)

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles
of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). http://eprint.iacr.org/2014/595

9. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: USENIX Security 2014 (2014).
http://eprint.iacr.org/2013/879

10. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

11. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. ePrint 2014/580 (2014)

12. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
2012 (2012)

http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879

400 A. Chiesa et al.

13. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. In: STOC 2013 (2013)

14. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012)

15. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)

16. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge.
SIAM J. Comp. (1991)

17. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions. In: STOC 1988 (1988)

18. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using mul-
tiple provers. ePrint 2014/846 (2014)

19. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: ITCS 2012 (2012)

20. Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language models in
machine translation. In: EMNLP-CoNLL 2007 (2007)

21. Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.: Verifying
computations with state. In: SOSP 2013 (2013)

22. Canetti, R., Riva, B., Rothblum, G.N.: Two protocols for delegation of computation.
In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 37–61. Springer, Heidelberg
(2012)

23. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Succinct malleable
NIZKs and an application to compact shuffles. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 100–119. Springer, Heidelberg (2013)

24. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: ICS 2010 (2010)

25. Chiesa, A., Tromer, E.: Proof-carrying data: Secure computation on untrusted plat-
forms (high-level description). The Next Wave: The National Security Agency’s
review of emerging technologies (2012)

26. Chu, C., Kim, S.K., Lin, Y., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: MapRe-
duce for machine learning on multicore. In: NIPS 2004 (2006)

27. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully
homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
483–501. Springer, Heidelberg (2010)

28. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: ITCS 2012 (2012)

29. Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive
proofs. In: Proceedings of the VLDB Endowment (2011)

30. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno,
B., Zahur, S.: Geppetto: Versatile verifiable computation. ePrint 2014/976 (2014)

31. Damg̊ard, I.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992)

32. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low commu-
nication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer,
Heidelberg (2012)

33. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with appli-
cations to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014)

Cluster Computing in Zero Knowledge 401

34. Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio coin: building zerocoin
from a succinct pairing-based proof system. In: PETShop 2013 (2013)

35. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI 2014 (2004)

36. Di Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability assump-
tion. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol.
5028, pp. 175–185. Springer, Heidelberg (2008)

37. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on Inf. Theory
(1976)

38. Dyer, C., Cordova, A., Mont, A., Lin, J.: Fast, easy, and cheap: construction of sta-
tistical machine translation models with MapReduce. In: StatMT 2008 (2008)

39. Fauzi, P., Lipmaa, H., Zhang, B.: Efficient modular NIZK arguments from shift and
product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol.
8257, pp. 92–121. Springer, Heidelberg (2013)

40. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. ePrint 2012/281 (2012)

41. Fredrikson, M., Livshits, B.: Zø: an optimizing distributing zero-knowledge compiler.
In: USENIX Security 2014 (2014)

42. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

43. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and suc-
cinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

44. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In: STOC 2011 (2011)

45. Goel, A., Munagala, K.: Complexity measures for Map-Reduce, and comparison to
parallel computing. ArXiv abs/1211.6526 (2012)

46. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: STOC 2008 (2008)

47. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection
problem from designated verifier CS-proofs. ePrint 2011/456 (2011)

48. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comp. (1989)

49. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

50. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer,
Heidelberg (1998)

51. Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009)

52. Kang, U., Chau, D.H., Faloutsos, C.: Pegasus: mining billion-scale graphs in the
cloud. In: ICASSP 2012 (2012)

53. Kosba, A.E., Papadopoulos, D., Papamanthou, C., Sayed, M.F., Shi, E.,
Triandopoulos, N.: TRUESET: faster verifiable set computations. In: USENIX
Security 2014 (2014)

54. Langmead, B., Schatz, M.C., Lin, J., Pop, M., Salzberg, S.: Searching for SNPs with
cloud computing. Genome Biology (2009)

55. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, second (edn.)
(1997)

402 A. Chiesa et al.

56. Lin, J.: Brute force and indexed approaches to pairwise document similarity com-
parisons with mapreduce. In: SIGIR 2009 (2009)

57. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and
Claypool Publishers (2010)

58. Lin, J., Schatz, M.C.: Design patterns for efficient graph algorithms in mapreduce.
In: MLG 2010 (2010)

59. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189.
Springer, Heidelberg (2012)

60. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs
and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013)

61. Lipmaa, H.: Efficient NIZK arguments via parallel verification of benes networks. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 416–434. Springer,
Heidelberg (2014)

62. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

63. Micali, S.: Computationally sound proofs. SIAM J. Comp. (2000)
64. Mie, T.: Polylogarithmic two-round argument systems. Journal of Mathematical

Cryptology (2008)
65. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed

e-cash from bitcoin. In: SP 2013 (2013)
66. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen

ciphertext attacks. In: STOC 1990 (1990)
67. Panda, B., Herbach, J., Basu, S., Bayardo, R.J.: PLANET: massively parallel learn-

ing of tree ensembles with MapReduce. In: Proceedings of the VLDB Endowment
(2009)

68. Paneth, O., Rothblum, G.N.: Publicly verifiable non-interactive arguments for del-
egating computation. ePrint 2014/981 (2014)

69. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifiable
computation. In: Oakland 2013 (2013)

70. Pino, J., Waite, A., Byrne, W.: Simple and efficient model filtering in statistical
machine translation. Prague Bulletin of Mathematical Linguistics (2012)

71. Schatz, M.C.: CloudBurst: highly sensitive read mapping with MapReduce. Bioin-
formatics (2009)

72. SCIPR Lab. libsnark: a C++ library for zkSNARK proofs
73. Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional verifica-

tion of remote computations. In: HotOS 2011 (2011)
74. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the

conflict between generality and plausibility in verified computation. In: EuroSys
2013 (2013)

75. Setty, S., McPherson, M., Blumberg, A.J., Walfish, M.: Making argument systems
for outsourced computation practical (sometimes). In: NDSS 2012 (2012)

76. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking proof-
based verified computation a few steps closer to practicality. In: USENIX Security
2012 (2012)

77. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 71–89. Springer,
Heidelberg (2013)

78. Thaler, J., Roberts, M., Mitzenmacher, M., Pfister, H.: Verifiable computation with
massively parallel interactive proofs. CoRR (2012)

Cluster Computing in Zero Knowledge 403

79. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008)

80. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for interactive
verifiable computation. In: Oakland 2013 (2013)

81. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. ePrint 2014/674 (2014)

82. Wolfe, J., Haghighi, A., Klein, D.: Fully distributed EM for very large datasets. In:
ICML 2008 (2008)

83. Zhang, Y., Papamanthou, C., Katz, J.: Alitheia: towards practical verifiable graph
processing. In: CCS 2014 (2014)

	Cluster Computing in Zero Knowledge
	1 Introduction
	1.1 Motivation
	1.2 Our Focus: MapReduce
	1.3 Our Contributions
	1.4 Prior Work
	1.5 Summary of Challenges and Techniques

	2 Preliminaries
	2.1 Commitments
	2.2 Merkle Trees
	2.3 MapReduce

	3 Definition of Distributed zk-SNARKs for MapReduce
	3.1 Non-distributed zk-SNARKs for MapReduce
	3.2 Distributed zk-SNARKs for MapReduce

	4 Definition of Multi-predicate PCD
	5 Step II: from Multi-predicate PCD to Distributed zk-SNARKs
	5.1 Compliance Engineering for MapReduce
	5.2 Construction of Distributed zk-SNARKs for MapReduce

	6 Step I: Construction of Multi-predicate PCD
	6.1 Arithmetic Circuits and Preprocessing zk-SNARKs
	6.2 Review of the [8] Construction
	6.3 Overview of Our Construction
	6.4 Details of Our Construction

	7 Implementation
	8 Evaluation
	References

