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Abstract— Peer-to-peer computing, the harnessing of
idle compute cycles throughout the Internet, offers excit-
ing new research challenges in the converging domains
of networking and distributed computing. Our system,
Cluster Computing on the Fly, seeks to harvest cycles
from ordinary users in an open access, non-institutional
environment.

We identify four important classes of cycle-sharing
applications, each with distinct requirements that call
for application-specific scheduling strategies. Our Wave
Scheduler exploits large blocks of idle time at night,
to provide higher quality of service for deadline-driven
workpile jobs, using a geographic-based overlay to orga-
nize hosts by timezone. To verify the results of workpile
jobs, CCOF sends quizzes to hosts and uses the accuracy
of the quiz answers to determine trust ratings. Our
PoP Scheduler disperses tasks comprising a point-of-
presence application, using scalable protocols to discover
strategically located hosts to meet application-specific
requirements for location, topological distribution, and
resources.

The CCOF cycle sharing system encompasses all activ-
ities involved in the management of idle cycles: overlay
construction for hosts donating cycles, resource discovery
within the overlay, application-based scheduling, local
scheduling on the host node, and meta-level scheduling
among a community of application-level schedulers. Our
work with CCOF reveals many of the critical challenges
that lie ahead for P2P scheduling systems.

I. INTRODUCTION

Peer-to-peer computing, the harnessing of idle com-
pute cycles throughout the Internet, offers an exciting
new challenge for P2P networks beyond current infor-
mation sharing applications. Experience has shown that
not only are idle cycles widely available throughout
the Internet, but in addition, many users are willing to
share cycles [14], [7], [16]. This creates a compelling
opportunity for research in this new juncture between
the fields of networking and distributed computing.

This work was supported in part by the National Science Foun-
dation under grant ANI-9977524.

Our research addresses the problem of peer-to-peer
computing, which encompasses all of the activities
involved with utilizing idle cycles from ordinary users
in a distributed, open environment. In contrast to Grid
computing [10], [12] and other institution-based cycle-
sharing systems [17], we are targeting an open envi-
ronment, one that is accessible by the average citizen
and does not require membership in any organiza-
tion. Peer-to-peer computing represents the next step
in distributed computing, providing potentially greater
computing power than institutional-based projects while
also empowering ordinary users. This view of P2P
computing is the focus of several other current research
projects [13], [5], [4].

P2P computing in an open environment gives rise
to a new generation of resource management problems
that are dramatically different from those addressed
by traditional scheduling systems, including issues of
resource discovery, trust, incentives, fairness, security,
and new criteria for evaluating performance. We use
the term “P2P scheduling system” to encompass all
activities involved in the management of idle cycles:
overlay management for hosts donating cycles, resource
discovery within the overlay, application-based schedul-
ing, local scheduling on the host node, and meta-
level scheduling which involves coordination of efforts
among a community of application-based schedulers.

We believe that peer-to-peer scheduling solutions
must be driven by the characteristics and goals of the
specific applications to be scheduled. We identify four
important classes of problems that are particularly well-
suited to capturing idle cycles in the Internet: infinite
workpile, deadline-driven workpile, tree-based search,
and point-of-presence applications.

Popular applications for harvesting idle cycles from
ordinary users, such as SETI@home [8], are limited to
CPU-intensive workpile applications and require donors
of cycles to manually coordinate through a centralized
web site. More general cycle-sharing systems, such as
Condor [17], provide automatic scheduling but require



a centralized matchmaking service and are limited to
members of participating institutions. Our goal is the
development of a scheduling infrastructure that sup-
ports automatic scheduling of these four broad classes
of applications in an open environment.

In this paper, we discuss the problems faced by
P2P scheduling systems that presume an open and
large scale environment. We first present a taxonomy
of P2P cycle sharing applications and their specific
requirements. We then describe the Cluster Comput-
ing on the Fly architecture and discusses issues and
open problems involved in the design of an open P2P
scheduling system. We conclude by illustrating how
CCOF addresses some of these problems. In particular,
we introduce CCOF’s Wave Scheduler, which harvests
night time idle cycles by using geographic timezones to
organize the hosts, and CCOF’s method for verification
of results returned by the hosts. We also describe our
PoP Scheduler, which utilizes scalable protocols to
schedule point-of-presence applications by discovering
strategically located hosts to meet application-specific
requirements for location, topological distribution, and
available resources.

II. P2P SCHEDULING SYSTEMS

A. P2P Cycle-sharing Applications

We organize P2P cycle-sharing applications into four
classes whose scheduling needs are starkly distinct,
calling for individualized scheduling services that are
tailored to those needs.

1) Infinite workpile applications: These applications
consume huge amounts of compute time under a
master-slave model in which the master delivers code
to as many hosts as possible, over long periods of
time. Each host computes intensively and then returns
the results back to the master node. The workpile
application is “embarrassingly parallel” in that there is
no communication at all between slave nodes. Examples
of infinite workpile applications include SETI@home
[7], the Stanford Folding Project [11], and numerous
mathematical applications ranging from number theory
to cryptography [14].

Infinite workpile applications need scheduling that
can (a) automatically identify large blocks of idle cycles
and (b) support validation of results. Performance may
be measured by some large-grained metric representing
the yield of idle cycles, such as tasks completed per day
or week. For the protection of the wider community,
safeguards need to be installed to provide some notion
of fairness among competing workpile jobs, as well as

security against denial-of-service attacks from a mali-
cious job that preys on the generosity of participating
hosts.

2) Workpile applications with deadlines: Deadline-
driven workpile applications are similar to infinite
workpile applications, but their needs for compute
cycles are more moderate. These applications are
deadline-driven because they require that results be re-
turned within a specified deadline (on the order of days
or weeks). Examples of this class of application include
compute intensive jobs: complex insurance analysis,
simulation experiments with a large parameter space,
3D modeling and ray tracing code. These jobs needs to
be completed to meet a business presentation deadline,
research publication deadline, or school project dead-
line.

While many scheduling strategies are suitable for
infinite workpile jobs with and without deadlines, the
urgency of deadlines calls for more aggressive ap-
proaches for discovery and scheduling of cycles.

3) Tree-based search applications: This class of
applications requires substantial compute cycles, with
loose coordination among subtasks requiring low com-
munication overhead. Distributed branch-and-bound al-
gorithms, alpha-beta search, and recursive backtracking
algorithms are used for a wide range of optimization
problems; these computationally intensive state-space
search algorithms are ideal candidates for P2P schedul-
ing.

Distributed branch-and-bound algorithms use a tree
of slave processes rooted in a single master node. The
tree dynamically grows as slave processes expand the
search space and is dynamically pruned as subspaces
leading to costly solutions are abandoned. There is a
small amount of communication among slave nodes to
inform other slaves of newly discovered lower bounds.

The scheduler manages the dynamic population of
host nodes by continuously providing new hosts while
the search tree is growing. It must also support com-
munication among slave nodes, either indirectly through
the master or directly from slave to slave.

4) Point-of-presence applications: PoP applications
typically consume minimal cycles but require place-
ment throughout the Internet (or throughout some sub-
set of the Internet). The dispersement of tasks from
a PoP application is driven by specific requirements
of the job. For example, distributed monitoring ap-
plications (security monitoring, traffic analysis, etc.)
require widely and evenly distributed placement as
well as placement at strategic locations. Testing of
distributed protocols requires placement of test-bots
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Fig. 1. CCOF Architecture

dispersed throughout the Internet in a manner that
captures a variety of realistic conditions with respect
to latency, bandwidth, and server performance. In ad-
dition, security concerns must be addressed by limiting
communication only to the set of PoP tasks

B. An Open P2P Cycle-Sharing Architecture

In the CCOF architecture, hosts join a variety of
community-based overlay networks, depending on how
they would like to donate their idle cycles. Clients then
form a compute cluster on the fly by discovering and
scheduling sets of machines from these overlays. The
basic service offered by CCOF is best-effort in the sense
that any host may preempt guest code at any time. Hosts
retain local control and can thus offer a range of quality
of service options.

The components of this architecture, as shown in
Figure 1, highlight the many complex research issues to
be addressed in the design of an open P2P scheduling
system which include the following:

1) Overlay management of host communities: An
important area of research for P2P computing lies in the
organization of communities of hosts willing to share
idle cycles. One way to organize such communities
is through the creation of overlay networks based on
factors such as interest, geography, performance, trust,
institutional affiliation, or generic willingness to share
cycles. Communities may span multiple organizations,
such as a collaborative research project among several
research groups. Chess enthusiasts, or participants in the
Intel Philanthropic project [16] may form a community
based on their hobbies or a spirit of volunteerism. Users
may form nested communities based on trust, such as a
group of family and friends, co-workers, and customers.
We assume that it is possible to exclude untrusted hosts
from the overlay using a central certificate-granting
authority, as proposed by Pastry [21].

This arena of research exceeds the immediate bounds

of scheduling research per se, but has a direct impact
on it. Past work on overlay networks [20], [24], [21],
trust and reputation systems, performance analysis and
monitoring all serve as the foundations for new work
in this direction.

2) Resource discovery: The problem of resource
discovery is extremely difficult in an open environment
in which the set of participating hosts is potentially very
large and highly dynamic. Resource discovery takes on
new dimensions when the resource (compute cycles) is
perishable, cannot be shared, and is dynamic. Moreover,
the search for idle cycles may be coupled with the need
for other resources such as memory and data. Work has
already begun in this area, much of it focused towards
institutional and Grid Computing environments.[15],
[17], [9].

We conducted a comprehensive study of generic
searching methods in a highly dynamic environment for
workpile applications [26]. We compared four scalable
search methods: expanding ring, advertisement-based,
random walk and rendezvous point. We model a variety
of workloads, simple scheduling strategies and stabili-
ties of hosts. Our preliminary results show that under
light workloads, rendezvous point performs best with
respect to job completion, while under heavy workloads
its performance falls below the other techniques. We
expected rendezvous point to consistently outperform
the other search techniques because of its inherent
advantage in gathering knowledge about the idle cycles.
However, in a peer-to-peer environment, which satisfies
requests on-demand, large jobs may dominate, resulting
in delays for scheduling smaller jobs. With respect to
message-passing overhead, rendezvous point dramati-
cally outperforms the other discovery strategies.

3) Application scheduling: The application sched-
uler is responsible for selection of hosts for a P2P
computation from a pool of candidates, for exporting
the code to the hosts, and for managing and verifying
returned results. Application scheduling requires an
analysis of both the application’s needs and the nature
of the offered resources. The scheduler’s decision about
which hosts to select becomes very complex since trust,
performance, and fairness all come into play. Strategies
such as oversubscription and duplication scheduling,
may be used for maximum flexibility. Furthermore, if
coordination across a set of host nodes is required, it
may be desirable to organize the selected hosts into a
new overlay to support the interprocess communication
needs of the application, further complicating the host
selection process.



4) Local scheduling: The local scheduler tracks idle
cycles and negotiates with the application scheduler
using local criteria for trust, fairness, and performance
to decide which tasks to accept. It also interacts with
its own native scheduler to inject those jobs into the
scheduling queue.

Because each host may implement its own policies,
we envision Quality of Service as an important feature
of P2P computing. The job of a local scheduler can
be viewed as an admission control problem, similar to
that faced by integrated services networks [6]. Some
hosts may provide guaranteed service by accepting only
CCOF jobs – they have no local tasks that may pre-
empt guest code. Likewise, a host may offer predictive
service by providing a statistical performance estimate
based on past behavior.

5) Incentives and fairness: The choice of policies
and mechanisms for fairness in a P2P scheduling system
is a non-trivial decision since the notion of fairness
is itself open to debate. Several current projects re-
quire strict fairness, fairly tightly controlled accounting
of cycles and resources consumed through a variety
of economic and social models (credit-based systems,
bartering systems and auction-based systems, ticket-
based systems) [13], [5], [1]. Our philosophy is much
more open - we presume that the donors of idle cycles
are more relaxed: they are concerned with immediate
access to idle cycles but not cycle-for-cycle equality.
Under this model of long-term fairness, it is still neces-
sary to enforce some kind of accounting. In either case,
interesting research questions arise with respect to what
incentives work best, how to measure contributions
and usage for fairness in a large scale and dynamic
environment.

6) Trust and reputation: Trust and reputation sys-
tems are needed throughout P2P scheduling for the
formation of trust-based overlays as described above,
for local hosts to use when deciding whether to accept
or reject tasks from an application, and for applications
to use to select host nodes from multiple candidates.
Several new trust systems for P2P networks have re-
cently been developed that can potentially be utilized
in an open environment [22], [23]. However, several
difficult problems remain: how to effectively utilize the
trust values to make scheduling decisions and also how
to determine whether the results returned by a host
are correct or not. In Section 3 we describe how our
CCOF application scheduler probes host nodes using
undetectable quiz codes to develop a trust rating for
each host, as well as to validate returned results.

7) Security: How can a host defend itself against
denial of service attacks, such as when a malicious node
occupies large numbers of hosts with useless code? Or
worse yet uses hosts to launch a distributed denial of
service attack or a worm?

We assume that hosts protect themselves from a
variety of attacks by running guest code within a virtual
machine monitor, creating a ”sandbox” that protects
the host and controls resource usage [3]. Despite this
protection, hosts must still protect their resources from
being misused. Preventing denial-of-service attacks,
particularly those that are launched from the cluster
itself, is a difficult problem. Likewise, the CCOF system
itself can be abused if malicious users schedule large
numbers of useless tasks.

One possibility for coping with these problems is
for hosts to deny network access for untrusted clients,
using the trust and reputation systems discussed above.
Likewise, users can give priority to projects they have
deemed trustworthy through any outside form of com-
munication. In cases where a greater degree of openness
is desired, it may be possible to use network monitors to
detect and take action against attacks. We are working
closely with fellow researchers at the University of
Oregon who are working on distributed detection of
worms and denial-of-service attacks.

8) Performance monitoring: The P2P scheduling
environment is radically different from traditional
scheduling domains. Evaluation of scheduling perfor-
mance is thus faced with several challenges. What are
are the appropriate metrics, benchmarks, performance
monitoring tools and techniques for an open P2P sched-
uler? What kinds of user interfaces, testing, simulation,
and monitoring tools will be most effective?

III. CLUSTER COMPUTING ON THE FLY

In this section we present CCOF’s support for
two classes of P2P applications: deadline-driven
workpile applications and point-of-presence applica-
tions. Workpile jobs, with their heavy demand for free
cycles, are scheduled using CCOF’s Wave Scheduler,
which captures available night time cycles in timezones
from east to west. CCOF also provides a simple yet
effective quiz system for verifying the results returned
by hosts. CCOF scheduling of PoP applications in-
volves fully distributed algorithms for careful placement
of tasks according to topological or performance-based
criteria.

A. Wave Scheduling for Workpile Applications

Wave scheduling seeks to capture cycles from the
millions of machines that lie completely idle at night.
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Fig. 2. Task initiation and migration in wave scheduling

By following night timezones around the globe, it
continuously gives workpile tasks dedicated access to
cycles without interruption from users reclaiming their
machines. Wave scheduling is thus particularly useful
for workpile applications with deadlines since it pro-
vides a higher guarantee of ongoing available cycles.
Wave scheduling was motivated by the notion of prime
time v. non-prime time scheduling regimes enforced
by parallel job schedulers [25], [19] and by wave
scheduling in systolic computing systems.

The CCOF Wave Scheduler uses a CAN-based DHT
overlay to organize nodes located in different time
zones. Our wave scheduling protocol functions as fol-
lows (see Figure 2).

1) Timezones in the CAN overlay: . We select one
dimension of the d-dimensional mesh to represent time
zones. For example, a 1 x 24 CAN space could be
divided into hourly zones 1 through 23 based on its
second dimension.

2) Host nodes join the overlay: A host node that
wishes to offer its night time cycles knows which time
zone it occupies, say zone 8. It randomly selects a node
label in zone 8 such as (0.37, 7.12) and sends a join
message to that node. According to the CAN protocol,
the message will reach the physical node in charge of
CAN node (0.37, 7.12) who will split the portion of the
CAN space it owns, giving part of it to the new host
node.

3) Application scheduler selects initial nightzone:
The scheduler for a workpile application knows which
timezones are currently nightzones. It selects one of
these nightzones (based on some nightzone selection
criteria) and decides on the number H of hosts it would
like to target. This number could be an over-estimation
of the number it would ideally like to schedule in order
to achieve more flexibility.

4) Application scheduler selects set of target hosts:
The scheduler randomly generates a collection of H

node labels in the target nightzone. It sends a request
message to each target host using CAN routing which

finds the physical host managing that host node. After
negotiations, the application scheduler selects a subset
of those nodes to ship tasks to. It can make its selection
based on trust or other criteria.

5) Migration to next timezone: When morning
comes to a host node, it selects a new target nightzone,
randomly selects a host node in that nightzone for
migration, and after negotiating with that host, migrates
the unfinished task to the new host.

6) Returning results to the application: Whenever
a task finishes computing its results on a host node,
it sends the results directly back to the application. If
the application is offline, it can store the results in the
CAN distributed file system. The application can later
retrieve results using the DHT lookup.

We are investigating the use of wave scheduling for
deadline-driven workpile tasks to see if it compares
favorably with two other models: centralized master-
slave approach and distributed master-slave approach.
In both latter cases, idle nodes advertise their avail-
ability dynamically to the masters and the only option
is to sleep when cycles are withdrawn. Our current
evaluation includes application harvest yield (results
returned per day); utilization (fraction of idle cycles
being consumed relative to demand); host impact; and
overlay traffic generated by the scheduler, by task
migration, and return of results.

Our current implementation and evaluation is
simulation-based, but in the future, we would like to do
empirical experiments assuming we can find sufficient
numbers and placements of volunteer nodes.

B. Trust-based Verification for Workpile Applications

We validate the correctness of results returned by
host nodes to the workpile application using a quiz
mechanism. The application node sends a set of quizzes
to the hosts whose solutions are known beforehand.
Based on the hosts performance on the quizzes, the
application can then decide whether to accept or re-
ject the results. We are investigating two methods
for quizzing hosts. One method uses quizzes that are
distinct from the actual application code. These are
packaged so that a (malicious) host cannot distinguish
quiz code from genuine application code. If the host
passes its quiz, it will then be sent another task, this
one containing application code. The second method
embeds simple short quizzes into the application code.
Quiz and application results are periodically sent back
from the host to the application. If the application
node receives wrong quiz answers, it can immediately
reschedule the task on another host. Note that for both



methods, when a host does return correct (or incorrect)
results, this information can be used to give that host an
appropriate trust ranking. This information is stored in
a reputation system such as Eigenrep [23] or TrustMe
[22].

C. Scheduling Point-of-Presence Applications

Our investigation of scheduling PoP applications is
motivated by collaborative work at the University of
Oregon on distributed security monitoring systems and
distributed massively multiplayer games.

Topological distribution of monitoring tasks involves
placement of these tasks on selected hosts throughout
the overlay such that ordinary nodes are within t hops of
j host nodes. This problem has been proposed abstractly
as leader election in distributed systems, and as the
dominating set problem in graph theory.

This task is much more difficult in an open, large
scale environment. One of our approaches uses a torus-
based overlay similar to CAN [20] that provides its
regular node labeling scheme and Lee distances [18] to
elect leaders using only local computation in constant
time. Another approach is a fully distributed protocol
that uses gossiping in a tournament-style backoff algo-
rithm. Initially, each node says hello to its k-hop neigh-
bors. Nodes then gossip with its immediate neighbors
and either persists as a leader or backs-off based on the
information each neighbor provides on the number of
non-leader nodes it covers. We have developed several
versions of this algorithm that trade off communication
overhead and latency for accuracy. We are also investi-
gating placement of game-bots throughout the Internet
that meet varying level of performance with respect to
network bandwidth and computational power.
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