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Abstract. The main limiting factor of cosmological analyses based on ther-
mal Sunyaev-Zel’dovich (SZ) cluster statistics comes from the bias and sys-
tematic uncertainties that affect the estimates of the mass of galaxy clusters.
High-angular resolution SZ observations at high redshift are needed to study a
potential redshift or morphology dependence of both the mean pressure profile
and of the mass-observable scaling relation used in SZ cosmological analyses.
The NIKA2 camera is a new generation continuum instrument installed at the
IRAM 30-m telescope. With a large field of view, a high angular resolution and
a high-sensitivity, the NIKA2 camera has unique SZ mapping capabilities. In
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this paper, we present the NIKA2 SZ large program, aiming at observing a large

sample of clusters at redshifts between 0.5 and 0.9, and the characterization of

the first cluster oberved with NIKA2.

1 Cluster cosmology: the need for high-angular resolution SZ

observation

There is an increasing body of evidence of discrepancies between cosmological estimations

obtained with early and late Universe probes [1, 2]. In particular, a tension is observed be-

tween CMB and cluster-derived cosmological parameters, see e.g. [3]. If confirmed, this may

be a sign of new physics, related with e.g. structure formation scenario and neutrino physics

[4]. It may also be explained by an insufficient knowledge of cluster physics, and in particular

of the main tools that are used to extract cosmological constraints from a sample of clusters

of galaxies, namely: the hydrostatic bias parameter [5], the mean pressure profile [6, 7] and

the mass-observable scaling relation [8].

Clusters are inherently multi-wavelength objects. Amongst various probes, the thermal

Sunyaev-Zel’dovich (SZ) effect plays a key role. It is the inverse Compton scattering of

CMB photons on hot electrons of the intra-cluster medium (ICM) [9]. It induces a shift of

the CMB black-body spectrum to higher frequency, with a decrease of the CMB intensity

below 217 GHz and an increase above. The SZ effect is thus a spectral distortion of the CMB

spectrum. This is the reason why it is redshift-independent and can thus be used for the ob-

servation of high-redshift clusters [10]. Clusters of galaxies are known to be powerful probes

to study cosmology as their number and distribution in mass and redshift is dependent on the

geometry of the Universe. Cosmological parameters can be extracted either from a number

count on a cluster catalog, per redshift and mass bin, or from SZ power spectrum analyses

performed on SZ sky map [3, 11].

The mass-observable scaling relation is needed to relate the cluster mass to the SZ signal

given by the integrated Compton parameter Y500, which is the spherical integration of the

electronic pressure up to a radius1 R500. For a cosmological survey, Y500 is the only informa-

tion available and it must be related to the cluster mass via the scaling relation. In particular,

the Planck collaboration published a scaling relation calibrated with 71 clusters, at redshift

below 0.45, for which the masses have been obtained from X-ray observations only [12].

This scaling relation may be applied to the Planck-cluster population but it may depend on

the redshift range, the cluster dynamical state (e.g. mergers, overpressures, ...) and the cluster

morphology (e.g. departure from sphericity).

The mean pressure profile is needed for instance in cluster count analyses to measure the inte-

grated SZ flux of each cluster [13, 14], when the angular resolution of current SZ surveys does

not enable the measurement of pressure profiles for individual clusters. In the self-similarity

hypothesis, clusters of galaxies are supposed to be a scaled version of each other. Hence, the

mean pressure profile may be applied to the whole population. Currently, the most widely

used mean profile has been evaluated in [16] with 33 X-ray-selected clusters at low redshift

(z < 0.2) and at high mass (> 1014 M⊙), together with simulated ones. All observed profiles

have been obtained with X-ray information only (spectroscopy). As for the scaling relation, it

may depend on redshift, dynamical state and morphology [16]. Moreover, one could question

the validity of the self-similarity hypothesis at high redshift where clusters are encountering

merging events [15].

To assess results in cluster cosmology, these two tools must be studied with SZ observations

1R500 is defined as the radius for which the mean cluster density is 500 times the critical density.
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Figure 1. The NIKA2 LPSZ cluster sample presented in the mass-redshift plane, see text for details.

on large range of cluster masses (1014
− 1015 M⊙) and at high redshift z > 0.5 for which X-

ray observations become time expensive. Detailed information on the intra-cluster medium is

indeed needed to study the impact of dynamical state and morphology. Both the calibration

precision and scatter of the mass-observable scaling relation and of the mean pressure profile

must be carefully studied in order to be included in forthcoming cluster cosmology analyses.

One may write down an instrument wish list for SZ science aiming at cluster cosmology.

It includes: high angular resolution, in order to resolve inner structures, high sensitivity, to

reduce integration time, large field of view, to map the cluster up to its outskirts, and dual

band observation, to remove point-source contamination. These requirements correspond to

the performance and characterics of the NIKA2 camera at the IRAM 30-m telescope [17–19]

that makes it a powerful tool for SZ observations.

2 The NIKA2 SZ large program

The NIKA2 SZ large program (hereafter LPSZ) is part of the NIKA2 guaranteed time, allo-

cated by the IRAM scientific committee to the NIKA2 consortium. 300 hours of observations

have been granted for 50 clusters that will be observed with NIKA2 at the IRAM 30-m tele-

scope in the forthcoming years (up to 2022).

The immediate objective of the NIKA2 SZ large program is to study the thermodynamical

properties of a representative sample of SZ-selected (from Planck and ACT samples) clusters

of galaxies at intermediate and high redshift (0.5 < z < 0.9) spanning one order of magnitude

in mass. The high-resolution follow-up of SZ-discovered clusters will allow us, in combina-

tion with XMM-Newton X-ray data, to provide high quality deliverables in terms of radial

profiles (density, pressure, mass, temperature, entropy). NIKA2 and Planck data will be used

to extract the pressure profile P(r) whereas XMM-Newton data enable the evaluation of the

density profile n(r). They are then combined to obtained the hydrostatic mass profile M(r) but

also the temperature profile kBT (r) and the entropy profile K(r). All thermodynamic profiles

are essential for a full understanding of the mean pressure profile and of the scaling relation

in order to probe cluster physics and leverage large survey samples to constrain cosmology.
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To define the sample, we followed the approach used in X-rays with the local reference REX-

CESS sample at z < 0.2 [16], dedicated to the in-depth study of a representative sample of 33

X-ray selected clusters. The NIKA2 SZ large program uniquely exploits the excellent match

in sensitivity and spatial resolution of XMM-Newton and the NIKA2 camera. In particular,

spatially-resolved X-ray and SZ pressure profiles can be compared to assess effects such as

3D structure or clumping. The full sample will allow us to undertake an unprecedented study

at z > 0.5 of the mean pressure profile and of the scaling relations, together with their dis-

persion. The sample will serve as an important probe of the physics of gravitational collapse

and of the influence of non-gravitational processes on the ICM thermodynamics.

The cluster sample of the NIKA2 SZ large program currently contains 45 SZ-selected clus-

ters, amongst which 10 are from the ACT catalog and 35 from the Planck one, see [20–22].

The cluster sample is presented on figure 1 in the mass-redshift plane, where masses are M500

from the Planck and ACT catalogues. ACT clusters are located in the low mass range (below

4 × 1014 M⊙). We have defined two bins in redshift and 5 in mass. Within each bin we have

selected 5 clusters maximising, when possible, the overlap with the SZ clusters observed or

already planned for follow-ups with the XMM-Newton satellite.

One has to ensure that the sample is representative of the cluster population, i.e. not bi-

ased towards a given cluster morphology population. This condition will allow us to de-

rive mass-observable scaling relations that can be applicable to the whole cluster population

(not only relaxed or unrelaxed ICM) and to achieve a global characterization of clusters and

an improved control of systematics due to their astrophysics. A flux-selected subset of a

SZ-selected cluster catalogue fulfills the requirement of a representative sample. We have

considered the following main target selection criteria:

• clusters belonging to SZ-selected samples for which the redshift information is available,

• 0.5 < z < 0.9, to explore the cluster statistical properties beyond the local Universe,

• dec > −11◦, to ensure observability of the sources from the IRAM 30-m telescope.

Observation times have been chosen in order to have an homogeneous data quality, the criteria

being S/N = 3 on the pressure profile at R500. Most clusters already have X-ray data and

follow-ups are in progress. In fine, all clusters data, SZ and X-ray, will be combined to

evaluate thermodynamic profiles, which are the main deliverables of the project.

In terms of observations, careful treatment must be paid to data analysis since the SZ emission

from clusters is both very faint and extended with respect to the NIKA2 beam. Point source

contamination is also an issue worth mentioning but the NIKA2 dual-band observation should

enable for self consistent foreground source subtraction.

We have demonstrated, through pilot studies conducted with the pathfinder NIKA [23], the

possibility to recover cluster thermodymanic profiles from the combination of NIKA SZ and

XMM-Newton X-ray observations [24–31].

3 First cluster observation with NIKA2

The first cluster of the LPSZ sample that has been observed with NIKA2 is PSZ2

G144.83+25.11 at redshift z = 0.58 [32]. This cluster has been chosen to begin the NIKA2

SZ Large program because it is expected to have a strong SZ signal. Moreover, NIKA2 data

may be combined with X-ray data as we have for this cluster deep XMM-Newton data (60 ks).

This allowed us to compare thermodynamic profiles obtained with SZ and X-ray data to the

ones obtained with X-ray only (with spectroscopy). This cluster has been observed with an

effective time of 11 hours with a mean atmospheric opacity of 0.3 at 2 mm. At 2 mm, the

SZ peak is detected at 13.5σ and the SZ signal extends up to 1.4 arcmin, with a noise at the
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Figure 2. NIKA2 tSZ surface brightness map at 150 GHz after subtraction of the submillimeter point

source contaminant. The over-pressure region is shown as a dark sector. Figure extracted from [32].

level of ∼ 200 µJy/beam. At 1 mm, no SZ signal is detected, as expected given the noise

level (∼ 930 µJy/beam). Nonetheless, the 1 mm map is used to identify one point source that

compensates the SZ signal at 2 mm. The flux of this source at 2 mm is estimated from the fit

of its Spectral Energy Distribution evaluated with Herchel data [33, 34] and NIKA2 (1 mm).

The map is then corrected from this contamination. As shown on figure 2, we have identified

a thermal pressure excess in the south-west region of this cluster.

NIKA2 data have been used jointly with SZ data from MUSTANG, Bolocam, and Planck

experiments in order to non-parametrically set the best constraints on the electronic pressure

distribution from the cluster core (R ∼ 0.02R500) to its outskirts (R ∼ 3R500). We investigated

the impact of the over-pressure region on the shape of the pressure profile and on the con-

straints on the integrated Compton parameter Y500. A hydrostatic mass analysis has also been

performed by combining the SZ-constrained pressure profile with the deprojected electronic

density profile from XMM-Newton. This allowed us to conclude that the estimates of Y500

and M500 obtained from the analysis with and without masking the disturbed ICM region

differ by 65 % and 79 % respectively.

This work highlighted the fact that NIKA2 will have a crucial impact on the characterization

of the scatter of the Y500 − M500 scaling relation due to its high potential to constrain the

thermodynamic and morphological properties of the ICM when used in synergy with X-ray

observations of similar angular resolution. This study also presents the typical products that

will be delivered to the community for all clusters included in the NIKA2 SZ Large Program.

Note that most clusters will not exhibit such a strong SNR, not have Mustang/Bolocam data.

The observation of the second cluster of the LPSZ is presented in [35].
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